EP3123030B1 - Method for pumping in a system of vacuum pumps and system of vacuum pumps - Google Patents

Method for pumping in a system of vacuum pumps and system of vacuum pumps Download PDF

Info

Publication number
EP3123030B1
EP3123030B1 EP14715334.0A EP14715334A EP3123030B1 EP 3123030 B1 EP3123030 B1 EP 3123030B1 EP 14715334 A EP14715334 A EP 14715334A EP 3123030 B1 EP3123030 B1 EP 3123030B1
Authority
EP
European Patent Office
Prior art keywords
ejector
vacuum pump
return valve
primary dry
dry screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14715334.0A
Other languages
German (de)
French (fr)
Other versions
EP3123030A1 (en
Inventor
Didier MÜLLER
Jean-Eric Larcher
Théodore ILTCHEV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ateliers Busch SA
Original Assignee
Ateliers Busch SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ateliers Busch SA filed Critical Ateliers Busch SA
Priority to PL14715334T priority Critical patent/PL3123030T3/en
Publication of EP3123030A1 publication Critical patent/EP3123030A1/en
Application granted granted Critical
Publication of EP3123030B1 publication Critical patent/EP3123030B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • F04C28/065Capacity control using a multiplicity of units or pumping capacities, e.g. multiple chambers, individually switchable or controllable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control
    • F04F5/52Control of evacuating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/221Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • F04C2210/225Nitrogen (N2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/30Use in a chemical vapor deposition [CVD] process or in a similar process

Definitions

  • the present invention relates to a pumping method for improving flow and final vacuum performance in a vacuum pump system whose main pump is a screw-type dry vacuum pump, while reducing the output gas temperature and its electrical energy consumption. Also, the present invention relates to a vacuum pump system that can be used to perform the method of the present invention.
  • the speed of rotation of the pump plays a very important role which defines the operation of the pump in the different phases of emptying the speakers.
  • the trivial solution is to use a speed variator which allows the reduction or the increase of the speed and consequently of the power according to the different criteria of the pressure type, maximum current, limit torque, temperature, etc. But during the periods of operation in reduced speed of rotation there are drops of flow at high pressure, the flow rate being proportional to the speed of rotation. Frequency converter speed variation imposes additional cost and bulk.
  • Another trivial solution is the use of bypass valves at certain stages in multi-stage Roots or Claws vacuum pumps, respectively at certain well defined positions along the screws in the dry vacuum pumps of the type. to screw. This solution requires many parts and has reliability problems.
  • the document WO2014 / 012896A2 proposes to use downstream of a roots-type primary vacuum pump an ejector mounted in parallel with the outlet orifice of the primary pump to reduce the final vacuum achievable by this type of pump.
  • the ejector is provided with motor fluid by an external gas line which may advantageously be the same as that used for purging the primary type pump roots.
  • the document WO2011 / 061429A2 teaches that it is possible to lower the power consumption of a primary vacuum pump if means for controlling the external motor fluid supply of the aforementioned ejector are incorporated in the pumping system. These control means have for The purpose is to switch on and off the ejector at the most favorable moments for an optimal reduction of the electric power of the primary pump.
  • JP2007100562A proposes to replace the engine fluid source as a gas line with an external and isolated air compressor.
  • Another object of the present invention is to propose a method of pumping in a vacuum pump system which makes it possible to obtain a higher flow rate at low pressure than that which can be obtained by means of a dry vacuum pump of the type shown in FIG. screw alone when pumping a vacuum chamber.
  • the present invention also aims to propose a method of pumping in a vacuum pump system to reduce the electrical energy required for the vacuum of a vacuum chamber and its maintenance, as well as the drop in temperature exhaust gases.
  • a pumping method which is carried out in the context of a pumping system whose configuration consists essentially of a dry screw-type primary vacuum pump provided with a pumping orifice. a gas inlet connected to a vacuum chamber and a gas outlet opening in a conduit which is provided with a check valve before opening into the atmosphere or other devices.
  • the suction of an ejector supplied with motor fluid by a compressor driven by at least one shaft of the primary vacuum pump is connected in parallel with the nonreturn valve, its outlet going to the atmosphere or joining the conduit of the primary pump after the check valve.
  • the method essentially consists in supplying the ejector with fluid from a compressor driven by at least one shaft of the vacuum pump and operating the ejector continuously all the time that the primary vacuum pump dries with a screw pump the gases contained in the vacuum chamber by the gas inlet orifice, but also all the time that the screw-dried primary vacuum pump maintains a defined pressure (eg the final vacuum) in the chamber by pushing back the gases going up by its exit.
  • a defined pressure eg the final vacuum
  • the invention resides in the fact that the coupling of the dry primary screw vacuum pump and the ejector does not require specific measurements and devices (eg pressure sensors, temperature sensors, current, etc.), servocontrols or data and calculation management. Therefore, the vacuum pump system adapted for carrying out the pumping method according to the present invention comprises a minimum number of components, is very simple and costs significantly less than existing systems.
  • the invention lies in the fact that, thanks to the new pumping method, the primary dry screw vacuum pump can operate at a single constant speed, that of the electrical network, or rotate at variable speeds according to its own mode of operation. Therefore, the complexity and cost of the vacuum pump system adapted for carrying out the pumping method according to the present invention can be further reduced.
  • the ejector built into the vacuum pump system can still operate without damage according to this method of pumping. Its dimensioning is conditioned by a minimum motor fluid consumption for the operation of the device. It is normally single-storey. Its nominal flow rate is chosen as a function of the volume of the outlet duct of the dry primary vacuum pump with screw limited by the non-return valve. This flow rate may be 1/500 to 1/20 of the nominal flow rate of the dry primary screw vacuum pump, but may also be lower or higher than these values.
  • the driving fluid for the ejector may be air, but also other gases, for example nitrogen.
  • the non-return valve placed in the duct at the outlet of the dry primary screw vacuum pump, may be a standard item available commercially. It is dimensioned according to the nominal flow rate of the dry primary screw vacuum pump. In particular, it is expected that the check valve closes when the suction pressure of the primary dry screw vacuum pump is between 500 mbar absolute and the final vacuum (eg 100 mbar).
  • the ejector is multi-stage.
  • the ejector may be made of high chemical resistance material substances and gas commonly used in the semiconductor industry, both in the single-stage ejector variant as in that of the multi ejector -floor.
  • the ejector is preferably small.
  • the ejector is integrated in a cartridge which incorporates the non-return valve.
  • the ejector is integrated in a cartridge which incorporates the check valve and this cartridge itself is housed in an exhaust silencer, fixed to the gas outlet port of the vacuum pump. primary dry screw.
  • the ejector still pumps in the volume between the gas outlet of the dry primary vacuum pump screw and the check valve.
  • the compressor can draw atmospheric air or gases into the gas outlet duct after the check valve.
  • the presence of the compressor makes the screw pump system independent of a source of compressed gas, which may respond to certain industrial environments.
  • the pressure is high, for example equal to the atmospheric pressure. Due to the compression in the dry primary screw vacuum pump, the pressure of the gases discharged at its outlet is higher than the atmospheric pressure (if the gases at the outlet of the primary pump are discharged directly to the atmosphere) or higher. than the pressure at the input of another device connected downstream. This causes the non-return valve to open.
  • the screw-type primary vacuum pump consumes less and less energy for compression and produces less and less compression heat.
  • Figure 1 represents a first vacuum pump system SP adapted for implementing a pumping method.
  • This vacuum pump system SP comprises an enclosure 1, which is connected to the suction port 2 of a dry primary screw vacuum pump 3.
  • the gas outlet orifice of the primary vacuum pump dries at 3 is connected to the duct 5.
  • a discharge non-return valve 6 is placed in the duct 5, which after this non-return valve continues in gas outlet duct 8.
  • the non-return valve 6, when it is closed, allows the formation of a volume 4, between the gas outlet port of the primary vacuum pump 3 and itself.
  • the vacuum pump system SP also comprises an ejector 7, connected in parallel with the non-return valve 6.
  • the suction orifice of the ejector is connected to the volume 4 of the duct 5 and its discharge orifice is connected to the duct 8.
  • the supply duct 9 provides the driving fluid for the ejector 7.
  • Figure 2 represents a second vacuum pump system SP adapted for implementing a pumping method.
  • the system represented in figure 2 further comprises a compressor 10 which supplies the gas flow rate at the pressure necessary for the operation of the ejector 7.
  • One embodiment of the invention provides that the compressor 10 is driven by at least one shaft of the primary dry screw pump 3. Its energy consumption so that it can provide the flow of gas at the pressure necessary to operate the ejector 7 is much smaller (eg of the order of 3% to 5%) compared to the gain on the energy consumption of the main pump 3.
  • the compressor 10 can suck the atmospheric air or gases in the gas outlet duct 8 after the non-return valve 6. Its presence makes the vacuum pump system independent of a source of compressed gas, which can meet certain industrial environments.
  • the driving fluid for the ejector 7 is fed by the compressor 10.
  • the dry screw-type primary vacuum pump 3 draws the gases into the chamber 1 through the conduit 2 connected to its inlet and compresses them to discharge thereafter to its exit in the conduit 5 by the non-return valve 6.
  • the closing pressure of the non-return valve 6 is reached, it closes. From this moment the pumping of the ejector 7 gradually lowers the pressure in the volume 4 to the value of its limit pressure.
  • the power consumed by the primary dry screw pump 3 gradually decreases. This occurs in a short period of time, for example for a certain cycle in 5 to 10 seconds.

