EP3099426B1 - Separator with a bypass - Google Patents

Separator with a bypass Download PDF

Info

Publication number
EP3099426B1
EP3099426B1 EP15703729.2A EP15703729A EP3099426B1 EP 3099426 B1 EP3099426 B1 EP 3099426B1 EP 15703729 A EP15703729 A EP 15703729A EP 3099426 B1 EP3099426 B1 EP 3099426B1
Authority
EP
European Patent Office
Prior art keywords
fine
separation
classifier
separator according
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15703729.2A
Other languages
German (de)
French (fr)
Other versions
EP3099426A1 (en
Inventor
Matthias RAUS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Industrial Solutions AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Industrial Solutions AG filed Critical ThyssenKrupp AG
Publication of EP3099426A1 publication Critical patent/EP3099426A1/en
Application granted granted Critical
Publication of EP3099426B1 publication Critical patent/EP3099426B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • B07B9/02Combinations of similar or different apparatus for separating solids from solids using gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices

Definitions

  • the invention relates to a classifier according to the preamble of patent claim 1, with a housing which forms a classifying chamber, in which one or more ventilation floors are arranged and in which classifying gas is flowed through in order to separate fine material from coarse material, a classifying gas inlet and a Visible material inlet opens into the viewing area and a fine goods outlet and a coarse material outlet emerge from the viewing area.
  • Such classifiers which are also referred to as statically operating, serve to separate bulk materials into two fractions with different particle size distributions.
  • the fractions are separated in the classifying chamber in which the classifying gas flows through the classifying gas in the transverse direction from the classifying material inlet in the direction of the coarse material outlet. Smaller particles are entrained by the sight gas flow and transported to the fine material outlet, while larger particles are discharged through the coarse material outlet.
  • the ventilation floors of a static classifier are aligned more or less transversely to the direction of movement of the material to be viewed, with a step-like arrangement of the ventilation floors being often provided ( DE 43 37 215 A1 ).
  • an essentially flat ventilation floor is provided with a plurality of ventilation slots.
  • the ventilation floor can be composed of a large number of individually interchangeable slotted plates.
  • the visible material falling in the visual space hits the ventilation floor or floors and the visual gas flows through there.
  • the impact of the material to be sighted on the ventilation floor (s) can, on the one hand, increase the length of time of the material to be placed in the viewing space.
  • the impact of the visible material on the ventilation floors causes deagglomeration of frequently present visual material agglomerates, the so-called Schülpen. Both improve the sighting effect of a static classifier.
  • Static classifiers are often combined with dynamic classifiers, with the static classifiers regularly being upstream as a coarse classifier and serving as a fine classifier.
  • Dynamic classifiers are based on one Separation of two fractions of the material to be classified, which differ in terms of particle size distribution, by means of a rotating driven basket.
  • a combination of a static classifier as a coarse classifier and a dynamic classifier as a fine classifier in a circulation grinding plant for cement clinker is, for example, from the DE 43 37215 A1 known.
  • the static sifter is connected downstream of a roller press and is subjected to comparatively coarse and a large number of slugs.
  • the coarse material separated in the static classifier is returned to the roller press, while the fine material is fed to a tube mill by means of the classifying gas stream, in which it is further comminuted.
  • the material to be viewed is then fed from the tube mill to the dynamic classifier, in which the material to be separated is separated into medium and fine material.
  • the very fine material is then removed as finished product from the classifying gas in a separator, while the medium fine material is returned to the tube mill.
  • the circulation grinding plant according to the DE 43 37 215 A1 the static sifter and the dynamic sifter are separated both spatially and functionally by the interposition of the tube mill.
  • the static classifier thus essentially serves to avoid the supply of excessively large particles or flakes to the tube mill.
  • FIG DE 10 2011 055 762 A1 A device for classifying bulk material, in which a static classifier and a dynamic classifier are connected in series in a common housing and thus flowed through by the same classifying gas flow, is shown in FIG DE 10 2011 055 762 A1 known.
  • the upstream connection of the static classifier essentially serves to avoid exposure of the rotatingly driven and comparatively sensitive viewing basket of the dynamic classifier to large particles and flakes.
  • a dynamic classifier in the housing of which a bypass channel is integrated which bypasses the classifying chamber and via which a part of the dust-air mixture supplied via an inlet can be guided in the classifying room to avoid classifying. This should make it possible to specifically influence the particle sizes in the finished product leaving the dynamic classifier.
  • the CA 2 400 859 A1 discloses a device according to the preamble of claim 1, for separating a harvest mixture consisting of grain, chaff and grasses into its components, the device combining a sifter with a cyclone separator.
  • the US 2013/0032513 A1 describes a device by means of which a bulk material can both be dried and simultaneously separated into a coarse material fraction and a fine material fraction.
  • the object of the invention was to provide a possibility of making the sighting effect of a static classifier changeable in the simplest possible way.
  • the invention is based on the one hand on the idea that the volume flow of the sight gas guided through the static classifier represents a control variable which can be easily influenced, the change of which has a relevant effect on the Sighting effect of the sifter.
  • the particle size distributions of the material discharged from the static classifier on the one hand as fine material and on the other hand as coarse material can be adjusted by changing the volume flow of the classifying gas. This can be done, in particular, depending on the aggregates downstream of the static classifier (for example a mill or a dynamic classifier).
  • a change in the drying effect of the (possibly heated) sight gas can also be achieved by adjusting the volume flow.
  • the volume flow of the sight gas could in principle be adjusted to the intended sighting effect by correspondingly controlling a blower generating the sight gas flow.
  • the volume flow of the classifying gas for an aggregate downstream of the static classifier, in particular a dynamic classifier is also changed.
  • the invention provides, on the one hand, for the volume flow of the sight gas supplied to the static classifier, which can preferably be air, to be regulated in such a way that at least one bypass channel is provided, via which part of the sight gas flow is applied is led past the visual space.
  • a generic static classifier which has at least one housing in which the visual space is located, in which one or more ventilation shelves are arranged and in the classifying material of classifying gas, in order to separate the classifying material into fine and coarse material, whereby (at least ) a classifying gas inlet and (at least) one classifying material inlet lead into the classifying room and (at least) one fine material outlet and (at least) one coarse material class exit from the classifying room, characterized by at least one bypass channel integrated in the housing for bypassing the classifying room, the bypass channel going out in the classifying gas inlet and flows downstream of the visual space.
  • a viewing space is understood in particular to mean the area of the sifter in which material sifting, that is to say a separation of material, is more specific Grain size is done.
  • the material of coarser grain size leaves the visible space through the coarse material outlet, the material of finer grain size entering the fine material outlet.
  • the fine material outlet is arranged downstream of the visual space and is designed in such a way that no material is viewed in it.
  • the bypass channel opens into the classifier downstream of the classifying space, the bypass channel opening, for example, into the fine material outlet or into a gas inlet of a second, in particular dynamic, classifier downstream of the first classifier.
  • a bypass duct integrated into the housing is understood to mean that at least one (preferably all) wall surface delimiting the bypass duct, preferably extending over the entire length of the bypass duct, is part of the housing and thus, in addition to the function of delimiting the bypass duct, structurally (as a supporting wall) or used functionally (e.g. to guide a medium) for other parts of the classifier.
  • one or more advantages can be generated compared to an externally running bypass channel, which can be designed, for example, in the form of a bypass hose.
  • an externally running bypass channel which can be designed, for example, in the form of a bypass hose.
  • Compensators which may be necessary in an external bypass duct to compensate for different thermal expansions, can also be omitted in a bypass duct integrated in the housing.
  • a classifier according to the invention that it integrates a static coarse classifier and a fine classifier downstream of it in a housing. Accordingly, it is provided that a second, in particular dynamic, classifier with a second classroom is connected to the fine material outlet, a housing forming the second classifier, which forms the second classroom surrounds, forms a medium fine material outlet and a fine material outlet.
  • the fine classifier is a dynamic fine classifier, which accordingly comprises a rotatingly driven classifying rotor arranged in the second classifying chamber, for example in the form of a conventional classifying basket.
  • Such a sifter which comprises a static coarse sifter and a fine sifter connected downstream of it, can preferably be used in combination with (at least) one blower used for both (partial) sifters to generate the sifting gas flow.
  • the ability to influence the volume flow of the sighting gas through the bypass duct through the static coarse sifter has advantages in particular in the case of such a combination with a fine sifter, since in this way the volume flow through the static coarse sifter can be largely regulated independently of the volume flow through the fine sifter.
  • a control element can preferably be provided, by means of which the free flow cross section of the bypass channel can be changed (manually or automatically).
  • the control element can be designed, for example, as a control flap or control slide adjustable by means of an actuator.
  • the bypass channel forms a plurality of (spatially separated) flow channels.
  • bypass channel it can then be provided, in order to even out the partial flows of the sight gas that are conducted via the individual flow channels, that a control element is provided for several and in particular all of the flow channels. It can also be provided that the control elements can be adjusted separately.
  • the flow channels end at a distance from the mouth of the bypass channel into the fine material outlet.
  • a combination of the partial flows of the sight gas conducted via the flow channels can be particularly advantageous if the sight gas flow conducted through the bypass channel is introduced into the fine material outlet via a relatively small mouth opening in the area of the mouth of the bypass channel compared to the cross-sectional dimensions of the fine material outlet.
