EP3104014B1 - Side-channel vacuum pump stage with a channel cross-section that features a particular curvature - Google Patents
Side-channel vacuum pump stage with a channel cross-section that features a particular curvature Download PDFInfo
- Publication number
- EP3104014B1 EP3104014B1 EP16171240.1A EP16171240A EP3104014B1 EP 3104014 B1 EP3104014 B1 EP 3104014B1 EP 16171240 A EP16171240 A EP 16171240A EP 3104014 B1 EP3104014 B1 EP 3104014B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotor
- side channel
- channel
- section
- duct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000694 effects Effects 0.000 claims description 6
- 238000005086 pumping Methods 0.000 description 48
- 239000007789 gas Substances 0.000 description 33
- 230000006835 compression Effects 0.000 description 22
- 238000007906 compression Methods 0.000 description 22
- 230000002093 peripheral effect Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
- F04D17/168—Pumps specially adapted to produce a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D23/00—Other rotary non-positive-displacement pumps
- F04D23/008—Regenerative pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/68—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
- F04D29/681—Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/516—Surface roughness
Definitions
- the invention relates to a vacuum pumping stage.
- the prior art includes vacuum pump stages of screw pumps, which essentially consist of two parts, namely a stator and a rotor rotating in the stator. There are multiple threads on the outside diameter of the rotor and on the inside diameter of the stator.
- Side channel pumps that is, pumps that have at least one vacuum pump stage in the form of a side channel pump stage, can be used in a multi-stage design in the high pressure range up to atmospheric pressure. These can be combined well with turbo molecular pumps or other molecular pumps, for example.
- the rotor parts of both pumps can be accommodated on one shaft, so that both form a structural unit.
- the side channel pump stages usually have an impeller, that is to say a rotor, which has blades rotating in a channel at its edge.
- the document JP H05 133388 A discloses a side channel pumping stage downstream of a molecular pump.
- a further embodiment relates to a vacuum pumping stage with an inlet, an outlet and a channel, which has two side walls and a channel bottom, wherein a rotor with a rotor section is immersed in the channel and a pumping action is achieved by the interaction of the rotor section and the channel, and with an between Inlet and outlet arranged interrupter.
- Vacuum pumps or vacuum pumping stations composed of vacuum pumps are used to generate such vacuum conditions.
- vacuum pump stages are used according to different operating principles, which are adapted to different pressure ranges in order to compress gas from the desired ultimate vacuum to the atmosphere.
- Blades circulate in a channel and convey a vortex-like gas flow between the inlet and outlet.
- the gas flow follows the blades as it rotates and is sent to a so-called scraper or breaker detached and fed to the outlet.
- Such side channel pump stages are for example in the DE 10 2009 021 642 A1 and the DE 10 2010 019 940 A1 disclosed.
- the state of the art ( DE 39 32 288 A1 ) a turbo vacuum pump with a side channel pump stage.
- This side channel pump stage has an inlet oriented in the radial direction.
- a bevel of the interrupter provided between the inlet and the outlet is arranged on an inner radius of the side channel of the inlet.
- This prior art vacuum pump can be further improved in terms of avoiding turbulence in the inflowing gas.
- a side channel compressor which has an inlet, an outlet and a rotor as well as a channel, wherein the rotor with a rotor section is immersed in the channel and a pumping action is achieved by the interaction of the rotor section and the channel.
- the rotor with the rotor blades arranged on the rotor is immersed in the channel.
- a breaker is arranged between the inlet and the outlet. The interrupter encloses the rotor on all sides and, as known from practice, abruptly in the vicinity of the Outlet where the side channel ends as well as near the inlet where the side channel begins.
- the interrupter is designed in such a way that the rotor blades are increasingly enclosed or released again in a uniformly decreasing manner.
- the respective rotor blade is thus gradually and continuously enclosed by the interrupter, or is continuously released again. This does not result in an abrupt, but rather a continuous and even stripping of the compressed gas components from the respective rotor blades.
- This measure is implemented at the beginning as well as at the end of the interrupter, that is to say at the inlet and at the outlet. This suppresses the occurrence of disruptive sound components in the interrupter area and reduces gas accumulation at the pressure connection. This leads to an increase in efficiency.
- This embodiment belonging to the prior art has the disadvantage that the efficiency has not yet been fully exploited.
- the technical problem on which the invention is based is to provide an improved vacuum pumping stage for side channel pumps which are used in molecular and viscous pressure ranges can be used to increase the performance of the pump.
- the object according to the invention is achieved by a vacuum pumping stage having the features according to claim 1.
- This vacuum pumping stage according to the invention has the advantage that the side channel has a considerable improvement in the technical vacuum data of side channel pumps compared to a rectangular side channel, as is part of the prior art. At the same time, the side channel according to the invention is easy to manufacture.
- the curvature of the side walls is concave. This training achieves the best vacuum technology values.
- the channel is advantageously designed to be axially symmetrical to a center plane of the rotor.
- the rotor blades of the rotors are V-shaped in cross section. This shape of the rotor blades has given the best pumping performance with the curved side walls of the canal.
- the rotor blades advantageously have a protrusion over a blade base.
- the rotor with the rotor blades is designed in such a way that a protrusion is provided over a blade base of the rotor blades. This means that the material of the rotor blades is not worn down to the blade base, but that there is a protrusion.
- This protrusion also has a beneficial effect on the pumping capacity of the vacuum pumping stage.
- the protrusion over the blade base is designed to taper towards the rotor blade center.
- the protrusion over the blade base to the rotor blade center is designed to taper when viewed in the axial direction. This means that at the axial edges of the blades the blades have been removed up to the blade base and that the protrusion over the blade base is maximally developed towards the middle.
- a further advantageous embodiment provides that the rotor blades are arranged completely at their height in the side channel. This also results in an optimized pump performance.
- the blade base of the rotor blades and a boundary surface of the side channel arranged radially in the direction of the shaft are arranged at the same height in the radial direction. This means that the rotor blades are arranged completely in the side channel and develop their full effect there.
- the boundary surface arranged radially in the direction of the shaft is the surface of the side channel, which is arranged opposite the channel bottom.
- a blade base radius and a radius of the boundary surface of the side channel arranged radially in the direction of the shaft have the same size R S 1 .
- a blade base radius and a radius of the boundary surface of the side channel arranged radially in the direction of the shaft advantageously have the same size R S 1 . This also significantly increases the pumping effect.
- a further advantageous embodiment of the vacuum pump stage provides that the side channel radius R S 3 and the distance d S 1 increase with increasing speed and increasing peripheral speed of the rotor disks. This also has a positive effect on the pump performance.
- a blade height of the rotor blades is advantageously 60% to 100% of a rotor disk width. This serves to further improve the pump performance.
- the optimum blade height is advantageously 60% to 100% of the rotor disk width.
- the optimal side channel radius depends on the circumferential speed of the rotor disk.
- the side channel radius is between 80% and 120% of the width of the rotor disk.
- a width d S 1 of the channel bottom is preferably between 20% and 120% of the width of the rotor disk.
- the blade spacing of the rotor blades is between 50% and 100% of the rotor disk width.
- the blade spacing is less than or equal to 55% of the rotor disk width with a side channel area that is less than 2.5 times the blade area.
- a blade spacing of 50% of the rotor disk width is particularly advantageous in the case of side channels with a side channel area that is not greater than 2.5 times the blade area. These are small side channels.
- the blade spacing is greater than or equal to 85% of the rotor disk width with a side channel area that is greater than 5 times the blade area. These are large side channels.
- the optimal number of blades thus decreases with increasing side channels, or the optimal distance between the blades increases.
- the minimum web width is designed as a function of the manufacturing accuracy and the material strength of the rotor disk. This ensures the stability of the rotor disk.
- Fig. 1 shows a vacuum pump with a housing 1 and three pump units 14, 16, 18.
- the housing 1 is provided with a gas inlet opening 2 and a gas outlet opening 4.
- the pump units consist of rotating and stationary gas-conveying components.
- the rotating components are mounted one behind the other on a shaft 6 in the axial direction.
- a drive system 8 and bearing elements 10 and 12 belong to the operation of the shaft 6.
- the stationary components are firmly connected to the housing 1.
- a pump unit 14 facing the gas inlet opening is designed as a turbo molecular pump.
- the pump unit 16 following in the direction of gas flow consists of several sub-units 16a, 16b, 16c. These each have one or more molecular pumping stages according to the Gaede design, hereinafter referred to as Gaede stages.
- the Gaede stages are connected in parallel within the sub-units.
- the sub-units themselves are connected in series. This means that connecting elements 34a for the subunit 16a, or 34b for the subunit 16b, connect the inlet sides and on the other side the outlet sides of the Gaede stages so that a parallel gas flow is made possible in the individual subunits.
- the sub-units are connected by connecting elements 36a, 36b and 36c in such a way that the output side of one sub-unit is connected to the input side of the following sub-unit.
- the pump unit 18 facing the gas outlet opening is a multi-stage side channel pump educated. In the Fig. 1 The pump shown is only shown as an example.
- the invention relates to all vacuum pumps in which side channel pump stages are provided.
- grooves are arranged in the surface of thread grooves and / or that grooves are arranged in the surfaces of stators and / or rotors.
- Figures 2 to 6 show possible structures that are attached uniformly in a surface 41, for example a thread groove of a side channel or also on a rotor.
- Fig. 2 Figure 4 shows a structure with grooves 40 that have a rounded bottom.
- the grooves 40 are formed in an arc shape.
- Fig. 3 shows a trapezoidal structure with a conically tapered cross-section, while Fig. 4 shows a triangular structure with a conically tapered cross-section.
- Fig. 5 a rectangular structure is shown.
- Fig. 6 again shows a triangular structure which has an asymmetrical configuration.