Description

Domaine technique de l'inventionTechnical field of the invention

La présente invention se rapporte à une méthode de pompage permettant d'améliorer les performances en termes de débit et de vide final dans un système de pompes à vide dont la pompe principale est une pompe à vide sèche de type à vis, tout en réduisant la température des gaz de sortie et sa consommation d'énergie électrique. Egalement, la présente invention se rapporte à un système de pompes à vide qui peut être utilisé pour réaliser la méthode selon la présente invention.The present invention relates to a pumping method for improving flow and final vacuum performance in a vacuum pump system whose main pump is a screw-type dry vacuum pump, while reducing the output gas temperature and its electrical energy consumption. Also, the present invention relates to a vacuum pump system that can be used to perform the method of the present invention.

Art antérieurPrior art

Les tendances générales d'augmentation des performances des pompes à vide, de réduction des coûts des installations et de la consommation d'énergie dans les industries comme la chimie, la pharmaceutique, les dépositions sous vide, les semi-conducteurs, etc. ont apporté des évolutions significatives en termes de performances, d'économie d'énergie, d'encombrement, dans les entrainements, etc.General trends of increasing vacuum pump performance, reducing plant costs and energy consumption in industries such as chemicals, pharmaceuticals, vacuum depositions, semiconductors, etc. have brought significant evolutions in terms of performance, energy saving, congestion, training, etc.

L'état de la technique montre que pour améliorer le vide final il faut rajouter des étages supplémentaires dans les pompes à vide de type Roots multi-étagées ou Claws multi-étagées. Pour les pompes à vide sèches de type à vis il faut mettre des tours supplémentaires aux vis, et/ou augmenter le taux de compression interne.The state of the art shows that to improve the final vacuum it is necessary to add additional stages in multi-stage Roots vacuum pumps or multi-stage Claws. For screw-type dry vacuum pumps, additional turns must be applied to the screws, and / or the internal compression ratio must be increased.