  • the bypass channel opens decentrally into the fine material outlet, whereby a swirl of the re-mixed total flow of the visible gas can be generated by means of the sight gas flow entering the fine material outlet, which in particular has a positive effect on the visual effect of the static coarse sifter downstream, dynamic fine classifier.
  • the direction of rotation of the swirl corresponds to the sight gas flow of the direction of rotation of the sight rotor of the dynamic fine classifier.
  • “Decentralized” is understood here to mean that the (middle) flow direction of the sight gas flow entering the fine material outlet from the bypass duct (and in particular the central longitudinal axis of the mouth opening) is the central longitudinal axis of the Cross-sectional areas of the fine material outlet in the area of the mouth of the bypass channel do not intersect.
  • the sight gas flow entering the fine material outlet from the bypass channel is introduced as far as possible from the central longitudinal axis and thus as close as possible to a wall of the housing delimiting the fine material outlet.
  • the classifier according to the invention has at least two bypass channels, which can preferably be arranged on opposite sides of the first classifying room, for an increased swirl effect the sight gas flows entering the fine material outlet from the two bypass channels can be provided that these two bypass channels are not only decentralized but also open diametrically to each other with respect to a central longitudinal axis of the fine material outlet in the fine material outlet.
  • At least one intermediate wall arranged in the fine material outlet and oriented transversely to the ventilation floor or floors can be provided.
  • the intermediate wall can stiffen the housing.
  • an increase in the load-bearing capacity for the main flow as a result of an increase in the Froude number can be achieved by the at least one intermediate wall, which divides the flow space formed by the fine material outlet for the main flow of the sighting gas into a plurality of partial flow spaces.
  • the partition does not hinder the introduction of the sight gas flow conducted through the at least one bypass duct, it can preferably be provided that the bypass duct opens into the fine material outlet downstream of the partition.
  • the bypass duct is at a (as large as possible) distance in front of the ventilation plate (s) from the sight gas inlet goes off. This can be implemented in a structurally simple manner by providing a partition wall that extends the bypass channel into the sight gas inlet.
  • the Indian Fig. 1 The classifier shown comprises a static coarse classifier 1 and a dynamic fine classifier 2 directly downstream of it. Both are integrated in a (multi-part) housing 3 and represent a functional unit.
  • the (partial) housing 3 of the static coarse classifier 1 forms a (first) classifying room 4, a classifying gas inlet 5, a classifying material inlet 6, a coarse material outlet 7 and a fine material outlet 8.
  • a ventilation floor 9 which is oriented obliquely to the vertical and has a large number of ventilation slots (cf. Fig. 3 ).
  • the ventilation floor forms a guide level connecting the sight goods inlet 6 with the coarse goods outlet 7.
  • Visible material 10 which is introduced into the first classifying room 4 via the classifying material inlet 6, is guided by gravity along this guide level to the coarse material outlet 7 and at the same time flows through the classifying gas flowing through the ventilation slots of the ventilation floor 9.
  • the classifying gas entrains sufficiently small and thus light particles of the classifying material 10, the fine material 11.
  • the fine material 11 is discharged together with the sight gas flow into the fine material outlet 8 and from there it is fed to the downstream dynamic fine classifier 2.
  • the part of the visible material 10 which is not entrained, the coarse material 12 is discharged via the coarse material outlet 7.
  • the fine material 11 is fed to the dynamic fine classifier 2 via the fine material outlet 8.
  • a fine classifying, larger particles of the fine material 11, the medium-sized material being discharged from the second classifying chamber 13 via a medium-fine material outlet 16, while smaller particles, the very fine material, which in particular is also can be a finished product to be produced, with which the sight gas flow flows out through a fine material outlet 17.
  • the static coarse sifter 1 is provided with two bypass channels 18, which are integrated in the (partial) housing 3 of the coarse sifter 1 and are provided for regulatingly passing partial flows of the total flow of the sighting gas entering the sifter via the sighting gas inlet 5 past the first sighting space 4, whereby these partial flows do not take part in the rough view taking place in the first viewing space 4.
  • the two bypass channels 18 are arranged on two opposite sides of the first cross-sectional area 4 with fine cross-sections and fine material outlet 8.
  • the outer walls of the housing 3 enclose both the bypass channels 18 and the visible space 4 and the fine material outlet 8, while a spatial separation between the bypass channels 18 on the one hand and the visible space 4 and the fine material outlet 8 is realized via two partition walls 19.
  • the partitions 19 are extended upstream of the first viewing space 4 (cf. Fig. 4 ) and protrude into the classifying gas inlet 5.
  • the partial flows of the classifying gas guided via the bypass channels 18 are separated from the main flow running through the first classifying chamber 4 at a relatively large distance in front of (upstream) the ventilation base 9.
  • the branched partial flows are guided within the bypass channels 18 in a plurality of parallel flow channels 21 which are spatially separated by means of partition walls 20.
  • Each flow channel 21 has on the input side a control element in the form of a shaft which can be rotated by about 90 ° about a shaft Control flap 22 assigned.
  • the volume flow of the partial flows of the sight gas guided through the bypass channels 18 can be controlled between a minimum value, which is essentially zero when the control flaps 22 are completely closed, and a maximum value when the control flaps 22 are fully open.
  • the Fig. 6 and 8th show the control flaps 22 in the fully closed position, while in the Fig. 4 a partially open position of the control flaps 22 is shown.
  • control flaps 22 are adjusted by means of one actuator 23 per bypass channel, which acts directly on the shaft of one of the control flaps 22, while twisting this one control flap 22 via push-pull rods 24 and levers 25 onto the other control flaps 22 of the respective one Bypass channel 18 is transmitted.
  • the partition walls 19 separating the bypass ducts 18 from the first viewing space 4 and the corresponding part of the fine material outlet 8 end at approximately the same height as the partition walls 20 dividing the bypass ducts 18 into the flow ducts 21. Downstream thereof, the housing still forms an outlet space 26 as part the bypass channels 18 (cf. Fig. 5 ). In these outlet spaces 26, the partial flows guided in the individual flow channels 21 of the bypass channels 18 are brought together again and then enter the fine material outlet 8 via an orifice opening 27, which extends only over part of the corresponding side of the fine material outlet 8.
  • the two orifices 27 of the two bypass channels 18 are each arranged decentrally and also diametrically to one another with respect to a central longitudinal axis 28 of the fine material outlet 8 (cf. Fig. 9 ; in the Fig. 5 the corresponding diaphragms 30 for the partial spatial separation of the outlet spaces 26 from the fine material outlet 8 are not shown).
  • the partial flows entering the fine material outlet 8 from the bypass channels 18 cause a swirl of the then combined total flow of the classifying gas about the central longitudinal axis 28 of the fine material outlet 8.
  • the direction of rotation of the swirl corresponds to the direction of rotation of the classifying rotor 14 of the dynamic fine classifier 2.
  • the fine material outlet 8 is divided into subspaces by several (here: three) partitions 29, the partitions 29 being oriented transversely and in particular perpendicularly to the ventilation floor 9.
  • the intermediate walls 29 serve, on the one hand, to stiffen the housing 3 and, on the other hand, to increase the load-bearing capacity of the main flow of the sight gas, which is reduced as a result of a branching of partial flows conducted via the bypass channels 18, if necessary, by increasing the Froude number.
  • the intermediate walls 29 end downstream at approximately the same height as the partition walls 19 and the partition walls 20 and thus upstream of the orifices 27 of the bypass channels 18. As a result, they prevent the partial flows emerging from the bypass channels 18 from being mixed into the main flow of the sighting gas and the formation which occurs in the process of a twist around the central longitudinal axis 28 of the fine material outlet 8 as little as possible.
  • Fig. 10 shows a classifier according to a further embodiment.
  • the classifier has a static coarse classifier 32 and a dynamic fine classifier 34 connected downstream of it.
  • the static coarse sifter 32 is shown in a front view and essentially corresponds to that in FIG Fig. 2 shown static coarse sifter 1 with a ventilation floor 42.
  • the static classifier 1 shown in FIG Fig. 10 shown static coarse sifter 32 on a housing 36, which may be tubular or with a rectangular cross section, for example, and serves as a connecting piece between the ventilation base 42 and the fine material outlet.
  • Two bypass channels 40 are arranged around the viewing space 38 and within the housing 36, via which partial flows of the total flow entering the static classifier 32 are controllably guided past the ventilation floor 42 and the first viewing space 38.
  • the housing 36 extends in an arc towards a dynamic classifier 34 adjoining the static classifier 36, so that the flow flowing through the static classifier 32 is deflected by approximately 180 ° and flows into the dynamic classifier 34.
  • the spatial separation of the viewing space 38 and the Fine material outlet of the static classifier 34 and the bypass channels 40 is realized by partition walls 46.
  • the partition walls 46 extend along the housing 36 of the static classifier 32.
  • the area of the static classifier adjoins the classifying room 38 of the static classifier, in which the material is no longer viewed.
  • the partition walls 46 of the bypass channels 40 extend in Fig. 10 over the length of the viewing space 38 and over the length of the housing 36 in which coarse material is separated.
  • the dividing walls 46 end in the fine material outlet adjoining the visible space 38 and the bypass flow and the sighted fine material flow are brought together and enter the dynamic classifier 34.
  • the fine material leaving the static sifter is fed into the dynamic sifter 34 at the level of the sifting rotor 44 essentially horizontally.
  • Fig. 11 shows a classifier according to a further embodiment.
  • the in Fig. 11 sifter essentially corresponds to that in Fig. 10 shown classifier with the difference that the partition 48 of the Fig. 11 extends beyond the fine material outlet to the inlet into the dynamic classifier 34.
  • the bypass flow and the sighted fine material flow are in the in Fig. 11 Embodiment shown merged downstream of the viewing space 38 and downstream of the fines outlet.
  • the partitions 48 end at the downstream end of the fines outlet at the entrance to the dynamic classifier. It is also conceivable that the partition walls 48 extend a little into the gas inlet of the dynamic classifier 34.

