EP3101257A1 - Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit - Google Patents

Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit Download PDF

Info

Publication number
EP3101257A1
EP3101257A1 EP15170474.9A EP15170474A EP3101257A1 EP 3101257 A1 EP3101257 A1 EP 3101257A1 EP 15170474 A EP15170474 A EP 15170474A EP 3101257 A1 EP3101257 A1 EP 3101257A1
Authority
EP
European Patent Office
Prior art keywords
heat
kkm1
kkm2
piston
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15170474.9A
Other languages
German (de)
French (fr)
Inventor
Eggert GÜNTHER
Norbert GÜNTHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EN3 GmbH
Original Assignee
EN3 GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EN3 GmbH filed Critical EN3 GmbH
Priority to EP15170474.9A priority Critical patent/EP3101257A1/en
Publication of EP3101257A1 publication Critical patent/EP3101257A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/22Rotary-piston machines or engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/10Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to a heat transfer unit and a method for carrying out thermodynamic cycle processes by means of a heat transfer unit using two interconnected rotary piston engines with einbogigen trochoidal and delta-piston.
  • US 5335497 A has two common-shaft twin-piston pistons that use a closed working fluid for compression and expansion.
  • the change of media to / from the workspaces takes place via the raceway surfaces.
  • both pistons have a short-circuit flow at certain angular positions.
  • the described thermodynamic process sequence is not feasible with the illustrated angular positions piston without additional control elements.
  • US 5317996 A shows a machine having a plurality of connected by a common shaft Zweieck-piston.
  • the media change takes place via openings in the raceway surfaces.
  • the openings are arranged so that in certain angular positions short-circuit flows around the pistons occur, which can not be avoided by the proposed control organs.
  • EP 1075595 B1 has two triangle pistons.
  • the machine has two housings in the shape of two-bows Trochoids, according to the well-known Wankelmaschine.
  • the machine uses a common sealed working fluid with the media change channels between the housings attaching to the side covers.
  • DE 3333586 A1 shows two rotary piston machines, whose inner-axis rotors each form two working chambers by two from the outside, guided in the housings slides.
  • the rotors are eccentric to the circular housings. They are connected by a common wave.
  • the rotors have a rotation angle offset of 90 degrees.
  • the machine works with a sealed medium.
  • the change of media to / from the workspaces takes place via the raceway surfaces.
  • the arrangement of the sealing elements in the form of the slide contradicts the Wankeischen axiom, according to which a functioning rotary piston machine may only have two relatively moving, forming the working space components and the sealing elements must be arranged on the moving component.
  • the object of the invention is to carry out the realization of a heat transfer unit under the basic principles of thermodynamic processes such as a Stirling process or a CO2 refrigeration process, wherein a Kreisreament completed media with sufficient pressure changes between compression and Expansion and a hermetic completion of the heat transfer unit are required to allow processes under higher pressures can.
  • a Guaranteereament completed media with sufficient pressure changes between compression and Expansion and a hermetic completion of the heat transfer unit are required to allow processes under higher pressures can.
  • Higher pressures and thus higher substance densities of the closed media result in better heat transfer values between the circulating medium and the components through which the medium flows and increase the power density of the cycle or the arrangement.
  • the solution of the problem is realized by the arrangement of two identical rotary piston machines (KKM) and an electrodynamic unit (EDE), which are located in a hermetic system.
  • the two rotary piston engines are connected within the hermetic system by a common real or functional shaft, wherein their rotary motion is a common closed, in mass and total volume constant working medium through the process phases compression and expansion in thermodynamic cycles with external heat or heat dissipation without the use of Valve control leads.
  • the assembly divides the shared working medium into a subset of compression and a subset of expansion in a process-phased manner.
  • WTA heat transfer aggregate
  • the inventive solution is based on the requirement profile derived from the analysis of the prior art.
  • This requirement profile involves the use of two identical rotary piston machines (RKMs), which satisfy the condition that they fulfill the Wanke's axiom, according to which only machines function as prime movers consisting of only two components moving relative to each other and bounding the working space.
  • RKMs rotary piston machines
  • Part of the requirement profile is that of all the machines considered below, only two identical rotary piston engines (CCM) with a double-sided piston and a single-bore trochoid are used. They show the largest volume changes in the process phases.
  • Geometrically conditioned and characteristic of Zweieck-Kolben is the possibility of Short-circuit flow around the piston, if openings for changing the media of a KKM are not arranged exactly diametrically to the longitudinal axis of the piston and are not divided in the circumferential direction by the piston tips. It follows that the openings for the media change must not be arranged in the tread contour of the single-arched trochoid, as this leads to short-circuit flows around the delta-piston and thus to cancel the delimitation of the media subsets.
  • the openings for the media change are to be arranged in the side covers, as it already is EP 1075595 B1 is apparent.
  • the pistons of the KKM are also the control organs for opening and closing the openings.
  • a total of four openings in the side covers may be arranged, which have a pattern arrangement, which results in a view in the direction of the common axis a cross with two offset by 90 degrees axes, each opposite 45 degrees an imaginary one Main axis are offset.
  • the apertures in the side covers are arranged close to the trochoidal contours along the axes of the cross so that all the apertures can be completely and equally spaced away from the piston centers by the passing sides of the piston, thus preventing the avoidance of short circuit flow around the two-cornered pistons.
  • the heat transfer unit according to the invention consists of two mutually connected via connecting channels and a common shaft rotary engines with einbogigen trochoidal and offset by 90 degrees against each other two-piston with two piston tips.
  • the connection channels allow a change of the working medium via four openings in the four side covers of the rotary piston engines.
  • a side cover only one opening is arranged in each case such that the passing piston tips act as a control organs for opening and closing the openings for the change of the working medium between the rotary piston engines in the thermodynamic working process sealing.
  • EEE electrodynamic unit
  • a communication passage is disposed between the openings of the inner side covers of the two rotary engines, and the second communication passage is disposed between the openings of the outer side covers of both rotary engines.
  • the connection channels are tubular and connected to heat exchangers.
  • a connecting line with a valve for pressure equalization during filling, starting or stopping of the unit is arranged between the connecting channels.
  • a heat pipe is arranged between the second connection channel and the first connection channel, which supports a dissipation of heat at the second connection channel and a supply of heat at the first connection channel.
  • the method according to the invention for carrying out thermodynamic cycle processes by means of a heat transfer unit uses two rotary piston machines connected to one another via a common shaft with single-sided trochoidal and two-cornered pistons staggered by 90 degrees.
  • each of the rotary engines uses, by itself and by mechanical coupling, by mechanical compression and expansion, a closed working fluid circulating in both rotary engines.
  • Heat energy is transferred between heat sources and heat sinks which form a heat source heat sink system and communicate with the heat transfer aggregate.
  • a resulting amount of energy balancing with the transfer process is taken or supplied to the heat source heat sink system by an electrodynamic unit connected to the rotary engines via the common shaft.
  • the heat transfer unit is constructed as a hermetically sealed pressure system in which all individual housing parts of the two Rotary piston engines and the electrodynamic unit itself are part of a common hermetic encapsulation.
  • the working fluid circulates between the rotary engines at varying pressures around a mean pressure of this hermetically sealed pressure system.
  • the electrodynamic unit works as a motor, generator or starter generator.
  • the inventive device for carrying out thermodynamic cycles consists of two interconnected rotary piston engines (KKM) with einbogigen trochoid and delta-piston, which via tubular connecting channels and a common shaft together to form a heat transfer unit (WTA) are connected.
  • KM rotary piston engines
  • WTA heat transfer unit
  • EDE electrodynamic unit
  • the arrangement of the electrodynamic unit EDE on the common shaft of the unit is not to be arranged between the two interconnected rotary engines of the unit, since this arrangement increases the length of the channels between the side covers and thus brings greater dead volume in the unit. Therefore, the electrodynamic unit EDE is sealingly arranged at one end of the common shafts of the unit, outside the shaft bearing of the two rotary engines.
  • the electrodynamic unit EDE has the same pressure level of the WTA at rest, but this part of the working medium does not participate in the process-related circulation of the working medium.
  • the housings and the side covers of the rotary engines are themselves part of a common hermetic enclosure, which is completed by end covers.
  • the individual housing parts of the two rotary piston engines are at the same time parts of a hermetic pressure system.
  • FIG. 4a A longitudinal section through the device, starting from the left on the shaft 3, a first rotary piston machine KKM1, a second rotary piston machine KKM2 and the electrodynamic unit EDE are arranged.
  • the first rotary piston machine KKM1 consists of a housing 1a with a single-curved trochoid as the raceway contour, a left side cover 6a arranged outwardly and a right side cover 6b arranged towards the rotary piston machine KKM2.
  • the side cover 6a is connected to a pressure-tight end cover 13, which surrounds the shaft 3 pressure-tight.
  • a double-headed piston 2a runs with the markings of its tips with A1 and B1.
  • the second rotary piston machine KKM2 consists of a housing 1 b with a single-curved trochoid as a raceway contour and a left to the rotary piston machine KKM1 out arranged side cover 6c and a outwardly to the electrodynamic unit EDE arranged right side cover 6d.
  • a double-headed piston 2b runs with the markings of its tips with A2 and B2. The marking of the tips of the two double-sided pistons 2a and 2b with the tips A1, A2, B1 and B2 is carried out for a simpler visualization of the movement sequence of the pistons 2a and 2b in the FIGS.
  • Both KKM1 and KKM2 rotary engines are equivalent in their function in the WTA and interchangeable.
  • the electrodynamic unit EDE with a pressure housing 9 with a lateral end cover 12.
  • a rotor 11 is arranged on the shaft 3, which is surrounded by a stator 10.
  • the hermetic encapsulation of the WTA must not be interrupted by the passage of a rotating shaft 3.
  • a non-illustrated pressure-tight passage through the pressure housing 9 is provided for cast in the capsule electrical cables.
  • FIGS. 1 and 3 show a tubular connecting channel 5 (FIG. Fig. 4b ) runs from the left side cover 6a of the rotary piston engine KKM1 to the right side cover 6d of the rotary piston engine KKM2 on the outside around both rotary piston machines KKM1 and KKM2 on the "cold" working side of the heat transfer unit.
  • FIGS. 1 and 3 show a tubular connecting channel 5 in the side cover 6a an opening 8a and in the side cover 6d an opening 8b.
  • Figure 4c shows a rotated by approximately 180 degrees view, so that the electrodynamic unit EDE is now located on the left side.
  • a tubular connecting channel 4 between the right side cover 6b of the rotary piston engine KKM1 and the left side cover 6c of the rotary piston engine KKM2 is visible on the "hot" working side of the heat transfer unit.
  • Connecting channel 4 are in the side cover 6b an opening 7a and in the side cover 6c an opening 7b provided.
  • the arrangement of the tubular connection channels 4 and 5 between the openings 7a, 7b, 8a and 8b in the side covers is such that the connection channel 4 between the two inner side covers 6b and 6c between the two rotary piston machines KKM1 and KKM2 and the connecting channel 5 from the outer Side cover 6a to the other outer side cover 6d of the unit runs.
  • Each of the four side covers 6a to 6d of the unit has only one opening for the change of the working medium.
  • the openings 7a, 7b, 8a and 8b are located in the area of the passing lateral piston tips A1, A2, B1 and B2.
  • FIGS. 1a to 2d show a passage of the thermodynamic process with the various positions of the piston, the rotary piston machines KKM1 and KKM2 are in the drawing plane next to each other, although in the real aggregate, the rotary piston machines KKM1 and KKM2 are superimposed with respect to the plane of the drawing. This is necessary for reasons of clear representation of the functional relationships, from this there is no impairment in the presentation of the inventive request.
  • FIG. 1a shows the position of the piston 2a of the rotary piston machine KKM1 directed at an angle of 45 degrees to the main axis of the single-arched trochoid.
  • the main axis defines a line passing through the mathematical origin of the trochoid and the center of the wave 3.
  • the piston tip B1 is at the top and the piston tip A1 is at the bottom.
  • a smaller working chamber is located on the left above the piston 2a and a larger working chamber on the right below the piston 2a.
  • the position of the piston 2b of the rotary piston engine KKM2 is directed at an angle of 135 degrees to the main axis.
  • the piston tip A2 is at the top and the piston tip B2 is at the bottom.
  • a smaller working chamber is located on the right above the piston 2b and a larger one Working chamber on the left below the piston 2b.
  • the pistons 2a and 2b are formed with the working chambers of the rotary piston engines KKM1 and KKM2 working volumes by the two smaller working chambers are communicatively connected through the tubular connecting channel 4 and the two larger working chambers through the tubular connecting channel 5.
  • the two smaller connected working chambers give the minimum, the two larger working chambers give the maximum working volume of the WTA.
  • the heat transfer unit WTA At rest, the heat transfer unit WTA have the media subsets in the two working volumes the same pressure level, regardless of the piston positions, since their mutual sealing by the piston 2a, 2b is only "dynamically tight".
  • FIG. 5 shows in one embodiment, a valve 14 in a connecting line, with the between the connecting channels 4 and 5, the pressure compensation for filling, starting and stopping the unit can be done.
  • FIGS. 1b and 1c show the position of the piston 2a and 2b after a rotation of 45 degrees clockwise.
  • Figure 1d shows the position of the pistons 2a and 2b after a total rotation of 180 degrees clockwise.
  • the heat transfer unit has again reached the minimum or maximum working volume.
  • the marked piston tips A1 and B1 or A2 and B2 are now cyclically reversed by the piston tip A1 above and the piston tip B1 below and the piston tip B2 above and the piston tip A2 are down.
  • FIGS. 1a to 1d are the opening 8a in the side cover 6a, the opening 8b in the side cover 6d (in the outer side covers 6a and 6d of the composite of the two rotary engines KKM1 and KKM2), the Opening 7a in the side cover 6b and the opening 7b in the side cover 6c (in the two inner side covers 6b and 6c of the composite of the two rotary piston machines KKM1 and KKM2) schematically drawn.
  • the opening 7a and the opening 8b are arranged below the flattened Trochoidenkontur.
  • the openings 8a and 7b point towards the circular side of the trochoid.
  • the opening 7a on the top right and the opening 8a on the bottom left of the rotary piston machines KKM1 lie, diagrammatically, diagonally opposite.
  • Each opening 7a, 7b, 8a and 8b is covered by a piston tip A1, A2, B1 and B2 when the pistons 2a and 2b are offset by 90 degrees.
  • the openings 7a, 7b, 8a and 8b covered by the lateral piston tips A1, A2, B1 and B2 are located on respectively opposite sides of the pistons 2a and 2b of a rotary piston engine KKM1 or KKM2.
  • FIGS. 2a to 2d show a passage of the thermodynamic process with marked tubular connecting channels 4 and 5 and how they are connected to the working chambers, wherein the Connecting channel 4 is disposed between the opening 7a and the opening 7b and the connecting channel 5 between the opening 8a and the opening 8b.
  • the Connecting channel 4 is disposed between the opening 7a and the opening 7b and the connecting channel 5 between the opening 8a and the opening 8b.
  • FIG. 2a shows the pistons 2a and 2b in a position corresponding to the position in FIG. 1a equivalent.
  • the connecting channel 4 connects the rotary piston engine KKM1 with the rotary piston engine KKM2.
  • the collective work volume formed hereby has its minimum in this position.
  • the connecting channel 5 also connects the rotary piston engine KKM1 with the rotary piston engine KKM2.
  • the joint working volume formed hereby has its maximum in this position.
  • FIGS. 2b to 2d show the changes in the working volumes until they have reached the respective size changes after a total rotation of the pistons 180 degrees.
  • the connecting channels 4 and 5 are closed by the side surfaces of the piston.
  • FIGS. 3a to 3f show, as a sequence of steps, the assembly of the unit with the side covers 6a to 6d along the common shaft 3.
  • FIG. 3a starts with the eccentric 31a, the side cover 6b, which belongs to the rotary piston machine KKM1, a shaft bearing, not further designated, the side cover 6c, which belongs to the rotary piston machine KKM2, and the eccentric 31b.
  • the side cover 6b is the opening 7a, in the side cover 6c, the opening 7b.
  • tubular connecting channel 4 connects to the openings 7a and 7b of the not shown in this figure.
  • FIG. 3a It can be seen that the opening 7a is offset by an angle of 45 degrees with respect to the main axis and the opening 7b by an angle of 135 degrees with respect to the main axis.
  • FIGS. 1a and 2a Both openings and thus the connecting channel 4 are closed by the piston 2a and 2b.
  • Figure 3b shows this with the piston 2b, which closes the opening 7b.
  • FIG. 3d figure also the piston 2a and the side cover 6a of the rotary piston engine KKM1 is added.
  • the FIG. 3e shows a view without a piston.
  • FIG. 3f again shows a view with two pistons 2a and 2b in the position after the FIGS. 1a and 2a , The opening 8a is closed by the piston 2a and the opening 8b is closed by the piston 2b.
  • the connecting channel 5 is also closed in this piston position.
  • thermodynamic cycles of the WTA is associated with the stated location of the openings in the side covers according to a 45 degree / 135 degree arrangement pattern:
  • the gradient of change in the individual working chambers is also important. After that, for example, when the minimum volume is increased, first a flow through the connecting channel 4 to the enlarging working chamber takes place - which is plausible. From a certain piston rotation angle, however, the gradient of the volume change in the working chamber to be filled is smaller than the gradient of the delivering chamber. This results in a reversal of the flow, resulting in an intense heat transfer in the connecting channel 4. The same effect occurs analogously on the side of reduction of the maximum volume in the connecting channel 5.
  • connection channels 4 and 5 are of importance for the WTA since there is no metabolism with the environment.
  • thermodynamic engine cycle a so-called right - handed thermodynamic engine cycle is considered. If heat energy is supplied to the connection channel 4 from an external heat source, an increase in pressure of the enclosed medium, for example helium as a heat carrier, is produced in the upper working volume, connected to pressure forces on the pistons 2a and 2b and a torque acting in the shaft 3, which is the rotation of the electrodynamic Unit EDE and output of electrical energy affects.
  • isochore pressure increase up to a rotation angle change of about 30 degrees, then the expansion of the working medium takes place with simultaneous heat supply close to one Isotherms.
  • there isochronous pressure reduction with temperature reduction in phase with the volume flow in the upper working volume.
  • This pressure reduction affects the gain of the torque in the shaft 3. Thereafter, a compression of the working medium with the release of heat energy via the connecting channel 5 to the environment. Depending on whether this heat release during compression is supported by an active cooling, this runs along a polytropic, ideally along an isotherm.
  • the unit works as an engine, similar to the Stirling engine.
  • the structural design of the unit is such that the "zero position" is preferably characterized by the 45-degree position of the piston 2a and 2b. This position causes the operation of the unit the effect that the heat transfer of an external heat energy through the wall of the connecting channel 4 is particularly intense. This effect arises from the fact that the flow of the working medium through the connecting channel 4 again reverses when the gradient of the volume change of the upper working chamber of the rotary piston engine KKM1 is greater than the gradient of the volume change of the upper working chamber of the rotary piston engine KKM2, although the two pistons 2a and Turn 2b evenly in working direction.
  • the energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a generator.
  • thermodynamic unit EDE which operates here as a drive motor.
  • the compression of the working medium takes place in the lower working volume.
  • the working medium takes in an isochoric phase up to a rotation angle change of about 30 degrees via the connecting channel 5 heat energy from an ambient space, connected to an increase in pressure, on.
  • the subsequent further compression is done with further absorption of ambient heat as polytrope. Accordingly, the working medium circulates between the rotary piston engines KKM1 and KKM2 with changing pressures around a mean pressure of the hermetically sealed pressure system.
  • FIG. 2d shows the completed process.
  • the cooled working fluid is now in the lower working volume, where it absorbs ambient heat via the connecting channel 5 and is compressed again. The cycle begins again.
  • the energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a motor.
  • the unit works as a refrigeration machine. The purpose can be both a cooling process and heating process.
  • the described hermetic encapsulation of the unit allows further operating variants.
  • pressure change values between minimum and maximum volume of the media subsets can reach up to a value of about 6.
  • pressures in the upper working volume of about 1800 bar can be achieved.
  • the heat transfer unit described is operated at a base pressure of, for example, 300 bar in a cyclic process, its properties are reversed so that when the working medium is compressed in the lower working volume, cooling takes place via the connecting channel 5, ambient heat is absorbed successful expansion in the upper working volume via the connecting channel 4 is released as useful heat.
  • the electrodynamic unit EDE is operated as a starter generator, a discharge of electrical energy takes place after the engine phase in the generator mode.
  • the heat transfer unit works as an engine, but it must be started by a starter unit similar to an internal combustion engine.
  • the energy delivered by the electrodynamic unit EDE must also be used to actively dissipate the heat at the connection channel 4 in accordance with the laws of thermodynamics.
  • thermodynamic cycle analysis on the basis of the state diagrams for CO2, for example, shows that after covering all amounts of energy for internal mechanical friction and active heat supply and removal operations on the connecting channels 5 and 4, a positive amount remains on the electrodynamic unit EDE, which consists of the hermetic Encapsulation must be led out as an electrical load and then fed again as a heat equivalent of the environment.
  • FIG. 6 In a further embodiment, an arrangement is shown, which contributes to the increase of the power.
  • a heat pipe 15 is arranged between the connecting channel 4 and the connecting channel 5.
  • a connection 41 is provided for this purpose and a connection 51 for the heat pipe 15 is provided on the connection channel 5.
  • the heat pipe 15 transports heat from the connection 51 of the connection channel 5 to the connection 41 of the connection channel 4 on a small cross-sectional area and can be used in various designs, for example in the form of a heat pipe or a two-phase thermosyphon. The function is explained below.
  • the environment of the heat transfer unit consists of a heat source heat sink system with external heat sources, such as engine waste heat, and heat sinks, such as space heating. Heat energy is transferred between the heat sources and heat sinks, and a resultant amount of energy resulting from the transfer process is extracted or supplied by an EDE to the heat source heat sink system via an external energetic application.