La vitesse de rotation de la pompe joue un rôle très important qui définit le fonctionnement de la pompe dans les différentes phases de vidage des enceintes. Avec les taux de compression interne des pompes disponibles sur le marché (dont l'ordre de grandeur se situe par exemple entre 2 et 20), la puissance électrique requise dans les phases de pompage à des pressions d'aspiration entre la pression atmosphérique et 100 mbar environ ou autrement dit à débit massique fort, serait très élevée. La solution triviale est d'utiliser un variateur de vitesse qui permet la réduction ou l'augmentation de la vitesse et par conséquent de la puissance en fonction des différents critères de type pression, courant maximal, couple limite, température, etc. Mais durant les périodes de fonctionnement en vitesse de rotation réduite il y a des baisses de débit à haute pression, le débit étant proportionnel à la vitesse de rotation. La variation de vitesse par variateur de fréquence impose un coût et un encombrement supplémentaires. Une autre solution triviale est l'utilisation des clapets de type by-pass à certains étages dans les pompes à vide multi-étagées de type Roots ou Claws, respectivement à certaines positions bien définies le long des vis dans les pompes à vide sèches de type à vis. Cette solution nécessite de nombreuses pièces et présente des problèmes de fiabilité.The speed of rotation of the pump plays a very important role which defines the operation of the pump in the different phases of emptying the speakers. With the internal compression ratios of the pumps available on the market (whose order of magnitude is for example between 2 and 20), the electrical power required in the pumping phases at suction pressures between atmospheric pressure and 100 mbar about or otherwise said to mass flow strong, would be very high. The trivial solution is to use a speed variator which allows the reduction or the increase of the speed and consequently of the power according to the different criteria of the pressure type, maximum current, limit torque, temperature, etc. But during the periods of operation in reduced speed of rotation there are drops of flow at high pressure, the flow rate being proportional to the speed of rotation. Frequency converter speed variation imposes additional cost and bulk. Another trivial solution is the use of bypass valves at certain stages in multi-stage Roots or Claws vacuum pumps, respectively at certain well defined positions along the screws in the dry vacuum pumps of the type. to screw. This solution requires many parts and has reliability problems.

L'état de la technique concernant les systèmes de pompes à vide qui visent l'amélioration du vide final et l'augmentation du débit montre des pompes booster de type Roots agencées en amont des pompes primaires sèches. Ce type de systèmes est encombrant, fonctionne soit avec des clapets by-pass présentant des problèmes de fiabilité, soit en employant des moyens de mesure, contrôle, réglage ou asservissement. Cependant, ces moyens de contrôle, réglage ou asservissement doivent être pilotés d'une manière active, ce qui résulte forcément en une augmentation du nombre de composants du système, de sa complexité et de son coût.The state of the art vacuum pump systems that aim at improving the final vacuum and increasing the flow rate shows Roots booster pumps arranged upstream of the dry primary pumps. This type of system is cumbersome, works either with by-pass valves having reliability problems, or by employing means of measurement, control, adjustment or control. However, these means of control, adjustment or control must be actively controlled, which necessarily results in an increase in the number of components of the system, its complexity and cost.

Le documment WO2014/012896A2 propose d'utiliser en aval d'une pompe à vide primaire de type roots un éjecteur monté en parrallèle de l'orifice de sortie de la pompe primaire afin de réduire le vide final atteignable par ce type de pompe. Dans ce document, l'éjecteur est fourni en fluide moteur par une ligne de gaz externe qui peut être avantageusement la même que celle qui est utilisée pour la purge de la pompe primaire de type roots. Par ailleurs, le document WO2011/061429A2 enseigne qu'il est possible d'abaisser la consommation électrique d'une pompe à vide primaire si des moyens de pilotage de l'alimentation externe en fluide moteur de l'éjecteur susmentionné sont incorporés au système de pompage. Ces moyens de pilotages ont pour but d'enclencher et de déclencher l'éjecteur aux moments les plus favorables pour une réduction optimale de la puissance électrique de la pompe primaire.The document WO2014 / 012896A2 proposes to use downstream of a roots-type primary vacuum pump an ejector mounted in parallel with the outlet orifice of the primary pump to reduce the final vacuum achievable by this type of pump. In this document, the ejector is provided with motor fluid by an external gas line which may advantageously be the same as that used for purging the primary type pump roots. In addition, the document WO2011 / 061429A2 teaches that it is possible to lower the power consumption of a primary vacuum pump if means for controlling the external motor fluid supply of the aforementioned ejector are incorporated in the pumping system. These control means have for The purpose is to switch on and off the ejector at the most favorable moments for an optimal reduction of the electric power of the primary pump.

Finalement, le document JP2007100562A propose de remplacer la source de fluide moteur sous forme de ligne de gaz par un compresseur à air externe et isolé.Finally, the document JP2007100562A proposes to replace the engine fluid source as a gas line with an external and isolated air compressor.

Résumé de l'inventionSummary of the invention

La présente invention a pour but de proposer une méthode de pompage dans un système de pompes à vide permettant d'obtenir un meilleur vide que celui qui peut être obtenu à l'aide d'une pompe à vide sèche de type à vis seule (de l'ordre de 0.0001 mbar) dans une enceinte à vide.It is an object of the present invention to provide a pumping method in a vacuum pump system which provides a better vacuum than that which can be obtained by means of a dry vacuum pump of the screw-only type (from order of 0.0001 mbar) in a vacuum chamber.

La présente invention a aussi pour but de proposer une méthode de pompage dans un système de pompes à vide permettant d'obtenir un débit supérieur à basse pression à celui qui peut être obtenu à l'aide d'une pompe à vide sèche de type à vis seule lors du pompage d'une enceinte à vide.Another object of the present invention is to propose a method of pumping in a vacuum pump system which makes it possible to obtain a higher flow rate at low pressure than that which can be obtained by means of a dry vacuum pump of the type shown in FIG. screw alone when pumping a vacuum chamber.

La présente invention a également pour but de proposer une méthode de pompage dans un système de pompes à vide permettant de réduire l'énergie électrique nécessaire pour la mise sous vide d'une enceinte à vide et son maintien, ainsi que la baisse de la température des gaz de sortie.The present invention also aims to propose a method of pumping in a vacuum pump system to reduce the electrical energy required for the vacuum of a vacuum chamber and its maintenance, as well as the drop in temperature exhaust gases.

