EP3118563A1 - Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl - Google Patents

Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl Download PDF

Info

Publication number
EP3118563A1
EP3118563A1 EP16001535.0A EP16001535A EP3118563A1 EP 3118563 A1 EP3118563 A1 EP 3118563A1 EP 16001535 A EP16001535 A EP 16001535A EP 3118563 A1 EP3118563 A1 EP 3118563A1
Authority
EP
European Patent Office
Prior art keywords
laser beam
vehicle
laser
missile
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP16001535.0A
Other languages
English (en)
French (fr)
Other versions
EP3118563B1 (de
Inventor
Arne Nolte
Michael Masur
Michael Gross
Nicolai Künzner
Thomas Kuhn
Norbert Stelte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP3118563A1 publication Critical patent/EP3118563A1/de
Application granted granted Critical
Publication of EP3118563B1 publication Critical patent/EP3118563B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2253Passive homing systems, i.e. comprising a receiver and do not requiring an active illumination of the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems
    • F41G7/2273Homing guidance systems characterised by the type of waves
    • F41G7/2293Homing guidance systems characterised by the type of waves using electromagnetic waves other than radio waves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/30Command link guidance systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control

Definitions

  • the invention relates to a method for protecting a vehicle from attack by a laser beam.
  • High-energy lasers can transmit very high power over several kilometers and over a longer period of time. With such services, sensitive parts of vehicles can be so severely damaged or destroyed within a few seconds that the functioning of the vehicles is jeopardized. Thus, for example, aircraft can be attacked from the ground, in particular slow-moving commercial aircraft with relatively low maneuverability are particularly vulnerable.
  • the invention detects a sensor system of the vehicle laser radiation of the laser beam and a control unit of the vehicle detects the laser beam from the data of the sensor system as such, a start of a missile to protect the vehicle from the laser beam is controlled by the control unit and the missile starts from the vehicle.
  • the missile can shade the vehicle and / or approach and combat a laser source emitting the laser beam. This is done expediently so quickly that the laser energy deposited on the vehicle has not yet led to threatening damage.
  • a fast protection can be achieved by starting the missile from the vehicle, since then the missile is already on site and dive into the laser beam for shading and / or can quickly fly to combat the laser source on this.
  • the missile is expediently equipped with a rocket motor.
  • the method is particularly suitable for use against a high energy laser source or a high energy laser beam. Also advantageous is a defense of a sturgeon laser.
  • the sensor system comprises at least one sensor sensitive to laser radiation, which detects the laser radiation of the laser beam.
  • the sensor or the sensor system is expediently sensitive in a radiation spectrum which is usually used for high-energy lasers or interfering lasers.
  • the spectrum in which the sensor is sensitive may be limited to a band around the one laser wavelength commonly used for high energy lasers.
  • the band is at most ⁇ 100 nm around the wavelength of 3800 nm.
  • the sensor expediently recognizes characteristics typical of laser radiation, such as the presence of coherent radiation.
  • the sensor system detects by means of image processing methods, a laser beam as such in the environment, for example on the basis of scattered radiation.
  • the sensor system advantageously contains an image sensor, for example a matrix detector.
  • the sensor system detects laser radiation of the laser beam, ie radiation directly emitted by the laser source and / or laser radiation scattered from the laser beam, for example by the scattering of the laser beam in the air, on particles and / or on an object.
  • the sensor system absorbs the radiation and converts it into a measuring signal.
  • the control unit expediently determines a threat level of the laser radiation, for example by a classification in at least the levels threatening or harmless. This can be done, for example, via the measured scattered light intensity in the atmosphere, an energy input into the sensor system, a spread spectrum and / or over a temporal characteristic of the radiation, such as a pulsation.
  • the vehicle is preferably an aircraft, and may be fixed-wing aircraft or a rotorcraft, such as a helicopter.
  • the invention is also advantageously applicable for protecting a land vehicle or a watercraft.
  • the vehicle may be a manned or unmanned vehicle.
  • the control unit may have one or more arithmetic units that can be arranged in the vehicle at a location distributed over the vehicle, in the vehicle and in the missile or exclusively in the missile housed in the vehicle - and thus likewise in the vehicle.
  • the control unit recognizes the laser beam as such and initiates a start of the flying body as a function of the recognition result. If a laser beam is recognized as such and it is also classified as threatening to the vehicle, the missile is launched from the vehicle. If a laser beam is not recognized as such or classified as non-threatening, the launching of the missile expediently fails.
  • the missile is expediently a guided missile and in particular an unmanned missile. It may be equipped with a rocket engine and / or an air-breathing engine, such as a turbine engine. In this case, an air-breathing engine is advantageous in accompanying the vehicle by the missile, and a rocket motor is more advantageous in an intended fight the laser source. Also possible is a missile without its own engine, for example in the form of a steering column.
  • the missile expediently comprises a control unit which steers the missile, for example parallel to the vehicle and / or to the laser source.
  • the sensor system picks up the laser beam from the side, and the control unit detects the laser beam from sensor data obtained from the recording from the side, in particular exclusively from these sensor data.
  • the laser beam can already be detected, even if he has not yet hit the vehicle, so that early detection of the laser beam as such is possible.
  • the control unit detects the laser beam from sensor data obtained from the recording from the side, in particular exclusively from these sensor data.
  • the laser beam can already be detected, even if he has not yet hit the vehicle, so that early detection of the laser beam as such is possible.
  • a laser beam recorded from the side can be recognized as a straight line in the environment and can thus be recognized as such by means of image processing methods.
  • the sensor system has a plurality of laser-sensitive sensors. These are expediently arranged at different positions on the outer shell of the vehicle, so that they can detect the laser beam from different locations. If one of the sensors is hit and destroyed by the laser beam, the sensory activity of the sensor system can be continued or resumed by another sensor.
  • the sensors are expediently spaced apart at a distance of more than one meter.
  • At least one sensor is arranged in at least two regions of the group: front half of the fuselage, rear half of the fuselage, upper half of the fuselage, lower half of the fuselage, on a wing.
  • At least one sensor of the sensor system is covered during operation of the sensor system.
  • regular operation provides that one sensor is always covered by several sensors of the sensor system.
  • at least this part of the sensors can be preserved and used for the detection of the laser beam.
  • only a part of the sensors of the sensor system is directed into the environment of the vehicle and another part of the sensors is covered against the environment.
  • at least one covered sensor is directed into the environment depending on the functionality of one of the other sensors, in particular is brought from a passive state into an active state.
  • one sensor fails, another can be brought from the covered state to the active state directed to the environment, and the detection of the laser beam can be continued. For example, while the vehicle is in motion, a first sensor can permanently examine the surroundings of the vehicle for laser radiation. If this sensor fails, for example because it was hit by the laser beam, another sensor is activated at another position of the vehicle for further observation and thereby directed or opened into the environment.
  • the sensor system has a multiple sensor with multiple sensor heads. These can, for example, be directed one after the other into the environment.
  • at least one of the sensor heads is always concealed, while at least one other of the sensor heads is directed into the environment and detected.
  • the multiple sensor may be, for example, a turret sensor carrying a plurality of sensors on a drum. Also possible are successively used sensors, the front sensor or an element connected to it, covering the underlying sensor.
  • At least one sensor of the sensor system is directed exclusively into an upper half space above the vehicle.
  • the sensor especially if it is permanently directed in the above half-space, not be hit directly.
  • a detection of the laser beam is still possible on the detection of scattered radiation.
  • the launched by the vehicle missile can be used to combat the laser source, which emits the laser beam.
  • the missile can fly directly into the laser source and / or destroy the laser source by a detonation charge, in particular by a cone-shaped forward splitter charge.
  • it is advantageous to know the position of the laser source either relative to the position and / or direction of movement of the vehicle or in absolute coordinates. If the laser beam is sensed by a sensor from the side, it can be determined as a straight line with an abrupt end. The end point of the line can be equated with the position of the laser source.
  • the control unit determines from the data of the sensor system the position of a laser source which emits the laser beam.
  • a radiation end of the laser beam can be detected and the position of the laser source can be determined from the position of the beam.
  • the position from triangulation can be determined from the data of several sensors.
  • the position of the laser source can be detected as a direction, for example as an absolute direction or as a direction relative to the direction of flight of the aircraft. It is also possible to determine the direction as an absolute, ie geographical, direction.
  • a determination of a distance of the laser source from the sensor system is advantageous. This can be done particularly easily using a flying height of the vehicle. If the direction of the laser source and the altitude are known, the distance to the laser source can be calculated from this in a simple manner, in particular taking into account topographical data of an overflown landscape.
  • the launch of the missile is fully automatic and in particular triggered by the detection of the laser beam.
  • a semi-automatic triggering is possible in which an operator of the vehicle gives an enable signal and triggering takes place only after the release signal, in particular fully automatically, for example, only when a direction or position of the laser source has been detected with sufficient certainty and accuracy.
  • a start of the missile is expediently already before an alignment of the laser beam on the vehicle, so before the vehicle was hit by the laser beam.
  • the launch of the missile can take place from a starting device, for example from a container.
  • a starting device for example from a container.
  • This can be mounted in the fuselage of the vehicle, so that in particular several missiles can be started in a salvo shot simultaneously or immediately sequentially to protect the vehicle.
  • the term "start" may in this case include a launch.
  • an alignment of a starting device of the missile takes place as a function of the position of the laser beam, in particular in dependence on the position of the laser source. It can be a targeted launch in the direction of the laser source, so that the time is saved for a detour flight. Accordingly, it is advantageous if the missile starts directed to a laser source of the laser beam. In this case, a curved trajectory, for example, taking into account ballistic influences, are used so that the alignment of the missile at the start does not have to be in a straight line to the laser source.
  • control unit in the missile passes a target instruction on a laser source of the laser beam to a control unit of the missile. This can be done before the launch of the missile and / or in particular during the flight of the missile, for example by a data link from the vehicle to the missile.
  • the control unit of the missile receives the target instruction and directs the missile to the laser source. In this way, the missile can already be started before the exact position of the laser source has been calculated.
  • the flight of the missile can be controlled independently by a control unit of the missile. Additionally or alternatively, it is possible that the remaining in the vehicle control unit controls the flight of the missile or mitêtt. For example, the self-controlling missile an escape or Abschattungsan flirt be issued by the vehicle, which is then taken into account by the control unit of the missile.
  • a control of the missile from the vehicle is also advantageous if the position of the laser beam or the laser source can be accurately determined by the vehicle or the vehicle detects an impact of the laser beam and delegates the missile in a shading position.
  • laser-sensitive areas of the vehicle can be deliberately shadowed by the corresponding flight control of the missile, or the onward flight of the missile can be controlled in the case of a destroyed sensor of the missile further to the laser source.
  • the invention is also directed to a vehicle having a sensor system for detecting a laser beam.
  • the vehicle is equipped with a missile which is prepared for controlling a laser source of the laser beam and / or for shading an element of the aircraft.