Abstract

Gegenstand der Erfindung ist ein Wärme-Transfer-Aggregat und ein-Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregat unter Nutzung von zwei miteinander verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und Zweieck-Kolben. Die erfindungsgemäße Lösung ist eine Anordnung zweier gleicher Kreiskolbenmaschinen (KKM) und einer elektrodynamischen Einheit (EDE), die sich in einem Hermetik-System befinden. Die beiden Kreiskolbenmaschinen sind innerhalb des Hermetik-Systems durch eine gemeinsame reale oder funktionale Welle verbunden, wobei ihre Drehbewegung ein gemeinsam benutztes abgeschlossenes, in Masse und Gesamtvolumen konstantes Arbeitsmedium durch die Prozessphasen Kompression und Expansion in thermodynamischen Kreisprozessen mit externer Wärmezufuhr bzw. Wärmeabfuhr ohne Verwendung von Ventilsteuerorganen führt. Die Anordnung teilt prozessphasenweise das gemeinsam benutzte Arbeitsmedium in eine Teilmenge Kompression und eine Teilmenge Expansion. Im Folgenden wird der Begriff "Wärme-Transfer-Aggregat" (WTA) für das Gesamtaggregat verwendet.The invention relates to a heat transfer unit and a method for carrying out thermodynamic cycle processes by means of a heat transfer unit using two interconnected rotary piston engines with einbogigen trochoid and Zweieck flask. The solution according to the invention is an arrangement of two identical rotary piston machines (KKM) and one electrodynamic unit (EDE), which are located in a hermetic system. The two rotary piston engines are connected within the hermetic system by a common real or functional shaft, wherein their rotary motion is a common closed, in mass and total volume constant working medium through the process phases compression and expansion in thermodynamic cycle processes with external heat or heat dissipation without the use of Valve control leads. The assembly shares in a process-phased manner the shared working medium into a subset of compression and a subset of expansion. Hereinafter, the term "heat transfer aggregate" (WTA) is used for the entire aggregate.

Description

Gegenstand der Erfindung ist ein Wärme-Transfer-Aggregat und ein Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats unter Nutzung von zwei miteinander verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und Zweieck-Kolben.The invention relates to a heat transfer unit and a method for carrying out thermodynamic cycle processes by means of a heat transfer unit using two interconnected rotary piston engines with einbogigen trochoidal and delta-piston.

Der Stand der Technik wird in folgenden Patentveröffentlichungen offenbart.The prior art is disclosed in the following patent publications.

US 5335497 A weist zwei auf einer gemeinsamen Welle arbeitende Zweieck-Kolben auf, die ein abgeschlossenes Arbeitsmedium für Kompression und Expansion verwenden. Der Medienwechsel zu/von den Arbeitsräumen erfolgt über die Laufbahnflächen. Hierdurch haben beide Kolben bei bestimmten Winkelstellungen eine Kurzschlussströmung. Der beschriebene thermodynamische Prozessablauf ist mit den dargestellten Winkelstellungen Kolben ohne zusätzliche Steuerorgane nicht realisierbar. US 5335497 A has two common-shaft twin-piston pistons that use a closed working fluid for compression and expansion. The change of media to / from the workspaces takes place via the raceway surfaces. As a result, both pistons have a short-circuit flow at certain angular positions. The described thermodynamic process sequence is not feasible with the illustrated angular positions piston without additional control elements.

US 4179890 A und US 5211017 A weisen als gemeinsames Merkmal abgeschlossene Medienkreisläufe auf, jedoch arbeiten diese Aggregate nicht mit Zweieckkolben. Hieraus ergeben sich aus thermodynamischer Sicht andere, ungünstigere Prozessbedingungen, da sich geometrisch bedingt nur geringe Druckänderungen realisieren lassen. Der Medienwechsel über Kanäle in den Laufbahnflächen kann zur Kurzschlussströmung um die Kolben führen. US 4179890 A and US 5211017 A have as a common feature completed media cycles, however, these units do not work with double-sided pistons. From a thermodynamic point of view, this results in other, less favorable process conditions, since geometrically only small pressure changes can be realized. The media change over channels in the raceway surfaces can lead to short-circuit flow around the pistons.

US 5317996 A zeigt eine Maschine, die mehrere durch eine gemeinsame Welle verbundene Zweieck-Kolben hat. Der Medienwechsel erfolgt über Öffnungen in den Laufbahnflächen. Die Öffnungen sind so angeordnet, dass in bestimmten Winkelstellungen Kurzschlussströmungen um die Kolben auftreten, die sich auch durch die vorgesehenen Steuerorgane nicht vermeiden lassen. US 5317996 A shows a machine having a plurality of connected by a common shaft Zweieck-piston. The media change takes place via openings in the raceway surfaces. The openings are arranged so that in certain angular positions short-circuit flows around the pistons occur, which can not be avoided by the proposed control organs.

EP 1075595 B1 weist zwei Dreieck-Kolben auf. Die Maschine hat zwei Gehäuse in Form zweibogiger Trochoiden, entsprechend der bekannten Wankelmaschine. Die Maschine verwendet ein gemeinsames abgeschlossenes Arbeitsmedium, wobei die Kanäle für den Medienwechsel zwischen den Gehäusen an den Seitendeckeln ansetzen. EP 1075595 B1 has two triangle pistons. The machine has two housings in the shape of two-bows Trochoids, according to the well-known Wankelmaschine. The machine uses a common sealed working fluid with the media change channels between the housings attaching to the side covers.

DE 3333586 A1 zeigt zwei Drehkolbenmaschinen, deren innerachsige Rotoren durch jeweils zwei von außen, in den Gehäusen geführten Schiebern jeweils zwei Arbeitskammern bilden. Die Rotoren laufen exzentrisch zu den kreisförmigen Gehäusen. Sie sind durch eine gemeinsame Welle verbunden. Die Rotoren haben einen Drehwinkelversatz von 90 Grad. Die Maschine arbeitet mit einem abgeschlossenen Medium. Der Medienwechsel zu/von den Arbeitsräumen erfolgt über die Laufbahnflächen. Die Anordnung der Dichtelemente in Form der Schieber widerspricht dem Wankeischen Axiom, wonach eine funktionierende Rotationskolbenmaschine nur zwei relativ zueinander bewegte, den Arbeitsraum bildende Bauteile haben darf und die Dichtelemente auf dem bewegten Bauteil angeordnet sein müssen. DE 3333586 A1 shows two rotary piston machines, whose inner-axis rotors each form two working chambers by two from the outside, guided in the housings slides. The rotors are eccentric to the circular housings. They are connected by a common wave. The rotors have a rotation angle offset of 90 degrees. The machine works with a sealed medium. The change of media to / from the workspaces takes place via the raceway surfaces. The arrangement of the sealing elements in the form of the slide contradicts the Wankeischen axiom, according to which a functioning rotary piston machine may only have two relatively moving, forming the working space components and the sealing elements must be arranged on the moving component.