- the depth of the grooves 40 can vary from 1 ⁇ m to 100 ⁇ m.
- the groove width or the distance between the individual grooves 40 can vary from 1 ⁇ m to 1 mm.
- the grooves 40 can be along the direction of flow, transverse to the direction of flow and at an angle to the The direction of flow of the gas can be incorporated into the surface 41.
- the grooves 40 can also be produced in a surface 41 with a grindstone.
- the grooves 40 have an irregular structure.
- the rough surface should have a roughness of 0.1 ⁇ m to 100 ⁇ m, preferably of 2 ⁇ m to 100 ⁇ m.
- standing air forms in the grooves 40, so that the gas friction on the surface 41 is reduced. This effect influences the sliding of gas layers. By influencing these so-called boundary layer forces, the gases slide off the surface of the active pumping surfaces. This increases the speed of the circulation flow and the intensity of the energy exchange between the active pumping surfaces of the rotor and stator. This leads to an increase in compression, a reduction in power consumption and an increase in pumping speed.
- a thread groove 50 of a screw pump is shown.
- the thread groove 50 which is arranged, for example, in a stator 51, as well as the adjoining surfaces of the thread groove 50 are coated with a coating 52, which reduces friction and improves the sliding properties of the surface compared to an uncoated surface, for example a metal surface, for example aluminum or stainless steel. This measure also reduces the gas friction on the channel surface, which results in the advantages mentioned above.
- Fig. 9 shows a vacuum pump 100 with a gas inlet 102 and a gas outlet 103 as well as a housing 101.
- the housing 101 is made up of four housing parts 120, 121, 122, 123 constructed, which accommodate the components of the vacuum pump 100.
- Gas entering vacuum pump 100 through gas inlet 102 first reaches a molecular stage 105.
- This has an inner stator 505, which is provided with an inner thread groove 507, and an outer stator 506, which is provided with an outer thread groove 508.
- a cylinder 502 with a smooth surface, which is connected to the rotor 500, is provided between the inner stator and the outer stator.
- the molecular stage 105 is thus designed as a Holweck stage.
- the Holweck stage shown is constructed symmetrically with a second cylinder 502 'surrounded by stator components and therefore works in two stages.
- the rotor is connected to a shaft 108 which is rotatably supported in roller bearings 110 and 111.
- roller bearings 110 and 111 passive and active magnetic bearings can also be used.
- At least one permanent magnet 113 is arranged on the shaft 108, which magnet interacts with a stationary coil 112 and, together with this, forms a drive 107.
- the roller bearing 110, the drive 107 and the molecular stage 105 are arranged in the housing parts 120, 121.
- the shaft 108 passes through the housing part 122, which contains a side channel pump stage 104.
- the side channel pumping stage 104 is formed by a side channel 401 and an impeller 400, with at least one blade 402 being arranged on the impeller 400, which rotates in the side channel as a result of the rotation of the shaft 108 and thus generates the pumping effect.
- Gas passes through a transfer channel 124 from the molecular stage 105 into the side channel stage 104 and is expelled through a further transfer channel 125.
- the gas passes through the transfer channel 125 into a fore-vacuum stage 106.
- This is also designed as a side channel pump stage, the geometry of the blades 602 arranged on the impeller 600 and rotating in the side channel 601 deviating from the geometry of the blades 402. From this pumping stage 106, the gas is expelled from the vacuum pump 100 through the gas outlet 103.
- Fig. 10 shows a section through the housing part 122 along the line II of FIG Fig. 9 .
- the impeller 400 sits on the shaft 108. This has an edge 403 on which blades 402 are arranged evenly distributed along the circumference.
- the side channel 401 surrounds the impeller, the side channel surrounding the blade area of the impeller in a substantially annular manner in the radial direction.
- the housing is only tightly adjacent to the impeller over part of the circumference.
- This section forms an interrupter 404, which separates the intake and discharge sides from one another and at which the gas flow that forms in the side channel and follows the rotation of the impeller is detached from the latter and transferred to the transfer channel 125.
- the side channel 401 has a channel bottom 420 and two side walls 421, 422.
- the side walls 421, 422 are curved. That is, they have a concave shape.
- the blades 402 of the impeller or rotor 400 protrude completely into the side channel 401.
- a radius R S 1 of a blade base 423 is the same size as the radius R S 1 of a boundary surface 424 of the side channel 401 arranged radially in the direction of the shaft.
- the curved side surfaces 421, 422 significantly improve the pumping performance of the side channel pumping stage.
- the web between the blades is advantageously designed to be as small as possible (not shown).
- the vane volume filled with gas should be as large as possible.
- Improvements in the vacuum-technical data are also achieved through an optimized setting of the side channel radius R S3 (80% to 120% of the rotor disk width) and the distance between two centers of the side channel semicircles d S 1 (20% to 120% of the rotor disk width).
- the optimal radius R S 3 and distance d S 1 depend on the circumferential speed of the rotor disk and on the blade size.
- the dimensions R R 1 , R R 3 , d R 1 , blade height h and blade angle ⁇ are given.
- the dimension R S 1 is given by the lower blade edge of the rotor disk.
- Fig. 12 a comparison of side channels with rectangular cross-section and side channels with two side walls with semicircular cross-section and V-shaped rotor blades at 800 Hz and 1000 Hz rotational frequency is shown.
- the curves 716, 717, 718, 719 represent the course of the compression as a function of the pressure.
- the lower two curves 718, 719 relate to a rotational frequency of 800 Hz.
- a side channel with semicircular side walls has a higher compression (curve 718) as a prior art channel with a rectangular cross section (curve 719).
- the two upper curves 716, 717 relate to a rotational frequency of 1000 Hz.
- the upper curve 716 represents the compression as a function of the pressure for a side channel with side walls which are semicircular in cross section.
- Compression due to the design of the side channel according to the invention is significantly increased compared to a side channel with a rectangular cross section (curve 717). It can be seen that the side channels with two side walls that are semicircular in cross section have a significantly better compression.
- Fig. 13 the dependence of the compression factor on the axial gap is shown. As the legend in Fig. 13 As can be seen above, axial gaps between 0.15 mm and 0.4 mm have been recorded. The compression factor k 0 is greater, the smaller the axial gap.
- rotor disks of a multistage side channel pump with the same blade size have the same speed, but can have different peripheral speeds depending on the rotor disk diameter R R 1. For this reason, rotor disks with different diameters R R 1 and the same blade size should have side channels with different radii R S 3 and spacings d S 1 .
- the compression factor is given as a function of the outlet pressure p 2 , rotational frequency f and side channel diameter R S 3 .
- the compression factor is shown as a function of the outlet pressure p 2 , rotational frequency f, distance d S1 .
- Fig. 16 shows the impeller 400 with the blades 402.
- the blades 402 are V-shaped.
- the blade base In the area of a central plane 425 of the impeller 400, the blade base has a protrusion which tapers from the edges 426, 427 of the blade base to the central plane 425.
- the impeller 400 rotates in the direction of arrow A.
- Fig. 17 shows the impeller 400 according to FIG Fig. 16 in side view in the direction of arrow B.
- the impeller 400 carries the V-shaped blades 402.
- the blades have a blade base 423.
- a protrusion 428 protrudes above the blade base 423.
- An optimal blade height is 60% to 100% of the rotor disk width.
- An optimal side channel radius depends on the circumferential speed of the rotor disk 400 and can be from 80% to 120% of the rotor disk width.
- the distance d S 1 also depends on the circumferential speed of the rotor disk and can be from 20% to 120% of the rotor disk width.
- the optimal number of blades or the optimal distance between the blades does not depend on the speed.
- the optimal distance between the blades is proportional to the blade size and is also dependent on the side channel size. It is from 50% to 100% of the rotor disk width, the optimal distance between the blades is less than or equal to 55% for small side channels (side channel area not greater than 2.5 times the blade area) and is greater than or equal to 85% for large side channels (side channel area not smaller than 5 times the blade area).
- the optimum number of blades is therefore smaller as the side channels become larger, or the optimum distance between blades increases.
- the side channel area A SK and the blade area A Sch can be calculated using equations 4 to 7.
- A. SK R. S. 3 2 ⁇ ⁇ - ⁇ + d S.
- the web width of the blades should be as small as possible.
- the minimum web width is limited by the manufacturing accuracy and the material strength of the rotor disk.
- FIG. 18 the Figures 18 to 20 show further design options for a side channel.
- the side channel 401 is overall circular.
- the side channel 401 does not have a flat side channel bottom, but rather a circular cross section overall.
- the side channel 401 is also circular. However, the radius of the side channel 401 is smaller than in Fig. 18 shown.
- the side channel 401 has concave side walls 421, 422.
- the channel bottom 420 is flat.
- the side channel cross-sectional diameter is advantageously designed to be constant over the entire circumference of the side channel.
- the side channel cross-sectional diameter decreases from inlet 124 to outlet 125.
- the inlet 124 and the outlet 125 are arranged diametrically opposite one another.
- an arrangement in a side channel pumping stage is also possible, as shown in FIG Fig. 10 has been drawn in dashed lines.
- An inlet 124 ' is drawn here. With this configuration, it is possible for the cross-sectional diameter of the side channel to decrease from the inlet 124 ′ to the outlet 125. This reduction can take place linearly with the circumferential angle. It can also represent another function of the circumferential angle.
- a side channel surface with a center line 126 of the side channel is shown as a function of the radius and the angle ⁇ .
- the reduction in the side channel area can, as in Figure 21a shown, done from above. It can also be done from below, as shown in the illustration Figure 21b shown. However, it can also be done from above and from below, as shown in the illustration Figure 21c shown.
- the side channel diameter can also be reduced from one or both sides along the side channel from inlet 124 ′ to outlet 125. Inlet 124 'is in Fig. 10 shown.
