EP2765280A2 - A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method - Google Patents

A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method Download PDF

Info

Publication number
EP2765280A2
EP2765280A2 EP14154162.3A EP14154162A EP2765280A2 EP 2765280 A2 EP2765280 A2 EP 2765280A2 EP 14154162 A EP14154162 A EP 14154162A EP 2765280 A2 EP2765280 A2 EP 2765280A2
Authority
EP
European Patent Office
Prior art keywords
rotary piston
rotary
medium
steam
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14154162.3A
Other languages
German (de)
French (fr)
Other versions
EP2765280B1 (en
EP2765280A3 (en
Inventor
Robert Engel
Eggert GÜNTHER
Norbert GÜNTHER
Sabine Mielke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EN3 GmbH
Original Assignee
EN3 GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EN3 GmbH filed Critical EN3 GmbH
Publication of EP2765280A2 publication Critical patent/EP2765280A2/en
Publication of EP2765280A3 publication Critical patent/EP2765280A3/en
Application granted granted Critical
Publication of EP2765280B1 publication Critical patent/EP2765280B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type

Definitions

  • the invention relates to a steam power system for direct thermal-hydraulic or thermo-pneumatic conversion of steam energy in pressure energy to a pumped medium.
  • US 5165238 A discloses a heat engine of the Wankel type, which is in communication with an external substantially stationary heat source.
  • the heat source heats high pressure gas, which drives the rotor.
  • the object of the present invention is to provide a method and an arrangement in which the pressure energy of steam by means of rotary piston machines (RKM), for a direct transfer of the vapor pressure to a working medium such as water or compressed air, without, as in otherwise usually the pressure forces of the steam via a mechanical engine, so indirectly, are performed on a pump or a compressor.
  • RKM rotary piston machines
  • the solution according to the invention is based on the basic property of a large number of rotary piston machines in that the piston does not execute a return movement with respect to a central axis of rotation.
  • this applies to the group of rotary engines, which includes the well-known Wankel machine.
  • This property also has vane machines in which the vane of the rotor have a fixed angular distance.
  • the method according to the invention for the direct conversion of steam energy into pressure energy to a pumped medium is characterized in that steam is generated in a closed circuit from a working medium, which is passed alternately into at least two interconnected rotary piston machines, whereby the pressure energy to the pumped medium is transmitted to the piston opposite side of the demarcated by a rotary piston working space and provided for further use and that the relaxed working fluid is recycled.
  • the procedure proceeds according to the following steps.
  • the demarcated by the rotary piston working chamber of the first rotary piston machine is filled in a first process phase with the vaporous working fluid, whereby the pressure energy is transmitted to the fluid on the piston opposite side, and stored in a pressure accumulator.
  • a negative pressure is generated in the second rotary piston machine, so that there fresh feed medium is sucked in, and at the same time the relaxed working medium is returned to the circulation.
  • Via a valve control the functions of individual valves in the block are reversed in the opposite direction in a next process phase, so that the first and the second rotary piston machine exchange their functions.
  • Both rotary piston machines are connected via a common control shaft or kinematically equivalent elements in order to achieve a synchronous movement sequence.
  • both rotary piston engines work offset by preferably 90 degrees in the rotary circulation.
  • Four valves arranged in the process work together in such a way that these valves are alternately opened and closed in the block.
  • both rotary piston machines operate without angular offset or an angular offset of 180 degrees in the rotary orbit.
  • the valves arranged in the process are simultaneously switched in the block when the rotary pistons of the rotary piston machines have reached a rotation of approximately 180 degrees, respectively.
  • Two valves work together in pairs.
  • the pairwise cooperating valves are designed as double valves with combined functions.
  • a 2-phase fluid for example water is used.
  • the medium used is a 1-phase fluid, such as water or paraffin oil, or air is used.
  • the arrangement according to the invention is characterized in that in a closed circuit a steam generator, which is supplied with a working fluid from a collecting tank, is connected to at least two rotary piston machines, so that they are acted upon alternately with a vapor of the working fluid, whereby a conveying medium, which alternately is in the rotary piston machines ready, is pressurized and thereby available for further use, and that the rotary piston machines in turn are in communication with a condenser, which in turn is connected to the collecting container.
  • the rotary piston machines are connected via a common control shaft or kinematically equivalent elements.
  • the steam generator is connected via a feed line with inlet openings of the rotary piston machines.
  • An accumulator is connected on the one hand via a pressure line to the collecting container and on the other hand via a media line with outlet openings.
  • the condenser is connected via a media line with the outlet openings and the medium is conveyed via a media line to the inlet openings.
  • the rotary piston machines are each divided into two working areas with kinematically identical function by rotary piston.
  • a rotary piston has a side acted upon by the vapor pressure, while the opposite side can be used to move a different medium, a so-called conveying medium (for example sucked air or a fluid).
  • a conveying medium for example sucked air or a fluid.
  • the axis of rotation of the rotor is merely an element of the motion control of the rotor, it is not the power decrease.
  • the solution according to the invention includes, starting from the two phases of the working fluid, liquid and vapor phase, after completion of the expansion of the vapor on the vapor side of the flask, a phase in which the vapor condenses.
  • the expanded steam is sucked by means of a condensation pump through a condenser and cooled to or below the condensation temperature, so that a negative pressure on the formerly steam, now condensate side of the piston is formed.
  • both rotary piston machines are arranged offset by preferably 90 degrees in the rotary circulation.
  • valves are arranged, with four valves are alternately opened and closed in the block.
  • both rotary piston machines are arranged without angular offset or an angular offset of 180 degrees in the rotary circulation.
  • valves are arranged, which interact in pairs and are switched after each 180 degrees of piston movement from the "open” to the "closed” or vice versa as a valve group "in the block".
  • the pairwise cooperating valves are designed for a further embodiment as double valves.
  • the switching of the valves causes that during the condensation not steam again flows to the former steam-loaded piston side, but the intended delivery medium.
  • Both rotary piston machines are connected via a common control shaft so that the movement of the pistons always synchronous Go through movements. A power transmission between the two rotary piston engines does not take place. In the ideal rotary piston machine, the control of the synchronous operation of the pistons is free of forces.
  • the basic arrangement of the elements for an arrangement of rotary piston machines with about 90 degrees offset piston is based on FIG. 1 described.
  • the arrangement consists in the main of two rotary piston machines 101 and 102, a steam generator 1, a pressure accumulator 12, a condenser 13 and a collecting container 16, which are interconnected via media lines and valves.
  • the rotary piston machine 101 is kinematically connected to the rotary piston machine 102 via a control shaft 5.
  • a control shaft 5 By the control shaft 5, a synchronous movement is achieved for both rotary piston machines.
  • the rotary piston machine used in the construction corresponds in principle to the known Wankel machine. The main difference is that a delta-piston works in a raceway with the contour of a single-arched trochoid.
  • the rotary piston machine itself is not the subject of the invention.
  • the working medium 19 is for example a 2-phase working fluid, in particular water such as condensate and / or boiler water.
  • the rotary piston machine 101 is connected to the steam generator 1 via the media line 8, the node 201, the valve 701, and the inlet port 402. At the same time, the rotary piston machine 101 is connected via the outlet opening 401, the valve 705, the node 203 and the media line 10 to the pressure accumulator 12.
  • the rotary piston machine 102 is connected via the inlet opening 404, the node 202, the valve 704 and the media line 9 with the conveying medium, for example the free atmosphere. Further, the rotary piston engine 102 is connected to the condenser 13 through the exhaust port 403, the node 204, the valve 708, and the condensate line 11. The condenser 13 is connected to a condensate pump 14 via the condensate line 15 to the sump 16.
  • markers 301, 302, 303 and 304 are mounted on the rotary pistons 31 and 32.
  • the mark 301 is bright and the mark 302 is drawn dark
  • the mark 303 is bright and the mark 304 is darkened.
  • the first embodiment presents in Figur1
  • the vapor of the working medium 19 passes from the steam generator 1 via the inlet opening 402 in the working chamber above the rotary piston 31.
  • the pressure of the steam from the steam generator 1 causes a rotation of the rotary piston 31 in a clockwise direction.
  • a located on the back of the rotary piston 31 conveying medium 20 for example, a 1-phase fluid such as air, water or paraffin oil
  • the mark 301 (light) on the rotary piston 31 is located at the beginning of the working phases on the left and mark 302 (dark) on the right.
  • the rotary piston 32 of the rotary piston machine 102 is offset by approximately 90 degrees from the rotary piston 31 of the rotary piston machine 101.
  • the mark 303 (light) on the rotary piston 32 is at the top and the marker 304 (dark) is at the bottom.
  • the steam located in the working chamber to the left of the rotary piston 32 is simultaneously conducted via the outlet opening 403 to the condenser 13 and cooled there. As a result, a negative pressure in the working chamber is generated to the right of the rotary piston 32. Due to the higher ambient pressure of the pumped medium 20, the rotary piston 32 is also rotated clockwise.
  • the second phase ( FIG. 2 ) reached.
  • the mark 301 (light) on the rotary piston 31 is now at the top and the mark 302 (dark) at the bottom.
  • the mark 303 (light) on the rotary piston 32 is right and the mark 304 (dark) is on the left.
  • valves 702 and 704 and the valves 706 and 708 are opened or closed in the block.
  • the vapor pressure of the steam generator 1 now passes via the media line 8 and valve 702 to the inlet opening 404 of the rotary piston machine 102 and simultaneously via the media line 8 and valve 701 to the inlet opening 402 of the rotary piston machine 101.
  • Both rotary pistons 31 and 32 are further rotated in the clockwise direction and press on their Rear side of the previously sucked in delivery medium 20 via the outlet opening 401 and 403, the media line 10 and the valves 705 and 706 in the pressure accumulator 12th
  • the third process phase ( FIG. 3 ) is the same with the first process phase in that now the rotary piston machines 101 and 102 have changed their functions.
  • the rotary pistons 31 and 32 have now completed a rotation of about 180 degrees. This can be recognized by the markers 301, 302, 303 and 304 which have migrated in relation to the first process phase to the rotary pistons 31 and 32. In this position, a switchover of the valves 701, 703, 705, and 707 takes place in the block.
  • the fourth process phase ( FIG. 4 ).
  • the valves 702, 704, 706 and 708 are connected in block, so that the steam from both rotary piston machines 101 and 102 is passed through the condenser 13 as working fluid 19 back into the collecting container 19 and at the same time is caused by the resulting negative pressure on the back of the Rotary piston 31 and 32 sucked in both rotary piston machines 101 and 102 new fluid.
  • a new first process phase begins by switching over the valves 701, 702, 705 and 707.
  • An essential feature of this embodiment is the reversal of the various valve groups, which is delayed in time after every 90 degrees in the block of four valves.
  • the advantage of this process is based on the offset by 90 degrees rotation rotary pistons 31 and 32. This is achieved within the arrangement of two rotary piston machines 101 and 102, a continuous overall process of direct conversion of the energy of the steam in useful work of the pumped medium and a machine dynamic complete mass balance.
  • FIGS. 5 and 6 show a further embodiment in which is dispensed with the machine dynamic mass balance.
  • an external mass balance must be available.
  • Both rotary pistons 31 and 32 have no angular offset from each other or an angular offset of 180 degrees. This results in a denser sequence of processes.
  • the rotary piston machine 101 is in the process phase steam expansion and expulsion of the fluid 20 in the pressure accumulator 12.
  • the rotary piston machines 102 sucks by the negative pressure caused by the condenser 13 to a new filling of the fluid 20 at.
  • FIG. 7 The flowcharts of the process phases for the arrangements according to FIGS. 1 to 6 be in FIG. 7 shown. in which Figure 7a the flow diagrams for rotary piston machine with about 90 degrees offset piston and FIG. 7b include the flow diagrams for rotary piston machine without angular displacement of the piston.
  • FIG. 7b shows the flowchart for the arrangements of rotary piston machines without angular offset of the rotary piston to each other or an angular offset of 180 degrees.