Darstellung der ErfindungPresentation of the invention

Aufgabe der Erfindung ist es, die Realisierung eines Wärme-Transfer-Aggregats unter den Grundprinzipien thermodynamischer Prozesse wie beispielsweise eines Stirlingprozesses oder eines CO2-Kälteprozesses vorzunehmen, wobei eine Kreisprozessführung abgeschlossener Medien mit ausreichenden Druckänderungen zwischen Kompression und Expansion sowie ein hermetischer Abschluss des Wärme-Transfer-Aggregats erforderlich sind, um Prozesse unter höheren Drücken gestatten zu können. Höhere Drücke und damit höhere Stoffdichten der abgeschlossenen Medien ergeben bessere Wärmeübergangswerte zwischen dem zirkulierenden Medium und den Bauteilen, die vom dem Medium durchströmt werden und erhöhen die Leistungsdichte des Kreisprozesses bzw. der Anordnung.The object of the invention is to carry out the realization of a heat transfer unit under the basic principles of thermodynamic processes such as a Stirling process or a CO2 refrigeration process, wherein a Kreisprozessführung completed media with sufficient pressure changes between compression and Expansion and a hermetic completion of the heat transfer unit are required to allow processes under higher pressures can. Higher pressures and thus higher substance densities of the closed media result in better heat transfer values between the circulating medium and the components through which the medium flows and increase the power density of the cycle or the arrangement.

Die Lösung der Aufgabe wird durch die Anordnung zweier gleicher Kreiskolbenmaschinen (KKM) und einer elektrodynamischen Einheit (EDE), die sich in einem Hermetik-System befinden, realisiert. Die beiden Kreiskolbenmaschinen sind innerhalb des Hermetik-Systems durch eine gemeinsame reale oder funktionale Welle verbunden, wobei ihre Drehbewegung ein gemeinsam benutztes abgeschlossenes, in Masse und Gesamtvolumen konstantes Arbeitsmedium durch die Prozessphasen Kompression und Expansion in thermodynamischen Kreisprozessen mit externer Wärmezufuhr bzw. Wärmeabfuhr ohne Verwendung von Ventilsteuerorganen führt. Die Anordnung teilt prozessphasenweise das gemeinsam benutzte Arbeitsmedium in eine Teilmenge Kompression und eine Teilmenge Expansion. Im Folgenden wird der Begriff "Wärme-Transfer-Aggregat" (WTA) für das Gesamtaggregat verwendet.The solution of the problem is realized by the arrangement of two identical rotary piston machines (KKM) and an electrodynamic unit (EDE), which are located in a hermetic system. The two rotary piston engines are connected within the hermetic system by a common real or functional shaft, wherein their rotary motion is a common closed, in mass and total volume constant working medium through the process phases compression and expansion in thermodynamic cycles with external heat or heat dissipation without the use of Valve control leads. The assembly divides the shared working medium into a subset of compression and a subset of expansion in a process-phased manner. Hereinafter, the term "heat transfer aggregate" (WTA) is used for the entire aggregate.

Die erfinderische Lösung geht von dem aus der Analyse des Standes der Technik abgeleiteten Anforderungsprofil aus. Dieses Anforderungsprofil beinhaltet die Verwendung von zwei gleichen Rotationskolbenmaschinen (RKM), die der Bedingung genügen, dass sie das Wankeische Axiom erfüllen, wonach nur Maschinen als Kraftmaschinen funktionieren, die aus nur zwei relativ zueinander bewegten, den Arbeitsraum umgrenzenden Bauteilen bestehen. Zum Anforderungsprofil gehört, dass von allen hiernach infrage kommenden Maschinen nur zwei gleiche Kreiskolbenmaschinen (KKM) mit einem Zweieck-Kolben und einer einbogigen Trochoide verwendet werden. Sie weisen die größten Volumenänderungen in den Prozessphasen auf. Geometrisch bedingt und kennzeichnend für Zweieck-Kolben ist die Möglichkeit der Kurzschlussumströmung des Kolbens, wenn Öffnungen für den Medienwechsel einer KKM nicht exakt diametral zur Längsachse des Kolbens angeordnet sind und in Dreh-Umfangsrichtung nicht durch die Kolbenspitzen geteilt werden. Daraus folgt, dass die Öffnungen für den Medienwechsel nicht in der Laufflächenkontur der einbogigen Trochoide angeordnet sein dürfen, da dies zu Kurzschlussströmungen um die Zweieck-Kolben und damit zur Aufhebung der Abgrenzung der Medien-Teilmengen führt. Die Öffnungen für den Medienwechsel sind in den Seitendeckeln anzuordnen, wie es bereits aus EP 1075595 B1 ersichtlich ist. Die Kolben der KKM sind zugleich die Steuerorgane für das Öffnen und Schließen der Öffnungen. Dies führt nur dann zu einer zufriedenstellenden Lösung, wenn die Kolben nach dem in WO 2008065017 A1 dargelegten Funktionsprinzip aufgebaut sind und die Forderung nach einer aktiven, mit Feder- oder Medienkräften wirkenden, Flächendichtung erfüllen. Nach dem Coulombschen Reibungsgesetz gilt, dass die Reibungskräfte nicht von der Größe der Reibflächen abhängen. Die radialen Abdichtungen an den Spitzen der Kolben erfolgen durch federnde Dichtleisten, die sich zugleich auch in axialer Richtung federnd an die Seitendeckel anlegen und somit eine vollständige Abdichtung der Arbeitskammern gegeneinander ergeben. Dieses Dichtsystem ist der bekannte Stand der Technik und durch Patenterteilungen international geschützt. Es ist nicht Gegenstand der vorliegenden Anmeldung, jedoch ist die dichtende flächige Anlage der Kolbenseiten an den Seitendeckeln eine notwendige Voraussetzung der erfinderischen Lösung. Zwei zusammen arbeitende gleiche Kreiskolbenmaschinen mit einbogiger Trochoide ergeben wiederum nur dann eine größte Volumenänderung der Medien-Teilmengen, wenn die Trochoiden gleiche Ausrichtung bezüglich ihrer Hauptachse haben und wenn ihre Kolben um 90 Grad versetzt arbeiten. Erfindungsgemäß müssen hierfür insgesamt vier Öffnungen in den Seitendeckeln (jeweils eine Öffnung in jedem Seitendeckel) angeordnet sein, die ein Anordnungsmuster aufweisen, welches bei Sicht in Richtung der gemeinsamen Achse ein Kreuz ergibt mit zwei um 90 Grad versetzten Achsen, die jeweils um 45 Grad gegenüber einer gedachten Hauptachse versetzt sind. Die Öffnungen in den Seitendeckeln werden entlang den Kreuzachsen soweit an die Trochoidenkonturen heran angeordnet, dass alle Öffnungen vollständig und gleichweit entfernt von den Kolbenmitten durch die vorbeilaufenden Kolbenseiten zugleich abgedeckt werden können, womit das Vermeiden von Kurzschlussumströmungen um die Zweieck-Kolben verhindert wird.The inventive solution is based on the requirement profile derived from the analysis of the prior art. This requirement profile involves the use of two identical rotary piston machines (RKMs), which satisfy the condition that they fulfill the Wanke's axiom, according to which only machines function as prime movers consisting of only two components moving relative to each other and bounding the working space. Part of the requirement profile is that of all the machines considered below, only two identical rotary piston engines (CCM) with a double-sided piston and a single-bore trochoid are used. They show the largest volume changes in the process phases. Geometrically conditioned and characteristic of Zweieck-Kolben is the possibility of Short-circuit flow around the piston, if openings for changing the media of a KKM are not arranged exactly diametrically to the longitudinal axis of the piston and are not divided in the circumferential direction by the piston tips. It follows that the openings for the media change must not be arranged in the tread contour of the single-arched trochoid, as this leads to short-circuit flows around the delta-piston and thus to cancel the delimitation of the media subsets. The openings for the media change are to be arranged in the side covers, as it already is EP 1075595 B1 is apparent. The pistons of the KKM are also the control organs for opening and closing the openings. This only leads to a satisfactory solution when the piston after the in WO 2008065017 A1 have been established operating principle and meet the demand for an active, acting with spring or media forces, surface seal. According to the Coulomb friction law, the frictional forces do not depend on the size of the friction surfaces. The radial seals at the tips of the pistons are made by resilient sealing strips, which at the same time invest resiliently in the axial direction of the side cover and thus provide a complete seal of the working chambers against each other. This sealing system is the known state of the art and internationally protected by patent assignments. It is not the subject of the present application, however, the sealing surface area of the piston sides on the side covers is a necessary requirement of the inventive solution. Two co-operating same rotary engines with einbogiger Trochoide in turn only result in a largest change in volume of the media subsets when the Trochoids have the same orientation with respect to their major axis and when their pistons offset by 90 degrees. According to the invention for this purpose, a total of four openings in the side covers (one opening in each side cover) may be arranged, which have a pattern arrangement, which results in a view in the direction of the common axis a cross with two offset by 90 degrees axes, each opposite 45 degrees an imaginary one Main axis are offset. The apertures in the side covers are arranged close to the trochoidal contours along the axes of the cross so that all the apertures can be completely and equally spaced away from the piston centers by the passing sides of the piston, thus preventing the avoidance of short circuit flow around the two-cornered pistons.

Das erfindungsgemäße Wärme-Transfer-Aggregat besteht aus zwei miteinander über Verbindungskanäle und einer gemeinsamen Welle verbundenen Kreiskolbenmaschinen mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben mit jeweils zwei Kolbenspitzen. Die Verbindungskanäle ermöglichen über vier Öffnungen in den vier Seitendeckeln der Kreiskolbenmaschinen einen Wechsel des Arbeitsmediums. In jeweils einem Seitendeckel ist jeweils nur eine Öffnung in der Art angeordnet, dass die vorbeilaufenden Kolbenspitzen als Steuerorgane für das Öffnen und Schließen der Öffnungen für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen im thermodynamischen Arbeitsprozess abdichtend wirken. Auf der gemeinsamen Welle ist eine elektrodynamische Einheit (EDE) einseitig angeordnet. Dabei liegen sich jeweils zwei Öffnungen einer Kreiskolbenmaschine, schematisch gesehen, diagonal in einem Winkel von 45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide gegenüber. Die Anordnung aller Öffnungen beider Kreiskolbenmaschinen ist, schematisch gesehen, ein Kreuz mit zwei um 90 Grad versetzten Achsen.The heat transfer unit according to the invention consists of two mutually connected via connecting channels and a common shaft rotary engines with einbogigen trochoidal and offset by 90 degrees against each other two-piston with two piston tips. The connection channels allow a change of the working medium via four openings in the four side covers of the rotary piston engines. In each case a side cover only one opening is arranged in each case such that the passing piston tips act as a control organs for opening and closing the openings for the change of the working medium between the rotary piston engines in the thermodynamic working process sealing. On the common shaft, an electrodynamic unit (EDE) is arranged on one side. In each case, there are two openings of a rotary piston machine, seen diagonally opposite at an angle of 45 degrees to an imaginary main axis of the single-arched trochoid. The arrangement of all openings of both rotary engines is, seen schematically, a cross with two offset by 90 degrees axes.

Bei einer Arbeitsstellung des ersten Zweieck-Kolbens in einem Winkel von 45 Grad und des zweiten Zweieck-Kolbens in einem Winkel von -45 Grad zu der gedachten Hauptachse der einbogigen Trochoide sind alle Öffnungen in den Seitendeckeln durch die Kolbenspitzen für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen geschlossen.At a working position of the first delta-piston at an angle of 45 degrees and the second delta-piston at an angle of -45 degrees to the imaginary major axis of the single-arched trochoid are all openings in the side covers through the piston tips for the change of the working medium between the Closed-circuit engines closed.

Ein Verbindungskanal ist zwischen den Öffnungen der inneren Seitendeckel der beiden Kreiskolbenmaschinen und der zweite Verbindungskanal ist zwischen den Öffnungen der äußeren Seitendeckel beider Kreiskolbenmaschinen angeordnet. Die Verbindungskanäle sind rohrförmig und mit Wärmeübertragern verbunden.A communication passage is disposed between the openings of the inner side covers of the two rotary engines, and the second communication passage is disposed between the openings of the outer side covers of both rotary engines. The connection channels are tubular and connected to heat exchangers.

In einer Ausführungsform ist zwischen den Verbindungskanälen eine Verbindungsleitung mit einem Ventil für einen Druckausgleich beim Befüllen, Anfahren oder Abstellen des Aggregats angeordnet.In one embodiment, a connecting line with a valve for pressure equalization during filling, starting or stopping of the unit is arranged between the connecting channels.

In einer weiteren Ausführungsform ist zwischen dem zweiten Verbindungskanal und dem ersten Verbindungskanal ein Wärmerohr angeordnet, welches eine Abfuhr von Wärme am zweiten Verbindungskanal und eine Zufuhr von Wärme am ersten Verbindungskanal unterstützt.In a further embodiment, a heat pipe is arranged between the second connection channel and the first connection channel, which supports a dissipation of heat at the second connection channel and a supply of heat at the first connection channel.

Das erfindungsgemäße Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats nutzt zwei miteinander über eine gemeinsamen Welle verbundene Kreiskolbenmaschinen mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben. In einem hermetisch abgeschlossenen Drucksystem nutzt jede der Kreiskolbenmaschinen für sich und mittels ihrer mechanischen Kopplung gemeinsam durch mechanische Kompression und Expansion ein in beiden Kreiskolbenmaschinen zirkulierendes, abgeschlossenes Arbeitsmedium. Es wird Wärmeenergie zwischen Wärmequellen und Wärmesenken transferiert, welche ein Wärmequellen-Wärmesenken-System bilden und mit dem Wärme-Transfer-Aggregat in Verbindung stehen. Ein mit dem Transferprozess bilanzierenden resultierenden Energiebetrag wird durch eine, mit den Kreiskolbenmaschinen über die gemeinsame Welle verbundene elektrodynamische Einheit dem Wärmequellen-Wärmesenken-System entnommen oder zugeführt.The method according to the invention for carrying out thermodynamic cycle processes by means of a heat transfer unit uses two rotary piston machines connected to one another via a common shaft with single-sided trochoidal and two-cornered pistons staggered by 90 degrees. In a hermetically sealed pressure system, each of the rotary engines uses, by itself and by mechanical coupling, by mechanical compression and expansion, a closed working fluid circulating in both rotary engines. Heat energy is transferred between heat sources and heat sinks which form a heat source heat sink system and communicate with the heat transfer aggregate. A resulting amount of energy balancing with the transfer process is taken or supplied to the heat source heat sink system by an electrodynamic unit connected to the rotary engines via the common shaft.