Ces buts de la présente invention sont atteints à l'aide d'une méthode de pompage qui est réalisée dans le cadre d'un système de pompage dont la configuration consiste essentiellement en une pompe à vide primaire sèche à vis munie d'un orifice d'entrée des gaz relié à une enceinte à vide et d'un orifice de sortie des gaz donnant dans un conduit qui est muni d'un clapet anti-retour avant de déboucher dans l'atmosphère ou dans d'autres appareils. L'aspiration d'un éjecteur alimenté en fluide moteur par un compresseur entrainé par au moins un arbre de la pompe à vide primaire est branchée en parallèle à ce clapet anti-retour, sa sortie allant à l'atmosphère ou rejoignant le conduit de la pompe primaire après le clapet anti-retour.These objects of the present invention are achieved by means of a pumping method which is carried out in the context of a pumping system whose configuration consists essentially of a dry screw-type primary vacuum pump provided with a pumping orifice. a gas inlet connected to a vacuum chamber and a gas outlet opening in a conduit which is provided with a check valve before opening into the atmosphere or other devices. The suction of an ejector supplied with motor fluid by a compressor driven by at least one shaft of the primary vacuum pump is connected in parallel with the nonreturn valve, its outlet going to the atmosphere or joining the conduit of the primary pump after the check valve.

Une telle méthode de pompage est notamment l'objet de la revendication indépendante 1. Des différents modes de réalisation préférés de l'invention sont en outre l'objet des revendications dépendantes.Such a method of pumping is in particular the subject of independent claim 1. The various preferred embodiments of the invention are further the subject of the dependent claims.

La méthode consiste essentiellement à alimenter en fluide moteur l'éjecteur par un compresseur entrainé par au moins un arbre de la pompe à vide et à faire fonctionner l'éjecteur en continu tout le temps que la pompe à vide primaire sèche à vis pompe les gaz contenus dans l'enceinte à vide par l'orifice d'entrée de gaz, mais aussi tout le temps que la pompe à vide primaire sèche à vis maintient une pression définie (p.ex. le vide final) dans l'enceinte en refoulant les gaz remontant par sa sortie.The method essentially consists in supplying the ejector with fluid from a compressor driven by at least one shaft of the vacuum pump and operating the ejector continuously all the time that the primary vacuum pump dries with a screw pump the gases contained in the vacuum chamber by the gas inlet orifice, but also all the time that the screw-dried primary vacuum pump maintains a defined pressure (eg the final vacuum) in the chamber by pushing back the gases going up by its exit.

Selon un premier aspect, l'invention réside dans le fait que le couplage de la pompe à vide primaire sèche à vis et de l'éjecteur ne nécessite pas de mesures et appareils spécifiques (p.ex. de capteurs de pression, de température, de courant, etc.), d'asservissements ou de gestion de données et calcul. Par conséquent, le système de pompes à vide adapté pour la mise en oeuvre de la méthode de pompage selon la présente invention comprend un nombre minimal de composants, présente une grande simplicité et coûte nettement moins cher par rapport aux systèmes existants.According to a first aspect, the invention resides in the fact that the coupling of the dry primary screw vacuum pump and the ejector does not require specific measurements and devices (eg pressure sensors, temperature sensors, current, etc.), servocontrols or data and calculation management. Therefore, the vacuum pump system adapted for carrying out the pumping method according to the present invention comprises a minimum number of components, is very simple and costs significantly less than existing systems.

Selon un deuxième aspect, l'invention réside dans le fait que, grâce à la nouvelle méthode de pompage, la pompe à vide primaire sèche à vis peut fonctionner à une seule vitesse constante, celle du réseau électrique, ou tourner à des vitesses variables suivant son propre mode de fonctionnement. Par conséquent, la complexité et le coût du système de pompes à vide adapté pour la mise en oeuvre de la méthode de pompage selon la présente invention peuvent être réduits davantage.According to a second aspect, the invention lies in the fact that, thanks to the new pumping method, the primary dry screw vacuum pump can operate at a single constant speed, that of the electrical network, or rotate at variable speeds according to its own mode of operation. Therefore, the complexity and cost of the vacuum pump system adapted for carrying out the pumping method according to the present invention can be further reduced.

Par sa nature, l'éjecteur intégré dans le système de pompes à vide peut toujours fonctionner sans dommages suivant la présente méthode de pompage. Son dimensionnement est conditionné par une consommation de fluide moteur minimale pour le fonctionnement du dispositif. Il est normalement mono-étagé. Son débit nominal est choisi en fonction du volume du conduit de sortie de la pompe à vide primaire sèche à vis limité par le clapet anti-retour. Ce débit peut être de 1/500 à 1/20 du débit nominal de la pompe à vide primaire sèche à vis, mais peut aussi être inférieur ou supérieur à ces valeurs. Le fluide moteur pour l'éjecteur peut être de l'air, mais aussi d'autres gaz, par exemple l'azote.By its nature, the ejector built into the vacuum pump system can still operate without damage according to this method of pumping. Its dimensioning is conditioned by a minimum motor fluid consumption for the operation of the device. It is normally single-storey. Its nominal flow rate is chosen as a function of the volume of the outlet duct of the dry primary vacuum pump with screw limited by the non-return valve. This flow rate may be 1/500 to 1/20 of the nominal flow rate of the dry primary screw vacuum pump, but may also be lower or higher than these values. The driving fluid for the ejector may be air, but also other gases, for example nitrogen.

Le clapet anti-retour, placé dans le conduit à la sortie de la pompe à vide primaire sèche à vis peut être un élément standard disponible dans le commerce. Il est dimensionné suivant le débit nominal de la pompe à vide primaire sèche à vis. En particulier, il est prévu que le clapet anti-retour se ferme quand la pression à l'aspiration de la pompe à vide primaire sèche à vis se situe entre 500 mbar absolu et le vide final (p.ex. 100 mbar).The non-return valve, placed in the duct at the outlet of the dry primary screw vacuum pump, may be a standard item available commercially. It is dimensioned according to the nominal flow rate of the dry primary screw vacuum pump. In particular, it is expected that the check valve closes when the suction pressure of the primary dry screw vacuum pump is between 500 mbar absolute and the final vacuum (eg 100 mbar).

Selon une autre variante, l'éjecteur est multi-étagé.According to another variant, the ejector is multi-stage.