  • the aircraft includes a control unit which is prepared to detect the laser beam from the data of the sensor system as such and to control a start of the missile from the vehicle to protect the vehicle from the laser beam.
  • FIG. 1 shows a vehicle 2 in the form of an aircraft, which is designed in this case as a commercial aircraft for the transport of passengers or air freight.
  • a laser system 6 is positioned, which in the in FIG. 1 represented moment a laser beam 8, which is generated by a laser source 10, directed into the sky.
  • the laser system 6 is placed in the embodiment shown on the ground and immovable. However, it is also possible that the laser system 6 is movable and is mounted, for example, in an aircraft. All details described below and related to the laser source 10 are then to be adapted accordingly to the mobility or height above the ground.
  • the laser system 6 is a high-energy laser system which emits the laser beam 8 predominantly in the infrared spectral range, for example at 3.8 microns, wherein the Laser beam 8 over a distance of several kilometers transported enough energy to destroy sensitive parts of the aircraft and thereby endangering its flying capacity acutely.
  • the laser system 6 is used to combat aircraft and has a control unit which pivots the laser beam 8 on the vehicle 2 and the laser beam 8 automatically tracks the movement of the aircraft 2.
  • a laser-sensitive point of the vehicle 2 is deposited, to which the laser beam 8 is automatically directed by means of image processing methods to irradiate the laser system 6 pictorially deposited point of the aircraft 2 over a period of a few seconds and thereby destroy.
  • a designator laser system or marker laser system can be fought or disturbed, which illuminates the vehicle 2 in order to control a guided missile into the vehicle 2. By shading the vehicle 2 and / or destroying the laser source 10, this mark can be disturbed, so that the attacking missile can not find the vehicle 2.
  • the following description refers to a stationary high energy laser system 6 without being limited to this system.
  • this has at least one missile 12, 14, wherein in FIG. 1 to illustrate several protection methods three missiles 12 and a missile 14 are shown.
  • the aircraft has a sensor system 16 with a plurality of sensors 18, which are each signaled by a control unit 20.
  • the aircraft is equipped with five sensors 18, one in the rear half of the fuselage, one in the front half of the fuselage, one on each wing of the aircraft, and one upward sensor 18 on the upper half of the fuselage of the aircraft ,
  • the other of the sensors 18 are covered.
  • Covered in this context means that the laser-sensitive element of the corresponding sensor 18 is covered by a laser-resistant cover so that it is not destroyed by a beaming from the outside of the aircraft 2 laser beam 8, in particular can not be achieved.
  • Active means in this context that a field of view of the laser-sensitive element in the environment is free and the sensor 18 receives sensor data and to the control unit 20 passes.
  • one of the sensors 18 is oriented upward and can not be reached by a laser beam 8 incident from below on the aircraft 2. Aligned upward means in particular in this context that the sensor 18 is directed in a horizontal flight of the aircraft exclusively in the upper half-space. This sensor 18 is thus very well protected and also suitable to detect the laser beam 8 from scattered radiation of the laser beam 8 in the atmosphere.
  • the front sensor 18 of the sensor system 16 is active and the remaining sensors 18 are covered.
  • the sensor is designed as a revolver sensor and schematically in FIG. 2 shown.
  • FIG. 2 shows one of the sensors 18 of the sensor system 16 from FIG. 1 ,
  • the sensor 18 comprises six sensor heads 22, of which five of the sensor heads 22 are covered by a cover element 24, for example a metal plate.
  • a cover element 24 for example a metal plate.
  • One of the sensor heads 22 is behind an opening 26 of the cover 24, is thus aligned in the environment and can look into the environment and detect laser radiation.
  • the sensor heads 22 are pivotable about a common axis, as in FIG. 2 indicated by the curved arrow. If the currently active sensor head 22 is destroyed, the turret can be further rotated by 60 °, so that the next sensor head 22 comes to lie behind the opening 26 and can detect the detection.
  • a further sensor head 28 Arranged in the middle and also behind the cover element 24 is a further sensor head 28, which has the task of detecting when a high-energy laser beam 8 is directed onto the sensor 18.
  • the sensor head 28 is not able to detect laser radiation per se, it measures an energy input on the cover element 24, so that an active switching of an undamaged sensor head 22 can be avoided as long as the laser beam 8 is directed to the sensor 18.
  • the remainder of the sensors 18 of the aircraft 2 may be as in FIG. 2 be shown sensor 18 executed. In a simplified version, however, the rest the sensors 18 only a sensor head 22 and the sensor head 28 and a movable cover 24 on. As long as the laser beam 8 is directed to the sensor, the cover conceals the laser radiation-sensitive sensor head 22. Only when the control unit 20 has enabled the activation of the sensor and as an additional condition, the laser beam 8 does not rest on the sensor 18, the sensor head 22 and thus the Sensor 18 switched active.
  • the sensor heads 22 each comprise image sensors behind a 180 ° optics, so that the scene of a hemisphere of the surrounding space is imaged onto a laser-sensitive element.
  • an image of the laser beam 8 can be recorded in the environment, and from this further information about the laser beam 8 can be determined, such as geometry, position and intensity of the laser beam. From the geometry recognizes the control unit 20 of the sensor system 16, in particular by means of image processing methods, the laser beam 8 as such.
  • the laser beam is seen as a straight line in the landscape.
  • it has a sharply defined end on the laser source 10. At its other end, however, the laser beam becomes weaker, as long as it does not strike an object FIG. 1 is shown, so that a defined end is not readily determinable. This feature of the upper attenuation of the laser radiation can also be used for laser detection.
  • the control unit 20 From the geometric data of the laser beam 8 and its spectrum and radiation intensity, the control unit 20 first classifies the laser beam 8 in the three stages harmless, potentially dangerous and dangerous. In a classification harmless in the level of the laser beam 8, which is generated for example by a laser pointer, further observed, however, neither the laser beam 8 is shadowed nor the laser source 10 is combated. Classification in one of the other two levels will prepare for shading and / or combat.
  • a canister 30, which accommodates at least one of the missiles 12, is pivoted in the direction of the laser source 10. This pivoting is in FIG. 1 indicated by the curved double arrow on the canister 30. Alternatively or additionally, the ejection of the missile 14 from the fuselage of the aircraft 2 is prepared.
  • Classification into the highest of the threat classes will initiate combat and / or shadowing. For this purpose, for example, a release of an operator of the aircraft 2, such as a pilot, necessary. However, this has already been given in advance, for example because it is known that the aircraft is flying through a potentially dangerous region.
  • the position of the laser source 10 is known. This determines the control unit 20, for example, from the geometry of the laser beam 8. Thus, at the location of the abrupt end of the laser beam 8, the laser source 10 can be suspected.
  • the laser beam 8 can be given a direction, at least a rough direction at the top and bottom, wherein the laser source 10 is positioned only at a lower end of the laser beam 8. In this way, a direction of the laser source 10 relative to the aircraft 2 can be determined. From the direction and a flight altitude of the aircraft and expediently a topography of the overflown landscape, the distance between aircraft and laser source 10 can be determined, in particular the absolute geographic coordinates of the laser source 10 are determined.
  • the detection of the laser beam 8 takes place insofar by a recording of the laser beam 8 from the side, wherein from the laser beam 8 scattered in the atmosphere laser radiation is recorded. This can also be done by the upward sensor 18 whose view is adjusted to the laser source 10. On the basis of the orientation of the visible part of the laser beam 8, a further course of the laser beam 8 can also be extrapolated in the environment.
  • the determination of the position of the laser source 10 is detected by another of the sensors 18 of the sensor system 16, for example by a sensor 18 on a wing of the aircraft 2.
  • This recognizes the laser beam 8 per se and both abrupt ends, the control unit 20, the lower abrupt end of the laser beam 8 as the location of Laser source 10 selects.
  • a position determination of the laser source 10 by means of triangulation.
  • At least one missile 12, 14 is now started by the aircraft.
  • the control of the start takes over the control unit 20 of the Sensor system 16, which may also be part of a central vehicle control of the vehicle 2.
  • FIG. 3 shows two embodiments for protecting the aircraft, which can be performed individually or in combination.
  • a missile 12 is started in the form of a steering rocket.
  • This missile 12 is started from the canister 30, for example, by a drop, a launch and / or a launch of a missile engine of the missile 12. Since the missile 12 is already aligned by the orientation of the canister 30 to the laser source 10 to the laser source 10, detours can be avoided and the missile 12 can be sent in direct line to the laser source 10.
  • other guided missiles may also be used, for example steerable projectiles.
  • This is also a control unit 32 for controlling the steered flight and a. Steering system 34 to perform the steering.
  • the missile 12 expediently comprises an active part 36 with an explosive charge for controlling the laser source 10.
  • the missile 12 may have a rocket motor for independent acceleration.
  • the control of the missile 12 can be done independently by the control unit 32 of the missile 12. It is also possible that the control is carried out by the control unit 20 of the aircraft, either in addition or independently by the specification of appropriate commands to the control unit 32 of the missile 12. In this way, the missile 12 is controlled on or in the laser source 10 so that they gets destroyed. Shortly before the missile 12 reaches the laser source 10, the active part 36 can be ignited, which hurls a fragmentation charge in a forward direction and thereby destroys the laser source 10. The ignition of the active portion 36 may be by an impact fuse or a proximity fuse located in the missile head.
  • the flight of the missile 12 is suitably guided by the laser beam 8.
  • the missile 12 can be further observed by the sensor system 16 of the aircraft, and in the missile 12 corresponding control signals can be given.
  • the missile 12 independently uses the laser beam 8 as flight guidance and steers its own flight depending on its orientation in space.
  • the missile 12 thus flies guided by the laser beam 8 independently in the laser source 10.
  • the flight in the laser beam. 8 or be guided along the outside of the laser beam 8 or at a suitably predetermined distance along the laser beam 8 along.
  • the transfer of a target instruction from the control unit 20 to the control unit 32 is advantageous.
  • at least a rough navigation in the first part of the approach can be considerably facilitated.
  • the missile 14 is dropped from the fuselage of the aircraft, and this begins its flight, which is substantially parallel to the flight of the aircraft.
  • the purpose of this flight is to shade the aircraft, in particular at least laser-sensitive points of the aircraft 2, from the laser beam 8.
  • the missile 14 is driven by an air-breathing internal combustion engine, for example a turbine, so that a long flight accompanied by the aircraft is possible.
  • a rocket motor is possible, in particular a solid fuel motor, which is tuned in terms of its performance on the airspeed of the aircraft.
  • the missile 14 is equipped with large wings for large-scale shading of the aircraft. At least the entire lower side of the missile 14 is laser-hardened, so that an irradiation of at least two minutes by the high-energy laser beam 8 does not cause the flight destructive destruction on the missile 14.
  • the position of the laser beam 8 in the space or its end on the vehicle 2 can be determined by sensors 18 of the sensor system 16.
  • Corresponding control signals are given by the control unit 20 to a control unit 40 of the missile 14.
  • the missile 14 determines the shading itself and controls its flight from this.
  • the missile 14 has an upwardly directed laser-sensitive sensor, which observes the aircraft 2 from below. An impact of the laser beam 8 on the aircraft 2 is detected, and the missile 14 is controlled so that the irradiation spot of the laser beam 8 on the aircraft 2 disappears.
  • the flight is controlled so that the control variable, namely the visibility of the laser spot on the aircraft 2, disappears or at least reduced. This is done by a particular achieved complete shadowing.
  • the laser beam 8 is moved away from the aircraft, the laser spot also disappears. In this case, the missile 14 continues to accompany the aircraft for a predetermined distance or time duration in order to maintain protection against the potentially again dangerous laser beam 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Die Erfindung geht aus von einem Verfahren zum Schützen eines Fahrzeugs (2) vor einem Angriff durch einen Laserstrahl (8). Das Fahrzeug (2) kann schnell und damit wirkungsvoll gegen einen Hochenergielaserstrahl (8) geschützt werden, wenn ein Sensorsystem (16) des Fahrzeugs (2) Laserstrahlung des Laserstrahls (8) detektiert und eine Steuereinheit (20) des Fahrzeugs (2) den Laserstrahl (8) aus den Daten des Sensorsystems (16) als solchen erkennt, ein Start eines Lenkflugkörpers (12, 14) zum Schutz des Fahrzeugs (2) vor dem Laserstrahl (8) von der Steuereinheit (20) gesteuert wird und der Lenkflugkörper (12, 14) vom Fahrzeug (2) aus startet.