Das Wärme-Transfer-Aggregat ist als ein hermetisch abgeschlossenes Drucksystem aufgebaut, in dem alle einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen und der elektrodynamischen Einheit selbst Teil einer gemeinsamen Hermetik-Kapselung sind. Das Arbeitsmedium zirkuliert zwischen den Kreiskolbenmaschinen mit wechselnden Drücken um einen mittleren Druck dieses hermetisch abgeschlossenen Drucksystems.The heat transfer unit is constructed as a hermetically sealed pressure system in which all individual housing parts of the two Rotary piston engines and the electrodynamic unit itself are part of a common hermetic encapsulation. The working fluid circulates between the rotary engines at varying pressures around a mean pressure of this hermetically sealed pressure system.

Die elektrodynamische Einheit arbeitet als Motor, Generator oder Startergenerator.The electrodynamic unit works as a motor, generator or starter generator.

Ausführung der ErfindungEmbodiment of the invention

Die prinzipielle Funktion der erfindungsgemäßen Vorrichtung wird an einem Beispiel beschrieben. Hierzu zeigen die

  • Figuren 1a bis 2d einen Durchlauf des thermodynamischen Prozesses mit den verschiedenen Stellungen der Kolben,
  • Figuren 2a bis 2d einen Durchlauf des thermodynamischen Prozesses mit eingezeichneten rohrförmigen Kanälen,
  • Figuren 3a bis 3f in einer Abfolge von Schritten den Zusammenbau des Aggregats mit Seitendeckeln entlang einer gemeinsamen Achse,
  • Figur 4a einen Längsschnitt durch die erfindungsgemäße Vorrichtung,
  • Figuren 4b und 4c die angeschlossenen rohrförmigen Kanäle in verschiedenen Rotationsansichten des Wärme-Transfer-Aggregats,
  • Figur 5 die Stellung der Kolben mit gleich großen Arbeitsvolumina mit einem Ventil für einen Druckausgleich und
  • Figur 6 ein weiteres Ausführungsbeispiel zur Steigerung der Leistung.
The principal function of the device according to the invention will be described by way of example. To show the
  • FIGS. 1a to 2d a passage of the thermodynamic process with the different positions of the pistons,
  • FIGS. 2a to 2d a passage of the thermodynamic process with drawn tubular channels,
  • FIGS. 3a to 3f in a sequence of steps, assembling the aggregate with side covers along a common axis,
  • FIG. 4a a longitudinal section through the device according to the invention,
  • Figures 4b and 4c the connected tubular channels in different rotational views of the heat transfer unit,
  • FIG. 5 the position of the piston with equal working volumes with a valve for pressure equalization and
  • FIG. 6 another embodiment for increasing the performance.

Die erfindungsgemäße Vorrichtung zur Durchführung thermodynamischer Kreisprozesse besteht aus zwei miteinander verbundenen Kreiskolbenmaschinen (KKM) mit einbogigen Trochoiden und Zweieck-Kolben, welche über rohrförmige Verbindungskanäle und einer gemeinsamen Welle miteinander zu einem Wärme-Transfer-Aggregat (WTA) verbunden sind. Auf der gemeinsamen Welle ist einseitig eine elektrodynamische Einheit EDE angeordnet. Die Anordnung der elektrodynamischen Einheit EDE auf der gemeinsamen Welle des Aggregats ist nicht zwischen den zwei miteinander verbundenen Kreiskolbenmaschinen des Aggregats anzuordnen, da diese Anordnung die Länge der Kanäle zwischen den Seitendeckeln vergrößert und damit größere Totvolumen in das Aggregat bringt. Daher ist die elektrodynamische Einheit EDE an ein Ende der gemeinsamen Wellen des Aggregats, außerhalb des Wellenlagers der zwei Kreiskolbenmaschinen dichtend angeordnet. Die elektrodynamische Einheit EDE hat das gleiche Druckniveau des WTA im Ruhezustand, wobei dieser Teil des Arbeitsmediums aber nicht an der Prozessbedingten Zirkulation des Arbeitsmediums teilnimmt. Die Gehäuse und die Seitendeckel der Kreiskolbenmaschinen sind selbst Teil einer gemeinsamen Hermetik-Kapselung, die durch Abschlussdeckel vervollständigt wird. Die einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen sind zugleich Teile eines hermetischen Drucksystems.The inventive device for carrying out thermodynamic cycles consists of two interconnected rotary piston engines (KKM) with einbogigen trochoid and delta-piston, which via tubular connecting channels and a common shaft together to form a heat transfer unit (WTA) are connected. On the common shaft an electrodynamic unit EDE is arranged on one side. The arrangement of the electrodynamic unit EDE on the common shaft of the unit is not to be arranged between the two interconnected rotary engines of the unit, since this arrangement increases the length of the channels between the side covers and thus brings greater dead volume in the unit. Therefore, the electrodynamic unit EDE is sealingly arranged at one end of the common shafts of the unit, outside the shaft bearing of the two rotary engines. The electrodynamic unit EDE has the same pressure level of the WTA at rest, but this part of the working medium does not participate in the process-related circulation of the working medium. The housings and the side covers of the rotary engines are themselves part of a common hermetic enclosure, which is completed by end covers. The individual housing parts of the two rotary piston engines are at the same time parts of a hermetic pressure system.

In Figur 4a, einem Längsschnitt durch die Vorrichtung, sind von links beginnend auf der Welle 3 eine erste Kreiskolbenmaschine KKM1, eine zweite Kreiskolbenmaschine KKM2 und die elektrodynamische Einheit EDE angeordnet. Die erste Kreiskolbenmaschine KKM1 besteht aus einem Gehäuse 1a mit einer einbogigen Trochoide als Laufbahnkontur, einem linken, nach außen hin angeordneten Seitendeckel 6a und einem rechten zur Kreiskolbenmaschine KKM2 hin angeordneten Seitendeckel 6b. Der Seitendeckel 6a ist mit einem druckdichten Abschlussdeckel 13 verbunden, welcher auch die Welle 3 druckdicht umfängt. In dem Gehäuse der Kreiskolbenmaschine KKM1 auf der Welle 3 läuft ein Zweieck-Kolben 2a mit den Kennzeichnungen seiner Spitzen mit A1 und B1. Ebenso besteht die zweite Kreiskolbenmaschine KKM2 aus einem Gehäuse 1 b mit einer einbogigen Trochoide als Laufbahnkontur und einem linken zur Kreiskolbenmaschine KKM1 hin angeordneten Seitendeckel 6c sowie einem nach außen, zur elektrodynamischen Einheit EDE hin angeordneten rechten Seitendeckel 6d. In dem Gehäuse der Kreiskolbenmaschine KKM2 auf der Welle 3 läuft ein Zweieck-Kolben 2b mit den Kennzeichnungen seiner Spitzen mit A2 und B2. Die Kennzeichnung der Spitzen der beiden Zweieck-Kolben 2a und 2b mit den Spitzen A1, A2, B1 und B2 erfolgt für eine einfachere Visualisierung des Bewegungsablaufs der Kolben 2a und 2b in den Figuren 1a bis 1d und 2a bis 2d. Beide Kreiskolbenmaschinen KKM1 und KKM2 sind hinsichtlich ihrer Funktion im WTA gleichwertig und austauschbar. Ebenfalls auf der Welle 3 angeordnet und mit dem Seitendeckel 6d verbunden ist die elektrodynamische Einheit EDE mit einem Druckgehäuse 9 mit einem seitlichen Abschlussdeckel 12. In dem Druckgehäuse 9 ist auf der Welle 3 ein Rotor 11 angeordnet, welcher von einem Stator 10 umgeben ist. Die hermetische Kapselung des WTA darf nicht durch die Durchführung einer drehenden Welle 3 unterbrochen werden. Eine nicht gezeichnete druckdichte Durchführung durch das Druckgehäuse 9 ist für im Kapselgehäuse vergossene Elektroleitungen vorgesehen.In FIG. 4a , A longitudinal section through the device, starting from the left on the shaft 3, a first rotary piston machine KKM1, a second rotary piston machine KKM2 and the electrodynamic unit EDE are arranged. The first rotary piston machine KKM1 consists of a housing 1a with a single-curved trochoid as the raceway contour, a left side cover 6a arranged outwardly and a right side cover 6b arranged towards the rotary piston machine KKM2. The side cover 6a is connected to a pressure-tight end cover 13, which surrounds the shaft 3 pressure-tight. In the housing of the rotary piston engine KKM1 on the shaft 3 a double-headed piston 2a runs with the markings of its tips with A1 and B1. Likewise, the second rotary piston machine KKM2 consists of a housing 1 b with a single-curved trochoid as a raceway contour and a left to the rotary piston machine KKM1 out arranged side cover 6c and a outwardly to the electrodynamic unit EDE arranged right side cover 6d. In the housing of the rotary piston engine KKM2 on the shaft 3 a double-headed piston 2b runs with the markings of its tips with A2 and B2. The marking of the tips of the two double-sided pistons 2a and 2b with the tips A1, A2, B1 and B2 is carried out for a simpler visualization of the movement sequence of the pistons 2a and 2b in the FIGS. 1a to 1d and 2a to 2d , Both KKM1 and KKM2 rotary engines are equivalent in their function in the WTA and interchangeable. Also disposed on the shaft 3 and connected to the side cover 6d is the electrodynamic unit EDE with a pressure housing 9 with a lateral end cover 12. In the pressure housing 9, a rotor 11 is arranged on the shaft 3, which is surrounded by a stator 10. The hermetic encapsulation of the WTA must not be interrupted by the passage of a rotating shaft 3. A non-illustrated pressure-tight passage through the pressure housing 9 is provided for cast in the capsule electrical cables.

In den Figuren 4b und 4c sind verschiedenen Rotationsansichten des WTA gezeigt. Ein rohrförmiger Verbindungskanal 5 (Fig. 4b) verläuft von dem linken Seitendeckel 6a der Kreiskolbenmaschine KKM1 zum rechten Seitendeckel 6d der Kreiskolbenmaschine KKM2 außen um beide Kreiskolbenmaschinen KKM1 und KKM2 auf der "kalten" Arbeitsseite des Wärme-Transfer-Aggregats herum. Dazu sind, wie in den Figuren 1 und 3 zu sehen ist, für den Verbindungskanal 5 im Seitendeckel 6a eine Öffnung 8a und im Seitendeckel 6d eine Öffnung 8b vorgesehen. Figur 4c zeigt eine um ca. 180 Grad gedrehte Ansicht, so dass die elektrodynamische Einheit EDE nun auf der linken Seite angeordnet ist. Dadurch ist ein rohrförmiger Verbindungskanal 4 zwischen dem rechten Seitendeckel 6b der Kreiskolbenmaschine KKM1 und dem linken Seitendeckel 6c der Kreiskolbenmaschine KKM2 auf der "heißen" Arbeitsseite des Wärme-Transfer-Aggregats sichtbar. Für den Verbindungskanal 4 sind im Seitendeckel 6b eine Öffnung 7a und im Seitendeckel 6c eine Öffnung 7b vorgesehen. Die Anordnung der rohrförmigen Verbindungskanäle 4 und 5 zwischen den Öffnungen 7a, 7b, 8a und 8b in den Seitendeckeln ist derart, dass der Verbindungskanal 4 zwischen den zwei inneren Seitendeckeln 6b und 6c zwischen den beiden Kreiskolbenmaschinen KKM1 und KKM2 und der Verbindungskanal 5 von dem äußeren Seitendeckel 6a zum anderen äußeren Seitendeckel 6d des Aggregats verläuft. Jeder der vier Seitendeckel 6a bis 6d des Aggregats hat nur eine Öffnung für den Wechsel des Arbeitsmediums. Die Öffnungen 7a, 7b, 8a und 8b befinden sich jeweils im Bereich der vorbeilaufenden seitlichen Kolbenspitzen A1, A2, B1 und B2.In the Figures 4b and 4c are shown in various rotational views of the WTA. A tubular connecting channel 5 (FIG. Fig. 4b ) runs from the left side cover 6a of the rotary piston engine KKM1 to the right side cover 6d of the rotary piston engine KKM2 on the outside around both rotary piston machines KKM1 and KKM2 on the "cold" working side of the heat transfer unit. These are, as in the FIGS. 1 and 3 can be seen, provided for the connecting channel 5 in the side cover 6a an opening 8a and in the side cover 6d an opening 8b. Figure 4c shows a rotated by approximately 180 degrees view, so that the electrodynamic unit EDE is now located on the left side. As a result, a tubular connecting channel 4 between the right side cover 6b of the rotary piston engine KKM1 and the left side cover 6c of the rotary piston engine KKM2 is visible on the "hot" working side of the heat transfer unit. For the Connecting channel 4 are in the side cover 6b an opening 7a and in the side cover 6c an opening 7b provided. The arrangement of the tubular connection channels 4 and 5 between the openings 7a, 7b, 8a and 8b in the side covers is such that the connection channel 4 between the two inner side covers 6b and 6c between the two rotary piston machines KKM1 and KKM2 and the connecting channel 5 from the outer Side cover 6a to the other outer side cover 6d of the unit runs. Each of the four side covers 6a to 6d of the unit has only one opening for the change of the working medium. The openings 7a, 7b, 8a and 8b are located in the area of the passing lateral piston tips A1, A2, B1 and B2.