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Description

Die Erfindung betrifft einen Sichter gemäß dem Oberbegriff des Patentanspruchs 1, mit einem Gehäuse, das einen Sichtraum ausbildet, in dem ein oder mehrere Belüftungsböden angeordnet sind und in dem Sichtgut von Sichtgas durchströmt wird, um Feingut von Grobgut zu separieren, wobei ein Sichtgaseinlass und ein Sichtguteinlass in den Sichtraum münden sowie ein Feingutauslass und ein Grobgutauslass aus dem Sichtraum abgehen.The invention relates to a classifier according to the preamble of patent claim 1, with a housing which forms a classifying chamber, in which one or more ventilation floors are arranged and in which classifying gas is flowed through in order to separate fine material from coarse material, a classifying gas inlet and a Visible material inlet opens into the viewing area and a fine goods outlet and a coarse material outlet emerge from the viewing area.

Derartige, auch als statisch arbeitend bezeichnete Sichter dienen der Trennung von Schüttgütern in zwei Fraktionen mit unterschiedlichen Partikelgrößenverteilungen. Die Separierung der Fraktionen erfolgt dabei in dem Sichtraum, in dem das aus dem Sichtguteinlass in Richtung des Grobgutauslasses fallende Sichtgut in Querrichtung von dem Sichtgas durchströmt wird. Dabei werden kleinere Partikel von der Sichtgasströmung mitgerissen und zu dem Feingutauslass transportiert, während größere Partikel über den Grobgutauslass ausgebracht werden.Such classifiers, which are also referred to as statically operating, serve to separate bulk materials into two fractions with different particle size distributions. The fractions are separated in the classifying chamber in which the classifying gas flows through the classifying gas in the transverse direction from the classifying material inlet in the direction of the coarse material outlet. Smaller particles are entrained by the sight gas flow and transported to the fine material outlet, while larger particles are discharged through the coarse material outlet.

