EP3101257A1 - Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats - Google Patents

Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats Download PDF

Info

Publication number
EP3101257A1
EP3101257A1 EP15170474.9A EP15170474A EP3101257A1 EP 3101257 A1 EP3101257 A1 EP 3101257A1 EP 15170474 A EP15170474 A EP 15170474A EP 3101257 A1 EP3101257 A1 EP 3101257A1
Authority
EP
European Patent Office
Prior art keywords
heat
kkm1
kkm2
piston
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15170474.9A
Other languages
English (en)
French (fr)
Inventor
Eggert GÜNTHER
Norbert GÜNTHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EN3 GmbH
Original Assignee
EN3 GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EN3 GmbH filed Critical EN3 GmbH
Priority to EP15170474.9A priority Critical patent/EP3101257A1/de
Publication of EP3101257A1 publication Critical patent/EP3101257A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/10Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a heat transfer unit and a method for carrying out thermodynamic cycle processes by means of a heat transfer unit using two interconnected rotary piston engines with einbogigen trochoidal and delta-piston.
  • US 5335497 A has two common-shaft twin-piston pistons that use a closed working fluid for compression and expansion.
  • the change of media to / from the workspaces takes place via the raceway surfaces.
  • both pistons have a short-circuit flow at certain angular positions.
  • the described thermodynamic process sequence is not feasible with the illustrated angular positions piston without additional control elements.
  • US 5317996 A shows a machine having a plurality of connected by a common shaft Zweieck-piston.
  • the media change takes place via openings in the raceway surfaces.
  • the openings are arranged so that in certain angular positions short-circuit flows around the pistons occur, which can not be avoided by the proposed control organs.
  • EP 1075595 B1 has two triangle pistons.
  • the machine has two housings in the shape of two-bows Trochoids, according to the well-known Wankelmaschine.
  • the machine uses a common sealed working fluid with the media change channels between the housings attaching to the side covers.
  • DE 3333586 A1 shows two rotary piston machines, whose inner-axis rotors each form two working chambers by two from the outside, guided in the housings slides.
  • the rotors are eccentric to the circular housings. They are connected by a common wave.
  • the rotors have a rotation angle offset of 90 degrees.
  • the machine works with a sealed medium.
  • the change of media to / from the workspaces takes place via the raceway surfaces.
  • the arrangement of the sealing elements in the form of the slide contradicts the Wankeischen axiom, according to which a functioning rotary piston machine may only have two relatively moving, forming the working space components and the sealing elements must be arranged on the moving component.
  • the object of the invention is to carry out the realization of a heat transfer unit under the basic principles of thermodynamic processes such as a Stirling process or a CO2 refrigeration process, wherein a Kreisreament completed media with sufficient pressure changes between compression and Expansion and a hermetic completion of the heat transfer unit are required to allow processes under higher pressures can.
  • a Guaranteereament completed media with sufficient pressure changes between compression and Expansion and a hermetic completion of the heat transfer unit are required to allow processes under higher pressures can.
  • Higher pressures and thus higher substance densities of the closed media result in better heat transfer values between the circulating medium and the components through which the medium flows and increase the power density of the cycle or the arrangement.
  • the solution of the problem is realized by the arrangement of two identical rotary piston machines (KKM) and an electrodynamic unit (EDE), which are located in a hermetic system.
  • the two rotary piston engines are connected within the hermetic system by a common real or functional shaft, wherein their rotary motion is a common closed, in mass and total volume constant working medium through the process phases compression and expansion in thermodynamic cycles with external heat or heat dissipation without the use of Valve control leads.
  • the assembly divides the shared working medium into a subset of compression and a subset of expansion in a process-phased manner.
  • WTA heat transfer aggregate
  • the inventive solution is based on the requirement profile derived from the analysis of the prior art.
  • This requirement profile involves the use of two identical rotary piston machines (RKMs), which satisfy the condition that they fulfill the Wanke's axiom, according to which only machines function as prime movers consisting of only two components moving relative to each other and bounding the working space.
  • RKMs rotary piston machines
  • Part of the requirement profile is that of all the machines considered below, only two identical rotary piston engines (CCM) with a double-sided piston and a single-bore trochoid are used. They show the largest volume changes in the process phases.
  • Geometrically conditioned and characteristic of Zweieck-Kolben is the possibility of Short-circuit flow around the piston, if openings for changing the media of a KKM are not arranged exactly diametrically to the longitudinal axis of the piston and are not divided in the circumferential direction by the piston tips. It follows that the openings for the media change must not be arranged in the tread contour of the single-arched trochoid, as this leads to short-circuit flows around the delta-piston and thus to cancel the delimitation of the media subsets.
  • the openings for the media change are to be arranged in the side covers, as it already is EP 1075595 B1 is apparent.
  • the pistons of the KKM are also the control organs for opening and closing the openings.
  • a total of four openings in the side covers may be arranged, which have a pattern arrangement, which results in a view in the direction of the common axis a cross with two offset by 90 degrees axes, each opposite 45 degrees an imaginary one Main axis are offset.
  • the apertures in the side covers are arranged close to the trochoidal contours along the axes of the cross so that all the apertures can be completely and equally spaced away from the piston centers by the passing sides of the piston, thus preventing the avoidance of short circuit flow around the two-cornered pistons.
  • the heat transfer unit according to the invention consists of two mutually connected via connecting channels and a common shaft rotary engines with einbogigen trochoidal and offset by 90 degrees against each other two-piston with two piston tips.
  • the connection channels allow a change of the working medium via four openings in the four side covers of the rotary piston engines.
  • a side cover only one opening is arranged in each case such that the passing piston tips act as a control organs for opening and closing the openings for the change of the working medium between the rotary piston engines in the thermodynamic working process sealing.
  • EEE electrodynamic unit
  • a communication passage is disposed between the openings of the inner side covers of the two rotary engines, and the second communication passage is disposed between the openings of the outer side covers of both rotary engines.
  • the connection channels are tubular and connected to heat exchangers.
  • a connecting line with a valve for pressure equalization during filling, starting or stopping of the unit is arranged between the connecting channels.
  • a heat pipe is arranged between the second connection channel and the first connection channel, which supports a dissipation of heat at the second connection channel and a supply of heat at the first connection channel.
  • the method according to the invention for carrying out thermodynamic cycle processes by means of a heat transfer unit uses two rotary piston machines connected to one another via a common shaft with single-sided trochoidal and two-cornered pistons staggered by 90 degrees.
  • each of the rotary engines uses, by itself and by mechanical coupling, by mechanical compression and expansion, a closed working fluid circulating in both rotary engines.
  • Heat energy is transferred between heat sources and heat sinks which form a heat source heat sink system and communicate with the heat transfer aggregate.
  • a resulting amount of energy balancing with the transfer process is taken or supplied to the heat source heat sink system by an electrodynamic unit connected to the rotary engines via the common shaft.
  • the heat transfer unit is constructed as a hermetically sealed pressure system in which all individual housing parts of the two Rotary piston engines and the electrodynamic unit itself are part of a common hermetic encapsulation.
  • the working fluid circulates between the rotary engines at varying pressures around a mean pressure of this hermetically sealed pressure system.
  • the electrodynamic unit works as a motor, generator or starter generator.
  • the inventive device for carrying out thermodynamic cycles consists of two interconnected rotary piston engines (KKM) with einbogigen trochoid and delta-piston, which via tubular connecting channels and a common shaft together to form a heat transfer unit (WTA) are connected.
  • KM rotary piston engines
  • WTA heat transfer unit
  • EDE electrodynamic unit
  • the arrangement of the electrodynamic unit EDE on the common shaft of the unit is not to be arranged between the two interconnected rotary engines of the unit, since this arrangement increases the length of the channels between the side covers and thus brings greater dead volume in the unit. Therefore, the electrodynamic unit EDE is sealingly arranged at one end of the common shafts of the unit, outside the shaft bearing of the two rotary engines.
  • the electrodynamic unit EDE has the same pressure level of the WTA at rest, but this part of the working medium does not participate in the process-related circulation of the working medium.
  • the housings and the side covers of the rotary engines are themselves part of a common hermetic enclosure, which is completed by end covers.
  • the individual housing parts of the two rotary piston engines are at the same time parts of a hermetic pressure system.
  • FIG. 4a A longitudinal section through the device, starting from the left on the shaft 3, a first rotary piston machine KKM1, a second rotary piston machine KKM2 and the electrodynamic unit EDE are arranged.
  • the first rotary piston machine KKM1 consists of a housing 1a with a single-curved trochoid as the raceway contour, a left side cover 6a arranged outwardly and a right side cover 6b arranged towards the rotary piston machine KKM2.
  • the side cover 6a is connected to a pressure-tight end cover 13, which surrounds the shaft 3 pressure-tight.
  • a double-headed piston 2a runs with the markings of its tips with A1 and B1.
  • the second rotary piston machine KKM2 consists of a housing 1 b with a single-curved trochoid as a raceway contour and a left to the rotary piston machine KKM1 out arranged side cover 6c and a outwardly to the electrodynamic unit EDE arranged right side cover 6d.
  • a double-headed piston 2b runs with the markings of its tips with A2 and B2. The marking of the tips of the two double-sided pistons 2a and 2b with the tips A1, A2, B1 and B2 is carried out for a simpler visualization of the movement sequence of the pistons 2a and 2b in the FIGS.
  • Both KKM1 and KKM2 rotary engines are equivalent in their function in the WTA and interchangeable.
  • the electrodynamic unit EDE with a pressure housing 9 with a lateral end cover 12.
  • a rotor 11 is arranged on the shaft 3, which is surrounded by a stator 10.
  • the hermetic encapsulation of the WTA must not be interrupted by the passage of a rotating shaft 3.
  • a non-illustrated pressure-tight passage through the pressure housing 9 is provided for cast in the capsule electrical cables.
  • FIGS. 1 and 3 show a tubular connecting channel 5 (FIG. Fig. 4b ) runs from the left side cover 6a of the rotary piston engine KKM1 to the right side cover 6d of the rotary piston engine KKM2 on the outside around both rotary piston machines KKM1 and KKM2 on the "cold" working side of the heat transfer unit.
  • FIGS. 1 and 3 show a tubular connecting channel 5 in the side cover 6a an opening 8a and in the side cover 6d an opening 8b.
  • Figure 4c shows a rotated by approximately 180 degrees view, so that the electrodynamic unit EDE is now located on the left side.
  • a tubular connecting channel 4 between the right side cover 6b of the rotary piston engine KKM1 and the left side cover 6c of the rotary piston engine KKM2 is visible on the "hot" working side of the heat transfer unit.
  • Connecting channel 4 are in the side cover 6b an opening 7a and in the side cover 6c an opening 7b provided.