- Fig. 22 shows a further embodiment of a side channel 401.
- the side channel 401 has side walls 421, 422 which are formed in the shape of a segment of a circle.
- the channel bottom 420 is also not shown planar in this exemplary embodiment, but consists of two circular segments with a radius R S 3 .
- Fig. 23 shows a further embodiment of an embodiment of the side channel 401.
- the side channel 401 has curved side surfaces 421, 422 and a channel bottom 420 that is not planar.
- the curved side surfaces 421, 422 do not correspond to any circular sections.
- a breaker 404 is in Fig. 10 shown.
- the breaker is in the side channel pumping stage 104 of the Fig. 9 arranged.
- the figure description of the Fig. 9 and 10 are fully applicable to the present invention.
- FIG. 10 shows a prior art breaker 404 having an inlet 701 and an outlet 702.
- the interrupter 404 as well as the inlet 701 and the outlet 702 are part of a stator 700.
- the upper illustration in FIG Fig. 24 shows a side view of the interrupter 404.
- the lower illustration shows a top view of the interrupter 404.
- a rotor 703 is shown in dashed lines in the upper illustration.
- the rotor 703 rotates at a rotational speed v.
- the interrupter 404 belonging to the prior art has an area d 1 in which the interrupter 404 completely surrounds the rotor 703.
- a side channel 704 ends abruptly in the area of the inlet 701 and in the area of the outlet 702. This leads to disruptive sound components and a gas jam at the pressure port 702.
- FIG. 8 shows the breaker 404 arranged in the stator 700.
- An inlet 701 and an outlet 702 for the side channel 704 are arranged in the stator 700.
- a rotor 703 rotates in the stator at a speed v.
- the interrupter 404 has an area over a length d 1 in which the rotor 703 is completely enclosed by the interrupter 404.
- the interrupter In an area over a length d 2 , the interrupter has a bevel 705.
- the side channel 701 widens continuously to its total width outside the area d 2 .
- Rotor blades 706 are arranged on rotor 703, only shown schematically.
- the length d 1 of the interrupter is greater than a blade length.
- the length d 2 of the bevel 705 is also longer than a blade length.
- the channel 701 may have a shape as shown in FIG Fig. 11 for channel 401 is shown.
- the rotor 400 is delimited by a sealing surface 707 of the stator. This sealing surface 707 is arranged in the area of the rotor 400 without blades.
- the interrupter 404 is shown with the bevel 705.
- the bevel 705 tapers in the direction of the area d 2 of the interrupter 404, in which the interrupter 404 completely surrounds the rotor 703.
- An angle ⁇ indicates the opening angle of the bevel 705.
- An angle ⁇ is a complementary angle to the angle ⁇ , that is, the sum of the angles ⁇ and ⁇ together results in 180 °.
- the angle ⁇ corresponds to a blade angle of the rotor blades 706 of the rotor 703, as in FIG Fig. 26 shown.
- a rotor blade 706 is shown in section and the angle of attack ⁇ .
- the blade height is denoted by D.
- FIG. 3 illustrates a further exemplary embodiment.
- the interrupter 404 which is formed in the stator 700, has the bevel 705.
- An additional bevel 706 is provided in the direction of the side channel 704. This additional bevel, which has a length d 3 , achieves an even higher compression and a higher suction capacity.
- Fig. 28 the compression of a side channel pumping stage is shown.
- the curves show, on the one hand, the values for a standard interrupter and, on the other hand, for a form of interrupter according to Fig. 25 . It can be seen that the compression is significant in the case of the interrupter shape according to FIG Fig. 25 is increased.
- Fig. 29 the pumping speed of a side channel pump stage is shown. It can be clearly seen that according to Fig. 25 The interrupter shape used leads to a higher pumping speed than a prior art interrupter shape.
- Fig. 30 shows the stator disk 700 with a side channel 704 and an outlet 702.
- the interrupter 404 adjoins the blades of the rotor, which is also not shown here, with a surface 708 while maintaining a narrow gap (not shown).
- the interrupter has the bevel 705 which widens in the direction of the channel 704.
- a sealing surface 707 has a lower level than a surface 709 of the stator 700, which results in the edge or surface 708.
- the bevel 705 represents, on the one hand, a radial opening of the interrupter 404 and also an axial recess in the sealing surface 707.
- the stator 700 has a bore 710 for a shaft of the rotor (not shown) to pass through.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
Die Erfindung betrifft eine Vakuumpumpstufe.The invention relates to a vacuum pumping stage.
Zum Stand der Technik gehören Vakuumpumpstufen von Gewindepumpen, die im Wesentlichen aus zwei Teilen bestehen, nämlich aus einem Stator und einem in dem Stator rotierenden Rotor. Auf dem Außendurchmesser des Rotors und auf dem Innendurchmesser des Stators sind mehrgängige Gewinde angebracht.The prior art includes vacuum pump stages of screw pumps, which essentially consist of two parts, namely a stator and a rotor rotating in the stator. There are multiple threads on the outside diameter of the rotor and on the inside diameter of the stator.
Seitenkanalpumpen, das heißt, Pumpen, die wenigstens eine Vakuumpumpstufe in Form einer Seitenkanalpumpstufe aufweisen, können in mehrstufiger Bauweise im hohen Druckbereich bis hin zum Atmosphärendruck eingesetzt werden. Diese lassen sich beispielsweise gut mit Turbomolekularpumpen oder auch anderen Molekularpumpen kombinieren. Die Rotorteile beider Pumpen können auf einer Welle untergebracht werden, so dass beide eine Baueinheit bilden. Die Seitenkanalpumpstufen weisen üblicherweise ein Laufrad, das heißt, einen Rotor auf, welcher an seinem Rand in einem Kanal umlaufende Schaufeln aufweist. Das Dokument
Um eine hinreichend gute Pumpleistung bei den aus der Praxis bekannten Pumpen zu erzielen, sind in der Regel mehrere Stufen und aufwändig gestaltete Laufräder beispielsweise der Seitenkanalpumpstufe notwendig.In order to achieve a sufficiently good pumping capacity with the pumps known from practice, several stages and elaborately designed impellers, for example the side channel pumping stage, are usually necessary.
Eine weitere Ausführungsform betrifft eine Vakuumpumpstufe mit einem Einlass, einem Auslass und einem Kanal, der zwei Seitenwände und einen Kanalboden aufweist, wobei ein Rotor mit einem Rotorabschnitt in den Kanal eintaucht und durch Zusammenwirken von Rotorabschnitt und Kanal eine Pumpwirkung erreicht wird, und mit einem zwischen Einlass und Auslass angeordnetem Unterbrecher.A further embodiment relates to a vacuum pumping stage with an inlet, an outlet and a channel, which has two side walls and a channel bottom, wherein a rotor with a rotor section is immersed in the channel and a pumping action is achieved by the interaction of the rotor section and the channel, and with an between Inlet and outlet arranged interrupter.
Viele industrielle Prozesse laufen unter Vakuumbedingungen im molekularen Strömungsbereich ab. Zur Erzeugung solcher Vakuumbedingungen werden Vakuumpumpen oder aus Vakuumpumpen zusammengesetzte Vakuumpumpstände eingesetzt. In den Vakuumpumpen kommen Vakuumpumpstufen nach unterschiedlichen Wirkprinzipien zum Einsatz, die unterschiedlichen Druckbereichen angepasst sind, um Gas vom gewünschten Endvakuum bis zur Atmosphäre zu verdichten.Many industrial processes take place under vacuum conditions in the molecular flow range. Vacuum pumps or vacuum pumping stations composed of vacuum pumps are used to generate such vacuum conditions. In the vacuum pumps, vacuum pump stages are used according to different operating principles, which are adapted to different pressure ranges in order to compress gas from the desired ultimate vacuum to the atmosphere.
Gegen Atmosphäre verdichtend werden beispielsweise Seitenkanalpumpstufen eingesetzt. In diesen laufen Schaufeln in einem Kanal um und fördern einen wirbelartigen Gasstrom zwischen Ein- und Auslass. Der Gasstrom folgt den Schaufeln beim Umlauf und wird an einem so genannten Abstreifer oder Unterbrecher abgelöst und dem Auslass zugeführt.Side channel pump stages, for example, are used to compress the atmosphere. In these, blades circulate in a channel and convey a vortex-like gas flow between the inlet and outlet. The gas flow follows the blades as it rotates and is sent to a so-called scraper or breaker detached and fed to the outlet.
Um eine hinreichend gute Pumpleistung zu erzielen, sind in der Regel mehrere Stufen und aufwändig gestaltete Laufräder der Seitenkanalpumpstufe notwendig. Der zu betreibende Aufwand wird beispielsweise an der Vielzahl von Schaufeln ersichtlich, die zumindest bei kleinen Stückzahlen aufwändig aus Vollmaterial herausgearbeitet werden müssen.In order to achieve a sufficiently good pumping capacity, several stages and elaborately designed impellers of the side channel pumping stage are usually necessary. The effort to be made can be seen, for example, from the large number of blades, which, at least in the case of small quantities, have to be laboriously worked out of solid material.
Derartige Seitenkanalpumpstufen sind beispielsweise in der
Diese zum Stand der Technik gehörenden Seitenkanalpumpstufen können noch hinsichtlich ihrer Pumpleistung verbessert werden.These side-channel pump stages, which belong to the prior art, can still be improved with regard to their pumping capacity.
Zum Stand der Technik (
Diese zum Stand der Technik gehörende Reibungspumpe kann hinsichtlich der Pumpwirkung noch weiter verbessert werden.This prior art friction pump can be improved even further with regard to the pumping action.