Die Belüftungsböden eines statischen Sichters sind mehr oder weniger quer zur Bewegungsrichtung des Sichtguts ausgerichtet, wobei vielfach eine stufenartige Anordnung der Belüftungsböden vorgesehen ist ( DE 43 37 215 A1 ). Gemäß einer bevorzugten Ausführungsform ist ein im Wesentlichen plan ausgebildeter Belüftungsboden mit einer Vielzahl von Belüftungsschlitzen vorgesehen. Der Belüftungsboden kann sich dabei aus einer Vielzahl von einzeln austauschbaren Schlitzplatten zusammensetzen. Das in dem Sichtraum herabfallende Sichtgut trifft auf den oder die Belüftungsböden und wird dort von dem Sichtgas durchströmt. Durch das Auftreffen des Sichtguts auf den oder die Belüftungsböden kann zum einen die Verweildauer des Sichtguts in dem Sichtraum erhöht werden. Zum anderen bewirkt das Auftreffen des Sichtguts auf die Belüftungsböden ein Desagglomerieren von vielfach vorhandenen Sichtgutagglomeraten, den sogenannten Schülpen. Beides führt zu einer Verbesserung der Sichtungswirkung eines statischen Sichters.The ventilation floors of a static classifier are aligned more or less transversely to the direction of movement of the material to be viewed, with a step-like arrangement of the ventilation floors being often provided ( DE 43 37 215 A1 ). According to a preferred embodiment, an essentially flat ventilation floor is provided with a plurality of ventilation slots. The ventilation floor can be composed of a large number of individually interchangeable slotted plates. The visible material falling in the visual space hits the ventilation floor or floors and the visual gas flows through there. The impact of the material to be sighted on the ventilation floor (s) can, on the one hand, increase the length of time of the material to be placed in the viewing space. On the other hand, the impact of the visible material on the ventilation floors causes deagglomeration of frequently present visual material agglomerates, the so-called Schülpen. Both improve the sighting effect of a static classifier.

Statische Sichter werden vielfach mit dynamischen Sichtern kombiniert, wobei die statischen Sichter dabei regelmäßig als Grobsichter dem als Feinsichter dienenden dynamischen Sichter vorgeschaltet sind. Dynamische Sichter basieren auf einer Trennung von zwei, sich hinsichtlich der Partikelgrößenverteilung unterscheidenden Fraktionen des Sichtguts mittels eines rotierend angetriebenen Sichtkorbs.Static classifiers are often combined with dynamic classifiers, with the static classifiers regularly being upstream as a coarse classifier and serving as a fine classifier. Dynamic classifiers are based on one Separation of two fractions of the material to be classified, which differ in terms of particle size distribution, by means of a rotating driven basket.

Eine Kombination eines statischen Sichters als Grobsichter und eines dynamischen Sichters als Feinsichter in einer Umlaufmahlanlage für Zementklinker ist beispielsweise aus der DE 43 37215 A1 bekannt. Dort ist der statische Sichter einer Walzenpresse nachgeschaltet und wird von dieser mit vergleichsweise groben und eine Vielzahl von Schülpen aufweisendem Sichtgut beaufschlagt. Das im statischen Sichter separierte Grobgut wird zu der Walzenpresse zurückgeführt, während das Feingut mittels des Sichtgasstroms einer Rohrmühle zugeführt wird, in der dieses weiter zerkleinert wird. Von der Rohrmühle wird das Sichtgut dann dem dynamischen Sichter zugeführt, in dem eine Trennung des Sichtguts in Mittelfeingut und Feinstgut erfolgt. Das Feinstgut wird dann als Fertiggut in einem Abscheider aus dem Sichtgas ausgeschieden, während das Mittelfeingut zu der Rohrmühle zurückgeführt wird. Bei der Umlaufmahlanlage gemäß der DE 43 37 215 A1 sind der statische Sichter und der dynamische Sichter sowohl räumlich als auch funktional durch die Zwischenschaltung der Rohrmühle getrennt. Der statische Sichter dient somit im Wesentlichen dazu, ein Zuführen von zu großen Partikeln oder Schülpen zu der Rohrmühle zu vermeiden.A combination of a static classifier as a coarse classifier and a dynamic classifier as a fine classifier in a circulation grinding plant for cement clinker is, for example, from the DE 43 37215 A1 known. There, the static sifter is connected downstream of a roller press and is subjected to comparatively coarse and a large number of slugs. The coarse material separated in the static classifier is returned to the roller press, while the fine material is fed to a tube mill by means of the classifying gas stream, in which it is further comminuted. The material to be viewed is then fed from the tube mill to the dynamic classifier, in which the material to be separated is separated into medium and fine material. The very fine material is then removed as finished product from the classifying gas in a separator, while the medium fine material is returned to the tube mill. With the circulation grinding plant according to the DE 43 37 215 A1 the static sifter and the dynamic sifter are separated both spatially and functionally by the interposition of the tube mill. The static classifier thus essentially serves to avoid the supply of excessively large particles or flakes to the tube mill.

Eine Vorrichtung zum Sichten von Schüttgut, bei dem ein statischer Sichter und ein dynamischer Sichter direkt hintereinander geschaltet in ein gemeinsames Gehäuse integriert sind und somit von demselben Sichtgasstrom durchströmt werden, ist aus der DE 10 2011 055 762 A1 bekannt. Dort dient das Vorschalten des statischen Sichters im Wesentlichen dazu, eine Beaufschlagung des rotierend angetriebenen und vergleichsweise empfindlichen Sichtkorbs des dynamischen Sichters mit großen Partikeln und Schülpen zu vermeiden.A device for classifying bulk material, in which a static classifier and a dynamic classifier are connected in series in a common housing and thus flowed through by the same classifying gas flow, is shown in FIG DE 10 2011 055 762 A1 known. There, the upstream connection of the static classifier essentially serves to avoid exposure of the rotatingly driven and comparatively sensitive viewing basket of the dynamic classifier to large particles and flakes.

In der DE 10 2011 055 762 A1 ist auch offenbart, dass zusätzlich zu einem Hauptsichtgaseintritt für einen statischen Sichter zusätzliche Öffnungen vorgesehen sein können, die mittels Klappen oder Schieber verschließbar ausgeführt sein können, wodurch eine Regelung des dem statischen Sichter zugeführten Sichtgases ermöglicht werden soll.In the DE 10 2011 055 762 A1 it is also disclosed that, in addition to a main visible gas inlet for a static classifier, additional openings can be provided which can be closed by means of flaps or slides can, whereby a regulation of the sight gas supplied to the static classifier should be made possible.