  • the arrangement of the tubular connection channels 4 and 5 between the openings 7a, 7b, 8a and 8b in the side covers is such that the connection channel 4 between the two inner side covers 6b and 6c between the two rotary piston machines KKM1 and KKM2 and the connecting channel 5 from the outer Side cover 6a to the other outer side cover 6d of the unit runs.
  • Each of the four side covers 6a to 6d of the unit has only one opening for the change of the working medium.
  • the openings 7a, 7b, 8a and 8b are located in the area of the passing lateral piston tips A1, A2, B1 and B2.
  • FIGS. 1a to 2d show a passage of the thermodynamic process with the various positions of the piston, the rotary piston machines KKM1 and KKM2 are in the drawing plane next to each other, although in the real aggregate, the rotary piston machines KKM1 and KKM2 are superimposed with respect to the plane of the drawing. This is necessary for reasons of clear representation of the functional relationships, from this there is no impairment in the presentation of the inventive request.
  • FIG. 1a shows the position of the piston 2a of the rotary piston machine KKM1 directed at an angle of 45 degrees to the main axis of the single-arched trochoid.
  • the main axis defines a line passing through the mathematical origin of the trochoid and the center of the wave 3.
  • the piston tip B1 is at the top and the piston tip A1 is at the bottom.
  • a smaller working chamber is located on the left above the piston 2a and a larger working chamber on the right below the piston 2a.
  • the position of the piston 2b of the rotary piston engine KKM2 is directed at an angle of 135 degrees to the main axis.
  • the piston tip A2 is at the top and the piston tip B2 is at the bottom.
  • a smaller working chamber is located on the right above the piston 2b and a larger one Working chamber on the left below the piston 2b.
  • the pistons 2a and 2b are formed with the working chambers of the rotary piston engines KKM1 and KKM2 working volumes by the two smaller working chambers are communicatively connected through the tubular connecting channel 4 and the two larger working chambers through the tubular connecting channel 5.
  • the two smaller connected working chambers give the minimum, the two larger working chambers give the maximum working volume of the WTA.
  • the heat transfer unit WTA At rest, the heat transfer unit WTA have the media subsets in the two working volumes the same pressure level, regardless of the piston positions, since their mutual sealing by the piston 2a, 2b is only "dynamically tight".
  • FIG. 5 shows in one embodiment, a valve 14 in a connecting line, with the between the connecting channels 4 and 5, the pressure compensation for filling, starting and stopping the unit can be done.
  • FIGS. 1b and 1c show the position of the piston 2a and 2b after a rotation of 45 degrees clockwise.
  • Figure 1d shows the position of the pistons 2a and 2b after a total rotation of 180 degrees clockwise.
  • the heat transfer unit has again reached the minimum or maximum working volume.
  • the marked piston tips A1 and B1 or A2 and B2 are now cyclically reversed by the piston tip A1 above and the piston tip B1 below and the piston tip B2 above and the piston tip A2 are down.
  • FIGS. 1a to 1d are the opening 8a in the side cover 6a, the opening 8b in the side cover 6d (in the outer side covers 6a and 6d of the composite of the two rotary engines KKM1 and KKM2), the Opening 7a in the side cover 6b and the opening 7b in the side cover 6c (in the two inner side covers 6b and 6c of the composite of the two rotary piston machines KKM1 and KKM2) schematically drawn.
  • the opening 7a and the opening 8b are arranged below the flattened Trochoidenkontur.
  • the openings 8a and 7b point towards the circular side of the trochoid.
  • the opening 7a on the top right and the opening 8a on the bottom left of the rotary piston machines KKM1 lie, diagrammatically, diagonally opposite.
  • Each opening 7a, 7b, 8a and 8b is covered by a piston tip A1, A2, B1 and B2 when the pistons 2a and 2b are offset by 90 degrees.
  • the openings 7a, 7b, 8a and 8b covered by the lateral piston tips A1, A2, B1 and B2 are located on respectively opposite sides of the pistons 2a and 2b of a rotary piston engine KKM1 or KKM2.
  • FIGS. 2a to 2d show a passage of the thermodynamic process with marked tubular connecting channels 4 and 5 and how they are connected to the working chambers, wherein the Connecting channel 4 is disposed between the opening 7a and the opening 7b and the connecting channel 5 between the opening 8a and the opening 8b.
  • the Connecting channel 4 is disposed between the opening 7a and the opening 7b and the connecting channel 5 between the opening 8a and the opening 8b.
  • FIG. 2a shows the pistons 2a and 2b in a position corresponding to the position in FIG. 1a equivalent.
  • the connecting channel 4 connects the rotary piston engine KKM1 with the rotary piston engine KKM2.
  • the collective work volume formed hereby has its minimum in this position.
  • the connecting channel 5 also connects the rotary piston engine KKM1 with the rotary piston engine KKM2.
  • the joint working volume formed hereby has its maximum in this position.
  • FIGS. 2b to 2d show the changes in the working volumes until they have reached the respective size changes after a total rotation of the pistons 180 degrees.
  • the connecting channels 4 and 5 are closed by the side surfaces of the piston.
  • FIGS. 3a to 3f show, as a sequence of steps, the assembly of the unit with the side covers 6a to 6d along the common shaft 3.
  • FIG. 3a starts with the eccentric 31a, the side cover 6b, which belongs to the rotary piston machine KKM1, a shaft bearing, not further designated, the side cover 6c, which belongs to the rotary piston machine KKM2, and the eccentric 31b.
  • the side cover 6b is the opening 7a, in the side cover 6c, the opening 7b.
  • tubular connecting channel 4 connects to the openings 7a and 7b of the not shown in this figure.
  • FIG. 3a It can be seen that the opening 7a is offset by an angle of 45 degrees with respect to the main axis and the opening 7b by an angle of 135 degrees with respect to the main axis.
  • FIGS. 1a and 2a Both openings and thus the connecting channel 4 are closed by the piston 2a and 2b.
  • Figure 3b shows this with the piston 2b, which closes the opening 7b.
  • FIG. 3d figure also the piston 2a and the side cover 6a of the rotary piston engine KKM1 is added.
  • the FIG. 3e shows a view without a piston.
  • FIG. 3f again shows a view with two pistons 2a and 2b in the position after the FIGS. 1a and 2a , The opening 8a is closed by the piston 2a and the opening 8b is closed by the piston 2b.
  • the connecting channel 5 is also closed in this piston position.
  • thermodynamic cycles of the WTA is associated with the stated location of the openings in the side covers according to a 45 degree / 135 degree arrangement pattern:
  • the gradient of change in the individual working chambers is also important. After that, for example, when the minimum volume is increased, first a flow through the connecting channel 4 to the enlarging working chamber takes place - which is plausible. From a certain piston rotation angle, however, the gradient of the volume change in the working chamber to be filled is smaller than the gradient of the delivering chamber. This results in a reversal of the flow, resulting in an intense heat transfer in the connecting channel 4. The same effect occurs analogously on the side of reduction of the maximum volume in the connecting channel 5.
  • connection channels 4 and 5 are of importance for the WTA since there is no metabolism with the environment.
  • thermodynamic engine cycle a so-called right - handed thermodynamic engine cycle is considered. If heat energy is supplied to the connection channel 4 from an external heat source, an increase in pressure of the enclosed medium, for example helium as a heat carrier, is produced in the upper working volume, connected to pressure forces on the pistons 2a and 2b and a torque acting in the shaft 3, which is the rotation of the electrodynamic Unit EDE and output of electrical energy affects.
  • isochore pressure increase up to a rotation angle change of about 30 degrees, then the expansion of the working medium takes place with simultaneous heat supply close to one Isotherms.
  • there isochronous pressure reduction with temperature reduction in phase with the volume flow in the upper working volume.
  • This pressure reduction affects the gain of the torque in the shaft 3. Thereafter, a compression of the working medium with the release of heat energy via the connecting channel 5 to the environment. Depending on whether this heat release during compression is supported by an active cooling, this runs along a polytropic, ideally along an isotherm.
  • the unit works as an engine, similar to the Stirling engine.
  • the structural design of the unit is such that the "zero position" is preferably characterized by the 45-degree position of the piston 2a and 2b. This position causes the operation of the unit the effect that the heat transfer of an external heat energy through the wall of the connecting channel 4 is particularly intense. This effect arises from the fact that the flow of the working medium through the connecting channel 4 again reverses when the gradient of the volume change of the upper working chamber of the rotary piston engine KKM1 is greater than the gradient of the volume change of the upper working chamber of the rotary piston engine KKM2, although the two pistons 2a and Turn 2b evenly in working direction.
  • the energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a generator.
  • thermodynamic unit EDE which operates here as a drive motor.
  • the compression of the working medium takes place in the lower working volume.
  • the working medium takes in an isochoric phase up to a rotation angle change of about 30 degrees via the connecting channel 5 heat energy from an ambient space, connected to an increase in pressure, on.
  • the subsequent further compression is done with further absorption of ambient heat as polytrope. Accordingly, the working medium circulates between the rotary piston engines KKM1 and KKM2 with changing pressures around a mean pressure of the hermetically sealed pressure system.
  • FIG. 2d shows the completed process.
  • the cooled working fluid is now in the lower working volume, where it absorbs ambient heat via the connecting channel 5 and is compressed again. The cycle begins again.
  • the energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a motor.
  • the unit works as a refrigeration machine. The purpose can be both a cooling process and heating process.
  • the described hermetic encapsulation of the unit allows further operating variants.
  • pressure change values between minimum and maximum volume of the media subsets can reach up to a value of about 6.
  • pressures in the upper working volume of about 1800 bar can be achieved.
  • the heat transfer unit described is operated at a base pressure of, for example, 300 bar in a cyclic process, its properties are reversed so that when the working medium is compressed in the lower working volume, cooling takes place via the connecting channel 5, ambient heat is absorbed successful expansion in the upper working volume via the connecting channel 4 is released as useful heat.
  • the electrodynamic unit EDE is operated as a starter generator, a discharge of electrical energy takes place after the engine phase in the generator mode.
  • the heat transfer unit works as an engine, but it must be started by a starter unit similar to an internal combustion engine.
  • the energy delivered by the electrodynamic unit EDE must also be used to actively dissipate the heat at the connection channel 4 in accordance with the laws of thermodynamics.
  • thermodynamic cycle analysis on the basis of the state diagrams for CO2, for example, shows that after covering all amounts of energy for internal mechanical friction and active heat supply and removal operations on the connecting channels 5 and 4, a positive amount remains on the electrodynamic unit EDE, which consists of the hermetic Encapsulation must be led out as an electrical load and then fed again as a heat equivalent of the environment.
  • FIG. 6 In a further embodiment, an arrangement is shown, which contributes to the increase of the power.
  • a heat pipe 15 is arranged between the connecting channel 4 and the connecting channel 5.
  • a connection 41 is provided for this purpose and a connection 51 for the heat pipe 15 is provided on the connection channel 5.
  • the heat pipe 15 transports heat from the connection 51 of the connection channel 5 to the connection 41 of the connection channel 4 on a small cross-sectional area and can be used in various designs, for example in the form of a heat pipe or a two-phase thermosyphon. The function is explained below.
  • the environment of the heat transfer unit consists of a heat source heat sink system with external heat sources, such as engine waste heat, and heat sinks, such as space heating. Heat energy is transferred between the heat sources and heat sinks, and a resultant amount of energy resulting from the transfer process is extracted or supplied by an EDE to the heat source heat sink system via an external energetic application.