Abstract

The method involves generating steam from working medium (19) i.e. two-phase fluid such as water, in a closed circuit, and alternately feeding the steam into two interconnected rotary piston engines (101, 102). Pressure energy of a delivery medium (20) in a defined work area is transferred into an opposite side of a piston by rotary pistons (31, 32) and made available for further use. The relaxed working medium is returned into the closed circuit. The rotary piston engines are connected through a common control shaft (5) or equivalent kinematic element to achieve a synchronous movement. The water is selected from condensate and/or boiler water. An independent claim is also included for an arrangement for direct conversion of steam energy into pressure energy on a delivery medium.

Description

Gegenstand der Erfindung ist ein Dampfkraftsystem zur direkten thermohydraulischen oder thermopneumatischen Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium.The invention relates to a steam power system for direct thermal-hydraulic or thermo-pneumatic conversion of steam energy in pressure energy to a pumped medium.

Der übliche Weg zur Umwandlung von Dampfenergie in eine andere Energieform besteht in der Verwendung von Kolbendampfmaschinen oder Dampfturbinen, in denen im Clausius-Rankine-Prozess durch eine Dampfentspannung die Umwandlung in mechanische Energie stattfindet. Die hierzu zur Verfügung stehenden Technologien und Mechanismen weisen einen hohen technischen Reifegrad auf. Je nach Anwendungsfall der durchzuführenden Umwandlung ist jedoch der notwendige bauliche und betriebstechnische Aufwand beträchtlich. Vor der Entwicklung der Dampfmaschinen- und Dampfturbinentechnik führte die beginnende Industrialisierung bereits zu Umwandlungstechnologien, die ohne die genannte Maschinentechnik auskamen. In englischen Bergwerken erfolgte bereits teilweise die Entwässerung mit Hilfe der Dampfkraft. Diese Technik ist bekannt unter der Bezeichnung kolbenlose Dampfpumpe. Sie wurde 1698 von Denis Papin entwickelt und 1699 von Thomas Savery zu weiterer Reife geführt.The usual way to convert steam energy into another form of energy is to use piston steam engines or steam turbines in which the conversion to mechanical energy takes place in the Rankine process by steam expansion. The available technologies and mechanisms have a high degree of technical maturity. Depending on the application of the conversion to be carried out, however, the necessary structural and operational expenses are considerable. Before the development of steam engine and steam turbine technology, the beginning of industrialization already led to conversion technologies that could do without the aforementioned machine technology. In English mines already partially the drainage with the help of steam power. This technique is known as piston-less vapor pump. It was developed in 1698 by Denis Papin and led in 1699 by Thomas Savery to further maturity.

Auch mit dem Siegeszug der Dampfmaschinen- und Dampfturbinentechnik blieben in einigen Anwendungsgebieten Aufgaben der Dampfpumpentechnik erhalten. In der chemischen Industrie erfolgt auch heute aus Gründen der Explosionssicherheit der Einsatz sogenannter Duplexpumpen dann, wenn explosible Flüssigkeiten wie beispielsweise Benzin zu fördern sind.Even with the triumphal procession of steam engine and steam turbine technology tasks of the vapor pump technology remained in some applications. In the chemical industry today, for reasons of explosion safety, the use of so-called duplex pumps takes place when explosive liquids such as gasoline are to be promoted.

Die Patentveröffentlichungen DE 1751862 A , DE 69914738 T2 und US 5211017 A zeigen Lösungen mit zwei Kreiskolbenmaschinen des Typs "Wankel-Motor" mit jeweils zwei Arbeitskammern, wobei in einem geschlossenen Kreislauf die Einlassöffnungen mit den Auslassöffnungen der jeweils anderen Kammer verbunden sind.The patent publications DE 1751862 A . DE 69914738 T2 and US 5211017 A show solutions with two rotary engines of the type "Wankel engine" with two working chambers, wherein in a closed circuit, the inlet openings are connected to the outlet openings of the other chamber.

In US 5165238 A wird eine Wärmekraftmaschine des Wankel-Typs offenbart, welche in Verbindung mit einer externen im Wesentlichen stationären Wärmequelle steht. Die Wärmequelle erwärmt ein Hochdruckgas, wodurch der Rotor angetrieben wird.In US 5165238 A discloses a heat engine of the Wankel type, which is in communication with an external substantially stationary heat source. The heat source heats high pressure gas, which drives the rotor.

Für die vorliegende Erfindung wird sich die Aufgabe gestellt, ein Verfahren und eine Anordnung aufzuzeigen, bei der die Druckenergie von Dampf mittels Rotationskolbenmaschinen (RKM), zu einer direkten Übertragung des Dampfdrucks auf ein Arbeitsmedium wie beispielsweise Wasser oder Druckluft eingesetzt wird, ohne dass wie in sonst üblicher Weise die Druckkräfte des Dampfes über ein mechanisches Triebwerk, also indirekt, auf eine Pumpe oder einen Verdichter geführt werden.The object of the present invention is to provide a method and an arrangement in which the pressure energy of steam by means of rotary piston machines (RKM), for a direct transfer of the vapor pressure to a working medium such as water or compressed air, without, as in otherwise usually the pressure forces of the steam via a mechanical engine, so indirectly, are performed on a pump or a compressor.