Aus der DE 24 56 970 C3 ist schließlich noch ein dynamischer Sichter bekannt, in dessen Gehäuse ein den Sichtraum umgehender Bypasskanal integriert ist, über den ein Teil des über einen Einlass zugeführten Staub-Luft-Gemisches zur Vermeidung einer Sichtung in dem Sichtraum geführt werden kann. Dadurch soll eine gezielte Beeinflussung der Partikelgrößen in dem den dynamischen Sichter verlassenden Fertiggut möglich sein.From the DE 24 56 970 C3 Finally, a dynamic classifier is also known, in the housing of which a bypass channel is integrated which bypasses the classifying chamber and via which a part of the dust-air mixture supplied via an inlet can be guided in the classifying room to avoid classifying. This should make it possible to specifically influence the particle sizes in the finished product leaving the dynamic classifier.

Die CA 2 400 859 A1 offenbart eine Vorrichtung gemäß dem Oberbegriff des Patentanspruchs 1, zur Separierung einer Erntemischung, bestehend aus Korn, Spreu und Gräsern, in ihre Bestandteile, wobei die Vorrichtung einen Sichter mit einem Zyklonabscheider kombiniert.The CA 2 400 859 A1 discloses a device according to the preamble of claim 1, for separating a harvest mixture consisting of grain, chaff and grasses into its components, the device combining a sifter with a cyclone separator.

Die US 2013/0032513 A1 beschreibt eine Vorrichtung, mittels der ein Schüttgut sowohl getrocknet als auch gleichzeitig in eine Grobgutfraktion und eine Feingutfraktion separiert werden kann.The US 2013/0032513 A1 describes a device by means of which a bulk material can both be dried and simultaneously separated into a coarse material fraction and a fine material fraction.

Und aus der US 1,977,479 ist eine Vorrichtung zur Entstaubung von Kohlestücken bekannt geworden, die ebenfalls einen Sichter mit einem Zyklonabscheider kombiniert.And from the US 1,977,479 A device for dedusting coal pieces has become known, which also combines a classifier with a cyclone separator.

Ausgehend von diesem Stand der Technik hat der Erfindung die Aufgabe zugrunde gelegen, eine Möglichkeit anzugeben, die Sichtungswirkung eines statischen Sichters auf möglichst einfache Weise veränderbar vorzusehen.On the basis of this prior art, the object of the invention was to provide a possibility of making the sighting effect of a static classifier changeable in the simplest possible way.

Diese Aufgabe wird durch einen statischen Sichter gemäß dem Patentanspruch 1 gelöst. Vorteilhafte Ausführungsformen davon sind Gegenstand der weiteren Patentansprüche und ergeben sich aus der nachfolgenden Beschreibung der Erfindung.This object is achieved by a static classifier according to claim 1. Advantageous embodiments thereof are the subject of the further claims and result from the following description of the invention.

Der Erfindung liegt zum einen der Gedanke zugrunde, dass der Volumenstrom des durch den statischen Sichter geführten Sichtgases eine einfach beeinflussbare Regelgröße darstellt, deren Veränderung eine relevante Auswirkung auf die Sichtungswirkung des Sichters hat. Insbesondere kann durch eine Veränderung des Volumenstroms des Sichtgases eine Anpassung der Partikelgrößenverteilungen der einerseits als Feingut und andererseits als Grobgut aus dem statischen Sichter abgeführten Materials erfolgen. Dies kann insbesondere in Abhängigkeit von den dem statischen Sichter nachgeschalteten Aggregaten (z.B. eine Mühle oder ein dynamischer Sichter) erfolgen. Auch kann durch eine Anpassung des Volumenstroms eine Veränderung der Trocknungswirkung des (gegebenenfalls erwärmten) Sichtgases erzielt werden.The invention is based on the one hand on the idea that the volume flow of the sight gas guided through the static classifier represents a control variable which can be easily influenced, the change of which has a relevant effect on the Sighting effect of the sifter. In particular, the particle size distributions of the material discharged from the static classifier on the one hand as fine material and on the other hand as coarse material can be adjusted by changing the volume flow of the classifying gas. This can be done, in particular, depending on the aggregates downstream of the static classifier (for example a mill or a dynamic classifier). A change in the drying effect of the (possibly heated) sight gas can also be achieved by adjusting the volume flow.

Dabei könnte grundsätzlich durch eine entsprechende Ansteuerung eines den Sichtgasstrom erzeugenden Gebläses der Volumenstrom des Sichtgases an die vorgesehene Sichtungswirkung eingestellt werden. Nachteilig darin ist jedoch, dass dadurch auch der Volumenstrom des Sichtgases für ein dem statischen Sichter nachgeschaltetes Aggregat, insbesondere einen dynamischen Sichter, verändert wird.In this case, the volume flow of the sight gas could in principle be adjusted to the intended sighting effect by correspondingly controlling a blower generating the sight gas flow. However, it is disadvantageous in this that the volume flow of the classifying gas for an aggregate downstream of the static classifier, in particular a dynamic classifier, is also changed.

Um diesen potentiellen Nachteil zu vermeiden, ist erfindungsgemäß zum einen vorgesehen, den dem statischen Sichter zugeführten Volumenstrom des Sichtgases, bei dem es sich vorzugsweise um Luft handeln kann, dadurch regelbar auszuführen, indem mindestens ein Bypasskanal vorgesehen ist, über den ein Teil des Sichtgasstroms an dem Sichtraum vorbeigeführt wird.In order to avoid this potential disadvantage, the invention provides, on the one hand, for the volume flow of the sight gas supplied to the static classifier, which can preferably be air, to be regulated in such a way that at least one bypass channel is provided, via which part of the sight gas flow is applied is led past the visual space.

Demnach ist ein gattungsgemäßer statischer Sichter, der zumindest ein Gehäuse aufweist, in dem sich der Sichtraum befindet, in dem ein oder mehrere Belüftungsböden angeordnet sind und in dem Sichtgut von Sichtgas durchströmt wird, um das Sichtgut in Feingut und Grobgut zu separieren, wobei (mindestens) ein Sichtgaseinlass und (mindestens) ein Sichtguteinlass in den Sichtraum münden sowie (mindestens) ein Feingutauslass und (mindestens) ein Grobgutauslass aus dem Sichtraum abgehen, durch mindestens einen in das Gehäuse integrierten Bypasskanal zur Umgehung des Sichtraums gekennzeichnet, wobei der Bypasskanal im Sichtgaseinlass abgeht und stromabwärts des Sichtraums mündet.Accordingly, a generic static classifier, which has at least one housing in which the visual space is located, in which one or more ventilation shelves are arranged and in the classifying material of classifying gas, in order to separate the classifying material into fine and coarse material, whereby (at least ) a classifying gas inlet and (at least) one classifying material inlet lead into the classifying room and (at least) one fine material outlet and (at least) one coarse material class exit from the classifying room, characterized by at least one bypass channel integrated in the housing for bypassing the classifying room, the bypass channel going out in the classifying gas inlet and flows downstream of the visual space.