Selon encore une autre variante, l'éjecteur peut être réalisé en matière à résistance chimique élevée aux substances et gaz communément utilisés dans l'industrie des semi-conducteurs, aussi bien dans la variante éjecteur mono-étagé que dans celle de l'éjecteur multi-étagé.According to yet another variant, the ejector may be made of high chemical resistance material substances and gas commonly used in the semiconductor industry, both in the single-stage ejector variant as in that of the multi ejector -floor.

L'éjecteur est de préférence de petite taille.The ejector is preferably small.

Selon une autre variante, l'éjecteur est intégré dans une cartouche qui incorpore le clapet anti-retour.According to another variant, the ejector is integrated in a cartridge which incorporates the non-return valve.

Selon encore une autre variante, l'éjecteur est intégré dans une cartouche qui incorpore le clapet anti-retour et cette cartouche elle-même est logée dans un silencieux d'échappement, fixé à l'orifice de sortie des gaz de la pompe à vide primaire sèche à vis.According to yet another variant, the ejector is integrated in a cartridge which incorporates the check valve and this cartridge itself is housed in an exhaust silencer, fixed to the gas outlet port of the vacuum pump. primary dry screw.

Suivant la méthode de fonctionnement du système de pompes à vide selon l'invention, l'éjecteur pompe toujours dans le volume entre l'orifice de sortie des gaz de la pompe à vide primaire sèche à vis et le clapet anti-retour.According to the method of operation of the vacuum pump system according to the invention, the ejector still pumps in the volume between the gas outlet of the dry primary vacuum pump screw and the check valve.

Selon une autre variante de la présente invention, le compresseur peut aspirer l'air atmosphérique ou des gaz dans le conduit de sortie de gaz après le clapet anti-retour. La présence du compresseur rend le système de pompes à vis indépendant d'une source de gaz comprimé, ce qui peut répondre à certains environnements industriels.According to another variant of the present invention, the compressor can draw atmospheric air or gases into the gas outlet duct after the check valve. The presence of the compressor makes the screw pump system independent of a source of compressed gas, which may respond to certain industrial environments.

Au départ d'un cycle de vidage de l'enceinte, la pression y est élevée, par exemple égale à la pression atmosphérique. Vu la compression dans la pompe à vide primaire sèche à vis, la pression des gaz refoulés à sa sortie est plus haute que la pression atmosphérique (si les gaz à la sortie de la pompe primaire sont refoulés directement à l'atmosphère) ou plus haute que la pression à l'entrée d'un autre appareil connecté en aval. Cela provoque l'ouverture du clapet anti-retour.At the start of a drain cycle of the chamber, the pressure is high, for example equal to the atmospheric pressure. Due to the compression in the dry primary screw vacuum pump, the pressure of the gases discharged at its outlet is higher than the atmospheric pressure (if the gases at the outlet of the primary pump are discharged directly to the atmosphere) or higher. than the pressure at the input of another device connected downstream. This causes the non-return valve to open.

Quand ce clapet anti-retour est ouvert, l'action de l'éjecteur est très faiblement ressentie, comme la pression de son entrée est presque égale à celle de sa sortie. En revanche, quand le clapet anti-retour se ferme à une certaine pression (parce que la pression dans l'enceinte a entretemps baissé), l'action de l'éjecteur provoque une réduction progressive de la différence de pression entre l'enceinte et le conduit après le clapet. La pression à la sortie de la pompe à vide primaire sèche à vis devient celle à l'entrée de l'éjecteur, celle de sa sortie étant toujours la pression dans le conduit après le clapet anti-retour. Plus l'éjecteur pompe, plus la pression à la sortie de la pompe à vide primaire sèche à vis, dans le volume limité par le clapet anti-retour fermé, se réduit et par conséquent la différence de pression entre l'enceinte et la sortie de la pompe à vide primaire sèche à vis baisse. Cette faible différence réduit les fuites internes dans la pompe à vide primaire sèche à vis et engendre une baisse de la pression dans l'enceinte ce qui améliore le vide final. En plus la pompe à vide primaire sèche à vis consomme de moins en moins d'énergie pour la compression et produit de moins en moins de chaleur de compression.When this check valve is open, the action of the ejector is very weakly felt, as the pressure of its input is almost equal to that of its output. On the other hand, when the check valve closes at a certain pressure (because the pressure in the chamber has meanwhile dropped), the action of the ejector causes a gradual reduction of the pressure difference between the chamber and the duct after the valve. The pressure at the outlet of the primary dry screw vacuum pump becomes that at the inlet of the ejector, that of its outlet always being the pressure in the duct after the non-return valve. The more the ejector pumps, the more the pressure at the outlet of the primary vacuum pump dries, in the volume limited by the closed non-return valve, is reduced and consequently the pressure difference between the enclosure and the outlet of the dry primary vacuum pump with screw down. This small difference reduces internal leakage in the dry primary screw vacuum pump and lowers the pressure in the enclosure which improves the final vacuum. In addition, the screw-type primary vacuum pump consumes less and less energy for compression and produces less and less compression heat.

D'un autre côté, il est aussi évident que l'étude du concept mécanique cherche à réduire le volume entre l'orifice de sortie des gaz de la pompe à vide primaire sèche à vis et le clapet anti-retour dans le but d'y descendre la pression plus vite.On the other hand, it is also obvious that the study of the mechanical concept seeks to reduce the volume between the gas outlet of the dry primary screw vacuum pump and the non-return valve for the purpose of go down the pressure faster.

Brève description des dessinsBrief description of the drawings

Les particularités et les avantages de la présente invention apparaîtront avec plus de détails dans le cadre de la description qui suit avec des exemples de systèmes de pompe à vide donnés à titre illustratif et non limitatif en référence aux dessins ci-annexés qui représentent :

  • la figure 1 représente de manière schématique un premier système de pompes à vide pompage; et
  • la figure 2 représente de manière schématique un deuxième système de pompes à vide.
The features and advantages of the present invention will appear in more detail in the following description with examples of vacuum pump systems given for illustrative and non-limiting with reference to the accompanying drawings which represent:
  • the figure 1 schematically shows a first pump vacuum pump system; and
  • the figure 2 schematically represents a second system of vacuum pumps.