Abstract

Gegenstand der Erfindung ist ein Wärme-Transfer-Aggregat und ein-Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregat unter Nutzung von zwei miteinander verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und Zweieck-Kolben. Die erfindungsgemäße Lösung ist eine Anordnung zweier gleicher Kreiskolbenmaschinen (KKM) und einer elektrodynamischen Einheit (EDE), die sich in einem Hermetik-System befinden. Die beiden Kreiskolbenmaschinen sind innerhalb des Hermetik-Systems durch eine gemeinsame reale oder funktionale Welle verbunden, wobei ihre Drehbewegung ein gemeinsam benutztes abgeschlossenes, in Masse und Gesamtvolumen konstantes Arbeitsmedium durch die Prozessphasen Kompression und Expansion in thermodynamischen Kreisprozessen mit externer Wärmezufuhr bzw. Wärmeabfuhr ohne Verwendung von Ventilsteuerorganen führt. Die Anordnung teilt prozessphasenweise das gemeinsam benutzte Arbeitsmedium in eine Teilmenge Kompression und eine Teilmenge Expansion. Im Folgenden wird der Begriff "Wärme-Transfer-Aggregat" (WTA) für das Gesamtaggregat verwendet.

Description

  • Gegenstand der Erfindung ist ein Wärme-Transfer-Aggregat und ein Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats unter Nutzung von zwei miteinander verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und Zweieck-Kolben.
  • Der Stand der Technik wird in folgenden Patentveröffentlichungen offenbart.
  • US 5335497 A weist zwei auf einer gemeinsamen Welle arbeitende Zweieck-Kolben auf, die ein abgeschlossenes Arbeitsmedium für Kompression und Expansion verwenden. Der Medienwechsel zu/von den Arbeitsräumen erfolgt über die Laufbahnflächen. Hierdurch haben beide Kolben bei bestimmten Winkelstellungen eine Kurzschlussströmung. Der beschriebene thermodynamische Prozessablauf ist mit den dargestellten Winkelstellungen Kolben ohne zusätzliche Steuerorgane nicht realisierbar.
  • US 4179890 A und US 5211017 A weisen als gemeinsames Merkmal abgeschlossene Medienkreisläufe auf, jedoch arbeiten diese Aggregate nicht mit Zweieckkolben. Hieraus ergeben sich aus thermodynamischer Sicht andere, ungünstigere Prozessbedingungen, da sich geometrisch bedingt nur geringe Druckänderungen realisieren lassen. Der Medienwechsel über Kanäle in den Laufbahnflächen kann zur Kurzschlussströmung um die Kolben führen.
  • US 5317996 A zeigt eine Maschine, die mehrere durch eine gemeinsame Welle verbundene Zweieck-Kolben hat. Der Medienwechsel erfolgt über Öffnungen in den Laufbahnflächen. Die Öffnungen sind so angeordnet, dass in bestimmten Winkelstellungen Kurzschlussströmungen um die Kolben auftreten, die sich auch durch die vorgesehenen Steuerorgane nicht vermeiden lassen.
  • EP 1075595 B1 weist zwei Dreieck-Kolben auf. Die Maschine hat zwei Gehäuse in Form zweibogiger Trochoiden, entsprechend der bekannten Wankelmaschine. Die Maschine verwendet ein gemeinsames abgeschlossenes Arbeitsmedium, wobei die Kanäle für den Medienwechsel zwischen den Gehäusen an den Seitendeckeln ansetzen.
  • DE 3333586 A1 zeigt zwei Drehkolbenmaschinen, deren innerachsige Rotoren durch jeweils zwei von außen, in den Gehäusen geführten Schiebern jeweils zwei Arbeitskammern bilden. Die Rotoren laufen exzentrisch zu den kreisförmigen Gehäusen. Sie sind durch eine gemeinsame Welle verbunden. Die Rotoren haben einen Drehwinkelversatz von 90 Grad. Die Maschine arbeitet mit einem abgeschlossenen Medium. Der Medienwechsel zu/von den Arbeitsräumen erfolgt über die Laufbahnflächen. Die Anordnung der Dichtelemente in Form der Schieber widerspricht dem Wankeischen Axiom, wonach eine funktionierende Rotationskolbenmaschine nur zwei relativ zueinander bewegte, den Arbeitsraum bildende Bauteile haben darf und die Dichtelemente auf dem bewegten Bauteil angeordnet sein müssen.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, die Realisierung eines Wärme-Transfer-Aggregats unter den Grundprinzipien thermodynamischer Prozesse wie beispielsweise eines Stirlingprozesses oder eines CO2-Kälteprozesses vorzunehmen, wobei eine Kreisprozessführung abgeschlossener Medien mit ausreichenden Druckänderungen zwischen Kompression und Expansion sowie ein hermetischer Abschluss des Wärme-Transfer-Aggregats erforderlich sind, um Prozesse unter höheren Drücken gestatten zu können. Höhere Drücke und damit höhere Stoffdichten der abgeschlossenen Medien ergeben bessere Wärmeübergangswerte zwischen dem zirkulierenden Medium und den Bauteilen, die vom dem Medium durchströmt werden und erhöhen die Leistungsdichte des Kreisprozesses bzw. der Anordnung.
  • Die Lösung der Aufgabe wird durch die Anordnung zweier gleicher Kreiskolbenmaschinen (KKM) und einer elektrodynamischen Einheit (EDE), die sich in einem Hermetik-System befinden, realisiert. Die beiden Kreiskolbenmaschinen sind innerhalb des Hermetik-Systems durch eine gemeinsame reale oder funktionale Welle verbunden, wobei ihre Drehbewegung ein gemeinsam benutztes abgeschlossenes, in Masse und Gesamtvolumen konstantes Arbeitsmedium durch die Prozessphasen Kompression und Expansion in thermodynamischen Kreisprozessen mit externer Wärmezufuhr bzw. Wärmeabfuhr ohne Verwendung von Ventilsteuerorganen führt. Die Anordnung teilt prozessphasenweise das gemeinsam benutzte Arbeitsmedium in eine Teilmenge Kompression und eine Teilmenge Expansion. Im Folgenden wird der Begriff "Wärme-Transfer-Aggregat" (WTA) für das Gesamtaggregat verwendet.
  • Die erfinderische Lösung geht von dem aus der Analyse des Standes der Technik abgeleiteten Anforderungsprofil aus. Dieses Anforderungsprofil beinhaltet die Verwendung von zwei gleichen Rotationskolbenmaschinen (RKM), die der Bedingung genügen, dass sie das Wankeische Axiom erfüllen, wonach nur Maschinen als Kraftmaschinen funktionieren, die aus nur zwei relativ zueinander bewegten, den Arbeitsraum umgrenzenden Bauteilen bestehen. Zum Anforderungsprofil gehört, dass von allen hiernach infrage kommenden Maschinen nur zwei gleiche Kreiskolbenmaschinen (KKM) mit einem Zweieck-Kolben und einer einbogigen Trochoide verwendet werden. Sie weisen die größten Volumenänderungen in den Prozessphasen auf. Geometrisch bedingt und kennzeichnend für Zweieck-Kolben ist die Möglichkeit der Kurzschlussumströmung des Kolbens, wenn Öffnungen für den Medienwechsel einer KKM nicht exakt diametral zur Längsachse des Kolbens angeordnet sind und in Dreh-Umfangsrichtung nicht durch die Kolbenspitzen geteilt werden. Daraus folgt, dass die Öffnungen für den Medienwechsel nicht in der Laufflächenkontur der einbogigen Trochoide angeordnet sein dürfen, da dies zu Kurzschlussströmungen um die Zweieck-Kolben und damit zur Aufhebung der Abgrenzung der Medien-Teilmengen führt. Die Öffnungen für den Medienwechsel sind in den Seitendeckeln anzuordnen, wie es bereits aus EP 1075595 B1 ersichtlich ist. Die Kolben der KKM sind zugleich die Steuerorgane für das Öffnen und Schließen der Öffnungen. Dies führt nur dann zu einer zufriedenstellenden Lösung, wenn die Kolben nach dem in WO 2008065017 A1 dargelegten Funktionsprinzip aufgebaut sind und die Forderung nach einer aktiven, mit Feder- oder Medienkräften wirkenden, Flächendichtung erfüllen. Nach dem Coulombschen Reibungsgesetz gilt, dass die Reibungskräfte nicht von der Größe der Reibflächen abhängen. Die radialen Abdichtungen an den Spitzen der Kolben erfolgen durch federnde Dichtleisten, die sich zugleich auch in axialer Richtung federnd an die Seitendeckel anlegen und somit eine vollständige Abdichtung der Arbeitskammern gegeneinander ergeben. Dieses Dichtsystem ist der bekannte Stand der Technik und durch Patenterteilungen international geschützt. Es ist nicht Gegenstand der vorliegenden Anmeldung, jedoch ist die dichtende flächige Anlage der Kolbenseiten an den Seitendeckeln eine notwendige Voraussetzung der erfinderischen Lösung. Zwei zusammen arbeitende gleiche Kreiskolbenmaschinen mit einbogiger Trochoide ergeben wiederum nur dann eine größte Volumenänderung der Medien-Teilmengen, wenn die Trochoiden gleiche Ausrichtung bezüglich ihrer Hauptachse haben und wenn ihre Kolben um 90 Grad versetzt arbeiten. Erfindungsgemäß müssen hierfür insgesamt vier Öffnungen in den Seitendeckeln (jeweils eine Öffnung in jedem Seitendeckel) angeordnet sein, die ein Anordnungsmuster aufweisen, welches bei Sicht in Richtung der gemeinsamen Achse ein Kreuz ergibt mit zwei um 90 Grad versetzten Achsen, die jeweils um 45 Grad gegenüber einer gedachten Hauptachse versetzt sind. Die Öffnungen in den Seitendeckeln werden entlang den Kreuzachsen soweit an die Trochoidenkonturen heran angeordnet, dass alle Öffnungen vollständig und gleichweit entfernt von den Kolbenmitten durch die vorbeilaufenden Kolbenseiten zugleich abgedeckt werden können, womit das Vermeiden von Kurzschlussumströmungen um die Zweieck-Kolben verhindert wird.
  • Das erfindungsgemäße Wärme-Transfer-Aggregat besteht aus zwei miteinander über Verbindungskanäle und einer gemeinsamen Welle verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben mit jeweils zwei Kolbenspitzen. Die Verbindungskanäle ermöglichen über vier Öffnungen in den vier Seitendeckeln der Kreiskolbenmaschinen einen Wechsel des Arbeitsmediums. In jeweils einem Seitendeckel ist jeweils nur eine Öffnung in der Art angeordnet, dass die vorbeilaufenden Kolbenspitzen als Steuerorgane für das Öffnen und Schließen der Öffnungen für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen im thermodynamischen Arbeitsprozess abdichtend wirken. Auf der gemeinsamen Welle ist eine elektrodynamische Einheit (EDE) einseitig angeordnet. Dabei liegen sich jeweils zwei Öffnungen einer Kreiskolbenmaschine, schematisch gesehen, diagonal in einem Winkel von 45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide gegenüber. Die Anordnung aller Öffnungen beider Kreiskolbenmaschinen ist, schematisch gesehen, ein Kreuz mit zwei um 90 Grad versetzten Achsen.