Unter einem Sichtraum wird insbesondere der Bereich des Sichters verstanden, in dem eine Materialsichtung, also eine Abscheidung von Material bestimmter Korngröße erfolgt. Das Material gröberer Korngröße verlässt den Sichtraum über den Grobgutauslass, wobei das Material feinerer Korngröße in den Feingutauslass eintritt. Der Feingutauslass ist dem Sichtraum nachgeschaltet und derart ausgebildet, dass in diesem keine Materialsichtung erfolgt.A viewing space is understood in particular to mean the area of the sifter in which material sifting, that is to say a separation of material, is more specific Grain size is done. The material of coarser grain size leaves the visible space through the coarse material outlet, the material of finer grain size entering the fine material outlet. The fine material outlet is arranged downstream of the visual space and is designed in such a way that no material is viewed in it.

Der Bypasskanal mündet stromabwärts des Sichtraums in den Sichter, wobei der Bypasskanal beispielsweise in den Feingutauslass oder in einen Gaseintritt eines dem ersten Sichter nachgeschalteten zweiten, insbesondere dynamischen, Sichters, mündet.The bypass channel opens into the classifier downstream of the classifying space, the bypass channel opening, for example, into the fine material outlet or into a gas inlet of a second, in particular dynamic, classifier downstream of the first classifier.

Dabei wird unter einem in das Gehäuse integrierten Bypasskanal verstanden, dass zumindest eine (vorzugsweise alle) den Bypasskanal begrenzende, vorzugsweise über die gesamte Länge des Bypasskanals verlaufende Wandfläche Teil des Gehäuses ist und somit neben der Funktion einer Begrenzung des Bypasskanals strukturell (als tragende Wand) oder funktional (z.B. zur Führung eines Mediums) für andere Teile des Sichters genutzt wird.A bypass duct integrated into the housing is understood to mean that at least one (preferably all) wall surface delimiting the bypass duct, preferably extending over the entire length of the bypass duct, is part of the housing and thus, in addition to the function of delimiting the bypass duct, structurally (as a supporting wall) or used functionally (e.g. to guide a medium) for other parts of the classifier.

Durch die Integration des mindestens einen Bypasskanals in das Gehäuse des Sichters können im Vergleich zu einem extern verlaufenden Bypasskanal, der beispielsweise in Form eines Bypassschlauchs ausgebildet sein kann, ein oder mehrere Vorteile generiert werden. Insbesondere kann ein geringerer Platzbedarf, eine bessere Zugänglichkeit von Wartungs- und Inspektionsöffnungen, ein vereinfachtes Verpacken und Transportieren des Sichters und/oder ein verringerter Montageaufwand erzielt werden. Auch Kompensatoren, die bei einem extern verlaufenden Bypasskanal zum Ausgleich von unterschiedlichen Wärmedehnungen erforderlich sein können, können bei einem in das Gehäuse integrierten Bypasskanal entfallen.By integrating the at least one bypass channel into the housing of the classifier, one or more advantages can be generated compared to an externally running bypass channel, which can be designed, for example, in the form of a bypass hose. In particular, a smaller space requirement, better accessibility to maintenance and inspection openings, simplified packaging and transportation of the classifier and / or a reduced assembly effort can be achieved. Compensators, which may be necessary in an external bypass duct to compensate for different thermal expansions, can also be omitted in a bypass duct integrated in the housing.

Für einen erfindungsgemäßen Sichter ist weiterhin vorgesehen, dass dieser einen statischen Grobsichter und einen diesem nachgeschalteten Feinsichter in einem Gehäuse integriert. Demnach ist vorgesehen, dass sich an den Feingutauslass ein zweiter, insbesondere dynamischer, Sichter mit einem zweiten Sichtraum anschließt, wobei ein den zweiten Sichter ausbildendes Gehäuse, das den zweiten Sichtraum umgibt, einen Mittelfeingutauslass und einen Feinstgutauslass ausbildet. Dabei kann insbesondere vorgesehen sein, dass der Feinsichter ein dynamischer Feinsichter ist, der demnach einen in dem zweiten Sichtraum angeordneten, rotierend antreibbaren Sichtrotor, beispielsweise in Form eines konventionellen Sichtkorbs umfasst. Ein solcher Sichter, der einen statischen Grobsichter und einen diesem nachgeschalteten Feinsichter umfasst, kann vorzugsweise in Kombination mit (mindestens) einem für beide (Teil-)Sichter genutzten Gebläse zur Erzeugung der Sichtgasströmung genutzt werden.It is further provided for a classifier according to the invention that it integrates a static coarse classifier and a fine classifier downstream of it in a housing. Accordingly, it is provided that a second, in particular dynamic, classifier with a second classroom is connected to the fine material outlet, a housing forming the second classifier, which forms the second classroom surrounds, forms a medium fine material outlet and a fine material outlet. In particular, it can be provided that the fine classifier is a dynamic fine classifier, which accordingly comprises a rotatingly driven classifying rotor arranged in the second classifying chamber, for example in the form of a conventional classifying basket. Such a sifter, which comprises a static coarse sifter and a fine sifter connected downstream of it, can preferably be used in combination with (at least) one blower used for both (partial) sifters to generate the sifting gas flow.

Die Beeinflussbarkeit des durch den statischen Grobsichter geführten Volumenstroms des Sichtgases durch den Bypasskanal hat insbesondere bei einer solchen Kombination mit einem Feinsichter Vorteile, da auf diese Weise der Volumenstrom durch den statischen Grobsichter weitgehend unabhängig von dem Volumenstrom durch den Feinsichter regelbar ausgeführt werden kann. Insbesondere kann vorgesehen sein, den dem Sichter über den Sichtgaseinlass zugeführten Gesamtvolumenstrom des Sichtgases hinsichtlich des Volumenstrombedarfs des Feinsichters auszulegen und den regelmäßig geringeren Volumenstrombedarf des Grobsichters durch ein Vorbeiführen eines mehr oder weniger großen Teils des Gesamtvolumenstroms an dem (ersten) Sichtraum des Grobsichters anzupassen.The ability to influence the volume flow of the sighting gas through the bypass duct through the static coarse sifter has advantages in particular in the case of such a combination with a fine sifter, since in this way the volume flow through the static coarse sifter can be largely regulated independently of the volume flow through the fine sifter. In particular, provision can be made to design the total volume flow of the sight gas supplied to the classifier via the classifying gas inlet with regard to the volume flow requirement of the fine classifier and to adapt the regularly lower volume flow rate requirement of the classifier by passing a more or less large part of the total volume flow past the (first) viewing area of the classifier.