Die erfindungsgemäße Lösung geht von der Grundeigenschaft einer Vielzahl von Rotationskolbenmaschinen aus, dass der Kolben in Bezug auf eine zentrale Drehachse keine rückkehrende Bewegung ausführt. Beispielsweise trifft dies auf die Gruppe der Kreiskolbenmaschinen zu, zu der auch die bekannte Wankel-Maschine gehört. Diese Eigenschaft haben auch Flügelzellenmaschinen, bei denen die Flügelzellen des Rotors einen festen Winkelabstand besitzen.The solution according to the invention is based on the basic property of a large number of rotary piston machines in that the piston does not execute a return movement with respect to a central axis of rotation. For example, this applies to the group of rotary engines, which includes the well-known Wankel machine. This property also has vane machines in which the vane of the rotor have a fixed angular distance.

Das erfindungsgemäße Verfahren zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium ist dadurch gekennzeichnet, dass in einem geschlossenen Kreislauf aus einem Arbeitsmedium Dampf erzeugt wird, welcher alternierend in mindestens zwei miteinander verbundene Rotationskolbenmaschinen geleitet wird, wodurch die Druck-Energie auf das Fördermedium auf der Kolbengegenseite des durch einen Rotationskolben abgegrenzten Arbeitsraum übertragen wird und zur weiteren Verwendung bereit gestellt wird, und dass das entspannte Arbeitsmedium in den Kreislauf zurückgeführt wird.The method according to the invention for the direct conversion of steam energy into pressure energy to a pumped medium is characterized in that steam is generated in a closed circuit from a working medium, which is passed alternately into at least two interconnected rotary piston machines, whereby the pressure energy to the pumped medium is transmitted to the piston opposite side of the demarcated by a rotary piston working space and provided for further use and that the relaxed working fluid is recycled.

Das Verfahren läuft nach folgenden Schritten ab. Der durch den Rotationskolben abgegrenzte Arbeitsraum der ersten Rotationskolbenmaschine wird in einer ersten Prozessphase mit dem dampfförmigen Arbeitsmedium gefüllt, wodurch die Druck-Energie auf das Fördermedium auf der Kolbengegenseite übertragen wird, und in einem Druckspeicher gespeichert wird. Zeitgleich wird in der zweiten Rotationskolbenmaschine ein Unterdruck erzeugt, so dass dort frisches Fördermedium angesaugt wird, und gleichzeitig das entspannte Arbeitsmedium in den Kreislauf zurück geführt wird. Über eine Ventilsteuerung werden in einer nächsten Prozessphase die Funktionen einzelner Ventile im Block in Gegenrichtung umgeschaltet, so dass die erste und die zweite Rotationskolbenmaschine ihre Funktionen tauschen.The procedure proceeds according to the following steps. The demarcated by the rotary piston working chamber of the first rotary piston machine is filled in a first process phase with the vaporous working fluid, whereby the pressure energy is transmitted to the fluid on the piston opposite side, and stored in a pressure accumulator. At the same time a negative pressure is generated in the second rotary piston machine, so that there fresh feed medium is sucked in, and at the same time the relaxed working medium is returned to the circulation. Via a valve control, the functions of individual valves in the block are reversed in the opposite direction in a next process phase, so that the first and the second rotary piston machine exchange their functions.

Beide Rotationskolbenmaschinen sind über eine gemeinsame Steuerwelle oder kinematisch gleichwertige Elemente verbunden, um einen synchronen Bewegungsablauf zu erreichen.Both rotary piston machines are connected via a common control shaft or kinematically equivalent elements in order to achieve a synchronous movement sequence.

In einer ersten Ausführungsform arbeiten beide Rotationskolbenmaschinen um vorzugsweise 90 Grad versetzt im Drehumlauf. Jeweils vier im Prozess angeordnete Ventile arbeiten zusammen in der Art, dass diese Ventile abwechselnd im Block geöffnet und geschlossen werden.In a first embodiment, both rotary piston engines work offset by preferably 90 degrees in the rotary circulation. Four valves arranged in the process work together in such a way that these valves are alternately opened and closed in the block.

In einer zweiten Ausführungsform arbeiten beide Rotationskolbenmaschinen ohne Winkelversatz oder einen Winkelversatz von 180 Grad im Drehumlauf. Die im Prozess angeordnete Ventile werden gleichzeitig im Block geschaltet, wenn die Rotationskolben der Rotationskolbenmaschinen ein Drehung von jeweils etwa 180 Grad erreicht haben, Jeweils zwei Ventile arbeiten paarweise zusammen. Die paarweise zusammenwirkenden Ventile sind als Doppelventile mit zusammengefassten Funktionen ausgeführt.In a second embodiment, both rotary piston machines operate without angular offset or an angular offset of 180 degrees in the rotary orbit. The valves arranged in the process are simultaneously switched in the block when the rotary pistons of the rotary piston machines have reached a rotation of approximately 180 degrees, respectively. Two valves work together in pairs. The pairwise cooperating valves are designed as double valves with combined functions.

Als Arbeitsmedium wird ein 2-Phasen-Fluid, beispielsweise Wasser verwendet. Als Fördermedium wird ein 1-Phasen-Fluid, wie Wasser oder Paraffinöl, oder es wird Luft verwendet.As a working medium, a 2-phase fluid, for example water is used. The medium used is a 1-phase fluid, such as water or paraffin oil, or air is used.

Die erfindungsgemäße Anordnung ist gekennzeichnet dadurch, dass in einem geschlossenen Kreislauf ein Dampferzeuger, welcher mit einem Arbeitsfluid aus einem Sammelbehälter gespeist wird, mit mindestens zwei Rotationskolbenmaschinen verbunden ist, so dass diese alternierend mit einem Dampf des Arbeitsfluides beaufschlagt werden, wodurch ein Fördermedium, welches abwechselnd in den Rotationskolbenmaschinen bereit steht, mit einem Druck beaufschlagt wird und dadurch zur weiteren Verwendung verfügbar ist, und dass die Rotationskolbenmaschinen ihrerseits mit einem Kondensator in Verbindung stehen, welcher seinerseits mit dem Sammelbehälter verbunden ist. Die Rotationskolbenmaschinen sind über eine gemeinsame Steuerwelle oder kinematisch gleichwertige Elemente verbunden. Der Dampferzeuger ist über eine Speiseleitung mit Einlassöffnungen der Rotationskolbenmaschinen verbunden. Ein Druckspeicher ist einerseits über eine Druckleitung mit dem Sammelbehälter und andererseits über eine Medienleitung mit Auslassöffnungen verbunden. Der Kondensator ist über eine Medienleitung mit den Auslassöffnungen verbunden und das Fördermedium wird über eine Medienleitung zu den Einlassöffnungen geführt.The arrangement according to the invention is characterized in that in a closed circuit a steam generator, which is supplied with a working fluid from a collecting tank, is connected to at least two rotary piston machines, so that they are acted upon alternately with a vapor of the working fluid, whereby a conveying medium, which alternately is in the rotary piston machines ready, is pressurized and thereby available for further use, and that the rotary piston machines in turn are in communication with a condenser, which in turn is connected to the collecting container. The rotary piston machines are connected via a common control shaft or kinematically equivalent elements. The steam generator is connected via a feed line with inlet openings of the rotary piston machines. An accumulator is connected on the one hand via a pressure line to the collecting container and on the other hand via a media line with outlet openings. The condenser is connected via a media line with the outlet openings and the medium is conveyed via a media line to the inlet openings.

Die Rotationskolbenmaschinen sind jeweils in zwei Arbeitsbereiche mit kinematisch gleicher Funktion durch Rotationskolben unterteilt.The rotary piston machines are each divided into two working areas with kinematically identical function by rotary piston.

Bei diesen Maschinen hat ein rotierender Kolben eine vom Dampfdruck beaufschlagte Seite, während die Gegenseite dazu eingesetzt werden kann, ein anders Medium, ein sogenanntes Fördermedium (beispielsweise angesaugte Luft oder ein Fluid), zu verschieben. Hierbei ist die Drehachse des Rotors lediglich ein Element der Bewegungssteuerung des Rotors, sie dient nicht der Leistungsabnahme.In these machines, a rotary piston has a side acted upon by the vapor pressure, while the opposite side can be used to move a different medium, a so-called conveying medium (for example sucked air or a fluid). Here, the axis of rotation of the rotor is merely an element of the motion control of the rotor, it is not the power decrease.

Bedingt durch die Rotationsbewegung des Kolbens wird nach einem bestimmten Drehwinkel, in einem Bereich von etwa 180 Winkelgrad, die bisher vom Dampfdruck beaufschlagte Kolbenseite zu einer Kolbenseite, die ein Ausgangsmedium zu verschieben hat.Due to the rotational movement of the piston is after a certain angle of rotation, in a range of about 180 degrees, the previously acted upon by the vapor pressure piston side to a piston side, which has an output medium to move.