  • Bei einer Arbeitsstellung des ersten Zweieck-Kolbens in einem Winkel von 45 Grad und des zweiten Zweieck-Kolbens in einem Winkel von -45 Grad zu der gedachten Hauptachse der einbogigen Trochoide sind alle Öffnungen in den Seitendeckeln durch die Kolbenspitzen für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen geschlossen.
  • Ein Verbindungskanal ist zwischen den Öffnungen der inneren Seitendeckel der beiden Kreiskolbenmaschinen und der zweite Verbindungskanal ist zwischen den Öffnungen der äußeren Seitendeckel beider Kreiskolbenmaschinen angeordnet. Die Verbindungskanäle sind rohrförmig und mit Wärmeübertragern verbunden.
  • In einer Ausführungsform ist zwischen den Verbindungskanälen eine Verbindungsleitung mit einem Ventil für einen Druckausgleich beim Befüllen, Anfahren oder Abstellen des Aggregats angeordnet.
  • In einer weiteren Ausführungsform ist zwischen dem zweiten Verbindungskanal und dem ersten Verbindungskanal ein Wärmerohr angeordnet, welches eine Abfuhr von Wärme am zweiten Verbindungskanal und eine Zufuhr von Wärme am ersten Verbindungskanal unterstützt.
  • Das erfindungsgemäße Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats nutzt zwei miteinander über eine gemeinsamen Welle verbundene Kreiskolbenmaschinen mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben. In einem hermetisch abgeschlossenen Drucksystem nutzt jede der Kreiskolbenmaschinen für sich und mittels ihrer mechanischen Kopplung gemeinsam durch mechanische Kompression und Expansion ein in beiden Kreiskolbenmaschinen zirkulierendes, abgeschlossenes Arbeitsmedium. Es wird Wärmeenergie zwischen Wärmequellen und Wärmesenken transferiert, welche ein Wärmequellen-Wärmesenken-System bilden und mit dem Wärme-Transfer-Aggregat in Verbindung stehen. Ein mit dem Transferprozess bilanzierenden resultierenden Energiebetrag wird durch eine, mit den Kreiskolbenmaschinen über die gemeinsame Welle verbundene elektrodynamische Einheit dem Wärmequellen-Wärmesenken-System entnommen oder zugeführt.
  • Das Wärme-Transfer-Aggregat ist als ein hermetisch abgeschlossenes Drucksystem aufgebaut, in dem alle einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen und der elektrodynamischen Einheit selbst Teil einer gemeinsamen Hermetik-Kapselung sind. Das Arbeitsmedium zirkuliert zwischen den Kreiskolbenmaschinen mit wechselnden Drücken um einen mittleren Druck dieses hermetisch abgeschlossenen Drucksystems.
  • Die elektrodynamische Einheit arbeitet als Motor, Generator oder Startergenerator.
  • Ausführung der Erfindung
  • Die prinzipielle Funktion der erfindungsgemäßen Vorrichtung wird an einem Beispiel beschrieben. Hierzu zeigen die
    • Figuren 1a bis 2d einen Durchlauf des thermodynamischen Prozesses mit den verschiedenen Stellungen der Kolben,
    • Figuren 2a bis 2d einen Durchlauf des thermodynamischen Prozesses mit eingezeichneten rohrförmigen Kanälen,
    • Figuren 3a bis 3f in einer Abfolge von Schritten den Zusammenbau des Aggregats mit Seitendeckeln entlang einer gemeinsamen Achse,
    • Figur 4a einen Längsschnitt durch die erfindungsgemäße Vorrichtung,
    • Figuren 4b und 4c die angeschlossenen rohrförmigen Kanäle in verschiedenen Rotationsansichten des Wärme-Transfer-Aggregats,
    • Figur 5 die Stellung der Kolben mit gleich großen Arbeitsvolumina mit einem Ventil für einen Druckausgleich und
    • Figur 6 ein weiteres Ausführungsbeispiel zur Steigerung der Leistung.
  • Die erfindungsgemäße Vorrichtung zur Durchführung thermodynamischer Kreisprozesse besteht aus zwei miteinander verbundenen Kreiskolbenmaschinen (KKM) mit einbogigen Trochoiden und Zweieck-Kolben, welche über rohrförmige Verbindungskanäle und einer gemeinsamen Welle miteinander zu einem Wärme-Transfer-Aggregat (WTA) verbunden sind. Auf der gemeinsamen Welle ist einseitig eine elektrodynamische Einheit EDE angeordnet. Die Anordnung der elektrodynamischen Einheit EDE auf der gemeinsamen Welle des Aggregats ist nicht zwischen den zwei miteinander verbundenen Kreiskolbenmaschinen des Aggregats anzuordnen, da diese Anordnung die Länge der Kanäle zwischen den Seitendeckeln vergrößert und damit größere Totvolumen in das Aggregat bringt. Daher ist die elektrodynamische Einheit EDE an ein Ende der gemeinsamen Wellen des Aggregats, außerhalb des Wellenlagers der zwei Kreiskolbenmaschinen dichtend angeordnet. Die elektrodynamische Einheit EDE hat das gleiche Druckniveau des WTA im Ruhezustand, wobei dieser Teil des Arbeitsmediums aber nicht an der Prozessbedingten Zirkulation des Arbeitsmediums teilnimmt. Die Gehäuse und die Seitendeckel der Kreiskolbenmaschinen sind selbst Teil einer gemeinsamen Hermetik-Kapselung, die durch Abschlussdeckel vervollständigt wird. Die einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen sind zugleich Teile eines hermetischen Drucksystems.
  • In Figur 4a, einem Längsschnitt durch die Vorrichtung, sind von links beginnend auf der Welle 3 eine erste Kreiskolbenmaschine KKM1, eine zweite Kreiskolbenmaschine KKM2 und die elektrodynamische Einheit EDE angeordnet. Die erste Kreiskolbenmaschine KKM1 besteht aus einem Gehäuse 1a mit einer einbogigen Trochoide als Laufbahnkontur, einem linken, nach außen hin angeordneten Seitendeckel 6a und einem rechten zur Kreiskolbenmaschine KKM2 hin angeordneten Seitendeckel 6b. Der Seitendeckel 6a ist mit einem druckdichten Abschlussdeckel 13 verbunden, welcher auch die Welle 3 druckdicht umfängt. In dem Gehäuse der Kreiskolbenmaschine KKM1 auf der Welle 3 läuft ein Zweieck-Kolben 2a mit den Kennzeichnungen seiner Spitzen mit A1 und B1. Ebenso besteht die zweite Kreiskolbenmaschine KKM2 aus einem Gehäuse 1 b mit einer einbogigen Trochoide als Laufbahnkontur und einem linken zur Kreiskolbenmaschine KKM1 hin angeordneten Seitendeckel 6c sowie einem nach außen, zur elektrodynamischen Einheit EDE hin angeordneten rechten Seitendeckel 6d. In dem Gehäuse der Kreiskolbenmaschine KKM2 auf der Welle 3 läuft ein Zweieck-Kolben 2b mit den Kennzeichnungen seiner Spitzen mit A2 und B2. Die Kennzeichnung der Spitzen der beiden Zweieck-Kolben 2a und 2b mit den Spitzen A1, A2, B1 und B2 erfolgt für eine einfachere Visualisierung des Bewegungsablaufs der Kolben 2a und 2b in den Figuren 1a bis 1d und 2a bis 2d. Beide Kreiskolbenmaschinen KKM1 und KKM2 sind hinsichtlich ihrer Funktion im WTA gleichwertig und austauschbar. Ebenfalls auf der Welle 3 angeordnet und mit dem Seitendeckel 6d verbunden ist die elektrodynamische Einheit EDE mit einem Druckgehäuse 9 mit einem seitlichen Abschlussdeckel 12. In dem Druckgehäuse 9 ist auf der Welle 3 ein Rotor 11 angeordnet, welcher von einem Stator 10 umgeben ist. Die hermetische Kapselung des WTA darf nicht durch die Durchführung einer drehenden Welle 3 unterbrochen werden. Eine nicht gezeichnete druckdichte Durchführung durch das Druckgehäuse 9 ist für im Kapselgehäuse vergossene Elektroleitungen vorgesehen.
  • In den Figuren 4b und 4c sind verschiedenen Rotationsansichten des WTA gezeigt. Ein rohrförmiger Verbindungskanal 5 (Fig. 4b) verläuft von dem linken Seitendeckel 6a der Kreiskolbenmaschine KKM1 zum rechten Seitendeckel 6d der Kreiskolbenmaschine KKM2 außen um beide Kreiskolbenmaschinen KKM1 und KKM2 auf der "kalten" Arbeitsseite des Wärme-Transfer-Aggregats herum. Dazu sind, wie in den Figuren 1 und 3 zu sehen ist, für den Verbindungskanal 5 im Seitendeckel 6a eine Öffnung 8a und im Seitendeckel 6d eine Öffnung 8b vorgesehen. Figur 4c zeigt eine um ca. 180 Grad gedrehte Ansicht, so dass die elektrodynamische Einheit EDE nun auf der linken Seite angeordnet ist. Dadurch ist ein rohrförmiger Verbindungskanal 4 zwischen dem rechten Seitendeckel 6b der Kreiskolbenmaschine KKM1 und dem linken Seitendeckel 6c der Kreiskolbenmaschine KKM2 auf der "heißen" Arbeitsseite des Wärme-Transfer-Aggregats sichtbar. Für den Verbindungskanal 4 sind im Seitendeckel 6b eine Öffnung 7a und im Seitendeckel 6c eine Öffnung 7b vorgesehen. Die Anordnung der rohrförmigen Verbindungskanäle 4 und 5 zwischen den Öffnungen 7a, 7b, 8a und 8b in den Seitendeckeln ist derart, dass der Verbindungskanal 4 zwischen den zwei inneren Seitendeckeln 6b und 6c zwischen den beiden Kreiskolbenmaschinen KKM1 und KKM2 und der Verbindungskanal 5 von dem äußeren Seitendeckel 6a zum anderen äußeren Seitendeckel 6d des Aggregats verläuft. Jeder der vier Seitendeckel 6a bis 6d des Aggregats hat nur eine Öffnung für den Wechsel des Arbeitsmediums. Die Öffnungen 7a, 7b, 8a und 8b befinden sich jeweils im Bereich der vorbeilaufenden seitlichen Kolbenspitzen A1, A2, B1 und B2.
  • Der Funktionsablauf des Wärme-Transfer-Aggregats wird mit Hilfe der folgenden Bilder näher erläutert. Die Figuren 1a bis 2d zeigen einen Durchlauf des thermodynamischen Prozesses mit den verschiedenen Stellungen der Kolben, wobei die Kreiskolbenmaschinen KKM1 und KKM2 in der Zeichenebene nebeneinander liegen, obwohl im realen Aggregat sich die Kreiskolbenmaschinen KKM1 und KKM2 bezüglich der Zeichenebene übereinander befinden. Dies ist notwendig aus Gründen der klaren Darstellung der funktionalen Zusammenhänge, hieraus ergibt sich keine Beeinträchtigung in der Darlegung des erfinderischen Anliegens.