Description

  • Die Erfindung betrifft ein Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl.
  • Mit Hochenergielasern lassen sich sehr hohe Leistungen über mehrere Kilometer und über eine längere Zeitdauer übertragen. Mit solchen Leistungen können empfindliche Teile von Fahrzeugen innerhalb von einigen Sekunden so schwer beschädigt oder zerstört werden, dass die Funktionsfähigkeit der Fahrzeuge gefährdet ist. So können beispielsweise Luftfahrzeuge vom Boden aus angegriffen werden, wobei insbesondere langsam fliegende Verkehrsflugzeuge mit verhältnismäßig geringer Manövrierfähigkeit besonders gefährdet sind.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, ein wirkungsvolles Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl anzugeben.
  • Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei dem erfindungsgemäß ein Sensorsystem des Fahrzeugs Laserstrahlung des Laserstrahls detektiert und eine Steuereinheit des Fahrzeugs den Laserstrahl aus den Daten des Sensorsystems als solchen erkennt, ein Start eines Flugkörpers zum Schutz des Fahrzeugs vor dem Laserstrahl von der Steuereinheit gesteuert wird und der Flugkörper vom Fahrzeug aus startet. Der Flugkörper kann das Fahrzeug abschatten und/oder eine Laserquelle, die den Laserstrahl aussendet, anfliegen und bekämpfen. Dies geschieht zweckmäßigerweise so zügig, dass die am Fahrzeug deponierte Laserenergie noch nicht zu bedrohlichen Schäden geführt hat. Ein schneller Schutz kann durch das Starten des Flugkörpers vom Fahrzeug aus erreicht werden, da dann der Flugkörper bereits vor Ort ist und zur Abschattung in den Laserstrahl eintauchen und/oder zur Bekämpfung der Laserquelle zügig auf diese zufliegen kann. Insbesondere im letzteren Fall ist der Flugkörper zweckmäßigerweise mit einem Raketenmotor ausgerüstet.
  • Das Verfahren ist besonders geeignet zum Einsatz gegen eine Hochenergielaserquelle beziehungsweise einem Hochenergielaserstrahl. Ebenfalls vorteilhaft ist eine Abwehr eines Störlasers. Das Sensorsystem umfasst zumindest einen für Laserstrahlung sensitiven Sensor, der die Laserstrahlung des Laserstrahls detektiert. Hierfür ist der Sensor beziehungsweise das Sensorsystem zweckmäßigerweise in einem Strahlungsspektrum sensitiv, das üblicherweise für Hochenergielaser oder Störlaser verwendet wird. Um die Erkennung von Streustrahlung zu vereinfachen, kann das Spektrum, im dem der Sensor sensitiv ist, auf ein Band um die eine Laserwellenlänge beschränkt werden, die üblicherweise für Hochenergielaser verwendet wird. Beispielsweise liegt das Band maximal ± 100 nm um die Wellenlänge von 3800 nm herum. Außerdem erkennt der Sensor zweckmäßigerweise für Laserstrahlung typische Charakteristiken, wie beispielsweise das Vorliegen von kohärenter Strahlung. Weiter ist es vorteilhaft, wenn das Sensorsystem mittels bildverarbeitender Methoden ein Laserstrahl als solchen in der Umgebung erkennt, beispielsweise anhand von Streustrahlung. Hierfür enthält das Sensorsystem vorteilhafterweise einen Bildsensor, beispielsweise einen Matrixdetektor.
  • Das Sensorsystem detektiert Laserstrahlung des Laserstrahls, also von der Laserquelle direkt emittierte Strahlung und/oder aus dem Laserstrahl gestreute Laserstrahlung, beispielsweise durch die Streuung des Laserstrahls in der Luft, an Partikeln und/oder an einem Gegenstand. Das Sensorsystem nimmt die Strahlung auf und wandelt sie in ein Messsignal um. Aus dem Messsignal ermittelt die Steuereinheit zweckmäßigerweise eine Bedrohungsstufe der Laserstrahlung, beispielsweise durch eine Klassifikation in zumindest die Stufen bedrohlich oder harmlos. Dies kann beispielsweise über die gemessene Streulichtstärke in der Atmosphäre, einen Energieeintrag in das Sensorsystem, ein Streuspektrum und/oder über ein zeitliches Charakteristikum der Strahlung erfolgen, wie eine Pulsierung.
  • Das Fahrzeug ist vorzugsweise ein Luftfahrzeug, und kann Starrflügler oder ein Drehflügler, wie ein Hubschrauber sein. Die Erfindung ist jedoch auch zum Schützen eines Landfahrzeugs oder eines Wasserfahrzeugs vorteilhaft anwendbar. Das Fahrzeug kann ein bemanntes oder unbemanntes Fahrzeug sein.
  • Die Steuereinheit kann eine oder mehrere Recheneinheiten aufweisen, die im Fahrzeug an einer Stelle, über das Fahrzeug verteilt, im Fahrzeug und in Flugkörper oder ausschließlich in dem im Fahrzeug untergebrachten Flugkörper - und damit ebenfalls im Fahrzeug - angeordnet sein können. Die Steuereinheit erkennt den Laserstrahl als solchen und leitet einen Start des Flugköpers in Abhängigkeit vom Erkennungsergebnis ein. Ist ein Laserstrahl als solcher erkannt und ist er zudem als bedrohlich für das Fahrzeug eingestuft, so wird der Flugkörper vom Fahrzeug aus gestartet. Wird ein Laserstrahl nicht als solcher erkannt oder als nicht bedrohlich klassifiziert, unterbleibt das Starten des Flugkörpers zweckmäßigerweise.
  • Der Flugkörper ist zweckmäßigerweise ein Lenkflugkörper und insbesondere ein unbemannter Flugkörper. Er kann mit einem Raketenmotor und/oder einem Luft atmenden Motor, wie beispielsweise einem Turbinenantrieb, ausgestattet sein. Hierbei ist ein Luft atmender Motor bei einem Begleitschutz des Fahrzeugs durch den Flugkörper vorteilhaft, und ein Raketenmotor ist bei einer vorgesehenen Bekämpfung der Laserquelle vorteilhafter. Ebenfalls möglich ist ein Flugkörper ohne einen eigenen Motor, beispielsweise in Form eines Lenkgeschosses. Der Flugkörper umfasst zweckmäßigerweise eine Steuereinheit, die den Flugkörper lenkt, beispielsweise parallel zum Fahrzeug und/oder zur Laserquelle hin.
  • In einer vorteilhaften Ausführungsform der Erfindung nimmt das Sensorsystem den Laserstrahl von der Seite auf, und die Steuereinheit erkennt den Laserstrahl aus Sensordaten, die aus der Aufnahme von der Seite gewonnen wurden, insbesondere ausschließlich aus diesen Sensordaten. Auf diese Weise kann der Laserstrahl bereits erkannt werden, auch wenn er das Fahrzeug noch nicht getroffen hat, sodass eine frühzeitige Erkennung des Laserstrahls als solchen möglich ist. Da zudem bei einer Aufnahme von der Seite nur in der Luft gestreute Strahlung des Laserstrahls aufgenommen wird, kann auf einen starken Verbrennungsschutz des Sensorsystems verzichtet werden. Hierdurch wird eine Bildaufnahme erleichtert, da ungeschützte, bildverarbeitende Sensoren verwendet werden können. Ein von der Seite aufgenommener Laserstrahl ist als gerade Linie in der Umgebung erkennbar und kann insofern mittels bildverarbeitender Methoden als solcher erkannt werden.
  • Durch den hohen Energieeintrag des Laserstrahls beim Auftreffen auf das Sensorsystem kann dieses innerhalb von Millisekunden zerstört werden. Um die Detektionsfähigkeit des Sensorsystems dennoch zu erhalten, ist es vorteilhaft, wenn das Sensorsystem mehrere lasersensitive Sensoren aufweist. Diese sind zweckmäßigerweise an verschiedenen Positionen an der Außenhülle des Fahrzeugs angeordnet, sodass sie den Laserstrahl von unterschiedlichen Orten detektieren können. Wird einer der Sensoren vom Laserstrahl getroffen und zerstört, kann die sensorische Tätigkeit des Sensorsystems von einem anderen Sensor weitergeführt beziehungsweise neu aufgenommen werden. Die Sensoren sind zweckmäßigerweise in einem Abstand von mehr als einem Meter voneinander beabstandet. Insbesondere ist jeweils zumindest ein Sensor in zumindest zwei Bereichen der Gruppe: vordere Hälfte des Rumpfs, hintere Hälfte des Rumpfs, obere Hälfte des Rumpfs, untere Hälfte des Rumpfs, an einem Flügel, angeordnet. Durch einen weiten Abstand der Sensoren voneinander kann außerdem der weitere Vorteil erreicht werden, dass eine Positionsberechnung einer Laserquelle durch Triangulation aus den Sensordaten von zumindest drei Sensoren möglich ist. Hierdurch kann die Position der Laserquelle in einfacher Weise bestimmt werden, und der Flugkörper kann auf diese Position eingewiesen werden.
  • Um einem gezielten und schnellen Zerstören der Sensoren durch eine auf die Sensoren gerichtete Bewegung des Laserstrahls entgegenzuwirken, ist es vorteilhaft, wenn im Betrieb des Sensorsystems zumindest ein Sensor des Sensorsystems abgedeckt ist. Insbesondere sieht ein regulärer Betrieb vor, dass stets ein Sensor von mehreren Sensoren des Sensorsystems abgedeckt ist. Bei einem überraschenden Angriff kann zumindest dieser Teil der Sensoren erhalten bleiben und für die Erkennung des Laserstrahls eingesetzt werden. Es ist insofern vorteilhaft, wenn nur ein Teil der Sensoren des Sensorsystems in die Umgebung des Fahrzeugs gerichtet ist und ein anderer Teil der Sensoren gegen die Umgebung abgedeckt ist. Weiter ist es vorteilhaft, wenn zumindest ein abgedeckter Sensor in Abhängigkeit von der Funktionsfähigkeit eines der anderen Sensoren in die Umgebung gerichtet wird, insbesondere aus einem passiven Zustand in einen aktiven Zustand gebracht wird. Fällt ein Sensor aus, so kann ein anderer vom abgedeckten Zustand in den in die Umgebung gerichteten, aktiven Zustand gebracht werden und die Erkennung des Laserstrahls kann fortgesetzt werden. Beispielsweise kann ein erster Sensor während der Fahrt des Fahrzeugs die Umgebung des Fahrzeugs permanent nach Laserstrahlung untersuchen. Fällt dieser Sensor aus, beispielsweise weil er vom Laserstrahl getroffen wurde, wird ein anderer Sensor an einer anderen Position des Fahrzeugs zur weiteren Beobachtung aktiviert und hierdurch in die Umgebung gerichtet beziehungsweise geöffnet.