Zur erfindungsgemäßen Lösung gehört, dass, ausgehend von den zwei Zustandsphasen des Arbeitsmediums, flüssig und dampfförmig, nach Abschluss der Expansion des Dampfes auf der Dampfseite des Kolbens eine Phase erfolgt, bei der der Dampf kondensiert.The solution according to the invention includes, starting from the two phases of the working fluid, liquid and vapor phase, after completion of the expansion of the vapor on the vapor side of the flask, a phase in which the vapor condenses.

Der entspannte Dampf wird mittels einer Kondensationspumpe durch einen Kondensator gesaugt und auf bzw. unter Kondensationstemperatur abgekühlt, so dass ein Unterdruck auf der ehemals Dampf,- jetzt Kondensatseite des Kolbens entsteht.The expanded steam is sucked by means of a condensation pump through a condenser and cooled to or below the condensation temperature, so that a negative pressure on the formerly steam, now condensate side of the piston is formed.

In einem Ausführungsbeispiel sind beide Rotationskolbenmaschinen um vorzugsweise 90 Grad versetzt im Drehumlauf angeordnet. In den Medien-und Druckleitungen sind Ventile angeordnet, wobei jeweils vier Ventile abwechselnd im Block geöffnet und geschlossen werden.In one embodiment, both rotary piston machines are arranged offset by preferably 90 degrees in the rotary circulation. In the media and pressure lines valves are arranged, with four valves are alternately opened and closed in the block.

In einem zweiten Ausführungsbeispiel sind beide Rotationskolbenmaschinen ohne Winkelversatz oder einen Winkelversatz von 180 Grad im Drehumlauf angeordnet. In den Medien- und Druckleitungen sind Ventile angeordnet, die paarweise zusammenwirken und nach jeweils ca. 180 Winkelgrad der Kolbenbewegung von der Stellung "geöffnet" in die Stellung "geschlossen" bzw. umgekehrt als Ventilgruppe "im Block" umgeschaltet werden. Die paarweise zusammenwirkenden Ventile sind für eine weitere Ausführungsform als Doppelventile ausgeführt.In a second embodiment, both rotary piston machines are arranged without angular offset or an angular offset of 180 degrees in the rotary circulation. In the media and pressure lines valves are arranged, which interact in pairs and are switched after each 180 degrees of piston movement from the "open" to the "closed" or vice versa as a valve group "in the block". The pairwise cooperating valves are designed for a further embodiment as double valves.

Die Umschaltung der Ventile bewirkt, dass während der Kondensation nicht erneut Dampf auf die ehemals dampfbeaufschlagte Kolbenseite strömt, sondern das vorgesehene Fördermedium.The switching of the valves causes that during the condensation not steam again flows to the former steam-loaded piston side, but the intended delivery medium.

Beide Rotationskolbenmaschinen sind über eine gemeinsame Steuerwelle so verbunden, dass die Bewegung der Kolben stets synchrone Bewegungen durchlaufen. Eine Leistungsübertragung zwischen beiden Rotationskolbenmaschinen findet dabei nicht statt. In der idealen Rotationskolbenmaschine erfolgt die Steuerung des Synchronlaufs der Kolben frei von Kräften.Both rotary piston machines are connected via a common control shaft so that the movement of the pistons always synchronous Go through movements. A power transmission between the two rotary piston engines does not take place. In the ideal rotary piston machine, the control of the synchronous operation of the pistons is free of forces.

Ergänzend zu den erfindungsgemäßen Merkmalen gehört, dass das Verfahren und die Anordnung der Elemente keine prinzipielle Leistungsbegrenzung aufweisen.In addition to the features according to the invention, it is necessary that the method and the arrangement of the elements have no power limitation in principle.

Ausführung der ErfindungEmbodiment of the invention

Die erfindungsgemäße Lösung wird anhand von Ausführungsbeispielen beschrieben. Die Beschreibung stellt die Arbeitsphasen des Verfahrens und der Anordnung in den Figuren 1 bis7 dar. Hierzu zeigen für das erste Ausführungsbeispiel

  • Figur 1 eine Anordnung der ersten Prozessphase für RKM mit um ca. 90 Grad versetzten Rotationskolben,
  • Figur 2 zweite Prozessphase für RKM mit um ca. 90 Grad versetzten Rotationskolben,
  • Figur 3 dritte Prozessphase für RKM mit um ca. 90 Grad versetzten Rotationskolben,
  • Figur 4 vierte Prozessphase für RKM mit um ca. 90 Grad versetzten Rotationskolben,
  • und für das zweite Ausführungsbeispiel
  • Figur 5 erste Prozessphase für RKM ohne Winkelversatz der Rotationskolben bzw. einen Winkelversatz von 180 Grad,
  • Figur 6 zweite Prozessphase für RKM ohne Winkelversatz
Dazu zeigt Figur 7 die Ablaufschemen der Prozessphasen für die Anordnungen nach den Figuren 1 bis 6, wobei Figur 7a die Ablaufschemen für RKM mit um ca. 90 Grad versetzten Rotationskolben und Figur 7b die Ablaufschemen für RKM ohne Winkelversatz der Rotationskolben beinhalten.The solution according to the invention will be described by means of exemplary embodiments. The description represents the working phases of the method and the arrangement in the FIGS. 1 bis7 dar. Show this for the first embodiment
  • FIG. 1 an arrangement of the first process phase for RKM with about 90 degrees offset rotary piston,
  • FIG. 2 second process phase for RKM with rotary pistons offset by approx. 90 degrees,
  • FIG. 3 third process phase for RKM with rotary pistons offset by approx. 90 degrees,
  • FIG. 4 fourth process phase for RKM with rotary pistons offset by approx. 90 degrees,
  • and for the second embodiment
  • FIG. 5 first process phase for RKM without angular offset of the rotary pistons or an angular offset of 180 degrees,
  • FIG. 6 second process phase for RKM without angular misalignment
In addition shows FIG. 7 the flowcharts of the process phases for the arrangements according to FIGS. 1 to 6 , in which Figure 7a the flow diagrams for RKM with about 90 degrees offset rotary piston and FIG. 7b The flow diagrams for RKM without angular offset of the rotary piston include.

Die Grundanordnung der Elemente für eine Anordnung von Rotationskolbenmaschinen mit um ca. 90 Grad versetzten Kolben wird anhand von Figur 1 beschrieben. Die Anordnung besteht in der Hauptsache aus zwei Rotationskolbenmaschinen 101 und 102, einem Dampferzeuger 1, einem Druckspeicher 12, einem Kondensator 13 und einem Sammelbehälter 16, welche über Medienleitungen und Ventile miteinander verbunden sind.The basic arrangement of the elements for an arrangement of rotary piston machines with about 90 degrees offset piston is based on FIG. 1 described. The arrangement consists in the main of two rotary piston machines 101 and 102, a steam generator 1, a pressure accumulator 12, a condenser 13 and a collecting container 16, which are interconnected via media lines and valves.

Die Rotationskolbenmaschine 101 ist mit der Rotationskolbenmaschine 102 über eine Steuerwelle 5 kinematisch verbunden. Durch die Steuerwelle 5 wird für beide Rotationskolbenmaschinen ein synchroner Bewegungsablauf erreicht.The rotary piston machine 101 is kinematically connected to the rotary piston machine 102 via a control shaft 5. By the control shaft 5, a synchronous movement is achieved for both rotary piston machines.

Eine nähere Beschreibung der Funktionsweise der Rotationskolbenmaschinen soll hier nicht erfolgen. Die verwendete Rotationskolbenmaschine entspricht im Aufbau prinzipiell der bekannten Wankel-Maschine. Der hauptsächliche Unterschied besteht darin, dass ein Zweieck-Kolben in einer Laufbahn mit der Kontur einer einbogigen Trochoide arbeitet. Die Rotationskolbenmaschine selbst ist nicht Gegenstand der Erfindung.A closer description of the operation of the rotary piston machines should not be done here. The rotary piston machine used in the construction corresponds in principle to the known Wankel machine. The main difference is that a delta-piston works in a raceway with the contour of a single-arched trochoid. The rotary piston machine itself is not the subject of the invention.

Dem Dampferzeuger 1 wird ein Arbeitsmedium 19 über eine Kesselspeisepumpe 17 und eine Druckleitung 18 aus dem Sammelbehälter 16 zugeleitet. Das Arbeitsmedium 19 ist beispielsweise ein 2-Phasen-Arbeitsfluid, insbesondere Wasser wie beispielsweise Kondensat und/oder Kesselwasser.The steam generator 1, a working fluid 19 via a boiler feed pump 17 and a pressure line 18 is supplied from the reservoir 16. The working medium 19 is for example a 2-phase working fluid, in particular water such as condensate and / or boiler water.