Der Funktionsablauf des Wärme-Transfer-Aggregats wird mit Hilfe der folgenden Bilder näher erläutert. Die Figuren 1a bis 2d zeigen einen Durchlauf des thermodynamischen Prozesses mit den verschiedenen Stellungen der Kolben, wobei die Kreiskolbenmaschinen KKM1 und KKM2 in der Zeichenebene nebeneinander liegen, obwohl im realen Aggregat sich die Kreiskolbenmaschinen KKM1 und KKM2 bezüglich der Zeichenebene übereinander befinden. Dies ist notwendig aus Gründen der klaren Darstellung der funktionalen Zusammenhänge, hieraus ergibt sich keine Beeinträchtigung in der Darlegung des erfinderischen Anliegens.The functional sequence of the heat transfer unit is explained in more detail with the help of the following pictures. The FIGS. 1a to 2d show a passage of the thermodynamic process with the various positions of the piston, the rotary piston machines KKM1 and KKM2 are in the drawing plane next to each other, although in the real aggregate, the rotary piston machines KKM1 and KKM2 are superimposed with respect to the plane of the drawing. This is necessary for reasons of clear representation of the functional relationships, from this there is no impairment in the presentation of the inventive request.

Figur 1a zeigt die Stellung des Kolbens 2a der Kreiskolbenmaschine KKM1 mit einem Winkel von 45 Grad zur Hauptachse der einbogigen Trochoide gerichtet. Als Hauptachse wird eine Linie definiert, die durch den mathematischen Ursprung der Trochoide und den Mittelpunkt der Welle 3 läuft. Die Kolbenspitze B1 ist oben und die Kolbenspitze A1 unten. Eine kleinere Arbeitskammer befindet sich links oberhalb des Kolbens 2a und eine größere Arbeitskammer rechts unterhalb des Kolbens 2a. Die Stellung des Kolbens 2b der Kreiskolbenmaschine KKM2 ist in einem Winkel von 135 Grad zur Hauptachse gerichtet. Die Kolbenspitze A2 ist oben und die Kolbenspitze B2 unten. Eine kleinere Arbeitskammer befindet sich rechts oberhalb des Kolbens 2b und eine größere Arbeitskammer links unterhalb des Kolbens 2b. In dieser Stellung der Kolben 2a und 2b werden mit den Arbeitskammern der Kreiskolbenmaschinen KKM1 und KKM2 Arbeitsvolumina gebildet, indem die beiden kleineren Arbeitskammern durch den rohrförmigen Verbindungskanal 4 und die beiden größeren Arbeitskammern durch den rohrförmigen Verbindungskanal 5 kommunizierend verbunden sind. Die beiden kleineren verbundenen Arbeitskammern ergeben das minimale, die beiden größeren Arbeitskammern ergeben das maximale Arbeitsvolumen des WTA. Im Ruhezustand des Wärme-Transfer-Aggregats WTA haben die Medien-Teilmengen in den beiden Arbeitsvolumina gleiches Druckniveau, unabhängig von den Kolbenstellungen, da ihre gegenseitige Abdichtung durch die Kolben 2a, 2b nur "dynamisch dicht" ist. Erst im Ergebnis des Anfahrprozesses gleichen sich die Medien-Teilmengen einander an. Bedingt durch unvermeidliche innere Leckagen an den ansonsten abdichtenden Kolben 2a, 2b unterliegen die Arbeitsvolumina dann wechselseitig ausgleichend somit einer Schwankung. Figur 1c und Figur 5 zeigen die Stellung der Kolben 2a, 2b mit gleich großen Arbeitsvolumina. Figur 5 zeigt in einer Ausführungsform ein Ventil 14 in einer Verbindungsleitung, mit der zwischen den Verbindungskanälen 4 und 5 der Druckausgleich für das Befüllen, Anfahren sowie das Abstellen des Aggregats erfolgen kann. FIG. 1a shows the position of the piston 2a of the rotary piston machine KKM1 directed at an angle of 45 degrees to the main axis of the single-arched trochoid. The main axis defines a line passing through the mathematical origin of the trochoid and the center of the wave 3. The piston tip B1 is at the top and the piston tip A1 is at the bottom. A smaller working chamber is located on the left above the piston 2a and a larger working chamber on the right below the piston 2a. The position of the piston 2b of the rotary piston engine KKM2 is directed at an angle of 135 degrees to the main axis. The piston tip A2 is at the top and the piston tip B2 is at the bottom. A smaller working chamber is located on the right above the piston 2b and a larger one Working chamber on the left below the piston 2b. In this position, the pistons 2a and 2b are formed with the working chambers of the rotary piston engines KKM1 and KKM2 working volumes by the two smaller working chambers are communicatively connected through the tubular connecting channel 4 and the two larger working chambers through the tubular connecting channel 5. The two smaller connected working chambers give the minimum, the two larger working chambers give the maximum working volume of the WTA. At rest, the heat transfer unit WTA have the media subsets in the two working volumes the same pressure level, regardless of the piston positions, since their mutual sealing by the piston 2a, 2b is only "dynamically tight". Only as a result of the start-up process do the media subsets converge. Due to unavoidable internal leakage to the otherwise sealing piston 2a, 2b, the working volumes are then mutually compensating thus a fluctuation. Figure 1c and FIG. 5 show the position of the piston 2a, 2b with equal working volumes. FIG. 5 shows in one embodiment, a valve 14 in a connecting line, with the between the connecting channels 4 and 5, the pressure compensation for filling, starting and stopping the unit can be done.

Die Figuren 1b und 1c zeigen die Stellung der Kolben 2a und 2b nach einer Drehungen von jeweils 45 Grad im Uhrzeigersinn. Figur 1d zeigt die Stellung der Kolben 2a und 2b nach einer Gesamtdrehung von 180 Grad im Uhrzeigersinn. Das Wärme-Transfer-Aggregat hat wieder das minimale bzw. maximale Arbeitsvolumen erreicht. Die gekennzeichneten Kolbenspitzen A1 und B1 bzw. A2 und B2 sind jetzt zyklisch vertauscht, indem die Kolbenspitze A1 oben und die Kolbenspitze B1 unten sowie die Kolbenspitze B2 oben und die Kolbenspitze A2 unten sind.The Figures 1b and 1c show the position of the piston 2a and 2b after a rotation of 45 degrees clockwise. Figure 1d shows the position of the pistons 2a and 2b after a total rotation of 180 degrees clockwise. The heat transfer unit has again reached the minimum or maximum working volume. The marked piston tips A1 and B1 or A2 and B2 are now cyclically reversed by the piston tip A1 above and the piston tip B1 below and the piston tip B2 above and the piston tip A2 are down.

In den Figuren 1a bis 1d sind die Öffnung 8a im Seitendeckel 6a, die Öffnung 8b im Seitendeckel 6d (in den äußeren Seitendeckel 6a und 6d des Verbunds der zwei Kreiskolbenmaschinen KKM1 und KKM2), die Öffnung 7a im Seitendeckel 6b und die Öffnung 7b im Seitendeckel 6c (in den beiden inneren Seitendeckel 6b und 6c des Verbunds der zwei Kreiskolbenmaschinen KKM1 und KKM2) schematisch eingezeichnet. Die Öffnung 7a und die Öffnung 8b sind unterhalb der abgeplatteten Trochoidenkontur angeordnet. Analog weisen die Öffnungen 8a und 7b zur kreisförmigen Seite der Trochoiden hin.In the FIGS. 1a to 1d are the opening 8a in the side cover 6a, the opening 8b in the side cover 6d (in the outer side covers 6a and 6d of the composite of the two rotary engines KKM1 and KKM2), the Opening 7a in the side cover 6b and the opening 7b in the side cover 6c (in the two inner side covers 6b and 6c of the composite of the two rotary piston machines KKM1 and KKM2) schematically drawn. The opening 7a and the opening 8b are arranged below the flattened Trochoidenkontur. Similarly, the openings 8a and 7b point towards the circular side of the trochoid.

Die Öffnung 7a rechts oben und die Öffnung 8a links unten der Kreiskolbenmaschinen KKM1 liegen sich, schematisch gesehen, diagonal gegenüber. Ebenso ist die Anordnung der Öffnung 8b links oben und der Öffnung 7b rechts unten diagonal gegenüberliegend. Daraus ergibt sich ein Anordnungsmuster, welches bei Sicht von der elektrodynamischen Einheit EDE aus in Richtung der gemeinsamen Achse und unter der Annahme, dass die Seitendeckel beider Kreiskolbenmaschinen KKM1 und KKM2 direkt übereinanderliegen, ein Kreuz ergibt mit zwei um 90 Grad versetzten Achsen, die in einer Position von 45 Grad bzw. -45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide versetzt sind. Jede Öffnung 7a, 7b, 8a und 8b wird bei einer Stellung der um 90 Grad gegeneinander versetzten Kolben 2a und 2b von einer Kolbenspitze A1, A2, B1 und B2 abgedeckt. Die von den seitlichen Kolbenspitzen A1, A2, B1 und B2 abgedeckten Öffnungen 7a, 7b, 8a und 8b befinden sich auf jeweils gegenüberliegenden Seiten der Kolben 2a und 2b einer Kreiskolbenmaschinen KKM1 oder KKM2. Durch diese Anordnung sind die Kolben 2a und 2b sowohl die Verdrängungskörper für den thermodynamischen Arbeitsprozess als auch das aktive, mittels Feder- oder Medienkräften gegen die Seitenflächen abdichtend wirkende Steuerorgane für das Öffnen und Schließen der Öffnungen 7a, 7b, 8a und 8b für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen KKM1 und KKM2 im thermodynamischen Arbeitsprozess.The opening 7a on the top right and the opening 8a on the bottom left of the rotary piston machines KKM1 lie, diagrammatically, diagonally opposite. Similarly, the arrangement of the opening 8b top left and the opening 7b right below diagonally opposite. This results in an arrangement pattern which, viewed from the electrodynamic unit EDE in the direction of the common axis and assuming that the side covers of both rotary piston machines KKM1 and KKM2 directly superimposed, results in a cross with two offset by 90 degrees axes in a Position of 45 degrees or -45 degrees to an imaginary major axis of the einbogigen trochoid are offset. Each opening 7a, 7b, 8a and 8b is covered by a piston tip A1, A2, B1 and B2 when the pistons 2a and 2b are offset by 90 degrees. The openings 7a, 7b, 8a and 8b covered by the lateral piston tips A1, A2, B1 and B2 are located on respectively opposite sides of the pistons 2a and 2b of a rotary piston engine KKM1 or KKM2. By this arrangement, the pistons 2a and 2b, both the displacement body for the thermodynamic working process and the active, by means of spring or media forces against the side surfaces sealingly acting control members for opening and closing the openings 7a, 7b, 8a and 8b for the change of Working medium between the rotary piston engines KKM1 and KKM2 in the thermodynamic working process.

Die Figuren 2a bis 2d zeigen einen Durchlauf des thermodynamischen Prozesses mit eingezeichneten rohrförmigen Verbindungskanälen 4 und 5 und wie diese mit den Arbeitskammern verbunden sind, wobei der Verbindungskanal 4 zwischen der Öffnung 7a und der Öffnung 7b angeordnet ist und der Verbindungskanal 5 zwischen der Öffnung 8a und der Öffnung 8b. Hierdurch werden jeweils zwei Arbeitskammern zu einem gemeinsamen Arbeitsvolumen verbunden.The FIGS. 2a to 2d show a passage of the thermodynamic process with marked tubular connecting channels 4 and 5 and how they are connected to the working chambers, wherein the Connecting channel 4 is disposed between the opening 7a and the opening 7b and the connecting channel 5 between the opening 8a and the opening 8b. As a result, two working chambers are connected to a common working volume.

Figur 2a zeigt die Kolben 2a und 2b in einer Stellung, die der Stellung in Figur 1a entspricht. Der Verbindungskanal 4 verbindet die Kreiskolbenmaschine KKM1 mit der Kreiskolbenmaschine KKM2. Das hiermit gebildete gemeinsame Arbeitsvolumen hat in dieser Stellung sein Minimum. Der Verbindungskanal 5 verbindet ebenfalls die Kreiskolbenmaschine KKM1 mit der Kreiskolbenmaschine KKM2. Das hiermit gebildete gemeinsame Arbeitsvolumen hat in dieser Stellung sein Maximum. FIG. 2a shows the pistons 2a and 2b in a position corresponding to the position in FIG. 1a equivalent. The connecting channel 4 connects the rotary piston engine KKM1 with the rotary piston engine KKM2. The collective work volume formed hereby has its minimum in this position. The connecting channel 5 also connects the rotary piston engine KKM1 with the rotary piston engine KKM2. The joint working volume formed hereby has its maximum in this position.

Die Figuren 2b bis 2d zeigen die Änderungen der Arbeitsvolumina, bis sie nach einer Gesamtdrehung der Kolben um 180 Grad die jeweiligen Größenänderungen erreicht haben. In den 45 Grad-Positionen der Kolben 2a und 2b (Fig. 2a und 2d) werden die Verbindungskanäle 4 und 5 durch die Seitenflächen der Kolben verschlossen.The FIGS. 2b to 2d show the changes in the working volumes until they have reached the respective size changes after a total rotation of the pistons 180 degrees. In the 45 degree positions of the pistons 2a and 2b ( Fig. 2a and 2d ), the connecting channels 4 and 5 are closed by the side surfaces of the piston.

Die Figuren 3a bis 3f zeigen als Abfolge von Schritten den Zusammenbau des Aggregats mit den Seitendeckeln 6a bis 6d entlang der gemeinsamen Welle 3.The FIGS. 3a to 3f show, as a sequence of steps, the assembly of the unit with the side covers 6a to 6d along the common shaft 3.

Figur 3a beginnt mit dem Exzenter 31a, dem Seitendeckel 6b, welcher zur Kreiskolbenmaschine KKM1 gehört, einem nicht weiter bezeichneten Wellenlager, dem Seitendeckel 6c, welcher zur Kreiskolbenmaschine KKM2 gehört, und dem Exzenter 31b. Im Seitendeckel 6b befindet sich die Öffnung 7a, im Seitendeckel 6c die Öffnung 7b. An die Öffnungen 7a und 7b schließt der in dieser Figur nicht gezeigte rohrförmige Verbindungskanal 4 an. FIG. 3a starts with the eccentric 31a, the side cover 6b, which belongs to the rotary piston machine KKM1, a shaft bearing, not further designated, the side cover 6c, which belongs to the rotary piston machine KKM2, and the eccentric 31b. In the side cover 6b is the opening 7a, in the side cover 6c, the opening 7b. To the openings 7a and 7b of the not shown in this figure tubular connecting channel 4 connects.