  • Eine weitere vorteilhafte Möglichkeit zu Aufrechterhaltung der Funktionsfähigkeit des Sensorsystems besteht darin, dass das Sensorsystem einen Mehrfachsensor mit mehreren Sensorköpfen aufweist. Diese können beispielsweise nacheinander in die Umgebung gerichtet werden. Vorteilhafterweise ist stets zumindest einer der Sensorköpfe verdeckt, während zumindest ein anderer der Sensorköpfen in die Umgebung gerichtet ist und detektiert. Der Mehrfachsensor kann beispielsweise ein Revolversensor sein, der mehrere Sensoren auf eine Trommel trägt. Ebenfalls möglich sind hintereinander eingesetzte Sensoren, wobei der vordere Sensor beziehungsweise ein mit ihm verbundenes Element, den dahinter liegenden Sensor abdeckt.
  • Insbesondere bei einem Luftfahrzeug ist es vorteilhaft, wenn zumindest ein Sensor des Sensorsystems ausschließlich in einen oberen Halbraum über dem Fahrzeug gerichtet ist. Bei einem Angriff eines Laserstrahls von unten kann der Sensor, insbesondere wenn er permanent in den oben Halbraum gerichtet ist, nicht direkt getroffen werden. Eine Erkennung des Laserstrahls ist dennoch über die Erfassung der Streustrahlung möglich.
  • Der vom Fahrzeug gestartete Flugkörper kann zur Bekämpfung der Laserquelle, die den Laserstrahl aussendet, herangezogen werden. Hierfür kann der Flugkörper direkt in die Laserquelle hinein fliegen und/oder durch eine Detonationsladung die Laserquelle zerstören, insbesondere durch eine kegelförmig nach vorne gerichtete Splitterladung. Hierzu ist es vorteilhaft, die Position der Laserquelle, entweder relativ zur Position und/oder Bewegungsrichtung des Fahrzeugs oder in absoluten Koordinaten, zu kennen. Wenn der Laserstrahl von einem Sensor von der Seite aus sensiert wird, kann er als gerade Linie mit einem abrupten Ende bestimmt werden. Der Endpunkt der Linie kann mit der Position der Laserquelle gleichgesetzt werden.
  • Insofern ist es vorteilhaft, wenn die Steuereinheit aus den Daten des Sensorsystems die Position einer Laserquelle bestimmt, die den Laserstrahl aussendet. Hierbei kann ein Strahlende des Laserstrahls erkannt werden und aus der Lage des Strahls die Position der Laserquelle bestimmt werden. Alternativ oder zusätzlich kann die Position aus Triangulation aus den Daten mehrerer Sensoren bestimmt werden. Die Position der Laserquelle kann als eine Richtung erfasst werden, beispielsweise als absolute Richtung oder als eine Richtung relativ zur Flugrichtung des Luftfahrzeugs. Ebenfalls ist es möglich, die Richtung als absolute, also geografische Richtung zu bestimmen. Weiter ist eine Bestimmung einer Entfernung der Laserquelle vom Sensorsystem vorteilhaft. Dies kann besonders einfach unter Verwendung einer Flughöhe des Fahrzeugs geschehen. Ist die Richtung der Laserquelle und die Flughöhe bekannt, kann hieraus die Entfernung zur Laserquelle in einfacher Weise errechnet werden, insbesondere unter Einbeziehung topografischer Daten einer überflogenen Landschaft.
  • Um eine schnelle Bekämpfung der Laserquelle zu ermöglichen, ist es vorteilhaft, wenn der Start des Flugkörpers vollautomatisch erfolgt und insbesondere durch das Erkennen des Laserstrahls ausgelöst wird. Alternativ ist ein halbautomatisches Auslösen möglich, bei dem ein Bediener des Fahrzeugs ein Freigabesignal gibt und ein Auslösen erst nach dem Freigabesignal erfolgt, insbesondere vollautomatisch, beispielsweise erst, wenn eine Richtung beziehungsweise Position der Laserquelle mit ausreichender Sicherheit und Genauigkeit erkannt wurde. Ein Start des Flugkörpers erfolgt zweckmäßigerweise bereits vor einer Ausrichtung des Laserstrahls auf das Fahrzeug, also bevor das Fahrzeug vom Laserstrahl getroffen wurde.
  • Der Start des Flugkörpers kann aus einem Startgerät erfolgen, beispielsweise aus einem Container. Dieser kann im Rumpf des Fahrzeugs montiert sein, sodass insbesondere mehrere Flugkörper in einem Salvenschuss gleichzeitig oder unmittelbar sequenziell zum Schutz des Fahrzeugs gestartet werden können. Der Begriff "Start" kann hierbei einen Abschuss umfassen.
  • Um eine sehr schnelle Bekämpfung der Laserquelle zu ermöglichen, ist es vorteilhaft, wenn eine Ausrichtung eines Startgeräts des Flugkörpers in Abhängigkeit von der Lage des Laserstrahls erfolgt, insbesondere in Abhängigkeit von der Lage der Laserquelle. Es kann ein gezielter Abschuss in Richtung der Laserquelle erfolgen, sodass die Zeit für einen Umwegflug eingespart wird. Entsprechend ist es vorteilhaft, wenn der Flugkörper gerichtet auf eine Laserquelle des Laserstrahls startet. Hierbei kann eine gekrümmte Flugbahn, beispielsweise unter Berücksichtigung ballistischer Einflusse, zum Einsatz kommen, sodass die Ausrichtung des Flugkörpers beim Start nicht in gerader Linie auf die Laserquelle erfolgen muss.
  • Weiter ist es vorteilhaft, wenn die Steuereinheit im Flugkörper eine Zielanweisung auf eine Laserquelle des Laserstrahls an eine Steuereinheit des Flugkörpers übergibt. Dies kann vor dem Start des Flugkörpers und/oder insbesondere während des Flugs des Flugkörpers erfolgen, beispielsweise durch einen Datenlink vom Fahrzeug zum Flugkörper. Die Steuereinheit des Flugkörpers nimmt die Zielanweisung auf und lenkt den Flugkörper zur Laserquelle. Auf diese Weise kann der Flugkörper bereits gestartet werden, bevor die genaue Position der Laserquelle berechnet wurde.
  • Der Flug des Flugkörpers kann durch eine Steuereinheit des Flugkörpers selbständig gesteuert werden. Zusätzlich oder alternativ ist es möglich, dass die im Fahrzeug verbleibende Steuereinheit den Flug des Flugkörpers steuert beziehungsweise mitsteuert. Beispielsweise kann dem selbständig steuernden Flugkörper eine Ausweich- oder Abschattungsanweisung vom Fahrzeug ausgegeben werden, die dann von der Steuereinheit des Flugkörpers berücksichtigt wird.
  • Eine Steuerung des Flugkörpers vom Fahrzeug aus ist auch dann vorteilhaft, wenn die Lage des Laserstrahls beziehungsweise der Laserquelle vom Fahrzeug genau ermittelt werden kann oder das Fahrzeug ein Auftreffen des Laserstrahls detektiert und den Flugkörper in eine Abschattungsposition delegiert. So können beispielsweise lasersensitive Stellen des Fahrzeugs gezielt durch die entsprechende Flugsteuerung des Flugkörpers abgeschattet werden, oder der Weiterflug des Flugkörpers kann bei einem zerstörten Sensor des Flugkörpers weiter zu Laserquelle hin gesteuert werden.
  • Der Erfindung ist außerdem gerichtet auf ein Fahrzeug mit einem Sensorsystem zum Detektieren eines Laserstrahls. Erfindungsgemäß ist das Fahrzeug mit einem Flugkörper ausgestattet, der zur Bekämpfung einer Laserquelle des Laserstrahls und/oder zu einer Abschattung eines Elements des Luftfahrzeugs vorbereitet ist. Vorteilhafterweise enthält das Luftfahrzeug eine Steuereinheit, die dazu vorbereitet ist, den Laserstrahl aus den Daten des Sensorsystems als solchen zu erkennen und einen Start des Flugkörpers vom Fahrzeug zum Schutz des Fahrzeugs vor dem Laserstrahl zu steuern.
  • Die bisher gegebene Beschreibung vorteilhafter Ausgestaltungen der Erfindung enthält zahlreiche Merkmale, die in einigen abhängigen Ansprüchen zu mehreren zusammengefasst wiedergegeben sind. Diese Merkmale können jedoch zweckmäßigerweise auch einzeln betrachtet und zu sinnvollen weiteren Kombinationen zusammengefasst werden, insbesondere bei Rückbezügen von Ansprüchen, sodass ein einzelnes Merkmal eines abhängigen Anspruchs mit einem einzelnen, mehreren oder allen Merkmalen eines anderen abhängigen Anspruchs kombinierbar ist. Außerdem sind diese Merkmale jeweils einzeln und in beliebiger geeigneter Kombination sowohl mit dem erfindungsgemäßen Verfahren als auch mit der erfindungsgemäßen Vorrichtung gemäß den unabhängigen Ansprüchen kombinierbar. So sind Verfahrensmerkmale auch als Eigenschaften der entsprechenden Vorrichtungseinheit gegenständlich formuliert zu sehen und funktionale Vorrichtungsmerkmale auch als entsprechende Verfahrensmerkmale.
  • Die oben beschriebenen Eigenschaften, Merkmale und Vorteile dieser Erfindung sowie die Art und Weise, wie diese erreicht werden, werden klarer und deutlicher verständlich in Zusammenhang mit der folgenden Beschreibung der Ausführungsbeispiele, die im Zusammenhang mit den Zeichnungen näher erläutert werden. Die Ausführungsbeispiele dienen der Erläuterung der Erfindung und beschränken die Erfindung nicht auf die darin angegebene Kombination von Merkmalen, auch nicht in Bezug auf funktionale Merkmale. Außerdem können dazu geeignete Merkmale eines jeden Ausführungsbeispiels auch explizit isoliert betrachtet, aus einem Ausführungsbeispiel entfernt, in ein anderes Ausführungsbeispiel zu dessen Ergänzung eingebracht und/oder mit einem beliebigen der Ansprüche kombiniert werden.