Weiterhin gehört zum Stand der Technik (
Darüber hinaus gehört zum Stand der Technik (
Weiterhin gehört zum Stand der Technik (
Zum Stand der Technik (
Gemäß dem Stand der Technik (
Weiterhin gehört zum Stand der Technik (
Das der Erfindung zugrunde liegende technische Problem besteht darin, eine verbesserte Vakuumpumpstufe für Seitenkanalpumpen anzugeben, die in molekularen und viskosen Druckbereichen genutzt werden, um eine Leistungssteigerung der Pumpe zu erzielen.The technical problem on which the invention is based is to provide an improved vacuum pumping stage for side channel pumps which are used in molecular and viscous pressure ranges can be used to increase the performance of the pump.
Die erfindungsgemäße Aufgabe wird durch eine Vakuumpumpstufe mit den Merkmalen gemäß Anspruch 1 gelöst.The object according to the invention is achieved by a vacuum pumping stage having the features according to
Diese erfindungsgemäße Vakuumpumpstufe weist den Vorteil auf, dass der Seitenkanal eine erhebliche Verbesserung der vakuumtechnischen Daten von Seitenkanalpumpen im Vergleich zu einem rechteckigen Seitenkanal, wie er zum Stand der Technik gehört, aufweist. Gleichzeitig ist der erfindungsgemäße Seitenkanal einfach zu fertigen.This vacuum pumping stage according to the invention has the advantage that the side channel has a considerable improvement in the technical vacuum data of side channel pumps compared to a rectangular side channel, as is part of the prior art. At the same time, the side channel according to the invention is easy to manufacture.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung ist die Krümmung der Seitenwände konkav ausgebildet. Durch diese Ausbildung erzielt man die besten vakuumtechnischen Werte.According to a particularly preferred embodiment of the invention, the curvature of the side walls is concave. This training achieves the best vacuum technology values.
Vorteilhaft ist der Kanal axialsymmetrisch zu einer Mittelebene des Rotors ausgebildet. Mit dieser Ausbildung wird eine gute Pumpleistung der Vakuumpumpstufe erzielt.The channel is advantageously designed to be axially symmetrical to a center plane of the rotor. With this training, a good pumping capacity of the vacuum pumping stage is achieved.
Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung sind die Rotorschaufeln der Rotoren im Querschnitt V-förmig ausgebildet. Diese Gestalt der Rotorschaufeln hat mit den gekrümmten Seitenwänden des Kanales die besten Pumpleistungen ergeben.According to a further advantageous embodiment of the invention, the rotor blades of the rotors are V-shaped in cross section. This shape of the rotor blades has given the best pumping performance with the curved side walls of the canal.
Vorteilhaft weisen die Rotorschaufeln über einem Schaufelgrund einen Überstand auf. Der Rotor mit den Rotorschaufeln ist derart ausgebildet, dass über einem Schaufelgrund der Rotorschaufeln ein Überstand vorgesehen ist. Das bedeutet, dass das Material der Rotorschaufeln nicht bis zum Schaufelgrund abgetragen ist, sondern dass ein Überstand vorhanden ist. Dieser Überstand wirkt sich ebenfalls vorteilhaft auf die Pumpleistung der Vakuumpumpstufe aus.The rotor blades advantageously have a protrusion over a blade base. The rotor with the rotor blades is designed in such a way that a protrusion is provided over a blade base of the rotor blades. This means that the material of the rotor blades is not worn down to the blade base, but that there is a protrusion. This protrusion also has a beneficial effect on the pumping capacity of the vacuum pumping stage.
Gemäß einer bevorzugten Ausführungsform ist der Überstand über dem Schaufelgrund zur Rotorschaufelmitte sich verjüngend ausgebildet. Der Überstand über dem Schaufelgrund zur Rotorschaufelmitte ist in axialer Richtung gesehen sich verjüngend ausgebildet. Das bedeutet, dass an den axialen Rändern der Schaufeln die Schaufeln bis zum Schaufelgrund abgetragen sind und dass zur Mitte hin der Überstand über dem Schaufelgrund maximal ausgebildet ist.According to a preferred embodiment, the protrusion over the blade base is designed to taper towards the rotor blade center. The protrusion over the blade base to the rotor blade center is designed to taper when viewed in the axial direction. This means that at the axial edges of the blades the blades have been removed up to the blade base and that the protrusion over the blade base is maximally developed towards the middle.
Eine weitere vorteilhafte Ausführungsform sieht vor, dass die Rotorschaufeln vollständig in ihrer Höhe in dem Seitenkanal angeordnet sind. Auch hierdurch wird eine optimierte Pumpleistung erzielt.A further advantageous embodiment provides that the rotor blades are arranged completely at their height in the side channel. This also results in an optimized pump performance.
Gemäß einer weiteren sehr vorteilhaften Ausführungsform sind der Schaufelgrund der Rotorschaufeln und eine radial in Richtung Welle angeordnete Begrenzungsfläche des Seitenkanales in radialer Richtung in gleicher Höhe angeordnet. Das bedeutet, dass die Rotorschaufeln vollständig in dem Seitenkanal angeordnet sind und dort ihre volle Wirkung entfalten. Die radial in Richtung Welle angeordnete Begrenzungsfläche ist die Fläche des Seitenkanales, die dem Kanalboden gegenüberliegend angeordnet ist. Durch diese Ausführungsform laufen die Rotorschaufeln in ihrer vollen Höhe im Kanal um.According to a further very advantageous embodiment, the blade base of the rotor blades and a boundary surface of the side channel arranged radially in the direction of the shaft are arranged at the same height in the radial direction. This means that the rotor blades are arranged completely in the side channel and develop their full effect there. The boundary surface arranged radially in the direction of the shaft is the surface of the side channel, which is arranged opposite the channel bottom. With this embodiment, the rotor blades rotate in their full height in the channel.
Mit anderen Worten weisen ein Schaufelgrundradius und ein Radius, der radial in Richtung Welle angeordneten Begrenzungsfläche des Seitenkanales die gleiche Größe R S1 auf.In other words, a blade base radius and a radius of the boundary surface of the side channel arranged radially in the direction of the shaft have the same size R S 1 .
Vorteilhaft weist ein Schaufelgrundradius und ein Radius der radial in Richtung Welle angeordneten Begrenzungsfläche des Seitenkanales die gleiche Größe R S1 auf. Auch hierdurch wird die Pumpwirkung deutlich erhöht.A blade base radius and a radius of the boundary surface of the side channel arranged radially in the direction of the shaft advantageously have the same size R S 1 . This also significantly increases the pumping effect.
Gemäß einer weiteren vorteilhaften Ausführungsform ist zwischen Rotor- und Statorscheibe ein Axialspalt (Δ) vorgesehen und der Axialspalt ist folgendermaßen ausgestaltet:
- Δ ≤ 0,3 mm für p 2 ≤ 10 mbar
- Δ ≤ 0,2 mm für 10 mbar < p 2 ≤ 100 mbar
- Δ ≤ 0,15 mm für p 2 > 100 mbar.
- Δ ≤ 0.3 mm for p 2 ≤ 10 mbar
- Δ ≤ 0.2 mm for 10 mbar < p 2 ≤ 100 mbar
- Δ ≤ 0.15 mm for p 2 > 100 mbar.
Diese Werte haben sich als besonders vorteilhaft herausgestellt.These values have proven to be particularly advantageous.
Eine weitere vorteilhafte Ausführungsform der Vakuumpumpstufe sieht vor, dass mit steigender Drehzahl und steigender Umfangsgeschwindigkeit der Rotorscheiben der Seitenkanalradius R S3 und der Abstand d S1 zunehmend ausgebildet ist. Auch hierdurch wird die Pumpleistung positiv beeinflusst.A further advantageous embodiment of the vacuum pump stage provides that the side channel radius R S 3 and the distance d S 1 increase with increasing speed and increasing peripheral speed of the rotor disks. This also has a positive effect on the pump performance.
Vorteilhaft beträgt eine Schaufelhöhe der Rotorschaufeln 60 % bis 100 % einer Rotorscheibenbreite. Dies dient der weiteren Verbesserung der Pumpleistung.A blade height of the rotor blades is advantageously 60% to 100% of a rotor disk width. This serves to further improve the pump performance.
Die optimale Schaufelhöhe beträgt vorteilhaft 60 % bis 100 % der Rotorscheibenbreite. Darüber hinaus hängt der optimale Seitenkanalradius von der Umfangsgeschwindigkeit der Rotorscheibe ab. Der Seitenkanalradius ist zwischen 80 % bis 120 % der Rotorscheibenbreite ausgebildet.The optimum blade height is advantageously 60% to 100% of the rotor disk width. In addition, the optimal side channel radius depends on the circumferential speed of the rotor disk. The side channel radius is between 80% and 120% of the width of the rotor disk.
Eine Breite d S1 des Kanalbodens liegt vorzugsweise zwischen 20 % und 120 % der Rotorscheibenbreite.A width d S 1 of the channel bottom is preferably between 20% and 120% of the width of the rotor disk.
Darüber hinaus liegt ein Schaufelabstand der Rotorschaufeln zwischen 50 % und 100 % der Rotorscheibenbreite.In addition, the blade spacing of the rotor blades is between 50% and 100% of the rotor disk width.
Gemäß einer weiteren vorteilhaften Ausführungsform ist der Schaufelabstand kleiner oder gleich 55 % der Rotorscheibenbreite bei einer Seitenkanalfläche, die kleiner als das 2,5-fache der Schaufelfläche ist. Ein Schaufelabstand von 50 % der Rotorscheibenbreite ist besonders vorteilhaft bei Seitenkanälen mit einer Seitenkanalfläche, die nicht größer als das 2,5-fache der Schaufelfläche ist. Dieses sind kleine Seitenkanäle.According to a further advantageous embodiment, the blade spacing is less than or equal to 55% of the rotor disk width with a side channel area that is less than 2.5 times the blade area. A blade spacing of 50% of the rotor disk width is particularly advantageous in the case of side channels with a side channel area that is not greater than 2.5 times the blade area. These are small side channels.