Aus Figur 3a ist erkennbar, dass die Öffnung 7a um einen Winkel von 45 Grad gegenüber der Hauptachse und die Öffnung 7b um einen Winkel von 135 Grad gegenüber der Hauptachse versetzt ist. In der gezeigten Kolbenstellung nach den Figuren 1a und 2a werden beide Öffnungen und damit der Verbindungskanal 4 durch die Kolben 2a und 2b verschlossen. Bild 3b zeigt dies mit dem Kolben 2b, der die Öffnung 7b verschließt.Out FIG. 3a It can be seen that the opening 7a is offset by an angle of 45 degrees with respect to the main axis and the opening 7b by an angle of 135 degrees with respect to the main axis. In the shown Piston position after the FIGS. 1a and 2a Both openings and thus the connecting channel 4 are closed by the piston 2a and 2b. Figure 3b shows this with the piston 2b, which closes the opening 7b.

In Figur 3c ist der zweite Seitendeckel 6d der Kreiskolbenmaschine KKM2 mit der Öffnung 8b hinzugefügt. In der Kolbenstellung nach den Figuren 1a und 2a wird auch die Öffnung 8b durch den Kolben 2b verschlossen. An die Öffnungen 8a und 8b schließt der in dieser Figur nicht gezeigte rohrförmige Verbindungskanal 5 an.In Figure 3c the second side cover 6d is added to the rotary piston machine KKM2 with the opening 8b. In the piston position after the FIGS. 1a and 2a Also, the opening 8b is closed by the piston 2b. To the openings 8a and 8b of the not shown in this figure tubular connecting channel 5 connects.

In Figur 3d ist auch der Kolben 2a und der Seitendeckel 6a der Kreiskolbenmaschine KKM1 hinzugefügt. Die Figur 3e zeigt eine Ansicht ohne Kolben. Hier sind deutlich die Öffnungen 8a im Seitendeckel 6a und die Öffnung 7a im Seitendeckel 6b der der Kreiskolbenmaschine KKM1 sowie die Öffnung 7b im Seitendeckel 6c und die Öffnung 8b im Seitendeckel 6d der Kreiskolbenmaschine KKM2 zu sehen. Figur 3f zeigt wiederum eine Ansicht mit beiden Kolben 2a und 2b in der Stellung nach den Figuren 1a und 2a. Die Öffnung 8a ist durch den Kolben 2a und die Öffnung 8b ist durch den Kolben 2b verschlossen. Damit ist der Verbindungskanal 5 in dieser Kolbenstellung ebenfalls verschlossen.In 3d figure also the piston 2a and the side cover 6a of the rotary piston engine KKM1 is added. The FIG. 3e shows a view without a piston. Here are clearly seen the openings 8a in the side cover 6a and the opening 7a in the side cover 6b of the rotary piston machine KKM1 and the opening 7b in the side cover 6c and the opening 8b in the side cover 6d of the rotary piston machine KKM2. FIG. 3f again shows a view with two pistons 2a and 2b in the position after the FIGS. 1a and 2a , The opening 8a is closed by the piston 2a and the opening 8b is closed by the piston 2b. Thus, the connecting channel 5 is also closed in this piston position.

Die Funktionsweise des Aggregats wird im Folgenden erläutert. Dies erfolgt anhand der Figuren 2a bis 2d. In der Kolbenstellung nach Figur 2a hat das Aggregat das minimale Arbeitsvolumen "oberhalb" der Kolben 2a und 2b, die Kolben zeigen um 45 Grad gegenüber der Hauptachse gedreht in Richtung der abgeplatteten Seiten der einbogigen Trochoide. Die Arbeitskammern oberhalb der Kolben sind durch den Verbindungskanal 4 verbunden und bilden ein gemeinsames Arbeitsvolumen. "Unterhalb" der Kolben 2a und 2b hat das Aggregat das maximale Arbeitsvolumen. Die Arbeitskammern unterhalb der Kolben 2a und 2b sind durch den Verbindungskanal 5 verbunden und bilden ebenfalls ein gemeinsames Arbeitsvolumen. Bei einer Drehung der Kolben 2a und 2b vergrößert sich das obere Arbeitsvolumen, das untere Arbeitvolumen wird verkleinert. Die Volumenänderungen sind die eigentliche Funktionalität des Wärme-Transfer-Aggregats.The operation of the unit is explained below. This is done on the basis of FIGS. 2a to 2d , In the piston position to FIG. 2a the aggregate has the minimum working volume "above" the pistons 2a and 2b, the pistons are rotated 45 degrees from the main axis in the direction of the flattened sides of the single-arched trochoid. The working chambers above the piston are connected by the connecting channel 4 and form a common working volume. "Below" the piston 2a and 2b, the unit has the maximum working volume. The working chambers below the pistons 2a and 2b are connected by the connecting channel 5 and also form a common working volume. Upon rotation of the pistons 2a and 2b, the upper working volume increases, the lower Work volume is reduced. The volume changes are the actual functionality of the heat transfer unit.

Eine für die thermodynamischen Kreisprozesse des WTA wichtige Eigenschaft ist mit der genannten Anordnung der Öffnungen in den Seitendeckeln nach einem 45 Grad/135 Grad Anordnungsmuster verbunden: Bei der Kolbendrehung ist außer der Änderung der Arbeitsvolumina auch der Gradient der Änderung in den einzelnen Arbeitskammern von Bedeutung. Hiernach erfolgt beispielsweise bei Vergrößerung des minimalen Volumens zunächst eine Durchströmung des Verbindungskanals 4 zu der sich vergrößernden Arbeitskammer hin - was plausibel ist. Ab einem bestimmten Kolbendrehwinkel ist jedoch der Gradient der Volumenänderung in der zu füllenden Arbeitskammer kleiner als der Gradient der liefernden Kammer. Hierdurch entsteht eine Umkehrung der Strömung, was zu einem intensiven Wärmeübergang im Verbindungskanal 4 führt. Der gleiche Effekt tritt analog auf der Seite Verkleinerung des maximalen Volumens im Verbindungskanal 5 auf. Wird das Anordnungsmuster der Öffnungen in den Seitendeckeln gegenüber der 45 Grad/135 Grad-Ausrichtung gedreht, geht der Effekt des intensiven Wärmeübergangs verloren. Die Wärmeübergänge an den Verbindungskanäle 4 und 5 sind jedoch für das WTA von Bedeutung, da ein Stoffwechsel mit der Umgebung nicht besteht.A characteristic important to the thermodynamic cycles of the WTA is associated with the stated location of the openings in the side covers according to a 45 degree / 135 degree arrangement pattern: In piston rotation, besides the change in working volumes, the gradient of change in the individual working chambers is also important. After that, for example, when the minimum volume is increased, first a flow through the connecting channel 4 to the enlarging working chamber takes place - which is plausible. From a certain piston rotation angle, however, the gradient of the volume change in the working chamber to be filled is smaller than the gradient of the delivering chamber. This results in a reversal of the flow, resulting in an intense heat transfer in the connecting channel 4. The same effect occurs analogously on the side of reduction of the maximum volume in the connecting channel 5. If the pattern of arrangement of the apertures in the side covers is rotated from the 45 degree / 135 degree orientation, the effect of intense heat transfer is lost. The heat transfer at the connection channels 4 and 5, however, are of importance for the WTA since there is no metabolism with the environment.

Betrachtet wird zunächst ein sogenannter rechtsläufiger thermodynamischer Kraftmaschinen-Kreisprozess. Wird aus einer äußeren Wärmequelle dem Verbindungskanal 4 Wärmeenergie zugeführt, entsteht im oberen Arbeitsvolumen eine Druckerhöhung des eingeschlossenen Mediums, beispielsweise Helium als Wärmeträger, verbunden mit Druckkräften auf die Kolben 2a und 2b und einem in der Welle 3 wirkenden Drehmoment, das sich als Drehung der elektrodynamischen Einheit EDE und Abgabe elektrischer Energie auswirkt. Im oberen Arbeitsvolumen erfolgt eine isochore Druckerhöhung bis zu einer Drehwinkel-Änderung von etwa 30 Grad, danach erfolgt die Expansion des Arbeitsmediums bei gleichzeitiger Wärmezufuhr nahe einer Isothermen. Gleichzeitig erfolgt im unteren Arbeitsvolumen eine isochore Druckabsenkung mit Temperaturabsenkung, phasengleich zum Volumenverlauf im oberen Arbeitsvolumen. Diese Druckabsenkung wirkt sich als Verstärkung des Drehmoments in der Welle 3 aus. Danach erfolgt eine Kompression des Arbeitsmediums unter Abgabe von Wärmeenergie über den Verbindungskanal 5 an die Umgebung. Je nachdem, ob diese Wärmeabgabe bei der Kompression durch eine aktive Kühlung unterstützt wird, verläuft diese entlang einer Polytropen, im Idealfall entlang einer Isothermen. Das Aggregat arbeitet als Kraftmaschine, ähnlich der Stirlingmaschine.First, a so-called right - handed thermodynamic engine cycle is considered. If heat energy is supplied to the connection channel 4 from an external heat source, an increase in pressure of the enclosed medium, for example helium as a heat carrier, is produced in the upper working volume, connected to pressure forces on the pistons 2a and 2b and a torque acting in the shaft 3, which is the rotation of the electrodynamic Unit EDE and output of electrical energy affects. In the upper working volume isochore pressure increase up to a rotation angle change of about 30 degrees, then the expansion of the working medium takes place with simultaneous heat supply close to one Isotherms. At the same time, in the lower working volume, there is an isochronous pressure reduction with temperature reduction, in phase with the volume flow in the upper working volume. This pressure reduction affects the gain of the torque in the shaft 3. Thereafter, a compression of the working medium with the release of heat energy via the connecting channel 5 to the environment. Depending on whether this heat release during compression is supported by an active cooling, this runs along a polytropic, ideally along an isotherm. The unit works as an engine, similar to the Stirling engine.

Die konstruktive Ausführung des Aggregats erfolgt so, dass die "Nullstellung" vorzugsweise durch die 45-Grad-Stellung der Kolben 2a und 2b gekennzeichnet ist. Diese Stellung bewirkt beim Arbeitsablauf des Aggregats den Effekt, dass der Wärmeübergang einer äußeren Wärmeenergie über die Wand des Verbindungskanals 4 besonders intensiv ist. Dieser Effekt entsteht dadurch, dass die Strömung des Arbeitsmediums durch den Verbindungskanal 4 sich nochmals umkehrt, wenn der Gradient der Volumenänderung der oberen Arbeitskammer der Kreiskolbenmaschine KKM1 größer ist als der Gradient der Volumenänderung der oberen Arbeitskammer der Kreiskolbenmaschine KKM2, obwohl sich die beiden Kolben 2a und 2b gleichmäßig in Arbeitsrichtung drehen.The structural design of the unit is such that the "zero position" is preferably characterized by the 45-degree position of the piston 2a and 2b. This position causes the operation of the unit the effect that the heat transfer of an external heat energy through the wall of the connecting channel 4 is particularly intense. This effect arises from the fact that the flow of the working medium through the connecting channel 4 again reverses when the gradient of the volume change of the upper working chamber of the rotary piston engine KKM1 is greater than the gradient of the volume change of the upper working chamber of the rotary piston engine KKM2, although the two pistons 2a and Turn 2b evenly in working direction.

Der Effekt der Strömungsumkehr erfolgt mit gleicher Phasenlage und aus gleichen Ursachen auch mit dem unteren Arbeitsvolumen.The effect of the flow reversal takes place with the same phase position and for the same reasons also with the lower working volume.

Die Energiebilanz für das Aggregat ergibt, dass die zugeführten und abgeführten Energiemengen an den Verbindungskanälen 4 und 5 sowie an der elektrodynamischen Einheit EDE, die als Generator arbeitet, im energetischen Gleichgewicht stehen.The energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a generator.

Betrachtet wird ein linksläufiger thermodynamischer Arbeitsmaschinen-Kreisprozess. Für diese Betriebsvariante erfolgt die Energiezufuhr über die elektrodynamische Einheit EDE, die hier als Antriebsmotor arbeitet. Beginnend mit einer Stellung der Kolben 2a und 2b nach Figur 2a erfolgt im unteren Arbeitsvolumen eine isochore Druckerhöhung des Arbeitsmediums bis zu einer Drehwinkeländerung von etwa 30 Grad, Figuren 2b, 2c und 2d.Considered is a left-handed thermodynamic work machine cycle. For this operating variant, the energy is supplied via the electrodynamic unit EDE, which operates here as a drive motor. Starting with a position of the piston 2a and 2b after FIG. 2a isochore in the lower working volume an increase in pressure of the working medium up to a rotation angle of about 30 degrees, FIGS. 2b . 2c and 2d ,

Nach Figur 2a erfolgt die Kompression des Arbeitsmediums, beispielsweise CO2 als Kältemittel, im unteren Arbeitsvolumen. Das Arbeitsmedium nimmt in einer isochoren Phase bis zu einer Drehwinkeländerung von etwa 30 Grad über den Verbindungskanal 5 Wärmeenergie aus einem Umgebungsraum, verbunden mit einer Druckerhöhung, auf. Die nachfolgende weitere Kompression geschieht unter weiterer Aufnahme von Umgebungswärme als Polytrope. Das Arbeitsmedium zirkuliert demnach zwischen den Kreiskolbenmaschinen KKM1 und KKM2 mit wechselnden Drücken um einen mittleren Druck des hermetisch abgeschlossenen Drucksystems.To FIG. 2a the compression of the working medium, for example CO2 as a refrigerant, takes place in the lower working volume. The working medium takes in an isochoric phase up to a rotation angle change of about 30 degrees via the connecting channel 5 heat energy from an ambient space, connected to an increase in pressure, on. The subsequent further compression is done with further absorption of ambient heat as polytrope. Accordingly, the working medium circulates between the rotary piston engines KKM1 and KKM2 with changing pressures around a mean pressure of the hermetically sealed pressure system.