  • Es zeigen:
  • FIG 1
    ein Luftfahrzeug unmittelbar vor einem Angriff durch ein Lasersystem,
    FIG 2
    einen Revolversensor eines Sensorsystems des Luftfahrzeugs und
    FIG 3
    mehrere Verteidigungen des Luftfahrzeugs mit Hilfe von Flugkörpern.
  • FIG 1 zeigt ein Fahrzeug 2 in Form eines Luftfahrzeugs, das in diesem Fall als Verkehrsflugzeug zum Transport von Passagieren oder Luftfracht ausgeführt ist. In einer Landschaft 4, über die das Fahrzeug 2 fliegt, ist ein Lasersystem 6 positioniert, das in dem in FIG 1 dargestellten Moment einen Laserstrahl 8, der durch eine Laserquelle 10 erzeugt wird, in den Himmel richtet. Das Lasersystem 6 ist im gezeigten Ausführungsbeispiel am Boden platziert und unbeweglich. Es ist jedoch auch möglich, dass das Lasersystem 6 beweglich ist und beispielsweise in einem Luftfahrzeug montiert ist. Alle im Folgenden beschriebenen und auf die Laserquelle 10 bezogenen Details sind dann entsprechend auf die Beweglichkeit bzw. Höhe über dem Boden anzupassen.
  • Das Lasersystem 6 ist ein Hochenergielasersystem, das den Laserstrahl 8 vorwiegend im infraroten Spektralbereich aussendet, beispielsweise bei 3,8 µm, wobei der Laserstrahl 8 über eine Distanz von mehreren Kilometern genügend Energie transportiert, um empfindliche Teile des Luftfahrzeugs zu zerstören und hierdurch dessen Flugfähigkeit akut zu gefährden. Das Lasersystem 6 dient zum Bekämpfen von Luftfahrzeugen und weist eine Steuereinheit auf, die den Laserstrahl 8 auf das Fahrzeug 2 schwenkt und den Laserstrahl 8 automatisiert der Bewegung des Luftfahrzeugs 2 nachführt. In der Steuereinheit ist eine lasersensitive Stelle des Fahrzeugs 2 hinterlegt, auf die der Laserstrahl 8 mittels bildverarbeitender Methoden automatisch gerichtet wird, um die im Lasersystem 6 bildhaft hinterlegte Stelle des Luftfahrzeugs 2 über einen Zeitraum von einigen Sekunden zu bestrahlen und hierdurch zu zerstören.
  • Anstelle des Hochenergielasersystems 6 kann ein Designatorlasersystem bzw. Markierlasersystem bekämpft oder gestört werden, das das Fahrzeug 2 anleuchtet, um einen Lenkflugkörper in das Fahrzeug 2 zu steuern. Durch eine Abschattung des Fahrzeugs 2 und/oder eine Zerstörung der Laserquelle 10 kann diese Markierung gestört werden, so dass der angreifende Lenkflugkörper das Fahrzeug 2 nicht finden kann. Die folgende Beschreibung bezieht sich auf ein stationäres Hochenergielasersystem 6, ohne dass damit eine Einschränkung auf dieses System verbunden wäre.
  • Zum Schützen des Fahrzeugs 2 weist dieses zumindest einen Flugkörper 12, 14 auf, wobei in FIG 1 zur Erläuterung mehrerer Schutzverfahren drei Flugkörper 12 und ein Flugkörper 14 dargestellt sind. Des Weiteren weist das Luftfahrzeug ein Sensorsystem 16 mit einer Mehrzahl von Sensoren 18 auf, die jeweils mit einer Steuereinheit 20 signaltechnisch verbunden sind. Im gezeigten Ausführungsbeispiel ist das Luftfahrzeug mit fünf Sensoren 18 ausgestattet, einer in der hinteren Hälfte des Rumpfs, einer in der vorderen Hälfte des Rumpfs, je einer an einem Flügel des Luftfahrzeugs und einem nach oben gerichteten Sensor 18 an der oberen Hälfte des Rumpfs des Luftfahrzeugs.
  • Zum Schutz des Luftfahrzeugs ist zunächst nur einer der Sensoren 18 des Sensorsystems 16 aktiv, und die anderen der Sensoren 18 sind abgedeckt. Abgedeckt bedeutet in diesem Zusammenhang, dass das lasersensitive Element des entsprechenden Sensors 18 durch ein laserfestes Abdeckelement derart verdeckt ist, dass es durch einen von außen auf das Luftfahrzeug 2 einstrahlenden Laserstrahl 8 nicht zerstört, insbesondere nicht erreicht werden kann. Aktiv bedeutet hingegen in diesem Zusammenhang, dass ein Blickfeld des lasersensitiven Elements in die Umgebung frei ist und der Sensor 18 Sensordaten aufnimmt und an die Steuereinheit 20 weitergibt. Durch diese Sicherheitsmaßnahme kann erreicht werden, dass nicht sämtliche Sensoren 18 durch mehrere Laserstrahlen 8 oder durch einen sehr schnell über den Flugzeugrumpf wandernden Laserstrahl 8 zerstört werden, bevor der Laserstrahl 8 an sich erkannt wurde. Durch den weiten Abstand der Sensoren 18 voneinander wird außerdem ein schnelles Abrastern der einzelnen Sensoren 18 durch den Laserstrahl 8 erschwert. Zudem ist einer der Sensoren 18 nach oben ausgerichtet und durch einen von unten auf das Luftfahrzeug 2 einstrahlenden Laserstrahl 8 nicht erreichbar. Nach oben ausgerichtet bedeutet insbesondere in diesem Zusammenhang, dass der Sensor 18 bei einem waagerechten Flug des Luftfahrzeugs ausschließlich in den oberen Halbraum gerichtet ist. Dieser Sensor 18 ist hierdurch sehr gut geschützt und zudem dazu geeignet, den Laserstrahl 8 aus Streustrahlung des Laserstrahls 8 in der Atmosphäre zu erkennen.
  • Bei dem in FIG 1 gezeigten Ausführungsbeispiel sei der vordere Sensor 18 des Sensorsystems 16 aktiv und die übrigen Sensoren 18 sind abgedeckt. Der Sensor ist als Revolversensor ausgeführt und schematisch im FIG 2 dargestellt.
  • FIG 2 zeigt einen der Sensoren 18 des Sensorsystems 16 aus FIG 1. Der Sensor 18 umfasst sechs Sensorköpfen 22, von denen fünf der Sensorköpfe 22 durch ein Abdeckelement 24, beispielsweise eine Metallplatte, abgedeckt sind. Einer der Sensorköpfe 22 liegt hinter einer Öffnung 26 des Abdeckelements 24, ist somit in die Umgebung ausgerichtet und kann in die Umgebung schauen und Laserstrahlung detektieren. Die Sensorköpfe 22 sind um eine gemeinsame Achse verschwenkbar, wie in FIG 2 durch den gekrümmten Pfeil angedeutet ist. Ist der im Moment aktive Sensorkopf 22 zerstört, kann der Revolver um 60° weitergedreht werden, sodass der nächste Sensorkopf 22 hinter der Öffnung 26 zu liegen kommt und die Detektierung aufnehmen kann.
  • In der Mitte und ebenfalls hinter dem Abdeckelement 24 angeordnet ist ein weiterer Sensorkopf 28, der die Aufgabe hat, zu erkennen, wenn ein Hochenergielaserstrahl 8 auf den Sensor 18 gerichtet ist. Der Sensorkopf 28 ist zwar nicht in der Lage, Laserstrahlung an sich zu detektieren, er misst jedoch einen Energieeintrag auf dem Abdeckelement 24, sodass ein Aktivschalten eines unbeschädigten Sensorkopfs 22 vermieden werden kann, solange der Laserstrahl 8 auf den Sensor 18 gerichtet ist.
  • Die übrigen der Sensoren 18 des Luftfahrzeugs 2 können wie der in FIG 2 dargestellte Sensor 18 ausgeführt sein. In einer vereinfachten Version weisen jedoch die übrigen der Sensoren 18 nur einen Sensorkopf 22 und den Sensorkopf 28 und ein bewegliches Abdeckelement 24 auf. Solange der Laserstrahl 8 auf den Sensor gerichtet ist, verdeckt das Abdeckelement den laserstrahlungssensitiven Sensorkopf 22. Erst wenn die Steuereinheit 20 die Aktivierung des Sensors freigegeben hat und als zusätzliche Bedingung der Laserstrahl 8 nicht auf dem Sensor 18 ruht, wird der Sensorkopf 22 und damit der Sensor 18 aktiv geschaltet.
  • Die Sensorköpfe 22 umfassen jeweils Bildsensoren hinter einer 180°-Optik, sodass die Szenerie einer Halbkugel des Umraums auf ein lasersensitives Element abgebildet wird. Hierdurch kann ein Bild des Laserstrahls 8 in der Umgebung aufgenommen werden, und hieraus können weitere Informationen zum Laserstrahl 8 ermittelt werden, wie Geometrie, Lage und Intensität des Laserstrahls. Aus der Geometrie erkennt die Steuereinheit 20 des Sensorsystems 16 insbesondere mittels bildverarbeitender Methoden den Laserstrahl 8 als solchen. Als geometrische Merkmale können verwendet werden, dass der Laserstrahl als gerader Strich in der Landschaft gesehen wird. Außerdem weist er ein scharf begrenztes Ende an der Laserquelle 10 auf. An seinem anderen Ende wird der Laserstrahl jedoch - sofern er nicht auf einen Gegenstand trifft - immer schwächer, wie in FIG 1 dargestellt ist, sodass ein definiertes Ende nicht ohne weiteres ermittelbar ist. Auch dieses Merkmal des oberen Abschwächens der Laserstrahlung kann zur Lasererkennung genutzt werden.
  • Aus den geometrischen Daten des Laserstrahls 8 sowie dessen Spektrum und Strahlungsintensität klassifiziert die Steuereinheit 20 den Laserstrahl 8 zunächst in die drei Stufen harmlos, potentiell gefährlich und gefährlich. Bei einer Klassifikation in die Stufe harmlos wird der Laserstrahl 8, der beispielsweise durch einen Laserpointer erzeugt wird, weiter beobachtet, jedoch wird weder der Laserstrahl 8 abgeschattet noch die Laserquelle 10 bekämpft. Bei einer Klassifikation in eine der beiden anderen Stufen wird eine Abschattung und/oder Bekämpfung vorbereitet. Hierzu wird ein Kanister 30, der zumindest einen der Flugkörper 12 beherbergt, in die Richtung der Laserquelle 10 verschwenkt. Diese Verschwenkbarkeit ist in FIG 1 durch den gekrümmten Doppelpfeil am Kanister 30 angedeutet. Alternativ oder zusätzlich wird der Abwurf des Flugkörpers 14 aus dem Rumpf des Luftfahrzeugs 2 vorbereitet. Bei einer Klassifizierung in die höchste der Bedrohungsklassen wird die Bekämpfung und/oder Abschattung eingeleitet. Hierzu ist beispielsweise eine Freigabe eines Bedieners des Luftfahrzeugs 2, beispielsweise eines Piloten, notwendig. Diese wurde jedoch bereits vorab gegeben, beispielsweise weil bekannt ist, dass das Luftfahrzeug durch eine potentiell gefährliche Region fliegt.