Vorteilhaft ist der Schaufelabstand von größer oder gleich 85 % der Rotorscheibenbreite bei einer Seitenkanalfläche, die größer als das 5-fache der Schaufelfläche ist. Dieses sind große Seitenkanäle.Advantageously, the blade spacing is greater than or equal to 85% of the rotor disk width with a side channel area that is greater than 5 times the blade area. These are large side channels.
Die optimale Schaufelzahl wird also bei größer werdenden Seitenkanälen geringer, beziehungsweise der optimale Abstand zwischen den Schaufeln wird größer.The optimal number of blades thus decreases with increasing side channels, or the optimal distance between the blades increases.
Die letztgenannten Maßnahmen dienen sämtlich dazu, die Pumpleistung der Pumpe zu verbessern.The latter measures all serve to improve the pumping performance of the pump.
Weiterhin hat sich als vorteilhaft herausgestellt, dass die minimale Stegbreite abhängig von der Fertigungsgenauigkeit und der Materialfestigkeit der Rotorscheibe ausgebildet ist. Hierdurch wird die Stabilität der Rotorscheibe gewährleistet.Furthermore, it has been found to be advantageous that the minimum web width is designed as a function of the manufacturing accuracy and the material strength of the rotor disk. This ensures the stability of the rotor disk.
Weitere Merkmale und Vorteile der Erfindung ergeben sich anhand der zugehörigen Zeichnung, in der mehrere Ausführungsbeispiele einer Vakuumpumpstufe nur beispielhaft dargestellt sind. In der Zeichnung zeigen:
- Fig. 1
- einen Längsschnitt durch eine Vakuumpumpe mit Seitenkanalpumpstufen;
- Fig. 2
- eine schematische Darstellung einer bogenförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 3
- eine schematische Darstellung einer trapezförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 4
- eine schematische Darstellung einer dreieckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 5
- eine schematische Darstellung einer rechteckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 6
- eine schematische Darstellung einer dreieckförmigen Rillenstruktur im Querschnitt oder Längsschnitt;
- Fig. 7
- einen Querschnitt oder Längsschnitt durch eine unregelmäßige Rillenstruktur;
- Fig. 8
- eine beschichtete Gewindenut im Querschnitt;
- Fig. 9
- einen Längsschnitt durch eine Vakuumpumpe mit einer Seitenkanalpumpstufe;
- Fig. 10
- einen Schnitt quer zur Wellenachse durch die Seitenkanalpumpstufe gemäß
Fig. 9 entlang der Linie I-I; - Fig. 11
- einen Teilquerschnitt durch einen erfindungsgemäßen Seitenkanal;
- Fig. 12
- eine Darstellung eines Vergleiches der Kompressionen von rechteckigen und kreisförmigen Seitenkanälen mit V-förmigen Rotorschaufeln bei 800 Hz und 1000 Hz Drehfrequenz;
- Fig. 13
- eine Darstellung der Abhängigkeit des Kompressionsfaktors vom Axialspalt zwischen Rotor und Statorscheiben bei 217 m/s Rotorumfangsgeschwindigkeit;
- Fig. 14a
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p2, Drehfrequenz f und Seitenkanaldurchmesser RS3 bei 1000 Hz;
- Fig. 14b
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p2, Drehfrequenz f und Seitenkanaldurchmesser RS3 bei 800 Hz;
- Fig. 15a
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p2, Drehfrequenz f und Abstand dS1 bei 1000 Hz;
- Fig. 15b
- eine Darstellung des Kompressionsfaktors in Abhängigkeit von Auslassdruck p2, Drehfrequenz f und Abstand dS1 bei 800 Hz;
- Fig. 16
- eine Draufsicht auf eine Rotorscheibe mit V-förmigen Schaufeln;
- Fig. 17
- eine Seitenansicht der Rotorscheibe gemäß
Fig. 16 ; - Fig. 18
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 19
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 20
- ein geändertes Ausführungsbeispiel eines Querschnittes eines Seitenkanales;
- Fig. 21a
- eine Darstellung der Verringerung der Seitenkanalfläche von oben;
- Fig. 21b
- eine Darstellung der Verringerung der Seitenkanalfläche von unten;
- Fig. 21c
- eine Darstellung der Verringerung der Seitenkanalfläche von oben und von unten;
- Fig. 22
- ein geändertes Ausführungsbeispiel;
- Fig. 23
- ein geändertes Ausführungsbeispiel;
- Fig. 24
- einen zum Stand der Technik gehörenden Unterbrecher in Seitenansicht und in Draufsicht (schematisch);
- Fig. 25
- einen Unterbrecher in Seitenansicht und in Draufsicht (schematisch) ;
- Fig. 26
- eine Rotorschaufel in Seitenansicht zur Darstellung des Anstellwinkels a;
- Fig. 27
- ein geändertes Ausführungsbeispiel;
- Fig. 28
- eine Darstellung einer Kompression einer Seitenkanalstufe mit Standardunterbrecher und mit verbessertem Unterbrecher;
- Fig. 29
- eine Darstellung des Saugvermögens einer Seitenkanalstufe mit Standardunterbrecher und mit verbessertem Unterbrecher;
- Fig. 30
- eine Statorscheibe mit Unterbrecher in axialer Draufsicht.
- Fig. 1
- a longitudinal section through a vacuum pump with side channel pump stages;
- Fig. 2
- a schematic representation of an arcuate groove structure in cross section or longitudinal section;
- Fig. 3
- a schematic representation of a trapezoidal groove structure in cross section or longitudinal section;
- Fig. 4
- a schematic representation of a triangular groove structure in cross section or longitudinal section;
- Fig. 5
- a schematic representation of a rectangular groove structure in cross section or longitudinal section;
- Fig. 6
- a schematic representation of a triangular groove structure in cross section or longitudinal section;
- Fig. 7
- a cross-section or longitudinal section through an irregular groove structure;
- Fig. 8
- a coated thread groove in cross section;
- Fig. 9
- a longitudinal section through a vacuum pump with a side channel pump stage;
- Fig. 10
- a section transverse to the shaft axis through the side channel pump stage according to
Fig. 9 along line II; - Fig. 11
- a partial cross section through a side channel according to the invention;
- Fig. 12
- a representation of a comparison of the compressions of rectangular and circular side channels with V-shaped rotor blades at 800 Hz and 1000 Hz rotational frequency;
- Fig. 13
- a representation of the dependence of the compression factor on the axial gap between rotor and stator disks at 217 m / s rotor peripheral speed;
- Figure 14a
- a representation of the compression factor as a function of outlet pressure p2 , rotational frequency f and side channel diameter RS3 at 1000 Hz;
- Figure 14b
- a representation of the compression factor as a function of outlet pressure p2 , rotational frequency f and side channel diameter RS3 at 800 Hz;
- Figure 15a
- a representation of the compression factor as a function of outlet pressure p2 , rotational frequency f and distance dS1 at 1000 Hz;
- Figure 15b
- a representation of the compression factor as a function of outlet pressure p2 , rotational frequency f and distance dS1 at 800 Hz;
- Fig. 16
- a top view of a rotor disk with V-shaped blades;
- Fig. 17
- a side view of the rotor disk according to FIG
Fig. 16 ; - Fig. 18
- a modified embodiment of a cross section of a side channel;
- Fig. 19
- a modified embodiment of a cross section of a side channel;
- Fig. 20
- a modified embodiment of a cross section of a side channel;
- Figure 21a
- a representation of the reduction in the side channel area from above;
- Figure 21b
- a representation of the reduction in the side channel area from below;
- Figure 21c
- a representation of the reduction in the side channel area from above and from below;
- Fig. 22
- a modified embodiment;
- Fig. 23
- a modified embodiment;
- Fig. 24
- a prior art interrupter in side view and in plan view (schematic);
- Fig. 25
- a breaker in side view and in plan view (schematic);
- Fig. 26
- a rotor blade in side view to show the angle of attack a;
- Fig. 27
- a modified embodiment;
- Fig. 28
- a representation of a compression of a side channel stage with standard breaker and with improved breaker;
- Fig. 29
- a representation of the pumping speed of a side channel stage with standard interrupter and with improved breaker;
- Fig. 30
- a stator disk with interrupter in an axial plan view.
Eine der Gaseintrittsöffnung zugewandte Pumpeinheit 14 ist als Turbomolekularpumpe ausgebildet. Die in Richtung Gasströmung folgende Pumpeinheit 16 besteht aus mehreren Untereinheiten 16a, 16b, 16c. Diese weisen jeweils eine oder mehrere Molekularpumpstufen nach der Bauart von Gaede, im Folgenden Gaede-Stufen genannt, auf. Innerhalb der Untereinheiten sind die Gaede-Stufen parallel geschaltet. Die Untereinheiten selbst sind in Reihe geschaltet. Dies bedeutet, dass Verbindungselemente 34a für die Untereinheit 16a, beziehungsweise 34b für die Untereinheit 16b, die Eingangsseiten und auf der anderen Seite die Ausgangsseiten der Gaede-Stufen so zusammenschließen, dass eine parallele Gasführung in den einzelnen Untereinheiten ermöglicht wird. Die Untereinheiten sind durch Verbindungselemente 36a, 36b und 36c so zusammengeschlossen, dass jeweils die Ausgangsseite der einen Untereinheit mit der Eingangsseite der folgenden Untereinheit verbunden ist. Die der Gasauslassöffnung zugewandte Pumpeinheit 18 ist als mehrstufige Seitenkanalpumpe ausgebildet. Die in
Die Erfindung bezieht sich auf sämtliche Vakuumpumpen, in denen Seitenkanalpumpstufen vorgesehen sind.The invention relates to all vacuum pumps in which side channel pump stages are provided.