In der ersten Prozessphase, wie in Figur 1 gezeigt, ist die Rotationskolbenmaschine 101 über die Medienleitung 8, den Knotenpunkt 201, das Ventil 701 und die Einlassöffnung 402 mit dem Dampferzeuger 1 verbunden. Zugleich ist die Rotationskolbenmaschine 101 über die Auslassöffnung 401, das Ventil 705, den Knotenpunkt 203 und die Medienleitung 10 mit dem Druckspeicher 12 verbunden.In the first process phase, as in FIG. 1 1, the rotary piston machine 101 is connected to the steam generator 1 via the media line 8, the node 201, the valve 701, and the inlet port 402. At the same time, the rotary piston machine 101 is connected via the outlet opening 401, the valve 705, the node 203 and the media line 10 to the pressure accumulator 12.

Die Rotationskolbenmaschine 102 ist über die Einlassöffnung 404, den Knotenpunkt 202, dem Ventil 704 und die Medienleitung 9 mit dem Fördermedium, beispielsweise der freien Atmosphäre, verbunden. Weiter ist die Rotationskolbenmaschine 102 über die Auslassöffnung 403, den Knotenpunkt 204, das Ventil 708 und die Kondensatleitung 11 mit dem Kondensator 13 verbunden. Der Kondensator 13 ist mit einer Kondensatpumpe 14 über die Kondensatleitung 15 mit dem Sammelbehälter 16 verbunden.The rotary piston machine 102 is connected via the inlet opening 404, the node 202, the valve 704 and the media line 9 with the conveying medium, for example the free atmosphere. Further, the rotary piston engine 102 is connected to the condenser 13 through the exhaust port 403, the node 204, the valve 708, and the condensate line 11. The condenser 13 is connected to a condensate pump 14 via the condensate line 15 to the sump 16.

Um die einzelnen Prozessphasen besser darstellen zu können, sind Markierungen 301, 302, 303 und 304 auf den Rotationskolben 31 und 32 angebracht. Für den Rotationskolben 31 ist die Markierung 301 hell und die Markierung 302 dunkel eingezeichnet, auf dem Rotationskolben 32 ist die Markierung 303 hell und die Markierung 304 dunkel eingezeichnet. Diese Markierungen dienen lediglich der Veranschaulichung.In order to better represent the individual process phases, markers 301, 302, 303 and 304 are mounted on the rotary pistons 31 and 32. For the rotary piston 31, the mark 301 is bright and the mark 302 is drawn dark, on the rotary piston 32, the mark 303 is bright and the mark 304 is darkened. These marks are for illustrative purposes only.

Das erste Ausführungsbeispiel stellt in Figur1 die erste Prozessphase dar. Der Dampf des Arbeitsmediums 19 gelangt vom Dampferzeuger 1 über die Einlassöffnung 402 in die Arbeitskammer oberhalb des Rotationskolbens 31. Der Druck des Dampfes aus dem Dampferzeuger 1 bewirkt eine Drehung des Rotationskolbens 31 im Uhrzeigersinn. Dabei wird ein sich auf der Rückseite des Rotationskolbens 31 befindliches Fördermedium 20 (beispielsweise ein 1-Phasen-Fluid, wie Luft, Wasser oder Paraffinöl) komprimiert und über die Auslassöffnung 401 in den Druckspeicher 12 gefördert, wo es entsprechend dem wirkenden Dampfdruck für Anwendungen zur Verfügung steht. Die Markierung 301 (hell) auf dem Rotationskolben 31 ist zu Beginn der Arbeitsphasen links und Markierung 302 (dunkel) rechts angeordnet. Der Rotationskolben 32 der Rotationskolbenmaschine 102 steht um ca. 90 Winkelgrad versetzt zum Rotationskolben 31 der Rotationskolbenmaschine 101. Die Markierung 303 (hell) auf dem Rotationskolben 32 ist oben und die Markierung 304 (dunkel) ist unten.The first embodiment presents in Figur1 The vapor of the working medium 19 passes from the steam generator 1 via the inlet opening 402 in the working chamber above the rotary piston 31. The pressure of the steam from the steam generator 1 causes a rotation of the rotary piston 31 in a clockwise direction. In this case, a located on the back of the rotary piston 31 conveying medium 20 (for example, a 1-phase fluid such as air, water or paraffin oil) is compressed and conveyed through the outlet opening 401 in the pressure accumulator 12, where it according to the acting vapor pressure for applications for Available. The mark 301 (light) on the rotary piston 31 is located at the beginning of the working phases on the left and mark 302 (dark) on the right. The rotary piston 32 of the rotary piston machine 102 is offset by approximately 90 degrees from the rotary piston 31 of the rotary piston machine 101. The mark 303 (light) on the rotary piston 32 is at the top and the marker 304 (dark) is at the bottom.

Der in der Arbeitskammer links vom Rotationskolben 32 befindliche Dampf wird gleichzeitig über die Auslassöffnung 403 zum Kondensator 13 geleitet und dort gekühlt. Dadurch wird ein Unterdruck in der Arbeitskammer rechts vom Rotationskolben 32 erzeugt. Durch den höheren Umgebungsdruck des Fördermediums 20 wird der Rotationskolben 32 ebenfalls im Uhrzeigersinn gedreht.The steam located in the working chamber to the left of the rotary piston 32 is simultaneously conducted via the outlet opening 403 to the condenser 13 and cooled there. As a result, a negative pressure in the working chamber is generated to the right of the rotary piston 32. Due to the higher ambient pressure of the pumped medium 20, the rotary piston 32 is also rotated clockwise.

Nach einer Kolbendrehung von ca. 90 Winkelgrad wird die zweite Phase (Figur 2) erreicht. Die Markierung 301 (hell) auf dem Rotationskolben 31 befindet sich nun oben und die Markierung 302 (dunkel) unten. Die Markierung 303 (hell) auf dem Rotationskolben 32 ist rechts und die Markierung 304 (dunkel) ist links.After a piston rotation of approx. 90 degrees, the second phase ( FIG. 2 ) reached. The mark 301 (light) on the rotary piston 31 is now at the top and the mark 302 (dark) at the bottom. The mark 303 (light) on the rotary piston 32 is right and the mark 304 (dark) is on the left.

Durch einen externen Steuerimpuls oder durch eine interne kinematische Kopplung beispielsweise der Steuerwelle 5 mit allen Ventilen werden die Ventile 702 und 704 und die Ventile 706 und 708 im Block geöffnet bzw. geschlossen. Der Dampfdruck des Dampferzeugers 1 gelangt nun über die Medienleitung 8 und Ventil 702 zur Einlassöffnung 404 der Rotationskolbenmaschine 102 und gleichzeitig über die Medienleitung 8 und Ventil 701 zur Einlassöffnung 402 der Rotationskolbenmaschine 101. Beide Rotationskolben 31 und 32 werden weiter im Urzeigersinn gedreht und drücken auf ihrer Rückseite das vorher angesaugte Fördermedium 20 über die Auslassöffnung 401 und 403, die Medienleitung 10 und die Ventile 705 und 706 in den Druckspeicher 12.By an external control pulse or by an internal kinematic coupling, for example, the control shaft 5 with all valves, the valves 702 and 704 and the valves 706 and 708 are opened or closed in the block. The vapor pressure of the steam generator 1 now passes via the media line 8 and valve 702 to the inlet opening 404 of the rotary piston machine 102 and simultaneously via the media line 8 and valve 701 to the inlet opening 402 of the rotary piston machine 101. Both rotary pistons 31 and 32 are further rotated in the clockwise direction and press on their Rear side of the previously sucked in delivery medium 20 via the outlet opening 401 and 403, the media line 10 and the valves 705 and 706 in the pressure accumulator 12th

In dieser zweiten Prozessphase wird weder neues Fördermedium angesaugt noch Dampf zum Kondensator 13 geleitet.In this second process phase, neither new pumped medium is sucked in nor steam is conducted to the condenser 13.

Die dritte Prozessphase (Figur 3) ist mit der ersten Prozessphase insofern gleich, dass nun die Rotationskolbenmaschinen 101 und 102 ihre Funktionen getauscht haben. Die Rotationskolben 31 und 32 haben inzwischen eine Drehung um ca. 180 Winkelgrad vollzogen. Dies ist erkennbar an den gegenüber der ersten Prozessphase gewanderten Markierungen 301, 302, 303 und 304 auf den Rotationskolben 31 und 32. In dieser Stellung erfolgt eine Umschaltung der Ventile 701, 703, 705, und 707 im Block.The third process phase ( FIG. 3 ) is the same with the first process phase in that now the rotary piston machines 101 and 102 have changed their functions. The rotary pistons 31 and 32 have now completed a rotation of about 180 degrees. This can be recognized by the markers 301, 302, 303 and 304 which have migrated in relation to the first process phase to the rotary pistons 31 and 32. In this position, a switchover of the valves 701, 703, 705, and 707 takes place in the block.