  • Sowohl für die Abschattung als auch für eine Bekämpfung der Laserquelle 10 ist es vorteilhaft, wenn die Position der Laserquelle 10 bekannt ist. Diese ermittelt die Steuereinheit 20 beispielsweise aus der Geometrie des Laserstrahls 8. So kann an der Stelle des abrupten Endes des Laserstrahls 8 die Laserquelle 10 vermutet werden. Außerdem kann dem Laserstrahl 8 eine Richtung gegeben werden, zumindest eine grobe Richtung oben und unten, wobei die Laserquelle 10 nur an einem unteren Ende des Laserstrahls 8 positioniert ist. Auf diese Weise kann eine Richtung der Laserquelle 10 relativ zum Luftfahrzeug 2 ermittelt werden. Aus der Richtung und einer Flughöhe des Luftfahrzeugs und zweckmäßigerweise einer Topografie der überflogenen Landschaft, kann auch die Entfernung zwischen Luftfahrzeug und Laserquelle 10 bestimmt werden, insbesondere werden die absoluten geografischen Koordinaten der Laserquelle 10 bestimmt.
  • Die Erkennung des Laserstrahls 8 erfolgt insofern durch eine Aufnahme des Laserstrahls 8 von der Seite, wobei aus dem Laserstrahl 8 an der Atmosphäre gestreute Laserstrahlung aufgenommen wird. Dies kann auch durch den nach oben gerichteten Sensor 18 geschehen, dessen Blick auf die Laserquelle 10 verstellt ist. Anhand der Ausrichtung des sichtbaren Teils des Laserstrahls 8 kann ferner ein weiterer Verlauf des Laserstrahls 8 in der Umgebung extrapoliert werden.
  • Für den Fall, dass der Laserstrahl 8 bereits auf das Luftfahrzeug 2 gerichtet ist und somit das undefinierte obere Ende nicht mehr als solches zu erkennen ist und der Laserstrahl 8 sowohl oben als auch unten ein abruptes Ende aufweist, kann die Ermittlung der Position der Laserquelle 10 durch einen anderen der Sensoren 18 des Sensorsystems 16 vorgenommen werden, beispielsweise durch einen Sensor 18 an einem Flügel des Luftfahrzeugs 2. Dieser erkennt den Laserstrahl 8 an sich und beide abrupte Enden, wobei die Steuereinheit 20 das untere abrupte Ende des Laserstrahls 8 als Standort der Laserquelle 10 auswählt. Ebenfalls möglich ist eine Positionsbestimmung der Laserquelle 10 mittels Triangulation. Sobald drei oder mehr Sensoren 18 den Laserstrahl 8 erkannt und dessen unteres abruptes Ende bestimmt haben, kann neben der Richtung der Laserquelle 10 auch deren Entfernung durch die bekannte Ausrichtung der Sensoren 18 am Luftfahrzeug 2 zueinander bestimmt werden.
  • Zum Schutz des Luftfahrzeugs wird nun zumindest ein Flugkörper 12, 14 vom Luftfahrzeug gestartet. Die Steuerung des Starts übernimmt die Steuereinheit 20 des Sensorsystems 16, die auch ein Teil einer zentralen Fahrzeugsteuerung des Fahrzeugs 2 sein kann.
  • FIG 3 zeigt zwei Ausführungsbeispiele zum Schützen des Luftfahrzeugs, die einzeln oder in Kombination durchgeführt werden können. In einem ersten Ausführungsbeispiel wird ein Flugkörper 12 in Form einer Lenkrakete gestartet. Dieser Flugkörper 12 wird aus dem Kanister 30 gestartet, beispielsweise durch einen Abwurf, einen Abschuss und/oder einen Start eines Raketenmotors des Flugkörpers 12. Da der Flugkörper 12 durch die Ausrichtung des Kanisters 30 auf die Laserquelle 10 bereits zur Laserquelle 10 hin ausgerichtet ist, können Umwege vermieden und der Flugkörper 12 in direkter Linie zur Laserquelle 10 geschickt werden. Alternativ zur Lenkrakete können auch andere Lenkflugkörper zum Einsatz kommen, beispielsweise lenkbare Geschosse. Auch diesen ist eine Steuereinheit 32 zur Steuerung des gelenkten Flugs und ein. Lenksystem 34 zur Durchführung der Lenkung zueigen. Weiter umfasst der Flugkörper 12 zweckmäßigerweise einen Wirkteil 36 mit einer Sprengladung zur Bekämpfung der Laserquelle 10. Je nach Ausführung kann der Lenkflugkörper 12 einen Raketenmotor zur selbstständigen Beschleunigung aufweisen.
  • Die Steuerung des Flugkörpers 12 kann selbstständig durch die Steuereinheit 32 des Flugkörpers 12 erfolgen. Ebenso ist es möglich, dass die Steuerung durch die Steuereinheit 20 des Luftfahrzeugs erfolgt, entweder zusätzlich oder selbstständig durch die Vorgabe entsprechender Kommandos an die Steuereinheit 32 des Flugkörpers 12. Auf diese Weise wird der Flugkörper 12 an oder in die Laserquelle 10 gesteuert, sodass diese zerstört wird. Kurz bevor der Flugkörper 12 die Laserquelle 10 erreicht, kann der Wirkteil 36 gezündet werden, der eine Splitterladung kegelförmig nach vorne schleudert und die Laserquelle 10 hierdurch zerstört. Die Zündung des Wirkteils 36 kann durch einen Aufschlagzünder oder einen Annäherungszünder erfolgen, der im Flugkörperkopf angeordnet ist.
  • Der Flug des Flugkörpers 12 wird zweckmäßigerweise durch den Laserstrahl 8 geführt. Hierzu kann dieser durch das Sensorsystem 16 des Luftfahrzeugs weiter beobachtet werden, und im Flugkörper 12 können entsprechende Steuersignale gegeben werden. Alternativ oder zusätzlich ist es möglich, dass der Flugkörper 12 den Laserstrahl 8 selbstständig als Flugführung verwendet und in Abhängigkeit von dessen Ausrichtung im Raum seinen eigenen Flug lenkt. Der Flugkörper 12 fliegt somit geführt vom Laserstrahl 8 selbständig in die Laserquelle 10. Hierbei kann der Flug im Laserstrahl 8 oder außen entlang des Laserstrahls 8 beziehungsweise mit einem zweckmäßigerweise vorbestimmten Abstand am Laserstrahl 8 entlang geführt werden.
  • Insbesondere bei einer selbstständigen Steuerung des Flugkörpers 12 zur Laserquelle 10 ist die Übergabe einer Zielanweisung von der Steuereinheit 20 an die Steuereinheit 32 vorteilhaft. Hierdurch kann zumindest eine Grobnavigation im ersten Teil des Anflugs erheblich erleichtert werden.
  • Im anderen Ausführungsbeispiel wird der Flugkörper 14 aus dem Rumpf des Luftfahrzeugs abgeworfen, und dieser beginnt seinen Flug, der im Wesentlichen parallel zum Flug des Luftfahrzeugs verläuft. Zweck dieses Flugs ist es, das Luftfahrzeug, insbesondere zumindest lasersensible Stellen des Luftfahrzeugs 2, vom Laserstrahl 8 abzuschatten. Der Flugkörper 14 ist mit einem Luft atmenden Verbrennungsmotor, beispielsweise einer Turbine angetrieben, sodass ein langer Flug in Begleitung des Luftfahrzeugs möglich ist. Alternativ oder zusätzlich ist ein Raketenmotor möglich, insbesondere ein Festbrennstoffmotor, der hinsichtlich seiner Leistung auf die Fluggeschwindigkeit des Luftfahrzeugs abgestimmt ist. Der Flugkörper 14 ist mit großflächigen Flügeln zur großflächigen Abschattung des Luftfahrzeugs ausgestattet. Zumindest die gesamte untere Seite des Flugkörpers 14 ist lasergehärtet ausgeführt, sodass eine Bestrahlung von zumindest zwei Minuten durch den Hochenergielaserstrahl 8 keine den Flug beeinträchtigende Zerstörung am Flugkörper 14 erzeugt.
  • Zum Halten des Flugkörpers 14 im Laserstrahl 8 bestehen mehrere Möglichkeiten. Beispielsweise kann die Position des Laserstrahls 8 im Raum bzw. dessen Ende auf dem Fahrzeug 2 durch Sensoren 18 des Sensorsystems 16 ermittelt werden. Entsprechende Steuersignale werden von der Steuereinheit 20 an eine Steuereinheit 40 des Flugkörpers 14 gegeben.
  • Eine Alternative oder zusätzliche Möglichkeit besteht darin, dass der Flugkörper 14 die Abschattung selbst bestimmt und hieraus seinen Flug regelt. So weist der Flugkörper 14 einen nach oben gerichteten lasersensitiven Sensor auf, der das Luftfahrzeug 2 von unten beobachtet. Ein Auftreffen des Laserstrahls 8 auf dem Luftfahrzeug 2 wird erkannt, und der Flugkörper 14 wird so gesteuert, dass der Bestrahlungsfleck des Laserstrahls 8 auf dem Luftfahrzeug 2 verschwindet. Hierzu wird der Flug so geregelt, dass die Steuergröße, nämlich die Sichtbarkeit des Laserflecks auf dem Luftfahrzeug 2, verschwindet oder zumindest verringert wird. Dies wird durch eine insbesondere vollständige Abschattung erreicht. Wenn andererseits der Laserstrahl 8 vom Luftfahrzeug weg bewegt wird, verschwindet der Laserfleck ebenfalls. In diesem Fall begleitet der Flugkörper 14 das Luftfahrzeug noch eine vorgegebene Strecke bzw. Zeitdauer weiter, um einen Schutz gegen den potentiell wieder gefährlichen Laserstrahl 8 aufrecht zu erhalten.
  • Bezugszeichenliste
  • 2
    Fahrzeug
    4
    Landschaft
    6
    Lasersystem
    8
    Laserstrahl
    10
    Laserquelle
    12
    Flugkörper
    14
    Flugkörper
    16
    Sensorsystem
    18
    Sensor
    20
    Steuereinheit
    22
    Sensorkopf
    24
    Abdeckelement
    26
    Öffnung
    28
    Sensorkopf
    30
    Kanister
    32
    Steuereinheit
    34
    Lenksystem
    36
    Wirkteil
    38
    Raketenmotor
    40
    Steuereinheit