Phasengleich erfolgt im oberen Arbeitsvolumen eine isochore Abgabe von Wärmeenergie an einem Umgebungsraum, verbunden mit einer Druckabsenkung des Arbeitsmediums. Diese Druckabsenkung entspricht der Drosselentspannung in konventionellen Kältekreisläufen. In Fall des beschriebenen Aggregats ist die Druckabsenkung jedoch eine Rückgewinnung mechanischer Energie, die als Drehmoment an die Welle 3 gegeben wird und eine Entlastung des Antriebs der elektrodynamischen Einheit EDE darstellt. Die weitere Expansion des Arbeitsmediums im oberen Arbeitsvolumen erfolgt als Polytrope. Es erfolgt über den Verbindungskanal 4 die weitere Abgabe von Wärmeenergie an den Umgebungsraum unter weiterer Abkühlung, wobei es mechanische Arbeit über die Drehung der Kolben 2a und 2b an die Welle 3 abgibt.At the same time in the upper working volume isochronous release of heat energy to an ambient space, connected to a pressure reduction of the working medium. This pressure reduction corresponds to the throttle relaxation in conventional refrigeration circuits. In the case of the described unit, however, the pressure reduction is a recovery of mechanical energy, which is given as torque to the shaft 3 and represents a discharge of the drive of the electrodynamic unit EDE. The further expansion of the working medium in the upper working volume takes place as Polytrope. It takes place via the connecting channel 4, the further release of heat energy to the ambient space with further cooling, wherein it gives off mechanical work on the rotation of the piston 2 a and 2 b to the shaft 3.

Figur 2d zeigt den abgeschlossen Ablauf. Das abgekühlte Arbeitsmedium befindet sich jetzt im unteren Arbeitsvolumen, wo es über den Verbindungskanal 5 Umgebungswärme aufnimmt und wieder verdichtet wird. Der Zyklus beginnt von Neuem. Figure 2d shows the completed process. The cooled working fluid is now in the lower working volume, where it absorbs ambient heat via the connecting channel 5 and is compressed again. The cycle begins again.

Die Energiebilanz für das Aggregat ergibt, dass die zugeführten und abgeführten Energiemengen an den Verbindungskanälen 4 und 5 sowie an der elektrodynamischen Einheit EDE, die als Motor arbeitet, im energetischen Gleichgewicht stehen. Das Aggregat arbeitet als Kälte-Arbeitsmaschine. Der Einsatzzweck kann dabei sowohl ein Kühlvorgang als auch Heizvorgang sein.The energy balance for the unit shows that the amounts of energy supplied and discharged are in energetic equilibrium at the connection channels 4 and 5 as well as at the electrodynamic unit EDE, which works as a motor. The unit works as a refrigeration machine. The purpose can be both a cooling process and heating process.

Betrachtet wird ein weiterer rechtsläufiger thermodynamischer Kraftmaschinen-Kreisprozess. Considered is another right-handed thermodynamic engine cycle.

Die beschriebene hermetische Kapselung des Aggregats ermöglicht weitere Betriebsvarianten. So lassen sich mit der dargestellten Basisgeometrie von zwei Kreiskolbenmaschinen mit einbogiger Trochoide in realer Konstruktion Druckänderungswerte zwischen minimalem und maximalem Volumen der Medien-Teilmengen bis zu einem Wert bis etwa 6 erreichen. In Zusammenhang mit einem Basisfülldruck des Aggregats von beispielsweise 300 bar, was technisch nur mittleren Anforderungen entspricht, lassen sich Drücke im oberen Arbeitsvolumen von etwa 1800 bar erreichen.The described hermetic encapsulation of the unit allows further operating variants. Thus, with the illustrated basic geometry of two rotary engines with einbogiger trochoid in real design pressure change values between minimum and maximum volume of the media subsets can reach up to a value of about 6. In connection with a basic filling pressure of the unit of, for example, 300 bar, which corresponds technically only average requirements, pressures in the upper working volume of about 1800 bar can be achieved.

Für alle inneren, drehenden Bauteile des gekapselten Wärme-Transfer-Aggregats WTA bedeuten diese Drücke keine zusätzlichen Anforderung in Bezug auf die Festigkeit. Allerdings müssen die äußeren Bauteile der Kapselung diesen Anforderungen genügen. Für bestimmte inerte Arbeitsmedien wie CO2 bedeuten diese Drücke allerdings, dass sie sich "links" ihrer Inversionslinie befinden. Damit ändern sich ihre Stoffeigenschaften. Bei Kompression kühlen sie sich ab, bei Expansion tritt eine Erwärmung ein.For all internal rotating components of the encapsulated heat transfer unit WTA, these pressures do not imply any additional requirement in terms of strength. However, the outer components of the enclosure must meet these requirements. For certain inert working media such as CO2, however, these pressures mean that they are "to the left" of their inversion line. This changes their material properties. During compression, they cool down, with expansion, a warming occurs.

Wird das beschriebene Wärme-Transfer-Aggregat mit einem Basisdruck von beispielsweise 300 bar in einem Kreisprozess betrieben, so kehren sich ihre Eigenschaften so um, dass bei Kompression des Arbeitsmediums im unteren Arbeitsvolumen eine Abkühlung erfolgt, über den Verbindungskanal 5 wird Umgebungswärme aufgenommen, die nach erfolgter Expansion im oberen Arbeitsvolumen über den Verbindungskanal 4 als Nutzwärme abgegeben wird. Wenn die elektrodynamischen Einheit EDE als Startergenerator betrieben wird, erfolgt nach der Motor-Phase im Generatorbetrieb eine Abgabe elektrischer Energie.If the heat transfer unit described is operated at a base pressure of, for example, 300 bar in a cyclic process, its properties are reversed so that when the working medium is compressed in the lower working volume, cooling takes place via the connecting channel 5, ambient heat is absorbed successful expansion in the upper working volume via the connecting channel 4 is released as useful heat. When the electrodynamic unit EDE is operated as a starter generator, a discharge of electrical energy takes place after the engine phase in the generator mode.

Betrachtet man die Umgebung des Wärme-Transfer-Aggregats und das Wärme-Transfer-Aggregat als Gesamtsystem, so ergibt sich in der Energiebilanz, dass alle zugeführten und abgeführten Energiemengen im Gleichgewicht stehen. Das Wärme-Transfer-Aggregat arbeitet als Kraftmaschine, allerdings muss es ähnlich einer Verbrennungskraftmaschine durch ein Anlassaggregat gestartet werden. Die von der elektrodynamischen Einheit EDE abgegebene Energie muss auch zur aktiven Abfuhr der Wärme am Verbindungskanal 4 eingesetzt werden entsprechend den Gesetzen der Thermodynamik. Die thermodynamische Kreisprozess-Analyse anhand der Zustandsdiagramme für beispielsweise CO2 zeigt, dass nach Abdeckung aller Energiebeträge für innere mechanische Reibungen und aktive Wärmezu- und -abfuhrarbeiten an den Verbindungskanälen 5 und 4 ein positiver Betrag an der elektrodynamischen Einheit EDE verbleibt, der aus der Hermetik-Kapselung als elektrische Last herausgeführt werden und danach wieder als Wärmeäquivalent der Umgebung zugeführt werden muss.If one considers the environment of the heat transfer aggregate and the heat transfer aggregate as an overall system, the energy balance results in that all supplied and discharged energy quantities are in equilibrium. The heat transfer unit works as an engine, but it must be started by a starter unit similar to an internal combustion engine. The energy delivered by the electrodynamic unit EDE must also be used to actively dissipate the heat at the connection channel 4 in accordance with the laws of thermodynamics. The thermodynamic cycle analysis on the basis of the state diagrams for CO2, for example, shows that after covering all amounts of energy for internal mechanical friction and active heat supply and removal operations on the connecting channels 5 and 4, a positive amount remains on the electrodynamic unit EDE, which consists of the hermetic Encapsulation must be led out as an electrical load and then fed again as a heat equivalent of the environment.

In Figur 6 wird in einem weiteren Ausführungsbeispiel eine Anordnung gezeigt, welche zur Steigerung der Leistung beiträgt. Hierzu wird zwischen dem Verbindungskanal 4 und dem Verbindungskanal 5 ein Wärmerohr 15 angeordnet. Am Verbindungskanal 4 ist hierzu ein Anschluss 41 und am Verbindungskanal 5 ein Anschluss 51 für das Wärmerohr 15 vorgesehen. Das Wärmerohr 15 transportiert auf kleiner Querschnittsfläche Wärme vom Anschluss 51 des Verbindungskanals 5 zum Anschluss 41 des Verbindungskanals 4 und kann in verschiedenen Bauformen, beispielsweise in Form einer Heatpipe oder eines Zwei-Phasen-Thermosiphon, eingesetzt werden. Die Funktion wird nachfolgend erläutert. Am Verbindungskanal 5 wird durch das Wärmerohr 15 Wärme abgeführt, was die Kühlung unterstützt, und am Verbindungskanal 4 wird Wärme zugeführt, was entweder den Wärmeeintrag in das Wärme-Transfer-Aggregat unterstützt (Stirling) oder in die Wärmeabfuhr geht (Kühlprozess).In FIG. 6 In a further embodiment, an arrangement is shown, which contributes to the increase of the power. For this purpose, a heat pipe 15 is arranged between the connecting channel 4 and the connecting channel 5. On the connection channel 4, a connection 41 is provided for this purpose and a connection 51 for the heat pipe 15 is provided on the connection channel 5. The heat pipe 15 transports heat from the connection 51 of the connection channel 5 to the connection 41 of the connection channel 4 on a small cross-sectional area and can be used in various designs, for example in the form of a heat pipe or a two-phase thermosyphon. The function is explained below. At the connecting channel 5 15 heat is dissipated by the heat pipe, which supports the cooling, and the connection channel 4 is Heat is supplied, which either supports the heat input into the heat transfer unit (Stirling) or goes into the heat dissipation (cooling process).

Die Umgebung des Wärme-Transfer-Aggregats besteht aus einem Wärmequellen-Wärmesenken-System mit externen Wärmequellen, beispielsweise Motorabwärme, und Wärmesenken, beispielsweise eine Raumbeheizung. Es wird Wärmeenergie zwischen den Wärmequellen und Wärmesenken transferiert sowie ein mit dem Transferprozess bilanzierender resultierender Energiebetrag durch eine EDE über eine externe energetische Anwendung dem Wärmequellen-Wärmesenken-System entnommen oder zugeführt.The environment of the heat transfer unit consists of a heat source heat sink system with external heat sources, such as engine waste heat, and heat sinks, such as space heating. Heat energy is transferred between the heat sources and heat sinks, and a resultant amount of energy resulting from the transfer process is extracted or supplied by an EDE to the heat source heat sink system via an external energetic application.

Bezugszeichenreference numeral

KKM1KKM1
erste Kreiskolbenmaschinefirst rotary engine
KKM2KKM2
zweite Kreiskolbenmaschinesecond rotary engine
EDEEDE
elektrodynamische Einheitelectrodynamic unit
WTAWTA
Wärme-Transfer-AggregatHeat transfer unit
1a1a
Gehäuse der KKM1Housing of the KKM1
1b1b
Gehäuse der KKM2Housing of the KKM2
2a2a
Zweieck-Kolben der KKM1Double-headed piston of the KKM1
A1, B1A1, B1
Spitzen des Zweieck-Kolbens 2aTips of the delta-piston 2a
2b2 B
Zweieck-Kolben der KKM2Double-piston KKM2
A2, B2A2, B2
Spitzen des Zweieck-Kolbens 2bTips of the delta-piston 2b
33
Wellewave
44
Verbindungskanalconnecting channel
4141
Anschluss für das Wärmerohr 15 an den Verbindungskanal 4Connection for the heat pipe 15 to the connection channel 4
55
Verbindungskanalconnecting channel
5151
Anschluss für das Wärmerohr 15 an den Verbindungskanal 5Connection for the heat pipe 15 to the connection channel 5
6a6a
linker Seitendeckel der KKM1left side cover of the KKM1
6b6b
rechter Seitendeckel der KKM1right side cover of the KKM1
6c6c
linker Seitendeckel der KKM2Left side cover of the KKM2
6d6d
rechter Seitendeckel der KKM2right side cover of the KKM2
7a7a
Öffnung im Seitendeckel 6bOpening in the side cover 6b
7b7b
Öffnung im Seitendeckel 6cOpening in the side cover 6c
8a8a
Öffnung im Seitendeckel 6aOpening in the side cover 6a
8b8b
Öffnung im Seitendeckel 6dOpening in the side cover 6d
99
Druckgehäuse der elektrodynamischen Einheit EDEPressure housing of the electrodynamic unit EDE
1010
Statorstator
1111
Rotorrotor
1212
seitlicher Abschlussdeckellateral end cover
1313
druckdichter Abschlussdeckelpressure-tight end cover
1414
VentilValve
1515
Wärmerohrheat pipe
31a31a
Exzenter (KKM1)Eccentric (KKM1)
31b31b
Exzenter (KKM2)Eccentric (KKM2)

Claims (13)