Der Druck der Umgebungsluft drückt über die Medienleitung 9 und die Einlassöffnung 402 den Rotationskolben 31 der Rotationskolbenmaschinen 101 im Uhrzeigersinn gegen den Kondensatunterdruck.The pressure of the ambient air presses the rotary piston 31 of the rotary piston machines 101 in a clockwise direction against the condensate negative pressure via the media line 9 and the inlet opening 402.

Durch erneutes Vertauschen der Ventilfunktionen in beschriebener Weise beginnt die vierte Prozessphase (Figur 4). Es werden die Ventile 702, 704, 706 und 708 im Block geschaltet, so dass der Dampf aus beiden Rotationskolbenmaschinen 101 und 102 über den Kondensator 13 als Arbeitsmedium 19 zurück in den Sammelbehälter 19 geleitet wird und gleichzeitig wird durch den entstehenden Unterdruck auf der Rückseite der Rotationskolben 31 und 32 in beiden Rotationskolbenmaschinen 101 und 102 neues Fördermedium angesaugt.By re-exchanging the valve functions in the manner described, the fourth process phase ( FIG. 4 ). The valves 702, 704, 706 and 708 are connected in block, so that the steam from both rotary piston machines 101 and 102 is passed through the condenser 13 as working fluid 19 back into the collecting container 19 and at the same time is caused by the resulting negative pressure on the back of the Rotary piston 31 and 32 sucked in both rotary piston machines 101 and 102 new fluid.

Nach der vierten Prozessphase beginnt durch Umschaltung der Ventile 701, 702, 705 und 707 eine neue erste Prozessphase.After the fourth process phase, a new first process phase begins by switching over the valves 701, 702, 705 and 707.

Ein wesentliches Merkmal dieses Ausführungsbeispiels ist die Umsteuerung der verschiedenen Ventilgruppen, die zeitversetzt nach jeweils 90 Winkelgrad im Block von vier Ventilen erfolgt. Der Vorteil dieses Ablaufs beruht auf den um 90 Winkelgrad versetzten Rotationskolben 31 und 32. Hierdurch wird innerhalb der Anordnung von zwei Rotationskolbenmaschinen 101 und 102 ein kontinuierlicher Gesamtprozess der direkten Umwandlung der Energie des Dampfes in Nutzarbeit des Fördermediums und ein maschinendynamisch vollständiger Massenausgleich erreicht.An essential feature of this embodiment is the reversal of the various valve groups, which is delayed in time after every 90 degrees in the block of four valves. The advantage of this process is based on the offset by 90 degrees rotation rotary pistons 31 and 32. This is achieved within the arrangement of two rotary piston machines 101 and 102, a continuous overall process of direct conversion of the energy of the steam in useful work of the pumped medium and a machine dynamic complete mass balance.

Die Figuren 5 und 6 zeigen ein weiteres Ausführungsbeispiel, in dem auf den maschinendynamischen Massenausgleich verzichtet wird. In diesem Fall muss ein externer Massenausgleich vorhanden sein. Beide Rotationskolben 31 und 32 haben zueinander keinen Winkelversatz bzw. einen Winkelversatz von 180 Grad. Hierdurch ergibt sich eine dichtere Abfolge der Abläufe.The Figures 5 and 6 show a further embodiment in which is dispensed with the machine dynamic mass balance. In this case an external mass balance must be available. Both rotary pistons 31 and 32 have no angular offset from each other or an angular offset of 180 degrees. This results in a denser sequence of processes.

In Figur 5 befindet sich die Rotationskolbenmaschine 101 in der Prozessphase Dampf-Expansion und Ausschieben des Fördermediums 20 in den Druckspeicher 12. Die Rotationskolbenmaschinen 102 saugt durch den vom Kondensator 13 bewirkten Unterdruck eine neue Füllung des Fördermediums 20 an.In FIG. 5 the rotary piston machine 101 is in the process phase steam expansion and expulsion of the fluid 20 in the pressure accumulator 12. The rotary piston machines 102 sucks by the negative pressure caused by the condenser 13 to a new filling of the fluid 20 at.

Nach einer Drehung der Rotationskolben 31, 32 von ca. 180 Grad erfolgt eine Umschaltung aller Ventile 701. 702, 703, 704, 705, 706, 707 und 708 im Block an den Einlass- und Auslassöffnungen von der Stellung "geöffnet" in die Stellung "geschlossen" bzw. umgekehrt und der Übergang zur nächsten Prozessphase mit der Vertauschung der Prozessabläufe zwischen den Rotationskolbenmaschinen 101 und 102. Jetzt erfolgt in der Rotationskolbenmaschine 102 die Dampf- Expansion und das Ausschieben des Fördermediums 20 und in der Rotationskolbenmaschine 101 das Ansaugen einer neuen Füllung Fördermedium 20. Die Drehung der Kolben ist durch die Markierungen 301, 302, 303 und 304 veranschaulicht.After a rotation of the rotary pistons 31, 32 of approximately 180 degrees, all valves 701, 703, 703, 704, 705, 706, 707 and 708 are switched in the block at the inlet and outlet openings from the "open" position to the position "closed" and vice versa and the transition to the next phase of the process with the interchange of processes between the rotary piston machines 101 and 102. Now takes place in the rotary piston machine 102, the steam expansion and expulsion of the fluid 20 and in the rotary piston 101, the suction of a new filling Transfer medium 20. The rotation of the pistons is illustrated by the markings 301, 302, 303 and 304.

Die Ablaufschemen der Prozessphasen für die Anordnungen nach den Figuren 1 bis 6 werden in Figur 7 dargestellt. wobei Figur 7a die Ablaufschemen für Rotationskolbenmaschine mit um ca. 90 Grad versetzten Kolben und Figur 7b die Ablaufschemen für Rotationskolbenmaschine ohne Winkelversatz der Kolben beinhalten.The flowcharts of the process phases for the arrangements according to FIGS. 1 to 6 be in FIG. 7 shown. in which Figure 7a the flow diagrams for rotary piston machine with about 90 degrees offset piston and FIG. 7b include the flow diagrams for rotary piston machine without angular displacement of the piston.

Die Prozessphasen für die Anordnungen von Rotationskolbenmaschinen mit um ca. 90 Grad versetzten Rotationskolben werden in Figur 7a dargestellt. Die einzelnen Phasen laufen kontinuierlich hintereinander ab und es wird innerhalb der Anordnung von zwei Rotationskolbenmaschinen ein maschinendynamisch vollständiger Massenausgleich erreicht.The process phases for the arrangements of rotary piston machines with about 90 degrees offset rotary piston are in Figure 7a shown. The individual phases run continuously in succession and it is achieved within the arrangement of two rotary piston machines a machine dynamic complete mass balance.

Figur 7b zeigt das Ablaufschema für die Anordnungen von Rotationskolbenmaschinen ohne Winkelversatz der Rotationskolben zueinander bzw. einen Winkelversatz von 180 Grad. FIG. 7b shows the flowchart for the arrangements of rotary piston machines without angular offset of the rotary piston to each other or an angular offset of 180 degrees.