Description détaillée des dessinsDetailed description of the drawings

Figure 1 représente un premier système de pompes à vide SP adapté pour la mise en oeuvre d'une méthode de pompage. Figure 1 represents a first vacuum pump system SP adapted for implementing a pumping method.

Ce système de pompes à vide SP comporte une enceinte 1, laquelle est reliée à l'orifice d'aspiration 2 d'une pompe à vide primaire sèche à vis 3. L'orifice de sortie des gaz de la pompe à vide primaire sèche à vis 3 est relié au conduit 5. Un clapet anti-retour de refoulement 6 est placé dans le conduit 5, qui après ce clapet anti-retour continue en conduit de sortie des gaz 8. Le clapet anti-retour 6, lorsqu'il est fermé, permet la formation d'un volume 4, compris entre l'orifice de sortie des gaz de la pompe à vide primaire 3 et lui-même. Le système de pompes à vide SP comporte aussi un éjecteur 7, branché en parallèle au clapet anti-retour 6. L'orifice d'aspiration de l'éjecteur est relié au volume 4 du conduit 5 et son orifice de refoulement est relié au conduit 8. Le conduit d'alimentation 9 fournit le fluide moteur pour l'éjecteur 7.This vacuum pump system SP comprises an enclosure 1, which is connected to the suction port 2 of a dry primary screw vacuum pump 3. The gas outlet orifice of the primary vacuum pump dries at 3 is connected to the duct 5. A discharge non-return valve 6 is placed in the duct 5, which after this non-return valve continues in gas outlet duct 8. The non-return valve 6, when it is closed, allows the formation of a volume 4, between the gas outlet port of the primary vacuum pump 3 and itself. The vacuum pump system SP also comprises an ejector 7, connected in parallel with the non-return valve 6. The suction orifice of the ejector is connected to the volume 4 of the duct 5 and its discharge orifice is connected to the duct 8. The supply duct 9 provides the driving fluid for the ejector 7.

Figure 2 représente un deuxième système de pompes à vide SP adapté pour la mise en oeuvre d'une méthode de pompage.. Figure 2 represents a second vacuum pump system SP adapted for implementing a pumping method.

Par rapport au système représenté à la figure 1, le système représenté à la figure 2 comprend en outre un compresseur 10 qui fournit le débit de gaz à la pression nécessaire pour le fonctionnement de l'éjecteur 7.Compared to the system represented in figure 1 , the system represented in figure 2 further comprises a compressor 10 which supplies the gas flow rate at the pressure necessary for the operation of the ejector 7.

Un mode de réalisation de l'invention prévoit que le compresseur 10 est entraîné par au moins un arbre de la pompe primaire sèche à vis 3. Sa consommation d'énergie pour qu'il puisse fournir le débit de gaz à la pression nécessaire afin de faire fonctionner l'éjecteur 7 est largement plus petite (p.ex. de l'ordre de 3% à 5%) par rapport au gain réalisé sur la consommation d'énergie de la pompe principale 3. Le compresseur 10 peut aspirer l'air atmosphérique ou des gaz dans le conduit de sortie des gaz 8 après le clapet anti-retour 6. Sa présence rend le système de pompes à vide indépendant d'une source de gaz comprimé, ce qui peut répondre à certains environnements industriels.One embodiment of the invention provides that the compressor 10 is driven by at least one shaft of the primary dry screw pump 3. Its energy consumption so that it can provide the flow of gas at the pressure necessary to operate the ejector 7 is much smaller (eg of the order of 3% to 5%) compared to the gain on the energy consumption of the main pump 3. The compressor 10 can suck the atmospheric air or gases in the gas outlet duct 8 after the non-return valve 6. Its presence makes the vacuum pump system independent of a source of compressed gas, which can meet certain industrial environments.

Dès la mise en route de la pompe à vide primaire sèche à vis 3, le fluide moteur pour l'éjecteur 7 est allimenté par le compresseur 10. La pompe à vide primaire sèche à vis 3 aspire les gaz dans l'enceinte 1 par le conduit 2 branché à son entrée et les comprime pour les refouler par la suite à sa sortie dans le conduit 5 par le clapet anti-retour 6. Lorsque la pression de fermeture du clapet anti-retour 6 est atteinte, il se ferme. A partir de ce moment le pompage de l'éjecteur 7 fait baisser progressivement la pression dans le volume 4 jusqu'à la valeur de sa pression limite. En parallèle, la puissance consommée par la pompe à vide primaire sèche à vis 3 baisse progressivement. Cela se produit en un court laps de temps, par exemple pour un certain cycle en 5 à 10 secondes.As soon as the dry, screw-type primary vacuum pump 3 is started up, the driving fluid for the ejector 7 is fed by the compressor 10. The dry screw-type primary vacuum pump 3 draws the gases into the chamber 1 through the conduit 2 connected to its inlet and compresses them to discharge thereafter to its exit in the conduit 5 by the non-return valve 6. When the closing pressure of the non-return valve 6 is reached, it closes. From this moment the pumping of the ejector 7 gradually lowers the pressure in the volume 4 to the value of its limit pressure. In parallel, the power consumed by the primary dry screw pump 3 gradually decreases. This occurs in a short period of time, for example for a certain cycle in 5 to 10 seconds.

Avec un ajustement judicieux du débit de l'éjecteur 7 et de la pression de fermeture du clapet anti-retour 6 en fonction du débit de la pompe à vide primaire sèche à vis 3 et le volume de l'enceinte 1, il est en outre possible de réduire le temps avant la fermeture du clapet anti-retour 6 par rapport à la durée du cycle de vidage et donc réduire les pertes en fluide moteur pendant ce temps de fonctionnement de l'éjecteur 7 sans effet sur le pompage. Par ailleurs, ces « pertes » qui sont infimes, sont prises en compte dans le bilan de la consommation d'énergie. En revanche, l'avantage de la simplicité crédite une excellente fiabilité du système ainsi qu'un prix inférieur de 10% à 20% en comparaison avec des pompes similaires équipées d'automate programmable et ou de variateur, vannes pilotées, capteurs, etc.With a judicious adjustment of the flow of the ejector 7 and the closing pressure of the non-return valve 6 as a function of the flow rate of the dry primary screw vacuum pump 3 and the volume of the chamber 1, it is furthermore it is possible to reduce the time before closing the non-return valve 6 with respect to the duration of the emptying cycle and thus reduce the losses of engine fluid during this operating time of the ejector 7 without effect on the pumping. Moreover, these "losses" which are minute, are taken into account in the balance of energy consumption. On the other hand, the advantage of simplicity credits an excellent reliability of the system as well as a lower price of 10% to 20% in comparison with similar pumps equipped with PLC and or variator, controlled valves, sensors, etc.