Wärme-Transfer-Aggregat bestehend aus zwei miteinander über Verbindungskanäle (4, 5) und einer gemeinsamen Welle (3) verbundenen Kreiskolbenmaschinen (KKM1, KKM2) mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben (2a, 2b) mit jeweils zwei Kolbenspitzen (A1, B1; A2, B2), wobei die Verbindungskanäle (4, 5) über vier Öffnungen (7a, 7b, 8a, 8b) in vier Seitendeckeln (6a, 6b, 6c, 6d) der Kreiskolbenmaschinen (KKM1, KKM2) einen Wechsel des Arbeitsmediums ermöglichen dadurch gekennzeichnet, dass
jeweils nur eine Öffnung (7a, 7b, 8a, 8b) in jeweils einem Seitendeckel (6a, 6b, 6c, 6d) in der Art angeordnet ist, dass die vorbeilaufenden Kolbenspitzen (A1, B1; A2, B2) als Steuerorgane für das Öffnen und Schließen der Öffnungen (7a, 7b, 8a, 8b) für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen (KKM1, KKM2) im thermodynamischen Arbeitsprozess abdichtend wirken, und dass eine elektrodynamische Einheit (EDE) auf einer Seite der gemeinsamen Welle (3) angeordnet ist.
Heat transfer unit consisting of two mutually connected via connecting channels (4, 5) and a common shaft (3) rotary piston machines (KKM1, KKM2) with einbogigen trochoidal and offset by 90 degrees against each other two-piston (2a, 2b), each with two Piston tips (A1, B1, A2, B2), wherein the connecting channels (4, 5) via four openings (7a, 7b, 8a, 8b) in four side covers (6a, 6b, 6c, 6d) of the rotary piston engines (KKM1, KKM2) allow a change of the working medium, characterized in that
in each case only one opening (7a, 7b, 8a, 8b) in each case one side cover (6a, 6b, 6c, 6d) is arranged in such a way that the passing piston tips (A1, B1, A2, B2) as control means for opening and closing the openings (7a, 7b, 8a, 8b) for the change of working fluid between the rotary piston engines (KKM1, KKM2) in the thermodynamic working process sealingly, and that an electrodynamic unit (EDE) on one side of the common shaft (3) is.
Wärme-Transfer-Aggregat nach Anspruch 1 dadurch gekennzeichnet, dass jeweils zwei Öffnungen (7a, 8a; 7b, 8b) einer Kreiskolbenmaschine (KKM1; KKM2) sich, schematisch gesehen, diagonal in einem Winkel von 45 Grad zu einer gedachten Hauptachse der einbogigen Trochoide gegenüber liegen und die Anordnung aller Öffnungen (7a, 8a, 7b, 8b) beider Kreiskolbenmaschinen (KKM1, KKM2) als ein schematisch gesehenes Kreuz mit zwei um 90 Grad versetzten Achsen angeordnet sind.Heat transfer unit according to claim 1, characterized in that in each case two openings (7a, 8a; 7b, 8b) of a rotary piston engine (KKM1; KKM2) are seen diagonally at an angle of 45 degrees to an imaginary main axis of the single-arched trochoid lie opposite and the arrangement of all openings (7a, 8a, 7b, 8b) of both rotary piston machines (KKM1, KKM2) are arranged as a schematically seen cross with two axes offset by 90 degrees. Wärme-Transfer-Aggregat nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass
bei einer Arbeitsstellung des ersten Zweieck-Kolbens (2a) in einem Winkel von 45 Grad und des zweiten Zweieck-Kolbens (2b) in einem Winkel von -45 Grad zu der gedachten Hauptachse der einbogigen Trochoide alle Öffnungen (7a, 7b, 8a, 8b) in den Seitendeckeln (6a, 6b, 6c, 6d) durch die Kolbenspitzen (A1, B1; A2, B2) für den Wechsel des Arbeitsmediums zwischen den Kreiskolbenmaschinen (KKM1, KKM2) geschlossen sind.
Heat transfer unit according to claim 1 or 2, characterized in that
at a working position of the first delta-piston (2a) at an angle of 45 degrees and the second delta-piston (2b) at an angle of -45 degrees to the imaginary major axis of the single-arched trochoid all openings (7a, 7b, 8a, 8b ) in the side covers (6a, 6b, 6c, 6d) through the Piston tips (A1, B1, A2, B2) for the change of the working medium between the rotary piston engines (KKM1, KKM2) are closed.
Wärme-Transfer-Aggregat nach Anspruch 1 dadurch gekennzeichnet, dass der Verbindungskanal (4) zwischen der Öffnung (7a) des inneren Seitendeckels (6b) der Kreiskolbenmaschinen (KKM1) zu der Öffnung (7b) des inneren Seitendeckels (6c) der beiden Kreiskolbenmaschinen (KKM2) und der Verbindungskanal (5) von der Öffnung (8a) des äußeren Seitendeckels (6a) der Kreiskolbenmaschine (KKM1) zu der Öffnung (8b) des äußeren Seitendeckels (6d) der Kreiskolbenmaschine (KKM2) angeordnet sind.Heat transfer unit according to claim 1, characterized in that the connecting channel (4) between the opening (7a) of the inner side cover (6b) of the rotary piston machines (KKM1) to the opening (7b) of the inner side cover (6c) of the two rotary piston engines ( KKM2) and the connecting channel (5) from the opening (8a) of the outer side cover (6a) of the rotary piston engine (KKM1) to the opening (8b) of the outer side cover (6d) of the rotary piston engine (KKM2) are arranged. Wärme-Transfer-Aggregat nach Anspruch 1 oder 4 dadurch gekennzeichnet, dass
die Verbindungskanäle (4, 5) rohrförmig sind.
Heat transfer unit according to claim 1 or 4, characterized in that
the connecting channels (4, 5) are tubular.
Wärme-Transfer-Aggregat nach Anspruch 1, 4 oder 5 dadurch gekennzeichnet, dass
die Verbindungskanäle (4, 5) mit Wärmeübertragern verbunden sind.
Heat transfer unit according to claim 1, 4 or 5, characterized in that
the connecting channels (4, 5) are connected to heat exchangers.
Wärme-Transfer-Aggregat nach Anspruch 1, 4, 5 oder 6 dadurch gekennzeichnet, dass
zwischen den Verbindungskanälen (4, 5) eine Verbindungsleitung mit einem Ventil (14) für einen Druckausgleich beim Befüllen, Anfahren oder Abstellen des Aggregats angeordnet ist.
Heat transfer unit according to claim 1, 4, 5 or 6, characterized in that
between the connecting channels (4, 5) a connecting line with a valve (14) for pressure equalization during filling, starting or stopping the unit is arranged.
Wärme-Transfer-Aggregat nach Anspruch 1, 4, 5 oder 6 dadurch gekennzeichnet, dass
zwischen dem Verbindungskanal (5) und dem Verbindungskanal (4) ein Wärmerohr (15) angeordnet ist, welcher eine Abfuhr von Wärme am Verbindungskanal (5) und eine Zufuhr von Wärme am Verbindungskanal (4) unterstützt.
Heat transfer unit according to claim 1, 4, 5 or 6, characterized in that
between the connecting channel (5) and the connecting channel (4) a heat pipe (15) is arranged, which supports a dissipation of heat at the connecting channel (5) and a supply of heat at the connecting channel (4).
Wärme-Transfer-Aggregat nach einem der vorherigen Ansprüche 1 bis 8
dadurch gekennzeichnet, dass
es als ein hermetisch abgeschlossenes Drucksystem aufgebaut ist, in dem alle einzelnen Gehäuseteile der zwei Kreiskolbenmaschinen (KKM1, KKM2) und der elektrodynamischen Einheit (EDE) selbst Teil einer gemeinsamen Hermetik-Kapselung sind.
Heat transfer unit according to one of the preceding claims 1 to 8
characterized in that
it is constructed as a hermetically sealed pressure system, in all individual housing parts of the two rotary piston engines (KKM1, KKM2) and the electrodynamic unit (EDE) itself are part of a common hermetic encapsulation.
Verfahren zur Durchführung thermodynamischer Kreisprozesse mittels eines Wärme-Transfer-Aggregats unter Nutzung von zwei miteinander über eine gemeinsamen Welle (3) verbundenen Kreiskolbenmaschinen (KKM1, KKM2) mit einbogigen Trochoiden und um 90 Grad gegeneinander versetzten Zweieck-Kolben (2a, 2b) dadurch gekennzeichnet, dass in einem hermetisch abgeschlossenen Drucksystem jede der Kreiskolbenmaschinen (KKM1, KKM2) für sich und mittels ihrer mechanischen Kopplung gemeinsam durch mechanische Kompression und Expansion ein in beiden Kreiskolbenmaschinen (KKM1, KKM2) zirkulierendes, abgeschlossenes Arbeitsmedium nutzt, um Wärmeenergie zwischen Wärmequellen und Wärmesenken, welche ein Wärmequellen-Wärmesenken-System bilden und mit dem Wärme-Transfer-Aggregat in Verbindung stehen, zu transferieren sowie einen mit dem Transferprozess bilanzierenden resultierenden Energiebetrag durch eine, mit den Kreiskolbenmaschinen (KKM1, KKM2) über die gemeinsame Welle (3) verbundene elektrodynamische Einheit (EDE) dem Wärmequellen-Wärmesenken-System entnimmt oder zuführt.Method for carrying out thermodynamic cycle processes by means of a heat transfer unit using two mutually connected via a common shaft (3) rotary piston machines (KKM1, KKM2) with einbogigen trochoidal and offset by 90 degrees against each other two-piston (2a, 2b) characterized in that, in a hermetically sealed pressure system, each of the rotary engines (KKM1, KKM2) uses, by itself, and by mechanical coupling and expansion, a closed working medium circulating in both rotary engines (KKM1, KKM2) to heat energy between heat sources and heat sinks, which constitute a heat source heat sink system and are in communication with the heat transfer unit, and transfer an amount of energy resulting from the transfer process by an electrody connected to the rotary engines (KKM1, KKM2) via the common shaft (3) Namely unit (EDE) removes or supplies the heat source heat sink system. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass das Arbeitsmedium zwischen den Kreiskolbenmaschinen (KKM1, KKM2) mit wechselnden Drücken um einen mittleren Druck des hermetisch abgeschlossenen Drucksystems zirkuliert.A method according to claim 10, characterized in that the working medium circulates between the rotary piston engines (KKM1, KKM2) with varying pressures to a mean pressure of the hermetically sealed pressure system. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass die elektrodynamische Einheit (EDE) als Motor, Generator oder Startergenerator arbeitet.A method according to claim 10, characterized in that the electrodynamic unit (EDE) operates as a motor, generator or starter generator. Verfahren nach Anspruch 10 dadurch gekennzeichnet, dass zwischen beiden Kreiskolbenmaschinen (KKM1, KKM2) angeordnete Verbindungkanäle (4, 5) über ein Wärmerohr (15) Wärme austauschen in der Art, dass der Verbindungskanal (5) Wärme abführt und dem Verbindungskanal (4) Wärme zugeführt wird.A method according to claim 10, characterized in that between two rotary piston machines (KKM1, KKM2) arranged connection channels (4, 5) via a heat pipe (15) exchange heat in the Type, that the connecting channel (5) dissipates heat and the connecting channel (4) heat is supplied.
EP15170474.9A 2015-06-03 2015-06-03 Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit Withdrawn EP3101257A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15170474.9A EP3101257A1 (en) 2015-06-03 2015-06-03 Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15170474.9A EP3101257A1 (en) 2015-06-03 2015-06-03 Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit

Publications (1)

Publication Number Publication Date
EP3101257A1 true EP3101257A1 (en) 2016-12-07

Family

ID=53373294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170474.9A Withdrawn EP3101257A1 (en) 2015-06-03 2015-06-03 Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit

Country Status (1)

Country Link
EP (1) EP3101257A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179890A (en) 1978-04-04 1979-12-25 Goodwin Hanson Epitrochoidal Stirling type engine
DE3333586A1 (en) 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Externally heated regenerative heat engine and machine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
US5317996A (en) 1991-07-17 1994-06-07 Lansing Joseph S Self-starting multifuel rotary piston engine
US5335497A (en) 1993-02-10 1994-08-09 Macomber Bennie D Rotary Stirling cycle engine
EP1075595B1 (en) 1998-04-25 2004-02-11 Ceres IPR Limited Improvements relating to rotary piston machines
WO2008065017A1 (en) 2006-12-02 2008-06-05 Guenther Eggert System for sealing the piston of rotary piston machines
DE102007028181A1 (en) * 2007-06-20 2008-12-24 GÜNTHER, Eggert System of rotary piston engines for multilevel utilization of fuel energy in combined process, has rotary piston engines, which work with similar torque-characteristics on common shaft
EP2765280A2 (en) * 2013-02-07 2014-08-13 EN3 GmbH A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179890A (en) 1978-04-04 1979-12-25 Goodwin Hanson Epitrochoidal Stirling type engine
DE3333586A1 (en) 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Externally heated regenerative heat engine and machine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
US5317996A (en) 1991-07-17 1994-06-07 Lansing Joseph S Self-starting multifuel rotary piston engine
US5335497A (en) 1993-02-10 1994-08-09 Macomber Bennie D Rotary Stirling cycle engine
EP1075595B1 (en) 1998-04-25 2004-02-11 Ceres IPR Limited Improvements relating to rotary piston machines
WO2008065017A1 (en) 2006-12-02 2008-06-05 Guenther Eggert System for sealing the piston of rotary piston machines
DE102007028181A1 (en) * 2007-06-20 2008-12-24 GÜNTHER, Eggert System of rotary piston engines for multilevel utilization of fuel energy in combined process, has rotary piston engines, which work with similar torque-characteristics on common shaft
EP2765280A2 (en) * 2013-02-07 2014-08-13 EN3 GmbH A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method

Similar Documents

Publication Publication Date Title
DE102006043250B4 (en) Multi-cylinder free piston Stirling engines and heat pumps in alpha arrangement with graduated pistons
DE112010004335B4 (en) Gamma-type free-piston Stirling engines configuration
DE3223511A1 (en) FREE-PISTON STIRLING MACHINE
DE4333144A1 (en) Swash plate refrigerant compressor - has sealing grooves and seals creating gas tight seal at rotary valve interface and has channelled cylinder block providing connection between central bore and cylinder bores
EP3146190B1 (en) Two-cylinder stirling engine, multiple-cylinder stirling engine and electric energy generation system
DE2539878C2 (en) Thermodynamic machine with closed circuit
DE19814742C1 (en) Rotary heat engine
DE4305043A1 (en) Stirling engine of double-head piston and swash plate type - has cylinder block with front and rear working gas chambers, surrounded by heat exchangers
EP1682749B1 (en) Rotary piston thermal engine device
EP3101257A1 (en) Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit
DE4424319C1 (en) Hot gas engine
DE3239021C2 (en)
DE3834070C2 (en)
EP0725899B1 (en) Piston compressor for gaseous media
EP2419618A1 (en) Thermal engine
DE1601459C3 (en) Device with a hot gas engine and a device to be driven coupled to it
DE102007054196A1 (en) Heat engine has working medium, piston that is remained in contact with working medium of higher temperature, and another piston that is remained in contact with working medium of lower temperature
DE102012109832B4 (en) Free piston machine and double cylinder free piston machine
CH373593A (en) Power plant with two four-stroke rotary piston engines
DE3709014A1 (en) Stirling engine with rotary piston situated in a gas-tight inner chamber of a housing
WO2002084078A1 (en) Rotary piston thermal engine device
DE1426976A1 (en) Circulating heat pump
DE102010013620B4 (en) Hot gas engine with rotating segmented pistons
DE3204017A1 (en) Rotary engine
DE19633174C2 (en) Rotary piston power or work machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180103