Bezugszeichenreference numeral

11
Dampferzeugersteam generator
101, 102101, 102
Rotationskolbenmaschine mit Zweieck-KolbenRotary piston machine with a double-sided piston
201, 202, 203, 204,201, 202, 203, 204,
Knotenpunkte im Rohrsystem der AnlageNodes in the pipe system of the plant
3131
Rotationskolben der Rotationskolbenmaschine 101Rotary piston of the rotary piston machine 101
3232
Rotationskolben der Rotationskolbenmaschine 102Rotary piston of the rotary piston machine 102
301, 302301, 302
Markierung der Ecken des Kolbens 31 zur Darstellung der KolbenbewegungMarking the corners of the piston 31 to show the piston movement
303, 304303, 304
Markierung der Ecken des Kolbens 32 zur Darstellung der KolbenbewegungMarking the corners of the piston 32 to show the piston movement
401401
Auslassöffnung an Rotationskolbenmaschine 101Outlet opening on rotary piston machine 101
402402
Einlassöffnung an Rotationskolbenmaschine 101Inlet opening on rotary piston machine 101
403403
Auslassöffnung an Rotationskolbenmaschine 102Outlet opening on rotary piston machine 102
404404
Einlassöffnung an Rotationskolbenmaschine 102Inlet opening on rotary piston machine 102
55
Steuerwelle zwischen Rotationskolbenmaschine 101 und Rotationskolbenmaschine 102Control shaft between rotary piston machine 101 and rotary piston machine 102nd
701701
Ventil in der Rohrleitung zur Einlassöffnung 402Valve in the pipeline to the inlet opening 402
702702
Ventil in der Rohrleitung zur Einlassöffnung 404Valve in the pipeline to inlet port 404
703703
Ventil in der Rohrleitung zur Einlassöffnung 402Valve in the pipeline to the inlet opening 402
704704
Ventil in der Rohrleitung zur Einlassöffnung 404Valve in the pipeline to inlet port 404
705705
Ventil in der Rohrleitung von der Auslassöffnung 401Valve in the pipeline from the outlet opening 401
706706
Ventil in der Rohrleitung von der Auslassöffnung 403Valve in the pipeline from the outlet opening 403
707707
Ventil in der Rohrleitung von der Auslassöffnung 401Valve in the pipeline from the outlet opening 401
708708
Ventil in der Rohrleitung von der Auslassöffnung 403Valve in the pipeline from the outlet opening 403
88th
Medienleitung vom Dampferzeuger 1 zum Knotenpunkt 201Media line from the steam generator 1 to node 201
99
Medienleitung von der freien Atmosphäre (Luft 20) zum Knotenpunkt 202Media line from the free atmosphere (air 20) to node 202
1010
Medienleitung vom Knotenpunkt 203 zum Druckspeicher 12Media line from the node 203 to the accumulator 12th
1111
Medienleitung vom Knotenpunkt 204 zum Kondensator 13Media line from node 204 to the condenser 13th
1212
Druckspeicheraccumulator
1313
Kondensatorcapacitor
1414
Kondensatpumpecondensate pump
1515
Kondensatleitungcondensate line
1616
Sammelbehälter für Kondensat und KesselwasserCollection tank for condensate and boiler water
1717
KesselspeisepumpeBoiler feed pump
1818
Druckleitung von der Kesselspeisepumpe 17 zum Dampferzeuger 1Pressure line from the boiler feed pump 17 to the steam generator. 1
1919
Arbeitsmediumworking medium
2020
Fördermediumconveying medium

Claims (15)

Verfahren zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium gekennzeichnet dadurch, dass
in einem geschlossenen Kreislauf aus einem Arbeitsmedium (19) Dampf erzeugt wird, welcher alternierend in mindestens zwei miteinander verbundene Rotationskolbenmaschinen (101, 102) geleitet wird, wodurch die Druck-Energie auf das Fördermedium (20) auf der Kolbengegenseite des durch einen Rotationskolben (31, 32) abgegrenzten Arbeitsraum übertragen wird und zur weiteren Verwendung bereit gestellt wird, und dass das entspannte Arbeitsmedium (19) in den Kreislauf zurückgeführt wird.
Method for direct conversion of steam energy into pressure energy to a pumped medium, characterized in that
In a closed circuit of a working medium (19) steam is generated, which is alternately in at least two interconnected rotary piston machines (101, 102), whereby the pressure energy to the pumped medium (20) on the piston opposite side of the by a rotary piston (31 , 32) and is provided for further use, and that the relaxed working medium (19) is recycled.
Verfahren nach Anspruch 1 gekennzeichnet dadurch, dass - der durch den Rotationskolben (31, 32) abgegrenzte Arbeitsraum der ersten Rotationskolbenmaschine (101) in einer ersten Prozessphase mit dem dampfförmigen Arbeitsmedium gefüllt wird, wodurch die Druck-Energie auf das Fördermedium auf der Kolbengegenseite übertragen wird, und in einem Druckspeicher gespeichert wird, und - zeitgleich in der zweiten Rotationskolbenmaschine (102) ein Unterdruck erzeugt wird, so dass dort frisches Fördermedium angesaugt wird, und gleichzeitig das entspannte Arbeitsmedium in den Kreislauf zurück geführt wird, und - über eine Ventilsteuerung in einer nächsten Prozessphase die Funktionen einzelner Ventile im Block in Gegenrichtung umgeschaltet werden, so dass die erste und die zweite Rotationskolbenmaschine (101, 102) ihre Funktionen tauschen. A method according to claim 1, characterized in that the working chamber of the first rotary piston machine (101) delimited by the rotary piston (31, 32) is filled with the vaporous working medium in a first process phase, whereby the pressure energy is transferred to the conveying medium on the piston opposite side and stored in a pressure accumulator, and - At the same time in the second rotary piston machine (102), a negative pressure is generated, so that there fresh feed medium is sucked, and at the same time the relaxed working medium is recycled into the circuit, and - Over a valve control in a next process phase, the functions of individual valves in the block are reversed in the opposite direction, so that the first and the second rotary piston machine (101, 102) exchange their functions. Verfahren nach Anspruch 1 oder 2 gekennzeichnet dadurch, dass beide Rotationskolbenmaschinen (101, 102) um vorzugsweise 90 Grad versetzt im Drehumlauf arbeiten.A method according to claim 1 or 2, characterized in that both rotary piston machines (101, 102) work offset by preferably 90 degrees in the rotary orbit. Verfahren nach Anspruch 3 dadurch gekennzeichnet, dass jeweils vier Ventile (702, 704, 706 und 708; 701, 703, 705 und 707) zusammenarbeiten in der Art, dass diese Ventile abwechselnd im Block geöffnet und geschlossen werden.Method according to claim 3, characterized in that in each case four valves (702, 704, 706 and 708; 701, 703, 705 and 707) work together in such a way that these valves are opened and closed alternately in the block. Verfahren nach Anspruch 1 oder 2 gekennzeichnet dadurch, dass beide Rotationskolbenmaschinen (101, 102) ohne Winkelversatz oder einen Winkelversatz von 180 Grad im Drehumlauf arbeiten.A method according to claim 1 or 2, characterized in that both rotary piston machines (101, 102) operate without angular offset or an angular offset of 180 degrees in the rotary orbit. Verfahren nach Anspruch 5 dadurch gekennzeichnet, dass alle im Prozess angeordneten Ventile (701, 702; 703, 704; 705, 706; 707, 708) paarweise zusammenwirken und gleichzeitig im Block geschaltet werden, wenn die Rotationskolben (31, 32) der Rotationskolbenmaschinen (101, 102) ein Drehung von jeweils etwa 180 Grad erreicht haben,Method according to claim 5, characterized in that all valves (701, 702; 703, 704; 705, 706; 707, 708) arranged in the process cooperate in pairs and are simultaneously switched in the block when the rotary pistons (31, 32) of the rotary piston machines ( 101, 102) have each achieved a rotation of about 180 degrees, Verfahren nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass als Arbeitsmedium (19) ein 2-Phasen-Fluid verwendet wird.Method according to one of claims 1 to 6, characterized in that a 2-phase fluid is used as the working medium (19). Verfahren nach einem der Ansprüche 1 bis 6 gekennzeichnet dadurch, dass als Fördermedium (20) Luft, Wasser oder Paraffinöl verwendet wird.Method according to one of claims 1 to 6, characterized in that as the conveying medium (20) air, water or paraffin oil is used. Anordnung zur direkten Umwandlung von Dampfenergie in Druck-Energie auf ein Fördermedium gekennzeichnet dadurch, dass
in einem geschlossenen Kreislauf ein Dampferzeuger (1), welcher mit einem Arbeitsfluid (19) aus einem Sammelbehälter (16) gespeist wird, mit mindestens zwei Rotationskolbenmaschinen (101, 102) verbunden ist, so dass diese alternierend mit einem Dampf des Arbeitsfluides (19) beaufschlagt werden, wodurch ein Fördermedium (20), welches abwechselnd in den Rotationskolbenmaschinen (101, 102) bereit steht, mit einem Druck beaufschlagt wird und dadurch zur weiteren Verwendung verfügbar ist, und dass die Rotationskolbenmaschinen (101, 102) ihrerseits mit einem Kondensator (13) in Verbindung stehen, welcher seinerseits mit dem Sammelbehälter (16) verbunden ist.
Arrangement for direct conversion of steam energy into pressure energy to a pumped medium, characterized in that
in a closed circuit, a steam generator (1), which is fed with a working fluid (19) from a collecting container (16), is connected to at least two rotary piston machines (101, 102) so that they alternate with a vapor of the working fluid (19). whereby a delivery medium (20), which is alternately provided in the rotary piston machines (101, 102), is pressurized and thereby available for further use, and in that the rotary piston machines (101, 102) are in turn connected to a condenser (10). 13) are in communication, which in turn is connected to the collecting container (16).
Anordnung nach Anspruch 9 dadurch gekennzeichnet, dass der Dampferzeuger (1) einerseits über eine Druckleitung (18) mit dem Sammelbehälter (16) und andererseits über eine Speiseleitung (8) mit Einlassöffnungen (402, 404) der Rotationskolbenmaschinen (101, 102) verbunden ist, ein Druckspeicher (12) über eine Medienleitung (10) mit Auslassöffnungen (401, 403) verbunden ist, der Kondensator (13) über eine Medienleitung (11) mit den Auslassöffnungen (401, 403) verbunden ist und das Fördermedium (20) über eine Medienleitung (9) mit den Einlassöffnungen (402, 404) verbunden ist.Arrangement according to claim 9, characterized in that the steam generator (1) on the one hand via a pressure line (18) with the collecting container (16) and on the other hand via a feed line (8) with inlet openings (402, 404) of the rotary piston machines (101, 102) a pressure accumulator (12) via a media line (10) with outlet openings (401, 403) is connected to the condenser (13) via a media line (11) with the outlet openings (401, 403) is connected and the conveying medium (20 ) is connected via a media line (9) with the inlet openings (402, 404). Anordnung nach Anspruch 9 oder 10 gekennzeichnet dadurch, dass die Rotationskolbenmaschinen (101, 102) über eine gemeinsame Steuerwelle (5) oder kinematisch gleichwertige Elemente verbunden sind.Arrangement according to claim 9 or 10, characterized in that the rotary piston machines (101, 102) are connected via a common control shaft (5) or kinematically equivalent elements. Anordnung nach Anspruch 9, 10 oder 11 gekennzeichnet dadurch, dass beide Rotationskolbenmaschinen (101, 102) um vorzugsweise 90 Grad versetzt im Drehumlauf angeordnet sind.Arrangement according to claim 9, 10 or 11 characterized in that both rotary piston machines (101, 102) are arranged offset by preferably 90 degrees in the rotary circulation. Anordnung nach Anspruch 12 dadurch gekennzeichnet, dass Ventile (701, 702; 703, 704; 705, 706; 707, 708) in den Medien- und Druckleitungen angeordnet sind, wobei jeweils vier Ventile (702, 704, 706 und 708; 701, 703, 705 und 707) abwechselnd im Block geöffnet und geschlossen werden.Arrangement according to claim 12, characterized in that valves (701, 702; 703, 704; 705, 706; 707, 708) are arranged in the media and pressure lines, wherein in each case four valves (702, 704, 706 and 708; 701, 703, 705 and 707) are alternately opened and closed in the block. Anordnung nach Anspruch 9, 10 oder 11 gekennzeichnet dadurch, dass beide Rotationskolbenmaschinen (101, 102) ohne Winkelversatz oder einen Winkelversatz von 180 Grad im Drehumlauf angeordnet sind.Arrangement according to claim 9, 10 or 11, characterized in that both rotary piston machines (101, 102) are arranged without angular offset or an angular offset of 180 degrees in rotary circulation. Anordnung nach Anspruch 14 dadurch gekennzeichnet, dass Ventile (701, 702; 703, 704; 705, 706; 707, 708) in den Medien- und Druckleitungen angeordnet sind, die paarweise zusammenwirken und gleichzeitig im Block geschaltet werden,Arrangement according to claim 14, characterized in that valves (701, 702; 703, 704; 705, 706; 707, 708) are arranged in the media and pressure lines, which interact in pairs and are switched simultaneously in the block,
EP14154162.3A 2013-02-07 2014-02-06 A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method Not-in-force EP2765280B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013101216.7A DE102013101216B4 (en) 2013-02-07 2013-02-07 Process for the direct conversion of steam energy into pressurized energy to a pumped medium and arrangement for carrying out the process