Um die Einstellbarkeit des über den statischen Grobsichter geführten Volumenstroms des Sichtgases möglichst variabel zu halten, kann vorzugsweise ein Regelelement vorgesehen sein, mittels dessen der freie Strömungsquerschnitt des Bypasskanals (manuell oder automatisiert) veränderbar ist. Das Regelelement kann beispielsweise als mittels eines Stellantriebs verstellbare Regelklappe oder Regelschieber ausgeführt sein.In order to keep the adjustability of the volume flow of the sight gas guided over the static coarse sifter as variable as possible, a control element can preferably be provided, by means of which the free flow cross section of the bypass channel can be changed (manually or automatically). The control element can be designed, for example, as a control flap or control slide adjustable by means of an actuator.

Weiterhin bevorzugt kann vorgesehen sein, dass der Bypasskanal eine Mehrzahl von (räumlich getrennten) Strömungskanälen ausbildet. Dadurch kann eine gleichmäßigere Verteilung der Strömung des über den Bypasskanal geführten Sichtgases und dadurch auch eine gleichmäßigere Einleitung in die Hauptströmung des Sichtgases in dem Feingutauslass erreicht werden.Furthermore, it can preferably be provided that the bypass channel forms a plurality of (spatially separated) flow channels. As a result, a more uniform distribution of the flow of the sight gas guided via the bypass channel and thereby also a more uniform introduction into the main flow of the sight gas in the fine material outlet can be achieved.

Bei einer solchen Ausgestaltung des Bypasskanals kann dann zur Vergleichmäßigung der über die einzelnen Strömungskanäle geführten Teilströmungen des Sichtgases vorgesehen sein, dass für mehrere und insbesondere alle der Strömungskanäle jeweils ein Regelelement vorgesehen ist. Dabei kann auch vorgesehen sein, dass die Regelelemente getrennt verstellbar sind.In such a configuration of the bypass channel, it can then be provided, in order to even out the partial flows of the sight gas that are conducted via the individual flow channels, that a control element is provided for several and in particular all of the flow channels. It can also be provided that the control elements can be adjusted separately.

In einer weiterhin bevorzugten Ausgestaltung des erfindungsgemäßen Sichters kann vorgesehen sein, dass die Strömungskanäle in einem Abstand zu der Mündung des Bypasskanals in den Feingutauslass enden. Dadurch werden die durch die Strömungskanäle geführten Teilströmungen noch vor dem Eintritt in den Feingutauslass und somit noch vor der Vermischung mit der Hauptströmung des Sichtgases wieder vereint. Dies kann sich vorteilhaft hinsichtlich einer möglichst gleichmäßigen Einleitung der über den Bypasskanal geführten Teilströmung des Sichtgases in die Hauptströmung auswirken.In a further preferred embodiment of the classifier according to the invention it can be provided that the flow channels end at a distance from the mouth of the bypass channel into the fine material outlet. As a result, the partial flows through the flow channels are reunited with the main flow of the sight gas before they enter the fine material outlet and thus before they are mixed. This can have an advantageous effect on the most uniform possible introduction of the partial flow of the sight gas into the main flow via the bypass channel.

Besonders vorteilhaft kann ein Vereinen der über die Strömungskanäle geführten Teilströmungen des Sichtgases sein, wenn die über den Bypasskanal geführte Sichtgasströmung über eine im Vergleich zu den Querschnittsabmessungen des Feingutauslasses im Bereich der Mündung des Bypasskanals relativ kleine Mündungsöffnung in den Feingutauslass eingeleitet wird. Dabei kann besonders bevorzugt vorgesehen sein, dass der Bypasskanal dezentral in den Feingutauslass mündet, wodurch mittels der aus dem Bypasskanal in den Feingutauslass eintretenden Sichtgasströmung ein Drall der wieder vermischten Gesamtströmung des Sichtgases erzeugt werden kann, die sich insbesondere positiv auf die Sichtwirkung eines dem statischen Grobsichter nachgeschalteten, dynamischen Feinsichters auswirken kann. Dabei kann vorzugsweise vorgesehen sein, dass die Drehrichtung des Dralls der Sichtgasströmung der Drehrichtung des Sichtrotors des dynamischen Feinsichters entspricht.A combination of the partial flows of the sight gas conducted via the flow channels can be particularly advantageous if the sight gas flow conducted through the bypass channel is introduced into the fine material outlet via a relatively small mouth opening in the area of the mouth of the bypass channel compared to the cross-sectional dimensions of the fine material outlet. It can be particularly preferably provided that the bypass channel opens decentrally into the fine material outlet, whereby a swirl of the re-mixed total flow of the visible gas can be generated by means of the sight gas flow entering the fine material outlet, which in particular has a positive effect on the visual effect of the static coarse sifter downstream, dynamic fine classifier. It can preferably be provided that the direction of rotation of the swirl corresponds to the sight gas flow of the direction of rotation of the sight rotor of the dynamic fine classifier.

Unter "dezentral" wird dabei verstanden, dass die (mittlere) Strömungsrichtung der aus dem Bypasskanal in den Feingutauslass eintretenden Sichtgasströmung (und insbesondere die Mittellängsachse der Mündungsöffnung) die Mittellängsachse der Querschnittsflächen des Feingutauslasses im Bereich der Mündung des Bypasskanals nicht schneidet. Insbesondere kann vorgesehen sein, dass die aus dem Bypasskanal in den Feingutauslass eintretende Sichtgasströmung möglichst weit von der Mittelängsachse und somit möglichst nah an einer den Feingutauslass begrenzenden Wand des Gehäuses eingeleitet wird.“Decentralized” is understood here to mean that the (middle) flow direction of the sight gas flow entering the fine material outlet from the bypass duct (and in particular the central longitudinal axis of the mouth opening) is the central longitudinal axis of the Cross-sectional areas of the fine material outlet in the area of the mouth of the bypass channel do not intersect. In particular, it can be provided that the sight gas flow entering the fine material outlet from the bypass channel is introduced as far as possible from the central longitudinal axis and thus as close as possible to a wall of the housing delimiting the fine material outlet.

Sofern der erfindungsgemäße Sichter mindestens zwei Bypasskanäle aufweist, die vorzugsweise auf sich gegenüberliegenden Seiten des ersten Sichtraums angeordnet sein können, kann für eine erhöhte Drallwirkung der in den Feingutauslass aus den zwei Bypasskanälen eintretenden Sichtgasströmungen vorgesehen sein, dass diese zwei Bypasskanäle nicht nur jeweils dezentral sondern auch zueinander diametral bezüglich einer Mittellängsachse des Feingutauslasses in den Feingutauslass münden.If the classifier according to the invention has at least two bypass channels, which can preferably be arranged on opposite sides of the first classifying room, for an increased swirl effect the sight gas flows entering the fine material outlet from the two bypass channels can be provided that these two bypass channels are not only decentralized but also open diametrically to each other with respect to a central longitudinal axis of the fine material outlet in the fine material outlet.