  • Figur 1a zeigt die Stellung des Kolbens 2a der Kreiskolbenmaschine KKM1 mit einem Winkel von 45 Grad zur Hauptachse der einbogigen Trochoide gerichtet. Als Hauptachse wird eine Linie definiert, die durch den mathematischen Ursprung der Trochoide und den Mittelpunkt der Welle 3 läuft. Die Kolbenspitze B1 ist oben und die Kolbenspitze A1 unten. Eine kleinere Arbeitskammer befindet sich links oberhalb des Kolbens 2a und eine größere Arbeitskammer rechts unterhalb des Kolbens 2a. Die Stellung des Kolbens 2b der Kreiskolbenmaschine KKM2 ist in einem Winkel von 135 Grad zur Hauptachse gerichtet. Die Kolbenspitze A2 ist oben und die Kolbenspitze B2 unten. Eine kleinere Arbeitskammer befindet sich rechts oberhalb des Kolbens 2b und eine größere Arbeitskammer links unterhalb des Kolbens 2b. In dieser Stellung der Kolben 2a und 2b werden mit den Arbeitskammern der Kreiskolbenmaschinen KKM1 und KKM2 Arbeitsvolumina gebildet, indem die beiden kleineren Arbeitskammern durch den rohrförmigen Verbindungskanal 4 und die beiden größeren Arbeitskammern durch den rohrförmigen Verbindungskanal 5 kommunizierend verbunden sind. Die beiden kleineren verbundenen Arbeitskammern ergeben das minimale, die beiden größeren Arbeitskammern ergeben das maximale Arbeitsvolumen des WTA. Im Ruhezustand des Wärme-Transfer-Aggregats WTA haben die Medien-Teilmengen in den beiden Arbeitsvolumina gleiches Druckniveau, unabhängig von den Kolbenstellungen, da ihre gegenseitige Abdichtung durch die Kolben 2a, 2b nur "dynamisch dicht" ist. Erst im Ergebnis des Anfahrprozesses gleichen sich die Medien-Teilmengen einander an. Bedingt durch unvermeidliche innere Leckagen an den ansonsten abdichtenden Kolben 2a, 2b unterliegen die Arbeitsvolumina dann wechselseitig ausgleichend somit einer Schwankung. Figur 1c und Figur 5 zeigen die Stellung der Kolben 2a, 2b mit gleich großen Arbeitsvolumina. Figur 5 zeigt in einer Ausführungsform ein Ventil 14 in einer Verbindungsleitung, mit der zwischen den Verbindungskanälen 4 und 5 der Druckausgleich für das Befüllen, Anfahren sowie das Abstellen des Aggregats erfolgen kann.
  • Die Figuren 1b und 1c zeigen die Stellung der Kolben 2a und 2b nach einer Drehungen von jeweils 45 Grad im Uhrzeigersinn. Figur 1d zeigt die Stellung der Kolben 2a und 2b nach einer Gesamtdrehung von 180 Grad im Uhrzeigersinn. Das Wärme-Transfer-Aggregat hat wieder das minimale bzw. maximale Arbeitsvolumen erreicht. Die gekennzeichneten Kolbenspitzen A1 und B1 bzw. A2 und B2 sind jetzt zyklisch vertauscht, indem die Kolbenspitze A1 oben und die Kolbenspitze B1 unten sowie die Kolbenspitze B2 oben und die Kolbenspitze A2 unten sind.
  • In den Figuren 1a bis 1d sind die Öffnung 8a im Seitendeckel 6a, die Öffnung 8b im Seitendeckel 6d (in den äußeren Seitendeckel 6a und 6d des Verbunds der zwei Kreiskolbenmaschinen KKM1 und KKM2), die Öffnung 7a im Seitendeckel 6b und die Öffnung 7b im Seitendeckel 6c (in den beiden inneren Seitendeckel 6b und 6c des Verbunds der zwei Kreiskolbenmaschinen KKM1 und KKM2) schematisch eingezeichnet. Die Öffnung 7a und die Öffnung 8b sind unterhalb der abgeplatteten Trochoidenkontur angeordnet. Analog weisen die Öffnungen 8a und 7b zur kreisförmigen Seite der Trochoiden hin.
  • Die Öffnung 7a rechts oben und die Öffnung 8a links unten der Kreiskolbenmaschinen KKM1 liegen sich, schematisch gesehen, diagonal gegenüber. Ebenso ist die Anordnung der Öffnung 8b links oben und der Öffnung 7b rechts unten diagonal gegenüberliegend. Daraus ergibt sich ein Anordnungsmuster, welches bei Sicht von der elektrodynamischen Einheit EDE aus in Richtung der gemeinsamen Achse und unter der Annahme, dass die Seitendeckel beider Kreiskolbenmaschinen KKM1 und KKM2 direkt übereinanderliegen, ein Kreuz ergibt mit zwei um 90 Grad versetzten Achsen, die in einer Position von 45 Grad bzw. -45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide versetzt sind. Jede Öffnung 7a, 7b, 8a und 8b wird bei einer Stellung der um 90 Grad gegeneinander versetzten Kolben 2a und 2b von einer Kolbenspitze A1, A2, B1 und B2 abgedeckt. Die von den seitlichen Kolbenspitzen A1, A2, B1 und B2 abgedeckten Öffnungen 7a, 7b, 8a und 8b befinden sich auf jeweils gegenüberliegenden Seiten der Kolben 2a und 2b einer Kreiskolbenmaschinen KKM1 oder KKM2. Durch diese Anordnung sind die Kolben 2a und 2b sowohl die Verdrängungskörper für den thermodynamischen Arbeitsprozess als auch das aktive, mittels Feder- oder Medienkräften gegen die Seitenflächen abdichtend wirkende Steuerorgane für das Öffnen und Schließen der Öffnungen 7a, 7b, 8a und 8b für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen KKM1 und KKM2 im thermodynamischen Arbeitsprozess.
  • Die Figuren 2a bis 2d zeigen einen Durchlauf des thermodynamischen Prozesses mit eingezeichneten rohrförmigen Verbindungskanälen 4 und 5 und wie diese mit den Arbeitskammern verbunden sind, wobei der Verbindungskanal 4 zwischen der Öffnung 7a und der Öffnung 7b angeordnet ist und der Verbindungskanal 5 zwischen der Öffnung 8a und der Öffnung 8b. Hierdurch werden jeweils zwei Arbeitskammern zu einem gemeinsamen Arbeitsvolumen verbunden.
  • Figur 2a zeigt die Kolben 2a und 2b in einer Stellung, die der Stellung in Figur 1a entspricht. Der Verbindungskanal 4 verbindet die Kreiskolbenmaschine KKM1 mit der Kreiskolbenmaschine KKM2. Das hiermit gebildete gemeinsame Arbeitsvolumen hat in dieser Stellung sein Minimum. Der Verbindungskanal 5 verbindet ebenfalls die Kreiskolbenmaschine KKM1 mit der Kreiskolbenmaschine KKM2. Das hiermit gebildete gemeinsame Arbeitsvolumen hat in dieser Stellung sein Maximum.
  • Die Figuren 2b bis 2d zeigen die Änderungen der Arbeitsvolumina, bis sie nach einer Gesamtdrehung der Kolben um 180 Grad die jeweiligen Größenänderungen erreicht haben. In den 45 Grad-Positionen der Kolben 2a und 2b (Fig. 2a und 2d) werden die Verbindungskanäle 4 und 5 durch die Seitenflächen der Kolben verschlossen.
  • Die Figuren 3a bis 3f zeigen als Abfolge von Schritten den Zusammenbau des Aggregats mit den Seitendeckeln 6a bis 6d entlang der gemeinsamen Welle 3.
  • Figur 3a beginnt mit dem Exzenter 31a, dem Seitendeckel 6b, welcher zur Kreiskolbenmaschine KKM1 gehört, einem nicht weiter bezeichneten Wellenlager, dem Seitendeckel 6c, welcher zur Kreiskolbenmaschine KKM2 gehört, und dem Exzenter 31b. Im Seitendeckel 6b befindet sich die Öffnung 7a, im Seitendeckel 6c die Öffnung 7b. An die Öffnungen 7a und 7b schließt der in dieser Figur nicht gezeigte rohrförmige Verbindungskanal 4 an.
  • Aus Figur 3a ist erkennbar, dass die Öffnung 7a um einen Winkel von 45 Grad gegenüber der Hauptachse und die Öffnung 7b um einen Winkel von 135 Grad gegenüber der Hauptachse versetzt ist. In der gezeigten Kolbenstellung nach den Figuren 1a und 2a werden beide Öffnungen und damit der Verbindungskanal 4 durch die Kolben 2a und 2b verschlossen. Bild 3b zeigt dies mit dem Kolben 2b, der die Öffnung 7b verschließt.
  • In Figur 3c ist der zweite Seitendeckel 6d der Kreiskolbenmaschine KKM2 mit der Öffnung 8b hinzugefügt. In der Kolbenstellung nach den Figuren 1a und 2a wird auch die Öffnung 8b durch den Kolben 2b verschlossen. An die Öffnungen 8a und 8b schließt der in dieser Figur nicht gezeigte rohrförmige Verbindungskanal 5 an.
  • In Figur 3d ist auch der Kolben 2a und der Seitendeckel 6a der Kreiskolbenmaschine KKM1 hinzugefügt. Die Figur 3e zeigt eine Ansicht ohne Kolben. Hier sind deutlich die Öffnungen 8a im Seitendeckel 6a und die Öffnung 7a im Seitendeckel 6b der der Kreiskolbenmaschine KKM1 sowie die Öffnung 7b im Seitendeckel 6c und die Öffnung 8b im Seitendeckel 6d der Kreiskolbenmaschine KKM2 zu sehen. Figur 3f zeigt wiederum eine Ansicht mit beiden Kolben 2a und 2b in der Stellung nach den Figuren 1a und 2a. Die Öffnung 8a ist durch den Kolben 2a und die Öffnung 8b ist durch den Kolben 2b verschlossen. Damit ist der Verbindungskanal 5 in dieser Kolbenstellung ebenfalls verschlossen.
  • Die Funktionsweise des Aggregats wird im Folgenden erläutert. Dies erfolgt anhand der Figuren 2a bis 2d. In der Kolbenstellung nach Figur 2a hat das Aggregat das minimale Arbeitsvolumen "oberhalb" der Kolben 2a und 2b, die Kolben zeigen um 45 Grad gegenüber der Hauptachse gedreht in Richtung der abgeplatteten Seiten der einbogigen Trochoide. Die Arbeitskammern oberhalb der Kolben sind durch den Verbindungskanal 4 verbunden und bilden ein gemeinsames Arbeitsvolumen. "Unterhalb" der Kolben 2a und 2b hat das Aggregat das maximale Arbeitsvolumen. Die Arbeitskammern unterhalb der Kolben 2a und 2b sind durch den Verbindungskanal 5 verbunden und bilden ebenfalls ein gemeinsames Arbeitsvolumen. Bei einer Drehung der Kolben 2a und 2b vergrößert sich das obere Arbeitsvolumen, das untere Arbeitvolumen wird verkleinert. Die Volumenänderungen sind die eigentliche Funktionalität des Wärme-Transfer-Aggregats.
  • Eine für die thermodynamischen Kreisprozesse des WTA wichtige Eigenschaft ist mit der genannten Anordnung der Öffnungen in den Seitendeckeln nach einem 45 Grad/135 Grad Anordnungsmuster verbunden: Bei der Kolbendrehung ist außer der Änderung der Arbeitsvolumina auch der Gradient der Änderung in den einzelnen Arbeitskammern von Bedeutung. Hiernach erfolgt beispielsweise bei Vergrößerung des minimalen Volumens zunächst eine Durchströmung des Verbindungskanals 4 zu der sich vergrößernden Arbeitskammer hin - was plausibel ist. Ab einem bestimmten Kolbendrehwinkel ist jedoch der Gradient der Volumenänderung in der zu füllenden Arbeitskammer kleiner als der Gradient der liefernden Kammer. Hierdurch entsteht eine Umkehrung der Strömung, was zu einem intensiven Wärmeübergang im Verbindungskanal 4 führt. Der gleiche Effekt tritt analog auf der Seite Verkleinerung des maximalen Volumens im Verbindungskanal 5 auf. Wird das Anordnungsmuster der Öffnungen in den Seitendeckeln gegenüber der 45 Grad/135 Grad-Ausrichtung gedreht, geht der Effekt des intensiven Wärmeübergangs verloren. Die Wärmeübergänge an den Verbindungskanäle 4 und 5 sind jedoch für das WTA von Bedeutung, da ein Stoffwechsel mit der Umgebung nicht besteht.