Gemäß einer Ausführung ist vorgesehen, dass in der Oberfläche von Gewindenuten Rillen angeordnet sind und/oder dass in den Oberflächen von Statoren und/oder Rotoren Rillen angeordnet sind.According to one embodiment it is provided that grooves are arranged in the surface of thread grooves and / or that grooves are arranged in the surfaces of stators and / or rotors.
Diese Rillen können eine Struktur, wie in
Die
Die Tiefe der Rillen 40 kann von 1 µm bis 100 µm variieren. Die Rillenbreite, beziehungsweise der Abstand zwischen den einzelnen Rillen 40 kann von 1 µm bis 1 mm variieren. Die Rillen 40 können entlang der Strömungsrichtung, quer zu der Strömungsrichtung und unter einem Winkel zu der Strömungsrichtung des Gases in die Oberfläche 41 eingearbeitet werden.The depth of the
Wie in
Gemäß
Durch den Gaseinlass 102 in die Vakuumpumpe 100 eintretendes Gas gelangt zunächst in eine Molekularstufe 105. Diese besitzt einen Innenstator 505, der mit einer inneren Gewindenut 507 versehen ist, und einen Außenstator 506, der mit einer äußeren Gewindenut 508 versehen ist. Zwischen Innenstator und Außenstator ist ein Zylinder 502 mit glatter Oberfläche vorgesehen, der mit dem Rotor 500 verbunden ist. Die Molekularstufe 105 ist somit als Holweckstufe gestaltet. Die in
Der Rotor ist mit einer Welle 108 verbunden, die in Wälzlagern 110 und 111 drehbar gelagert ist. Anstelle der Wälzlager 110, 111 können auch passive und aktive Magnetlager zum Einsatz kommen. An der Welle 108 ist wenigstens ein Permanentmagnet 113 angeordnet, der mit einer stehenden Spule 112 zusammenwirkt und zusammen mit dieser einen Antrieb 107 bildet. Das Wälzlager 110, der Antrieb 107 und die Molekularstufe 105 sind in den Gehäuseteilen 120, 121 angeordnet.The rotor is connected to a
Die Welle 108 durchsetzt das Gehäuseteil 122, welches eine Seitenkanalpumpstufe 104 beinhaltet. Die Seitenkanalpumpstufe 104 wird von einem Seitenkanal 401 und einem Laufrad 400 gebildet, wobei am Laufrad 400 wenigstens eine Schaufel 402 angeordnet ist, die in dem Seitenkanal durch die Drehung der Welle 108 umläuft und so die Pumpwirkung erzeugt. Gas gelangt durch einen Übergabekanal 124 aus der Molekularstufe 105 in die Seitenkanalstufe 104 hinein und wird durch einen weiteren Übergabekanal 125 ausgestoßen.The
Von der Seitenkanalpumpstufe 104 gelangt das Gas durch den Übergabekanal 125 in eine Vorvakuumstufe 106. Diese ist ebenfalls als Seitenkanalpumpstufe gestaltet, wobei hier die Geometrie der am Laufrad 600 angeordneten und im Seitenkanal 601 umlaufenden Schaufeln 602 von der Geometrie der Schaufeln 402 abweicht. Aus dieser Pumpstufe 106 wird das Gas aus der Vakuumpumpe 100 durch den Gasauslass 103 ausgestoßen.From the side
Zwischen den Laufrädern 400 und 600 und den Gehäuseteilen 121, 122 und 123 befinden sich enge Spalte. Diese erlauben ein freies Drehen des betreffenden Laufrades, sind jedoch so eng gestaltet, dass keine störenden Gasströmungen auftreten.There are narrow gaps between the
Wie in
Das bedeutet, dass die Schaufeln 402 vollständig in den Seitenkanal 401 eintauchen.This means that the
Durch die gekrümmt ausgebildeten Seitenflächen 421, 422 wird die Pumpleistung der Seitenkanalpumpstufe deutlich verbessert. Vorteilhaft ist der Steg zwischen den Schaufeln möglichst gering ausgebildet (nicht dargestellt). Das mit Gas gefüllte Schaufelvolumen soll möglichst groß sein.The curved side surfaces 421, 422 significantly improve the pumping performance of the side channel pumping stage. The web between the blades is advantageously designed to be as small as possible (not shown). The vane volume filled with gas should be as large as possible.
Durch diese Maßnahmen werden die vakuumtechnischen Eigenschaften der Pumpe erheblich verbessert.These measures significantly improve the vacuum properties of the pump.
Verbesserungen der vakuumtechnischen Daten werden auch durch eine optimierte Einstellung des Seitenkanalradius RS3 (80 % bis 120 % der Rotorscheibenbreite) und dem Abstand zwischen zwei Zentren der Seitenkanalhalbkreise d S1 (20 % bis 120 % der Rotorscheibenbreite) erreicht. Der optimale Radius R S3 und Abstand d S1 hängen von der Umfangsgeschwindigkeit der Rotorscheibe und von der Schaufelgröße ab. Die Maße R R1 , R R3 , d R1 , Schaufelhöhe h und Schaufelwinkel α sind vorgegeben. Das Maß R S2 kann mit folgenden drei Gleichungen berechnet werden:
Das Maß R S1 ist durch den unteren Schaufelrand der Rotorscheibe vorgegeben.The dimension R S 1 is given by the lower blade edge of the rotor disk.
Δ bezeichnet den Axialspalt zwischen Rotor und Statorscheibe. Der Axialspalt Δ kann vorzugsweise von 0,01 mm bis 0,5 mm betragen. Kleine Axialspalte sind an der Ausstoßseite und große Axialspalte an der Ansaugseite sinnvoll. Wenn auf der Axialfläche zwischen Rotor und Statorscheiben eine Labyrinthdichtung verwendet wird, kann der Axialspalt mehr als 0,5 mm betragen. Die Richtwerte für die Axialspalte können folgendermaßen gewählt sein:
- Δ ≤ 0,3 mm für p 2 ≤ 10 mbar
- Δ ≤ 0,2 mm für 10 mbar < p 2 ≤ 100 mbar
- Δ ≤ 0,15 mm für p 2 > 100 mbar
- Δ ≤ 0.3 mm for p 2 ≤ 10 mbar
- Δ ≤ 0.2 mm for 10 mbar < p 2 ≤ 100 mbar
- Δ ≤ 0.15 mm for p 2 > 100 mbar
In
In
Unterschiedliche Rotorscheiben einer mehrstufigen Seitenkanalpumpe mit gleicher Schaufelgröße haben gleiche Drehzahl, können aber abhängig vom Rotorscheibendurchmesser R R1 unterschiedliche Umfangsgeschwindigkeiten haben. Aus diesem Grund sollen Rotorscheiben mit unterschiedlichen Durchmessern R R1 und gleicher Schaufelgröße Seitenkanäle mit unterschiedlichen Radien R S3 und Abständen d S1 haben.Different rotor disks of a multistage side channel pump with the same blade size have the same speed, but can have different peripheral speeds depending on the rotor disk diameter R R 1. For this reason, rotor disks with different diameters R R 1 and the same blade size should have side channels with different radii R S 3 and spacings d S 1 .
Messungen haben gezeigt, dass mit steigender Drehzahl und demzufolge steigender Umfangsgeschwindigkeit von Rotorscheiben der optimale Seitenkanalradius R S3 und der Abstand d S1 zunehmen. Als optimal wird die Seitenkanalgröße mit dem besten Kompressionsfaktor bezeichnet. Das Saugvermögen und die Leistungsaufnahme steigen proportional zur Seitenkanalfläche. Measurements have shown that the optimum side channel radius R S 3 and the distance d S 1 increase with increasing rotational speed and consequently increasing peripheral speed of rotor disks. The side channel size with the best compression factor is referred to as optimal. The pumping speed and the power consumption increase proportionally to the side channel area.
In den
Für eine Rotorscheibe mit einem Radius R R1 = 69 mm, Breite d R1 = 5 mm und Schaufelhöhe R R1 - R S1 = 4 mm beträgt der optimale Seitenkanalradius bei einer Drehzahl f = 800 Hz und einer Umfangsgeschwindigkeit V = 173 m/sec gleich R S3 optimal = 5 mm. Für eine Drehzahl f = 1000 Hz und eine Umfangsgeschwindigkeit V = 217 m/sec beträgt der optimale Seitenkanalradius R S3 optimal = 5,3 mm. Mit steigender Drehzahl f und Umfangsgeschwindigkeit V wird der optimale Seitenkanalradius weiter zunehmen, beziehungsweise mit fallender Drehfrequenz und Umfangsgeschwindigkeit abnehmen.In the
For a rotor disk with a radius R R 1 = 69 mm, width d R1 = 5 mm and blade height R R 1 - R S 1 = 4 mm, the optimal side channel radius at a speed of f = 800 Hz and a circumferential speed of V = 173 m / sec equals R S 3 optimal = 5 mm. For a speed f = 1000 Hz and a circumferential speed V = 217 m / sec, the optimal side channel radius R S 3 is optimal = 5.3 mm. With increasing speed f and peripheral speed V, the optimal side channel radius will continue to increase, or decrease with decreasing rotational frequency and peripheral speed.
In den
Der optimale Abstand d S1 beträgt bei einer Drehzahl von f = 800 Hz je nach Druckbereich entweder d S1 = 1,2 mm oder d S1 = 3,6 mm. Wenn die Drehzahl f bis auf 1000 Hz ansteigt, wird der optimale Abstand je nach Druckbereich entweder d S1 = 3,6 mm oder d S1 = 4,8 mm. Es ist eine Tendenz zur Steigerung des optimalen Abstandes d S1 mit steigender Drehzahl f zu erkennen.The optimal distance d S1 at a speed of f = 800 Hz is either d S 1 = 1.2 mm or d S 1 = 3.6 mm, depending on the pressure range. If the speed f increases up to 1000 Hz, the optimal distance is either d S 1 = 3.6 mm or d S 1 = 4.8 mm, depending on the pressure range. There is a tendency to increase the optimal distance d S 1 with increasing speed f.