Certainement, la présente invention est sujette à de nombreuses variations quant à sa mise en oeuvre. On comprend bien qu'il n'est pas concevable d'identifier de manière exhaustive tous les modes possibles. Il est bien sûr envisageable de remplacer un moyen décrit par un moyen équivalent sans sortir du cadre de la présente invention. Toutes ces modifications font partie des connaissances communes d'un homme du métier dans le domaine de la technologie du vide.Certainly, the present invention is subject to many variations as to its implementation. It is understandable that it is not conceivable to exhaustively identify all the possible modes. It is of course conceivable to replace a means described by equivalent means without departing from the scope of the present invention. All these modifications are part of the common knowledge of a person skilled in the field of vacuum technology.

Claims (16)

  1. Pumping method in a system of vacuum pumps (SP) comprising:
    - a primary dry screw-type vacuum pump (3) with a gas entry orifice (2) connected to a vacuum chamber (1) and a gas exit orifice (4) leading into a conduit (5) before coming out into the gas outlet (8) of the system of vacuum pumps (SP),
    - a non-return valve (6) positioned in the conduit (5) between the gas exit orifice (4) and the gas outlet (8), and
    - an ejector (7) connected in parallel to the non-return valve (6),
    - a compressor (10),
    the method being characterized in that
    the compressor (10) is driven by at least one of the shafts of the primary dry screw-type vacuum pump (3);
    the primary dry screw-type vacuum pump (3) is put in operation in order to pump the gases contained in the vacuum chamber (1) through the gas exit orifice (4);
    in a simultaneous way, the ejector (7) is fed with working fluid by the compressor (10); and
    the ejector (7) continues to be fed with working fluid all the time that the primary dry screw-type vacuum pump (3) is fed by a source of energy and evacuates the vacuum chamber (1).
  2. Pumping method according to claim 1, characterized in that it uses an ejector (7) whose outlet rejoins the conduit (5) after the non-return valve (6).
  3. Pumping method according to any one of the claims 1 to 2, characterized in that the nominal flow rate of the ejector (7) is selected as a function of the volume of the exit conduit (5) of the primary dry screw-type vacuum pump (3) which is limited by the non-return valve (6).
  4. Pumping method according to any one of the claims 1 to 3, characterized in that the working fluid of the ejector (7) is compressed air and/or nitrogen.
  5. Pumping method according to any one of the claims 1 to 4, characterized in that the non-return valve (6) closes when the pressure at the suction end of the primary dry screw-type vacuum pump (3) is between 500 mbar absolute and the final vacuum.
  6. Pumping method according to any one of the claims 1 to 5, characterized in that it uses an ejector (7) made of material having increased chemical resistance to substances and gases commonly used in the semiconductor industry.
  7. Pumping method according to any one of the claims 1 to 6, characterized in that it uses the ejector (7) integrated in a cartridge incorporating the non-return valve (6).
  8. Pumping method according to claim 7, characterized in that it uses the cartridge accommodated in an exhaust muffler fixed to the gas exit orifice (5) of the primary dry screw-type vacuum pump (3).
  9. System of vacuum pumps (SP) comprising:
    - a primary dry screw-type vacuum pump (3) with a gas entry orifice (2) connected to a vacuum chamber (1) and a gas exit orifice (4) leading into a conduit (5) before coming out into the gas outlet (8) of the system of vacuum pumps (SP),
    - a non-return valve (6) positioned in the conduit (5) between the gas exit orifice (4) and the gas outlet (8), and
    - an ejector (7) connected in parallel to the non-return valve (6),
    - a compressor (10)
    the system of vacuum pumps (SP) being characterized in that
    the compressor(10) is driven by at least one of the shafts of the primary dry screw-type vacuum pump (3);
    the ejector (7) is designed to be able to be fed with working fluid by the compressor (10) all the time that the primary dry screw-type vacuum pump (3) is fed by a source of energy and evacuates the vacuum chamber (1).
  10. System of vacuum pumps according to claim 9, characterized in that outlet of the ejector (7) rejoins the conduit (5) after the non-return valve (6).
  11. System of vacuum pumps according to any one of the claims 9 to 10, characterized in that the nominal flow rate of the ejector (7) is selected as a function of the volume of the exit conduit (5) of the primary dry screw-type vacuum pump (3) which is limited by the non-return valve (6).
  12. System of vacuum pumps according to any one of the claims 9 to 11, characterized in that it is designed to use as working fluid of the ejector (7) compressed air and/or nitrogen.
  13. System of vacuum pumps according to any one of the claims 9 to 12, characterized in that the non-return valve (6) is designed to close when the pressure at the suction end of the primary dry screw-type vacuum pump (3) is between 500 mbar absolute and the final vacuum.
  14. System of vacuum pumps according to any one of the claims 9 to 13, characterized in that the ejector (7) is made of material having increased chemical resistance to substances and gases commonly used in the semiconductor industry.
  15. System of vacuum pumps according to any one of the claims 9 to 14, characterized in that the ejector (7) is integrated in a cartridge which incorporates the non-return valve (6).
  16. System of vacuum pumps according to claim 15, characterized in that the cartridge is accommodated in an exhaust muffler fixed to the gas exit orifice (5) of the primary dry screw-type vacuum pump (3).
EP14715334.0A 2014-03-24 2014-04-07 Method for pumping in a system of vacuum pumps and system of vacuum pumps Active EP3123030B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL14715334T PL3123030T3 (en) 2014-03-24 2014-04-07 Method for pumping in a system of vacuum pumps and system of vacuum pumps