Publications (3)

Publication Number Publication Date
EP2765280A2 true EP2765280A2 (en) 2014-08-13
EP2765280A3 EP2765280A3 (en) 2015-12-02
EP2765280B1 EP2765280B1 (en) 2016-08-31

Family

ID=50068863

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14154162.3A Not-in-force EP2765280B1 (en) 2013-02-07 2014-02-06 A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method

Country Status (2)

Country Link
EP (1) EP2765280B1 (en)
DE (1) DE102013101216B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101257A1 (en) * 2015-06-03 2016-12-07 EN3 GmbH Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1751862A1 (en) 1967-08-10 1971-05-19 Rubin Gotthard G Power machine
US5165238A (en) 1991-05-21 1992-11-24 Paul Marius A Continuous external heat engine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
DE69914738T2 (en) 1998-04-25 2005-01-20 Ceres Ipr Ltd., Nelson ROTARY PISTON MACHINE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3333586A1 (en) * 1983-09-16 1985-04-11 Franz X. Prof. Dr.-Ing. 8000 München Eder Externally heated regenerative heat engine and machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1751862A1 (en) 1967-08-10 1971-05-19 Rubin Gotthard G Power machine
US5211017A (en) 1990-09-19 1993-05-18 Pavo Pusic External combustion rotary engine
US5165238A (en) 1991-05-21 1992-11-24 Paul Marius A Continuous external heat engine
DE69914738T2 (en) 1998-04-25 2005-01-20 Ceres Ipr Ltd., Nelson ROTARY PISTON MACHINE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3101257A1 (en) * 2015-06-03 2016-12-07 EN3 GmbH Heat transfer unit and methods for performing thermodynamic cycles by means of a heat transfer unit

Also Published As

Publication number Publication date
EP2765280B1 (en) 2016-08-31
DE102013101216A1 (en) 2014-08-07
EP2765280A3 (en) 2015-12-02
DE102013101216B4 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
EP2526281A2 (en) Arrangement for converting thermal energy into kinetic energy
DE112015000585T5 (en) Reciprocating engine compressor with integrated Stirling engine
DE102014206038A1 (en) System for a thermodynamic cycle, control system for a system for a thermodynamic cycle, method for operating a system, and arrangement with an internal combustion engine and a system
EP2820299B1 (en) Liquid piston arrangement with a plate-type heat exchanger for the quasi isothermal compression and expansion of gases
DE102008013673B3 (en) Piston steam engine for a solar powered Rankine cycle
EP2765280B1 (en) A method for direct conversion of steam energy into pressure energy of a conveying medium and an arrangement for carrying out the method
DE102007039912B4 (en) Asynchronous power generator with free-piston engine
EP2116697B1 (en) Drive unit with a fuel engine and a non-regulated self-actuating piston engine
DE2621016A1 (en) MULTI-PHASE COMBUSTION ENGINE
DE102010018654B4 (en) Cyclic heat engine
DE102008047275B4 (en) expander
EP2154400A2 (en) Reciprocating piston expansion machine and piston for same
DE102006028561B3 (en) Hydro-Stirling motor has two-cylinders linked by pipe with hydraulic motor power take-off
CH394753A (en) Device for converting a reciprocating motion into a rotary motion
AT505625B1 (en) HEATING PLANT FOR THE COMBINED PRODUCTION OF THERMAL AND MECHANICAL ENERGY
EP1978230B1 (en) Thermal energy device, in particular for using low temperature heat sources
DE202007018776U1 (en) Steam engine with rotating steam inlet and outlet pipes
DE102008009005B3 (en) Thermodynamic energy transformation device i.e. cogeneration unit, for power generation to e.g. operate electric motor of motor vehicle, has piston provided with piston heads, and skirts extending in direction of cylinder heads
DE102013101214B4 (en) Process for direct conversion of steam energy into mechanical energy and thermohydraulic arrangement for carrying out the process
EP2824299A1 (en) Heat recovery system for an internal combustion engine
EP4219895A1 (en) Vacuum motor
DE10360501A1 (en) Combustion/explosion Otto four stroke engine comprises a piston for transferring the explosion force to a central linear connecting rod which has a longitudinal bore for the oil supply to the piston rings
DE102011121293A1 (en) Piston expander of waste heat recovery device in motor vehicle, has pre-chamber and displacement inlets with valves for flow of working medium to pre-chamber and piston so that pre-chamber and piston are connected to recovery device
DE2045759B2 (en) Reciprocating heat engine for generating hydraulic energy
DE102011102803A1 (en) Waste heat utilization system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GUENTHER, NORBERT

Inventor name: GUENTHER, EGGERT

Inventor name: ENGEL, ROBERT

Inventor name: MIELKE, SABINE

R17P Request for examination filed (corrected)

Effective date: 20150129

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/36 20060101ALI20151023BHEP

Ipc: F01K 27/00 20060101ALI20151023BHEP

Ipc: F01K 15/00 20060101AFI20151023BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 15/00 20060101AFI20160111BHEP

Ipc: F01K 7/36 20060101ALI20160111BHEP

Ipc: F01K 27/00 20060101ALI20160111BHEP

INTG Intention to grant announced

Effective date: 20160215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001330

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170407

Year of fee payment: 4

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014001330

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 825163

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231