Die oben genannten Abhängigkeiten gelten nur für Rotorscheiben mit V-förmigen Schaufeln, wie sie in
Im Allgemeinen sollen bei der Auslegung von Seitenkanalpumpen folgende Konstruktionsrichtlinien eingehalten werden. Eine optimale Schaufelhöhe beträgt 60 % bis 100 % der Rotorscheibenbreite. Ein optimaler Seitenkanalradius hängt von der Umfangsgeschwindigkeit der Rotorscheibe 400 ab und kann von 80 % bis 120 % der Rotorscheibenbreite betragen. Der Abstand d S1 hängt auch von der Umfangsgeschwindigkeit der Rotorscheibe ab und kann von 20 % bis 120 % der Rotorscheibenbreite betragen.In general, the following design guidelines should be observed when designing side channel pumps. An optimal blade height is 60% to 100% of the rotor disk width. An optimal side channel radius depends on the circumferential speed of the
Die optimale Schaufelzahl oder der optimale Abstand zwischen den Schaufeln hängt nicht von der Drehzahl ab. Der optimale Abstand zwischen den Schaufeln ist proportional zur Schaufelgröße und ist auch von der Seitenkanalgröße abhängig. Er beträgt von 5o % bis 100 % der Rotorscheibenbreite, der optimale Abstand zwischen den Schaufeln ist kleiner gleich 55 % für kleine Seitenkanäle (Seitenkanalfläche nicht größer als das 2,5-fache der Schaufelfläche) und ist größer gleich 85 % für große Seitenkanäle (Seitenkanalfläche nicht kleiner als das 5-fache der Schaufelfläche). Die optimale Schaufelzahl wird also bei größer werdenden Seitenkanälen geringer, beziehungsweise der optimale Abstand zwischen Schaufeln wird größer. Die Seitenkanalfläche ASK und die Schaufelfläche ASch können mit den Gleichungen 4 bis 7 berechnet werden.
Die Stegbreite der Schaufeln soll möglichst klein sein. Die minimale Stegbreite ist durch die Fertigungsgenauigkeit und durch die Materialfestigkeit der Rotorscheibe beschränkt.The web width of the blades should be as small as possible. The minimum web width is limited by the manufacturing accuracy and the material strength of the rotor disk.
Die
Gemäß
Gemäß
Bei den Ausführungsformen der Seitenkanäle der
In den
Die Verringerung der Seitenkanalfläche kann, wie in
Ein Unterbrecher 404 ist in
Wie der
Der Kanal 701 kann eine Form aufweisen, wie sie in
Im unteren Teil der
In
In
Gemäß
Der Stator 700 weist eine Bohrung 710 für den Durchgriff einer Welle des Rotors (nicht dargestellt) auf.The
- 11
- Gehäusecasing
- 22
- GaseintrittsöffnungGas inlet opening
- 44th
- GasauslassöffnungGas outlet opening
- 66th
- Wellewave
- 88th
- AntriebssystemDrive system
- 1010
- LagerelementBearing element
- 1212th
- LagerelementBearing element
- 1414th
- PumpeinheitPumping unit
- 1616
- PumpeinheitPumping unit
- 16a16a
- PumpuntereinheitPump subassembly
- 16b16b
- PumpuntereinheitPump subassembly
- 16c16c
- PumpuntereinheitPump subassembly
- 1818th
- PumpeinheitPumping unit
- 3232
- VerbindungskanäleConnection channels
- 34a34a
- VerbindungselementeFasteners
- 34b34b
- VerbindungselementeFasteners
- 36a36a
- VerbindungselementeFasteners
- 36b36b
- VerbindungselementeFasteners
- 36c36c
- VerbindungselementeFasteners
- 3838
- VerbindungskanäleConnection channels
- 4040
- Rillegroove
- 4141
- Oberflächesurface
- 4242
- VerbindungsleitungConnecting line
- 5050
- GewindenutThread groove
- 5151
- Statorstator
- 5252
- BeschichtungCoating
- 100100
- VakuumpumpeVacuum pump
- 101101
- Gehäusecasing
- 102102
- GaseinlassGas inlet
- 103103
- GasauslassGas outlet
- 104104
- SeitenkanalpumpstufeSide channel pumping stage
- 105105
- MolekularstufeMolecular level
- 106106
- VorvakuumstufePre-vacuum stage
- 107107
- Antriebdrive
- 108108
- Wellewave
- 110110
- Wälzlagerroller bearing
- 111111
- Wälzlagerroller bearing
- 112112
- SpuleKitchen sink
- 113113
- PermanentmagnetPermanent magnet
- 120120
- GehäuseteileHousing parts
- 121121
- GehäuseteileHousing parts
- 122122
- GehäuseteileHousing parts
- 123123
- GehäuseteileHousing parts
- 124124
- Einlass/ÜbergabekanalInlet / transfer channel
- 125125
- Auslass/ÜbergabekanalOutlet / transfer channel
- 126126
- MittellinieCenter line
- 400400
- Laufrad/RotorImpeller / rotor
- 401401
- SeitenkanalSide channel
- 402402
- Schaufelshovel
- 403403
- Randedge
- 404404
- UnterbrecherBreaker
- 420420
- KanalbodenChannel bottom
- 421421
- Seitenwand des SeitenkanalesSide wall of the side channel
- 422422
- Seitenwand des SeitenkanalesSide wall of the side channel
- 423423
- SchaufelgrundShovel bottom
- 424424
- Begrenzungsfläche des SeitenkanalesBoundary surface of the side channel
- 425425
- MittelebeneMiddle plane
- 426426
- Rand des Laufrades/RotorsEdge of the impeller / rotor
- 427427
- Rand des Laufrades/RotorsEdge of the impeller / rotor
- 428428
- ÜberstandGot over
- 500500
- Rotorrotor
- 502502
- Zylindercylinder
- 505505
- InnenstatorInner stator
- 506506
- AußenstatorExternal stator
- 507507
- GewindenutThread groove
- 508508
- GewindenutThread groove
- 600600
- LaufradWheel
- 601601
- SeitenkanalSide channel
- 602602
- Schaufelshovel
- 700700
- Statorstator
- 701701
- Einlassinlet
- 702702
- AuslassOutlet
- 703703
- Rotorrotor
- 704704
- SeitenkanalSide channel
- 705705
- Abschrägungbevel
- 706706
- Abschrägungbevel
- 707707
- axiale Dichtfläche der Rotorscheibeaxial sealing surface of the rotor disk
- 708708
- Flächearea
- 709709
- Flächearea
- 710710
- Bohrungdrilling
- 711711
- KurveCurve
- 712712
- KurveCurve
- 713713
- KurveCurve
- 714714
- KurveCurve
- 715715
- Bereicharea
- 716716
- KurveCurve
- 717717
- KurveCurve
- 718718
- KurveCurve
- 719719
- KurveCurve
- d1d1
- Längelength
- d2d2
- Längelength
- vv
- Geschwindigkeitspeed
- αα
- Anstellwinkel Rotorschaufel und ErgänzungswinkelAngle of incidence of rotor blade and supplementary angle
- ββ
-
Öffnungswinkel Abschrägung 705
Opening angle bevel 705 - AA.
- PfeileArrows
- BB.
- PfeileArrows
- RR.
- Winkelangle
- ϕϕ
- Radiusradius
Claims (4)
- A vacuum pump stage, which can be connected downstream of a molecular pump stage in the direction of a gas flow, having an inlet (124), an outlet (125), a rotor (400) and a duct (401), which comprises two side walls (421, 422) and a duct base (420),- wherein the rotor (400) with a rotor portion (402) penetrates into the duct (401) and a pump effect is achieved by the cooperation of rotor portion (402) and duct (401),- wherein the rotor (400) has the form of a disc, which over its entire radial extent including the blade region has a constant width- and with an interrupter (404) arranged between inlet (124) and outlet (125),- wherein two side walls (421, 422) of the duct (401) are curved, and wherein the curvature of each side wall (421, 422) is semi-circular in cross section with reference to a cross section through the duct (401) lying in the axis of rotation,- in which a spacing between two centres of side channel semi-circles (dsi) with reference to a cross section through the duct (401) lying in the axis of rotation amounts to 20% to 120% of the width (dR1) of the rotor disc,- in which a side channel radius (RS3) of the side channel semi-circle is formed to be between 80% and 120% of the rotor disc width (dR1) with reference to a cross section through the duct (401) lying in the axis of rotation, and- in which a blade spacing of rotor blades (402) lies between 50% and 100% of the rotor disc width (dR1).
- A vacuum pump stage according to claim 1, characterised in that the curvature of the at least one side wall (421, 422) is concave.
- A vacuum pump stage according to claim 1 or 2, characterised in that the duct (401) is formed to be axially symmetric to a central plane (425) of the rotor (400).