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2014055822 2014-03-24
PCT/EP2014/056938 WO2015144254A1 (en) 2014-03-24 2014-04-07 Method for pumping in a system of vacuum pumps and system of vacuum pumps

Publications (2)

Publication Number Publication Date
EP3123030A1 EP3123030A1 (en) 2017-02-01
EP3123030B1 true EP3123030B1 (en) 2019-08-07

Family

ID=50346017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14715334.0A Active EP3123030B1 (en) 2014-03-24 2014-04-07 Method for pumping in a system of vacuum pumps and system of vacuum pumps

Country Status (15)

Country Link
US (1) US10260502B2 (en)
EP (1) EP3123030B1 (en)
JP (1) JP6445041B2 (en)
KR (1) KR102190221B1 (en)
CN (1) CN106232992A (en)
AU (1) AU2014388058B2 (en)
BR (1) BR112016021735B1 (en)
CA (1) CA2943315C (en)
DK (1) DK3123030T3 (en)
ES (1) ES2752762T3 (en)
PL (1) PL3123030T3 (en)
PT (1) PT3123030T (en)
RU (1) RU2660698C2 (en)
TW (1) TWI651471B (en)
WO (1) WO2015144254A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178846A (en) * 2017-04-12 2018-11-15 株式会社荏原製作所 Device and method for controlling operation of vacuum pump device
DE102021107055A1 (en) * 2021-03-22 2022-09-22 Inficon Gmbh Functional test of a leak detection device for leak testing of a test specimen filled with a liquid

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536418A (en) * 1969-02-13 1970-10-27 Onezime P Breaux Cryogenic turbo-molecular vacuum pump
FR2822200B1 (en) * 2001-03-19 2003-09-26 Cit Alcatel PUMPING SYSTEM FOR LOW THERMAL CONDUCTIVITY GASES
SE0201335L (en) * 2002-05-03 2003-03-25 Piab Ab Vacuum pump and ways to provide vacuum
JP4745779B2 (en) * 2005-10-03 2011-08-10 神港精機株式会社 Vacuum equipment
FR2952683B1 (en) * 2009-11-18 2011-11-04 Alcatel Lucent METHOD AND APPARATUS FOR PUMPING WITH REDUCED ENERGY CONSUMPTION
US20120261011A1 (en) * 2011-04-14 2012-10-18 Young Man Cho Energy reduction module using a depressurizing vacuum apparatus for vacuum pump
FR2993614B1 (en) * 2012-07-19 2018-06-15 Pfeiffer Vacuum METHOD AND APPARATUS FOR PUMPING A CHAMBER OF PROCESSES
US20170045051A1 (en) * 2014-05-01 2017-02-16 Ateliers Busch Sa Pumping method in a system for pumping and system of vacuum pumps
RU2674297C2 (en) * 2014-10-02 2018-12-06 Ателье Буш Са Pumping-out system for creating vacuum and pumping-out method therewith

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6445041B2 (en) 2018-12-26
EP3123030A1 (en) 2017-02-01
RU2016141339A (en) 2018-04-24
RU2660698C2 (en) 2018-07-09
US20170089339A1 (en) 2017-03-30
JP2017519141A (en) 2017-07-13
TWI651471B (en) 2019-02-21
BR112016021735B1 (en) 2022-07-05
AU2014388058B2 (en) 2019-02-21
BR112016021735A2 (en) 2021-09-08
PL3123030T3 (en) 2020-03-31
DK3123030T3 (en) 2019-10-14
CA2943315C (en) 2021-09-21
CA2943315A1 (en) 2015-10-01
ES2752762T3 (en) 2020-04-06
KR102190221B1 (en) 2020-12-14
WO2015144254A1 (en) 2015-10-01
KR20160137596A (en) 2016-11-30
US10260502B2 (en) 2019-04-16
CN106232992A (en) 2016-12-14
TW201600723A (en) 2016-01-01
AU2014388058A1 (en) 2016-10-13
PT3123030T (en) 2019-10-25

Similar Documents

Publication Publication Date Title
EP2501936B1 (en) Method and device for pumping with reduced power use
EP3201469B1 (en) Pumping system for generating a vacuum and method for pumping by means of this pumping system
EP3161318B1 (en) Method of pumping in a system of vacuum pumps and system of vacuum pumps
EP3198148B1 (en) Vacuum-generating pumping system and pumping method using this pumping system
EP3123030B1 (en) Method for pumping in a system of vacuum pumps and system of vacuum pumps
EP3137771B1 (en) Method of pumping in a pumping system and vacuum pump system
WO2018010970A1 (en) Method for lowering the pressure in a loading and unloading lock and associated pumping unit
EP3867531A1 (en) Method for controlling the temperature of a vacuum pump, and associated vacuum pump and installation
FR2968730A1 (en) Device for pumping e.g. load lock chamber, has reservoir including inlet that communicates with conduit, and outlet that communicates with another conduit, where conduits carry respective solenoid valves
EP2823182B1 (en) Improved pump installation and a control method for such a pump installation
BE332865A (en)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1164310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014051236

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191011

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3123030

Country of ref document: PT

Date of ref document: 20191025

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191008

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2752762

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014051236

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1164310

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230330

Year of fee payment: 10

Ref country code: PL

Payment date: 20230330

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230419

Year of fee payment: 10

Ref country code: LU

Payment date: 20230419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20230417

Year of fee payment: 10

Ref country code: IT

Payment date: 20230420

Year of fee payment: 10

Ref country code: IE

Payment date: 20230419

Year of fee payment: 10

Ref country code: FR

Payment date: 20230424

Year of fee payment: 10

Ref country code: ES

Payment date: 20230627

Year of fee payment: 10

Ref country code: DK

Payment date: 20230421

Year of fee payment: 10

Ref country code: DE

Payment date: 20230420

Year of fee payment: 10

Ref country code: CH

Payment date: 20230502

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230405

Year of fee payment: 10

Ref country code: SE

Payment date: 20230420

Year of fee payment: 10

Ref country code: AT

Payment date: 20230420

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230419

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 10