Claims (15)

  1. Verfahren zum Schützen eines Fahrzeugs (2) vor einem Angriff durch einen Laserstrahl (8), bei dem ein Sensorsystem (16) des Fahrzeugs (2) Laserstrahlung des Laserstrahls (8) detektiert und eine Steuereinheit (20) des Fahrzeugs (2) den Laserstrahl (8) aus den Daten des Sensorsystems (16) als solchen erkennt, ein Start eines Lenkflugkörpers (12, 14) zum Schutz des Fahrzeugs (2) vor dem Laserstrahl (8) von der Steuereinheit (20) gesteuert wird und der Lenkflugkörper (12, 14) vom Fahrzeug (2) aus startet.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Sensorsystem (16) den Laserstrahl (8) von der Seite aufnimmt und die Steuereinheit (20) den Laserstrahl (8) aus Sensordaten erkennt, die aus der Aufnahme von der Seite gewonnen wurden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass das Sensorsystem (16) mehrere lasersensitive Sensoren (18) aufweist, die von verschiedenen Positionen der Außenhülle des Fahrzeugs (2) den Laserstrahl (8) detektieren.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass nur ein Teil der Sensoren (18) in die Umgebung des Fahrzeugs (2) gerichtet ist, ein anderer Teil der Sensoren (18) gegen die Umgebung abgedeckt ist und zumindest ein abgedeckter Sensor (18) in Abhängigkeit von der Funktionsfähigkeit eines der anderen Sensoren (18) in die Umgebung gerichtet wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das Sensorsystem (16) einen Mehrfachsensor mit mehreren Sensorköpfen (22) aufweist, die nacheinander in die Umgebung gerichtet werden können.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass zumindest ein Sensor (18) des Sensorsystems (16) ausschließlich in einen oberen Halbraum über dem Fahrzeug (2) gerichtet ist.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (20) aus den Daten des Sensorsystems (16) ein Strahlende des Laserstrahls (8) erkennt und aus der Lage des Strahlendes die Position einer Laserquelle (10) bestimmt, die den Laserstrahl (8) aussendet.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet,
    dass ein Abstand zur Laserquelle (10) unter Verwendung einer Flughöhe des Fahrzeugs (2) bestimmt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Start des Lenkflugkörpers (12, 14) vollautomatisch erfolgt und durch das Erkennen des Laserstrahls (8) ausgelöst wird.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass eine Ausrichtung eines Startgeräts (30) des Lenkflugkörpers (12) in Abhängigkeit von der Lage des Laserstrahls (8) erfolgt.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass der Lenkflugkörper (12) gerichtet auf eine Laserquelle (10) des Laserstrahls (8) startet.
  12. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (20) dem Lenkflugkörper (12, 14) eine Zieleinweisung auf eine Laserquelle (10) des Laserstrahls (8) übergibt.
  13. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuereinheit (20) vom Luftfahrzeug (2) aus einen Flug des Lenkflugkörpers (12, 14) steuert.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet,
    dass die Steuereinheit (20) eine Lage des Laserstrahls (8) im Raum ermittelt und den Flug des Lenkflugkörpers (12, 14) unter Verwendung der ermittelten Lage steuert.
  15. Fahrzeug (2) mit einem Sensorsystem (16) zum Detektieren eines Laserstrahls (8), einem Lenkflugkörper (12, 14) und einer Steuereinheit (20), die dazu vorbereitet ist, den Laserstrahl (8) aus den Daten des Sensorsystems (16) als solchen zu erkennen und einen Start des Lenkflugkörpers (12, 14) vom Fahrzeug (2) zum Schutz des Fahrzeugs (2) vor dem Laserstrahl (8) zu steuern.
EP16001535.0A 2015-07-17 2016-07-12 Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl Active EP3118563B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015009353.3A DE102015009353A1 (de) 2015-07-17 2015-07-17 Verfahren zum Schützen eines Fahrzeugs vor einem Angriff durch einen Laserstrahl