  • Betrachtet wird zunächst ein sogenannter rechtsläufiger thermodynamischer Kraftmaschinen-Kreisprozess. Wird aus einer äußeren Wärmequelle dem Verbindungskanal 4 Wärmeenergie zugeführt, entsteht im oberen Arbeitsvolumen eine Druckerhöhung des eingeschlossenen Mediums, beispielsweise Helium als Wärmeträger, verbunden mit Druckkräften auf die Kolben 2a und 2b und einem in der Welle 3 wirkenden Drehmoment, das sich als Drehung der elektrodynamischen Einheit EDE und Abgabe elektrischer Energie auswirkt. Im oberen Arbeitsvolumen erfolgt eine isochore Druckerhöhung bis zu einer Drehwinkel-Änderung von etwa 30 Grad, danach erfolgt die Expansion des Arbeitsmediums bei gleichzeitiger Wärmezufuhr nahe einer Isothermen. Gleichzeitig erfolgt im unteren Arbeitsvolumen eine isochore Druckabsenkung mit Temperaturabsenkung, phasengleich zum Volumenverlauf im oberen Arbeitsvolumen. Diese Druckabsenkung wirkt sich als Verstärkung des Drehmoments in der Welle 3 aus. Danach erfolgt eine Kompression des Arbeitsmediums unter Abgabe von Wärmeenergie über den Verbindungskanal 5 an die Umgebung. Je nachdem, ob diese Wärmeabgabe bei der Kompression durch eine aktive Kühlung unterstützt wird, verläuft diese entlang einer Polytropen, im Idealfall entlang einer Isothermen. Das Aggregat arbeitet als Kraftmaschine, ähnlich der Stirlingmaschine.
  • Die konstruktive Ausführung des Aggregats erfolgt so, dass die "Nullstellung" vorzugsweise durch die 45-Grad-Stellung der Kolben 2a und 2b gekennzeichnet ist. Diese Stellung bewirkt beim Arbeitsablauf des Aggregats den Effekt, dass der Wärmeübergang einer äußeren Wärmeenergie über die Wand des Verbindungskanals 4 besonders intensiv ist. Dieser Effekt entsteht dadurch, dass die Strömung des Arbeitsmediums durch den Verbindungskanal 4 sich nochmals umkehrt, wenn der Gradient der Volumenänderung der oberen Arbeitskammer der Kreiskolbenmaschine KKM1 größer ist als der Gradient der Volumenänderung der oberen Arbeitskammer der Kreiskolbenmaschine KKM2, obwohl sich die beiden Kolben 2a und 2b gleichmäßig in Arbeitsrichtung drehen.
  • Der Effekt der Strömungsumkehr erfolgt mit gleicher Phasenlage und aus gleichen Ursachen auch mit dem unteren Arbeitsvolumen.
  • Die Energiebilanz für das Aggregat ergibt, dass die zugeführten und abgeführten Energiemengen an den Verbindungskanälen 4 und 5 sowie an der elektrodynamischen Einheit EDE, die als Generator arbeitet, im energetischen Gleichgewicht stehen.
  • Betrachtet wird ein linksläufiger thermodynamischer Arbeitsmaschinen-Kreisprozess. Für diese Betriebsvariante erfolgt die Energiezufuhr über die elektrodynamische Einheit EDE, die hier als Antriebsmotor arbeitet. Beginnend mit einer Stellung der Kolben 2a und 2b nach Figur 2a erfolgt im unteren Arbeitsvolumen eine isochore Druckerhöhung des Arbeitsmediums bis zu einer Drehwinkeländerung von etwa 30 Grad, Figuren 2b, 2c und 2d.
  • Nach Figur 2a erfolgt die Kompression des Arbeitsmediums, beispielsweise CO2 als Kältemittel, im unteren Arbeitsvolumen. Das Arbeitsmedium nimmt in einer isochoren Phase bis zu einer Drehwinkeländerung von etwa 30 Grad über den Verbindungskanal 5 Wärmeenergie aus einem Umgebungsraum, verbunden mit einer Druckerhöhung, auf. Die nachfolgende weitere Kompression geschieht unter weiterer Aufnahme von Umgebungswärme als Polytrope. Das Arbeitsmedium zirkuliert demnach zwischen den Kreiskolbenmaschinen KKM1 und KKM2 mit wechselnden Drücken um einen mittleren Druck des hermetisch abgeschlossenen Drucksystems.
  • Phasengleich erfolgt im oberen Arbeitsvolumen eine isochore Abgabe von Wärmeenergie an einem Umgebungsraum, verbunden mit einer Druckabsenkung des Arbeitsmediums. Diese Druckabsenkung entspricht der Drosselentspannung in konventionellen Kältekreisläufen. In Fall des beschriebenen Aggregats ist die Druckabsenkung jedoch eine Rückgewinnung mechanischer Energie, die als Drehmoment an die Welle 3 gegeben wird und eine Entlastung des Antriebs der elektrodynamischen Einheit EDE darstellt. Die weitere Expansion des Arbeitsmediums im oberen Arbeitsvolumen erfolgt als Polytrope. Es erfolgt über den Verbindungskanal 4 die weitere Abgabe von Wärmeenergie an den Umgebungsraum unter weiterer Abkühlung, wobei es mechanische Arbeit über die Drehung der Kolben 2a und 2b an die Welle 3 abgibt.
  • Figur 2d zeigt den abgeschlossen Ablauf. Das abgekühlte Arbeitsmedium befindet sich jetzt im unteren Arbeitsvolumen, wo es über den Verbindungskanal 5 Umgebungswärme aufnimmt und wieder verdichtet wird. Der Zyklus beginnt von Neuem.
  • Die Energiebilanz für das Aggregat ergibt, dass die zugeführten und abgeführten Energiemengen an den Verbindungskanälen 4 und 5 sowie an der elektrodynamischen Einheit EDE, die als Motor arbeitet, im energetischen Gleichgewicht stehen. Das Aggregat arbeitet als Kälte-Arbeitsmaschine. Der Einsatzzweck kann dabei sowohl ein Kühlvorgang als auch Heizvorgang sein.
  • Betrachtet wird ein weiterer rechtsläufiger thermodynamischer Kraftmaschinen-Kreisprozess.
  • Die beschriebene hermetische Kapselung des Aggregats ermöglicht weitere Betriebsvarianten. So lassen sich mit der dargestellten Basisgeometrie von zwei Kreiskolbenmaschinen mit einbogiger Trochoide in realer Konstruktion Druckänderungswerte zwischen minimalem und maximalem Volumen der Medien-Teilmengen bis zu einem Wert bis etwa 6 erreichen. In Zusammenhang mit einem Basisfülldruck des Aggregats von beispielsweise 300 bar, was technisch nur mittleren Anforderungen entspricht, lassen sich Drücke im oberen Arbeitsvolumen von etwa 1800 bar erreichen.
  • Für alle inneren, drehenden Bauteile des gekapselten Wärme-Transfer-Aggregats WTA bedeuten diese Drücke keine zusätzlichen Anforderung in Bezug auf die Festigkeit. Allerdings müssen die äußeren Bauteile der Kapselung diesen Anforderungen genügen. Für bestimmte inerte Arbeitsmedien wie CO2 bedeuten diese Drücke allerdings, dass sie sich "links" ihrer Inversionslinie befinden. Damit ändern sich ihre Stoffeigenschaften. Bei Kompression kühlen sie sich ab, bei Expansion tritt eine Erwärmung ein.
  • Wird das beschriebene Wärme-Transfer-Aggregat mit einem Basisdruck von beispielsweise 300 bar in einem Kreisprozess betrieben, so kehren sich ihre Eigenschaften so um, dass bei Kompression des Arbeitsmediums im unteren Arbeitsvolumen eine Abkühlung erfolgt, über den Verbindungskanal 5 wird Umgebungswärme aufgenommen, die nach erfolgter Expansion im oberen Arbeitsvolumen über den Verbindungskanal 4 als Nutzwärme abgegeben wird. Wenn die elektrodynamischen Einheit EDE als Startergenerator betrieben wird, erfolgt nach der Motor-Phase im Generatorbetrieb eine Abgabe elektrischer Energie.
  • Betrachtet man die Umgebung des Wärme-Transfer-Aggregats und das Wärme-Transfer-Aggregat als Gesamtsystem, so ergibt sich in der Energiebilanz, dass alle zugeführten und abgeführten Energiemengen im Gleichgewicht stehen. Das Wärme-Transfer-Aggregat arbeitet als Kraftmaschine, allerdings muss es ähnlich einer Verbrennungskraftmaschine durch ein Anlassaggregat gestartet werden. Die von der elektrodynamischen Einheit EDE abgegebene Energie muss auch zur aktiven Abfuhr der Wärme am Verbindungskanal 4 eingesetzt werden entsprechend den Gesetzen der Thermodynamik. Die thermodynamische Kreisprozess-Analyse anhand der Zustandsdiagramme für beispielsweise CO2 zeigt, dass nach Abdeckung aller Energiebeträge für innere mechanische Reibungen und aktive Wärmezu- und -abfuhrarbeiten an den Verbindungskanälen 5 und 4 ein positiver Betrag an der elektrodynamischen Einheit EDE verbleibt, der aus der Hermetik-Kapselung als elektrische Last herausgeführt werden und danach wieder als Wärmeäquivalent der Umgebung zugeführt werden muss.
  • In Figur 6 wird in einem weiteren Ausführungsbeispiel eine Anordnung gezeigt, welche zur Steigerung der Leistung beiträgt. Hierzu wird zwischen dem Verbindungskanal 4 und dem Verbindungskanal 5 ein Wärmerohr 15 angeordnet. Am Verbindungskanal 4 ist hierzu ein Anschluss 41 und am Verbindungskanal 5 ein Anschluss 51 für das Wärmerohr 15 vorgesehen. Das Wärmerohr 15 transportiert auf kleiner Querschnittsfläche Wärme vom Anschluss 51 des Verbindungskanals 5 zum Anschluss 41 des Verbindungskanals 4 und kann in verschiedenen Bauformen, beispielsweise in Form einer Heatpipe oder eines Zwei-Phasen-Thermosiphon, eingesetzt werden. Die Funktion wird nachfolgend erläutert. Am Verbindungskanal 5 wird durch das Wärmerohr 15 Wärme abgeführt, was die Kühlung unterstützt, und am Verbindungskanal 4 wird Wärme zugeführt, was entweder den Wärmeeintrag in das Wärme-Transfer-Aggregat unterstützt (Stirling) oder in die Wärmeabfuhr geht (Kühlprozess).
  • Die Umgebung des Wärme-Transfer-Aggregats besteht aus einem Wärmequellen-Wärmesenken-System mit externen Wärmequellen, beispielsweise Motorabwärme, und Wärmesenken, beispielsweise eine Raumbeheizung. Es wird Wärmeenergie zwischen den Wärmequellen und Wärmesenken transferiert sowie ein mit dem Transferprozess bilanzierender resultierender Energiebetrag durch eine EDE über eine externe energetische Anwendung dem Wärmequellen-Wärmesenken-System entnommen oder zugeführt.
  • Bezugszeichen
  • KKM1
    erste Kreiskolbenmaschine
    KKM2
    zweite Kreiskolbenmaschine
    EDE
    elektrodynamische Einheit
    WTA
    Wärme-Transfer-Aggregat
    1a
    Gehäuse der KKM1
    1b
    Gehäuse der KKM2
    2a
    Zweieck-Kolben der KKM1
    A1, B1
    Spitzen des Zweieck-Kolbens 2a
    2b
    Zweieck-Kolben der KKM2
    A2, B2
    Spitzen des Zweieck-Kolbens 2b
    3
    Welle
    4
    Verbindungskanal
    41
    Anschluss für das Wärmerohr 15 an den Verbindungskanal 4
    5
    Verbindungskanal
    51
    Anschluss für das Wärmerohr 15 an den Verbindungskanal 5
    6a
    linker Seitendeckel der KKM1
    6b
    rechter Seitendeckel der KKM1
    6c
    linker Seitendeckel der KKM2
    6d
    rechter Seitendeckel der KKM2
    7a
    Öffnung im Seitendeckel 6b
    7b
    Öffnung im Seitendeckel 6c
    8a
    Öffnung im Seitendeckel 6a
    8b
    Öffnung im Seitendeckel 6d
    9
    Druckgehäuse der elektrodynamischen Einheit EDE
    10
    Stator
    11
    Rotor
    12
    seitlicher Abschlussdeckel
    13
    druckdichter Abschlussdeckel
    14
    Ventil
    15
    Wärmerohr
    31a
    Exzenter (KKM1)
    31b
    Exzenter (KKM2)