- A vacuum pump stage according to any one of claims 1 to 3, characterised in that the rotor blades (402) of the rotors (400) are V-shaped in cross section.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013108482.6A DE102013108482A1 (en) | 2013-08-06 | 2013-08-06 | Vacuum pump stage |
EP14176840.8A EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14176840.8A Division EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
EP14176840.8A Division-Into EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3104014A1 EP3104014A1 (en) | 2016-12-14 |
EP3104014B1 true EP3104014B1 (en) | 2021-09-29 |
Family
ID=51176220
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16171240.1A Active EP3104014B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a channel cross-section that features a particular curvature |
EP16171251.8A Active EP3088743B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a stripper that is slanted on the suction side |
EP14176840.8A Active EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16171251.8A Active EP3088743B1 (en) | 2013-08-06 | 2014-07-14 | Side-channel vacuum pump stage with a stripper that is slanted on the suction side |
EP14176840.8A Active EP2835536B1 (en) | 2013-08-06 | 2014-07-14 | Vacuum pump stage with special surface roughness yielding a lower gas friction |
Country Status (2)
Country | Link |
---|---|
EP (3) | EP3104014B1 (en) |
DE (1) | DE102013108482A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014109004A1 (en) * | 2014-06-26 | 2015-12-31 | Pfeiffer Vacuum Gmbh | Siegbahn stage |
DE102017121777A1 (en) * | 2017-09-20 | 2019-03-21 | Lutz Pumpen Gmbh | Modified side channel pump and method for operating such |
EP3867497A4 (en) * | 2018-10-15 | 2022-07-13 | The Regents of the University of Michigan | Optimizing pumping of variable viscosities via microtextured miniaturized tesla pump |
EP3594498B1 (en) | 2019-11-06 | 2022-01-05 | Pfeiffer Vacuum Gmbh | System with a recirculation device |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE643732C (en) * | 1934-05-26 | 1937-04-15 | Siemens Schuckertwerke Akt Ges | Self-priming centrifugal pump with liquid seal |
DE691098C (en) * | 1937-03-19 | 1940-05-16 | Siemens Schuckertwerke Akt Ges | Impeller for a impeller pump with a fluid seal |
DE1428251B2 (en) * | 1963-03-09 | 1970-06-11 | Siemens AG, 1000 Berlin u. 8000 München | Ring blower based on the side channel principle |
US3917431A (en) * | 1973-09-18 | 1975-11-04 | Dresser Ind | Multi-stage regenerative fluid pump |
FR2282548A1 (en) * | 1974-08-08 | 1976-03-19 | Liber Jean Claude | Blade for rotary fluid press. machine - is relieved on surface subject to depression to give centrifugal flow |
US4325672A (en) * | 1978-12-15 | 1982-04-20 | The Utile Engineering Company Limited | Regenerative turbo machine |
DE3029507A1 (en) * | 1980-08-04 | 1982-03-04 | Röhrnbacher, Emmerich, 7507 Pfinztal | Spiral flow type fan - has forward curved blades and stator passages profiled for quiet running and high pressure |
DE3317868A1 (en) | 1983-05-17 | 1984-11-22 | Leybold-Heraeus GmbH, 5000 Köln | FRICTION PUMP |
JPH07111195B2 (en) * | 1986-12-09 | 1995-11-29 | ダイキン工業株式会社 | Compound vacuum pump |
DE3728154C2 (en) * | 1987-08-24 | 1996-04-18 | Balzers Pfeiffer Gmbh | Multi-stage molecular pump |
JPH01267390A (en) | 1988-04-18 | 1989-10-25 | Daikin Ind Ltd | Vortex vacuum pump |
US5020969A (en) * | 1988-09-28 | 1991-06-04 | Hitachi, Ltd. | Turbo vacuum pump |
DE3932288A1 (en) | 1989-09-28 | 1991-04-11 | Markus Heinermann | Bicycle crank for hill climbing - has adaptor plate to take small dia. crank wheels |
SU1758246A1 (en) * | 1990-02-15 | 1992-08-30 | Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана | Two-stage vortex machine |
IT1241431B (en) * | 1990-03-09 | 1994-01-17 | Varian Spa | PERFECTED TURBOMOLECULAR PUMP. |
US5358373A (en) * | 1992-04-29 | 1994-10-25 | Varian Associates, Inc. | High performance turbomolecular vacuum pumps |
JPH0886298A (en) * | 1994-09-19 | 1996-04-02 | Hitachi Ltd | Dry turbo vacuum pump |
DE59604530D1 (en) * | 1995-10-06 | 2000-04-06 | Siemens Ag | Side channel blower |
GB9609281D0 (en) * | 1996-05-03 | 1996-07-10 | Boc Group Plc | Improved vacuum pumps |
US5709528A (en) * | 1996-12-19 | 1998-01-20 | Varian Associates, Inc. | Turbomolecular vacuum pumps with low susceptiblity to particulate buildup |
JP3638818B2 (en) * | 1999-05-20 | 2005-04-13 | 愛三工業株式会社 | Wesco type pump |
DE10012666A1 (en) * | 2000-03-15 | 2001-09-20 | Fhp Motors Gmbh | Pump, in particular circulation pump for household machines such as washing machines and / or dishwashers |
DE10108631B4 (en) * | 2001-02-22 | 2005-06-30 | Nash-Elmo Industries Gmbh | Vacuum pump system and method for generating a final vacuum |
DE202004010821U1 (en) * | 2003-07-23 | 2004-12-23 | The Boc Group Plc, Windlesham | vacuum component |
DE10334950A1 (en) | 2003-07-31 | 2004-12-09 | Nash_Elmo Industries Gmbh | Side channel compressor use for compressing fluid, has suction and pressure supports arranged on side channel housing in such way that enables flow path formed by side channels to move in supports without any deviation |
GB0327149D0 (en) * | 2003-11-21 | 2003-12-24 | Boc Group Plc | Vacuum pumping arrangement |
DE10357546A1 (en) * | 2003-12-10 | 2005-07-07 | Pfeiffer Vacuum Gmbh | Side channel pump stage |
JP4252507B2 (en) * | 2004-07-09 | 2009-04-08 | 愛三工業株式会社 | Fuel pump |
DE102005008388A1 (en) * | 2005-02-24 | 2006-08-31 | Gebr. Becker Gmbh & Co Kg | Impeller wheel for side channel machine, e.g. compressors and vacuum pumps, has at least one guide rib between adjacent blades extending inwards into cross-sectional region(s) of radial outer edging of flow chamber |
US7445422B2 (en) * | 2005-05-12 | 2008-11-04 | Varian, Inc. | Hybrid turbomolecular vacuum pumps |
JP5084403B2 (en) * | 2007-09-04 | 2012-11-28 | 株式会社大阪真空機器製作所 | Molecular pump |
DE102007053016A1 (en) * | 2007-11-05 | 2009-05-07 | Gardner Denver Deutschland Gmbh | Side Channel Blowers |
DE102009008792A1 (en) * | 2009-02-13 | 2010-08-19 | Continental Automotive Gmbh | Fuel pump and method of manufacturing a fuel pump |
DE102009021642B4 (en) | 2009-05-16 | 2021-07-22 | Pfeiffer Vacuum Gmbh | Vacuum pump |
DE102009028646A1 (en) * | 2009-08-19 | 2011-02-24 | Robert Bosch Gmbh | delivery unit |
DE102010019940B4 (en) | 2010-05-08 | 2021-09-23 | Pfeiffer Vacuum Gmbh | Vacuum pumping stage |
-
2013
- 2013-08-06 DE DE102013108482.6A patent/DE102013108482A1/en not_active Withdrawn
-
2014
- 2014-07-14 EP EP16171240.1A patent/EP3104014B1/en active Active
- 2014-07-14 EP EP16171251.8A patent/EP3088743B1/en active Active
- 2014-07-14 EP EP14176840.8A patent/EP2835536B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102013108482A1 (en) | 2015-02-12 |
EP3104014A1 (en) | 2016-12-14 |
EP2835536B1 (en) | 2018-11-28 |
EP2835536A3 (en) | 2015-05-06 |
EP2835536A2 (en) | 2015-02-11 |
EP3088743B1 (en) | 2019-12-25 |
EP3088743A1 (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2304186B1 (en) | Axial turbomachine with low tip leakage losses | |
EP2003292B1 (en) | Fluid working machine having blade shroud with overhang | |
EP3104014B1 (en) | Side-channel vacuum pump stage with a channel cross-section that features a particular curvature | |
DE1817430A1 (en) | Regenerative compressor | |
WO2017041997A1 (en) | Turbo ventilator with heat sink | |
DE69104455T2 (en) | Regenerative centrifugal compressor. | |
DE69625917T2 (en) | RADIAL FAN WHEEL | |
EP2933497B1 (en) | Vacuum pump | |
EP1706645B1 (en) | Multi-stage friction vacuum pump | |
DE112014002022T5 (en) | Air blower for a fuel cell vehicle | |
EP1937980B1 (en) | Rotor for a rotary machine and a rotary machine | |
EP3032107B1 (en) | Turbomolecular pump | |
EP1165965A1 (en) | Side channel compressor | |
DE10048695A1 (en) | Side channel pump for conveying fluid gas mixtures has pump channel running in a spiral coil round rotor | |
WO2009143920A1 (en) | Radial fan | |
WO2016046112A1 (en) | Radial compressor impeller and associated radial compressor | |
EP3662164A1 (en) | Impeller for wastewater pump | |
EP1580435B2 (en) | Turbomolecular pump | |
EP2902637B1 (en) | Vacuum pump | |
DE102011108115A1 (en) | Turbo molecular pump | |
EP2385257B1 (en) | Vacuum pump stage | |
DE102007005384A1 (en) | Turbomachine and rotor blade of a turbomachine | |
EP2926011B1 (en) | Small, low-noise side channel compressor, in particular for devices in ventilation therapy | |
EP3577346B1 (en) | Turbo compressor with integrated flow channels | |
DE102013218410B4 (en) | centrifugal pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20160525 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2835536 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180704 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210429 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2835536 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014015912 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1434431 Country of ref document: AT Kind code of ref document: T Effective date: 20211015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211229 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220129 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220131 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014015912 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220714 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220714 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20230601 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1434431 Country of ref document: AT Kind code of ref document: T Effective date: 20220714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220714 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230726 Year of fee payment: 10 Ref country code: GB Payment date: 20230613 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230622 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210929 |