Publications (2)

Publication Number Publication Date
EP3118563A1 true EP3118563A1 (de) 2017-01-18
EP3118563B1 EP3118563B1 (de) 2018-09-12

Family

ID=56411363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16001535.0A Active EP3118563B1 (de) 2015-07-17 2016-07-12 Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl

Country Status (2)

Country Link
EP (1) EP3118563B1 (de)
DE (1) DE102015009353A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774603B2 (ja) 2017-03-06 2020-10-28 株式会社Jvcケンウッド レーザ光照射検出装置、レーザ光照射検出方法、レーザ光照射検出システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014777A1 (en) * 2000-08-17 2002-02-21 Saabtech Electronics Ab Method for confusing and possibly damaging a laser device, and a defence system
WO2010029499A1 (en) * 2008-09-09 2010-03-18 Alenia Aeronautica S.P.A. Test arrangement for a laser threats identifying system of an aircraft
EP2752681A1 (de) * 2013-01-07 2014-07-09 The Boeing Company Laserdetektions- und Warnsystem
US20150060652A1 (en) * 2013-08-30 2015-03-05 Torrey Pines Logic, Inc. Passive, wide-spectral-band laser threat sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053812B2 (en) * 2003-12-18 2006-05-30 Textron Systems Corporation Recoverable pod for self-protection of aircraft and method of protecting an aircraft using a recoverable pod
US7609156B2 (en) * 2004-04-07 2009-10-27 Jeffrey D Mullen Advanced cooperative defensive military tactics, armor, and systems
US7478578B2 (en) * 2005-06-24 2009-01-20 Honeywell International Inc. Commercial airliner missile protection using formation drone aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014777A1 (en) * 2000-08-17 2002-02-21 Saabtech Electronics Ab Method for confusing and possibly damaging a laser device, and a defence system
WO2010029499A1 (en) * 2008-09-09 2010-03-18 Alenia Aeronautica S.P.A. Test arrangement for a laser threats identifying system of an aircraft
EP2752681A1 (de) * 2013-01-07 2014-07-09 The Boeing Company Laserdetektions- und Warnsystem
US20150060652A1 (en) * 2013-08-30 2015-03-05 Torrey Pines Logic, Inc. Passive, wide-spectral-band laser threat sensor

Also Published As

Publication number Publication date
EP3118563B1 (de) 2018-09-12
DE102015009353A1 (de) 2017-03-02

Similar Documents

Publication Publication Date Title
DE4444635C2 (de) Einrichtung zur Selbstverteidigung gegen Flugkörper
EP1520604A2 (de) Flugkörper zur Brandbekämpfung
EP1090263B1 (de) Verfahren zum ferngesteuerten bekämpfen bodennaher und/oder bodengebundener ziele
EP2348328A2 (de) Verfahren und Vorrichtung zur Ortsbestimmung eines fliegenden Ziels
EP3538835B1 (de) Verfahren und abwehrsystem zur bekämpfung von bedrohungen
DE10230939A1 (de) Verfahren und Vorrichtung zum Schutz von Gefechtsfeldfahrzeugen
EP2482025B1 (de) Verfahren und Vorrichtung zum Abwehren eines angreifenden Flugkörpers
DE10050479A1 (de) Schutzsystem für Objekte, insbesondere für Kampfpanzer
EP3118564B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
EP3118563B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
EP3118567B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
DE102015015938A1 (de) Autonome, unbemannte Fluggeräte zur Begleitung, Eskortierung und Absicherung von Lutffahrzeugen wie Starr- und Drehflügler
EP3376154B1 (de) Verfahren zum schutz eines marschflugkörpers
DE4437729C1 (de) Verfahren zum Schützen von eine IR-Strahlung abgebenden Objekten, insbesondere Schiffen, gegen Flugkörper
DE2522927C2 (de) System zur taeuschung, ablenkung und vernichtung von lenkwaffen
DE3013405A1 (de) Verfahren zum vermeiden des nachrichtens von abschussgeraeten fuer ballistische flugkoerper
EP3118565B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
DE102020103249B4 (de) Verfahren zum Schützen eines Helikopters durch Nebelwurf und Helikopter mit Nebelschutzsystem
EP3118566B1 (de) Verfahren zum schützen eines fahrzeugs vor einem angriff durch einen laserstrahl
DE3119185A1 (de) "steuerbarer flugkoerper"
DE3311075C2 (de)
EP3894779A1 (de) Verfahren zum schutz von beweglichen oder unbeweglichen objekten vor sich nähernden lasergelenkten bedrohungen
DE102019109360A1 (de) Inventionssystem zur Abwehr von RAM-Zielen und/oder UAVs sowie Verfahren zur Abwehr von RAM-Zielen und/oder UAVs
DE3938798C1 (en) Low flying or hovering aircraft combating - laying out probes with sensors along typical flight path, and launching light signal on detection of aircraft, marking its position
EP3622242A1 (de) Abwehrsystem gegen leichte flugkörper, wie drohnen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170711

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180323

RIC1 Information provided on ipc code assigned before grant

Ipc: F41H 13/00 20060101ALI20180309BHEP

Ipc: F41G 7/22 20060101ALI20180309BHEP

Ipc: F41G 7/30 20060101ALI20180309BHEP

Ipc: F42B 15/01 20060101ALI20180309BHEP

Ipc: F41H 11/00 20060101AFI20180309BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016001882

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1041123

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180912

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181213

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181212

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190112

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016001882

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

26N No opposition filed

Effective date: 20190613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160712

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1041123

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240912

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 9