Claims (13)

  1. Wärme-Transfer-Aggregat bestehend aus zwei miteinander über Verbindungskanäle (4, 5) und einer gemeinsamen Welle (3) verbundenen Kreiskolbenmaschinen (KKM1, KKM2) mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben (2a, 2b) mit jeweils zwei Kolbenspitzen (A1, B1; A2, B2), wobei die Verbindungskanäle (4, 5) über vier Öffnungen (7a, 7b, 8a, 8b) in vier Seitendeckeln (6a, 6b, 6c, 6d) der Kreiskolbenmaschinen (KKM1, KKM2) einen Wechsel des Arbeitsmediums ermöglichen dadurch gekennzeichnet, dass
    jeweils nur eine Öffnung (7a, 7b, 8a, 8b) in jeweils einem Seitendeckel (6a, 6b, 6c, 6d) in der Art angeordnet ist, dass die vorbeilaufenden Kolbenspitzen (A1, B1; A2, B2) als Steuerorgane für das Öffnen und Schließen der Öffnungen (7a, 7b, 8a, 8b) für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen (KKM1, KKM2) im thermodynamischen Arbeitsprozess abdichtend wirken, und dass eine elektrodynamische Einheit (EDE) auf einer Seite der gemeinsamen Welle (3) angeordnet ist.
  2. Wärme-Transfer-Aggregat nach Anspruch 1 dadurch gekennzeichnet, dass jeweils zwei Öffnungen (7a, 8a; 7b, 8b) einer Kreiskolbenmaschine (KKM1; KKM2) sich, schematisch gesehen, diagonal in einem Winkel von 45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide gegenüber liegen und die Anordnung aller Öffnungen (7a, 8a, 7b, 8b) beider Kreiskolbenmaschinen (KKM1, KKM2) als ein schematisch gesehenes Kreuz mit zwei um 90 Grad versetzten Achsen angeordnet sind.
  3. Wärme-Transfer-Aggregat nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass
    bei einer Arbeitsstellung des ersten Zweieck-Kolbens (2a) in einem Winkel von 45 Grad und des zweiten Zweieck-Kolbens (2b) in einem Winkel von -45 Grad zu der gedachten Hauptachse der einbogigen Trochoide alle Öffnungen (7a, 7b, 8a, 8b) in den Seitendeckeln (6a, 6b, 6c, 6d) durch die Kolbenspitzen (A1, B1; A2, B2) für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen (KKM1, KKM2) geschlossen sind.
  4. Wärme-Transfer-Aggregat nach Anspruch 1 dadurch gekennzeichnet, dass der Verbindungskanal (4) zwischen der Öffnung (7a) des inneren Seitendeckels (6b) der Kreiskolbenmaschinen (KKM1) zu der Öffnung (7b) des inneren Seitendeckels (6c) der beiden Kreiskolbenmaschinen (KKM2) und der Verbindungskanal (5) von der Öffnung (8a) des äußeren Seitendeckels (6a) der Kreiskolbenmaschine (KKM1) zu der Öffnung (8b) des äußeren Seitendeckels (6d) der Kreiskolbenmaschine (KKM2) angeordnet sind.
  5. Wärme-Transfer-Aggregat nach Anspruch 1 oder 4 dadurch gekennzeichnet, dass
    die Verbindungskanäle (4, 5) rohrförmig sind.
  6. Wärme-Transfer-Aggregat nach Anspruch 1, 4 oder 5 dadurch gekennzeichnet, dass
    die Verbindungskanäle (4, 5) mit Wärmeübertragern verbunden sind.
  7. Wärme-Transfer-Aggregat nach Anspruch 1, 4, 5 oder 6 dadurch gekennzeichnet, dass
    zwischen den Verbindungskanälen (4, 5) eine Verbindungsleitung mit einem Ventil (14) für einen Druckausgleich beim Befüllen, Anfahren oder Abstellen des Aggregats angeordnet ist.
  8. Wärme-Transfer-Aggregat nach Anspruch 1, 4, 5 oder 6 dadurch gekennzeichnet, dass
    zwischen dem Verbindungskanal (5) und dem Verbindungskanal (4) ein Wärmerohr (15) angeordnet ist, welcher eine Abfuhr von Wärme am Verbindungskanal (5) und eine Zufuhr von Wärme am Verbindungskanal (4) unterstützt.
  9. Wärme-Transfer-Aggregat nach einem der vorherigen Ansprüche 1 bis 8
    dadurch gekennzeichnet, dass
    es als ein hermetisch abgeschlossenes Drucksystem aufgebaut ist, in dem alle einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen (KKM1, KKM2) und der elektrodynamischen Einheit (EDE) selbst Teil einer gemeinsamen Hermetik-Kapselung sind.
  10. Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats unter Nutzung von zwei miteinander über eine gemeinsamen Welle (3) verbundenen Kreiskolbenmaschinen (KKM1, KKM2) mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben (2a, 2b) dadurch gekennzeichnet, dass in einem hermetisch abgeschlossenen Drucksystem jede der Kreiskolbenmaschinen (KKM1, KKM2) für sich und mittels ihrer mechanischen Kopplung gemeinsam durch mechanische Kompression und Expansion ein in beiden Kreiskolbenmaschinen (KKM1, KKM2) zirkulierendes, abgeschlossenes Arbeitsmedium nutzt, um Wärmeenergie zwischen Wärmequellen und Wärmesenken, welche ein Wärmequellen-Wärmesenken-System bilden und mit dem Wärme-Transfer-Aggregat in Verbindung stehen, zu transferieren sowie einen mit dem Transferprozess bilanzierenden resultierenden Energiebetrag durch eine, mit den Kreiskolbenmaschinen (KKM1, KKM2) über die gemeinsame Welle (3) verbundene elektrodynamische Einheit (EDE) dem Wärmequellen-Wärmesenken-System entnimmt oder zuführt.
  11. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass das Arbeitsmedium zwischen den Kreiskolbenmaschinen (KKM1, KKM2) mit wechselnden Drücken um einen mittleren Druck des hermetisch abgeschlossenen Drucksystems zirkuliert.
  12. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass die elektrodynamische Einheit (EDE) als Motor, Generator oder Startergenerator arbeitet.
  13. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass zwischen beiden Kreiskolbenmaschinen (KKM1, KKM2) angeordnete Verbindungkanäle (4, 5) über ein Wärmerohr (15) Wärme austauschen in der Art, dass der Verbindungskanal (5) Wärme abführt und dem Verbindungskanal (4) Wärme zugeführt wird.
EP15170474.9A 2015-06-03 2015-06-03 Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats Withdrawn EP3101257A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15170474.9A EP3101257A1 (de) 2015-06-03 2015-06-03 Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15170474.9A EP3101257A1 (de) 2015-06-03 2015-06-03 Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats

Publications (1)

Publication Number Publication Date
EP3101257A1 true EP3101257A1 (de) 2016-12-07

Family

ID=53373294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170474.9A Withdrawn EP3101257A1 (de) 2015-06-03 2015-06-03 Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats

Country Status (1)

Country Link
EP (1) EP3101257A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179890A (en) 1978-04-04 1979-12-25 Goodwin Hanson Epitrochoidal Stirling type engine
DE3333586A1 (de) 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Aussenbeheizte regenerative waerme- und arbeitsmaschine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
US5317996A (en) 1991-07-17 1994-06-07 Lansing Joseph S Self-starting multifuel rotary piston engine
US5335497A (en) 1993-02-10 1994-08-09 Macomber Bennie D Rotary Stirling cycle engine
EP1075595B1 (de) 1998-04-25 2004-02-11 Ceres IPR Limited Rotierende kolbenmaschine
WO2008065017A1 (de) 2006-12-02 2008-06-05 Guenther Eggert System zur abdichtung des kolbens rotationskolbenmaschinen
DE102007028181A1 (de) * 2007-06-20 2008-12-24 GÜNTHER, Eggert Verfahren und System zur Integration von Rotationsmaschinen zu mehrstufigen Nutzung der Brennstoffenergie in Kombiprozessen
EP2765280A2 (de) * 2013-02-07 2014-08-13 EN3 GmbH Verfahren zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium und Anordnung zur Durchführung des Verfahrens

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179890A (en) 1978-04-04 1979-12-25 Goodwin Hanson Epitrochoidal Stirling type engine
DE3333586A1 (de) 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Aussenbeheizte regenerative waerme- und arbeitsmaschine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
US5317996A (en) 1991-07-17 1994-06-07 Lansing Joseph S Self-starting multifuel rotary piston engine
US5335497A (en) 1993-02-10 1994-08-09 Macomber Bennie D Rotary Stirling cycle engine
EP1075595B1 (de) 1998-04-25 2004-02-11 Ceres IPR Limited Rotierende kolbenmaschine
WO2008065017A1 (de) 2006-12-02 2008-06-05 Guenther Eggert System zur abdichtung des kolbens rotationskolbenmaschinen
DE102007028181A1 (de) * 2007-06-20 2008-12-24 GÜNTHER, Eggert Verfahren und System zur Integration von Rotationsmaschinen zu mehrstufigen Nutzung der Brennstoffenergie in Kombiprozessen
EP2765280A2 (de) * 2013-02-07 2014-08-13 EN3 GmbH Verfahren zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium und Anordnung zur Durchführung des Verfahrens

Similar Documents

Publication Publication Date Title
DE102006043250B4 (de) Mehrfachzylinder-Freikolben-Stirlingmaschinen und -Wärmepumpen in Alpha-Anordnung mit abgestuften Kolben
DE112010004335B4 (de) Gamma-Typ Freikolben-Stirlingmaschinen Konfiguration
DE4333144A1 (de) Kältemittelkompressor mit hin- und herbeweglichen Kolben
EP3146190B1 (de) Doppelzylinder-stirling-motor, mehrzylinder-stirling-motor sowie elektroenergie-erzeugungssystem
DE2539878C2 (de) Thermodynamische Maschine mit geschlossenem Kreislauf
DE19814742C1 (de) Kreiskolben-Wärmemotor-Vorrichtung
DE60223150T2 (de) System zur konstruktion von pumpen, verdichtern und kraftmaschinen
DE4305043A1 (en) Stirling engine of double-head piston and swash plate type - has cylinder block with front and rear working gas chambers, surrounded by heat exchangers
EP3101257A1 (de) Wärme-transfer-aggregat und verfahren zur durchführung thermodynamischer kreisprozesse mittels eines wärme-transfer-aggregats
DE4424319C1 (de) Heißgasmotor
DE3239021C2 (de)
DE3834070C2 (de)
EP0725899B1 (de) Kolbenverdichter für gasförmige medien
EP2419618A1 (de) Wärmekraftmaschine
DE1601459C3 (de) Vorrichtung mit einem Heißgasmotor und einer mit ihm gekuppelten anzutreibenden Vorrichtung
DE3939779A1 (de) Verfahren und einrichtung zur umwandlung von waermeenergie in mechanische energie
DE102007054196A1 (de) Drehkolben-Stirlingmotor
DE102012109832B4 (de) Freikolbenmaschine und Doppelzylinderfreikolbenmaschine
CH373593A (de) Triebwerk mit zwei Viertakt-Kreiskolbenmotoren
DE3709014A1 (de) Stirlingmasschine mit in einem gasdichten innenraum eines gehaeuses befindlichen drehkolben
WO2002084078A1 (de) Kreiskolben-wärmemotor-vorrichtung
DE1426976A1 (de) Umlaufwaermepumpe
DE102010013620B4 (de) Heißgasmotor mit rotierenden Segmentkolben
DE3204017A1 (de) Drehkolbenmotor
DE19633174C2 (de) Rotations-Kolben-Kraft- oder Arbeitsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180103