In einer weiterhin bevorzugten Ausgestaltung des erfindungsgemäßen Sichters kann mindestens eine in dem Feingutauslass angeordnete, quer zu dem oder den Belüftungsböden ausgerichtete Zwischenwand vorgesehen sein. Die Zwischenwand kann zum einen eine Versteifung des Gehäuses bewirken. Zum anderen kann durch die mindestens eine Zwischenwand, die den von dem Feingutauslass ausgebildeten Strömungsraum für die Hauptströmung des Sichtgases in mehrere Teilströmungsräume unterteilt, eine Erhöhung der Tragfähigkeit für die Hauptströmung infolge einer Erhöhung der Froude-Zahl erreicht werden. Dies kann insbesondere bei der erfindungsgemäßen Ausgestaltung eines Sichters relevant sein, bei der ein Teil des Gesamtvolumenstroms des über den Sichtgaseinlass zugeführten Sichtgases bedarfsweise mittels des oder der Bypasskanäle an dem (ersten) Strömungsraum vorbei geführt werden soll.In a further preferred embodiment of the classifier according to the invention, at least one intermediate wall arranged in the fine material outlet and oriented transversely to the ventilation floor or floors can be provided. On the one hand, the intermediate wall can stiffen the housing. On the other hand, an increase in the load-bearing capacity for the main flow as a result of an increase in the Froude number can be achieved by the at least one intermediate wall, which divides the flow space formed by the fine material outlet for the main flow of the sighting gas into a plurality of partial flow spaces. This can be relevant in particular in the design of a classifier according to the invention, in which a part of the total volume flow of the classifying gas supplied via the classifying gas inlet is to be led past the (first) flow space, if necessary, by means of the bypass channel (s).

Damit die Zwischenwand das Einleiten der über den mindestens einen Bypasskanal geführten Sichtgasströmung möglichst nicht behindert, kann vorzugsweise vorgesehen sein, dass der Bypasskanal stromab der Zwischenwand in den Feingutauslass mündet.So that the partition does not hinder the introduction of the sight gas flow conducted through the at least one bypass duct, it can preferably be provided that the bypass duct opens into the fine material outlet downstream of the partition.

Um möglichst zu vermeiden, dass das Abzweigen eines Teils des Volumenstroms des Sichtgases aus der Hauptströmung die Durchströmung des oder der Belüftungsböden negativ beeinflusst, kann weiterhin bevorzugt vorgesehen sein, dass der Bypasskanal in einem (möglichst großen) Abstand vor dem oder den Belüftungsböden aus dem Sichtgaseinlass abgeht. Dies kann konstruktiv einfach dadurch realisiert werden, dass eine den Bypasskanal in den Sichtgaseinlass hinein verlängernde Trennwand vorgesehen wird.In order to avoid, as far as possible, that the branching of a part of the volume flow of the sight gas from the main flow negatively influences the flow through the ventilation plate (s), it can further preferably be provided that the bypass duct is at a (as large as possible) distance in front of the ventilation plate (s) from the sight gas inlet goes off. This can be implemented in a structurally simple manner by providing a partition wall that extends the bypass channel into the sight gas inlet.

Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispiels näher erläutert. In den Zeichnungen zeigt:

Fig. 1:
schematisch einen Sichter in einer Seitenansicht, der einen statischen Grobsichter und einen dynamische Feinsichter kombiniert;
Fig. 2:
schematisch den statischen Grobsichter des Sichters in einer Vorderansicht;
Fig. 3:
einen Schnitt durch den Grobsichter entlang der Schnittebene III - III in der Fig. 2;
Fig. 4:
einen Schnitt durch den Grobsichter entlang der Schnittebene IV - IV in der Fig. 2;
Fig. 5:
den den Sichtraum und den Feingutauslass ausbildenden Teil des statischen Grobsichters in einer perspektivischen Darstellung;
Fig. 6:
den Regelelemente zur Regelung der über die Bypasskanäle geführten Teilströmungen des Sichtgases integrierenden Teil des statischen Grobsichters in einer perspektivischen Darstellung;
Fig. 7:
eine Seitenansicht des in der Fig. 6 dargestellten Teils des statischen Grobsichters;
Fig. 8:
einen Querschnitt durch den in der Fig. 6 dargestellten Teil des statischen Grobsichters;
Fig. 9:
schematisch die Erzeugung eines Dralls der Sichtgasströmung in dem Feingutauslass;
Fig. 10:
schematisch einen Sichter gemäß einem weiteren Ausführungsbeispiel in einer Vorderansicht, der einen statischen Grobsichter und einen dynamischen Feinsichter kombiniert; und
Fig. 11:
schematisch einen Sichter gemäß einem weiteren Ausführungsbeispiel in einer Vorderansicht, der einen statischen Grobsichter und einen dynamischen Feinsichter kombiniert
The invention is explained in more detail below with reference to an embodiment shown in the drawings. In the drawings:
Fig. 1:
schematically a classifier in a side view, which combines a static coarse classifier and a dynamic fine classifier;
Fig. 2:
schematically the static coarse classifier of the classifier in a front view;
Fig. 3:
a section through the coarse sifter along the section plane III - III in the Fig. 2 ;
Fig. 4:
a section through the coarse sifter along the section plane IV - IV in the Fig. 2 ;
Fig. 5:
the part of the static coarse sifter forming the viewing space and the fine material outlet in a perspective representation;
Fig. 6:
a perspective view of the control elements for controlling the part of the static coarse sifter integrating through the bypass ducts of the classifying gas;
Fig. 7:
a side view of the in the Fig. 6 shown part of the static coarse sifter;
Fig. 8:
a cross section through in the Fig. 6 shown part of the static coarse sifter;
Fig. 9:
schematically the generation of a swirl of the sight gas flow in the fine material outlet;
Fig. 10:
schematically a classifier according to a further embodiment in a front view, which combines a static coarse classifier and a dynamic fine classifier; and
Fig. 11:
schematically a classifier according to a further embodiment in a front view, which combines a static coarse classifier and a dynamic fine classifier

Der in der Fig. 1 dargestellte Sichter umfasst einen statischen Grobsichter 1 sowie einen diesem direkt nachgeschalteten, dynamischen Feinsichter 2. Beide sind in ein (mehrteiliges) Gehäuse 3 integriert und stellen eine Funktionseinheit dar.The Indian Fig. 1 The classifier shown comprises a static coarse classifier 1 and a dynamic fine classifier 2 directly downstream of it. Both are integrated in a (multi-part) housing 3 and represent a functional unit.

Das (Teil-)Gehäuse 3 des statischen Grobsichters 1 bildet einen (ersten) Sichtraum 4, einen Sichtgaseinlass 5, einen Sichtguteinlass 6, einen Grobgutauslass 7 und einen Feingutauslass 8 aus. In dem ersten Sichtraum 4 ist ein schräg zur Vertikalen ausgerichteter Belüftungsboden 9 vorgesehen, der eine Vielzahl von Belüftungsschlitzen aufweist (vgl. Fig. 3). Der Belüftungsboden bildet eine den Sichtguteinlass 6 mit dem Grobgutauslass 7 verbindende Führungsebene aus. Sichtgut 10, das aus über den Sichtguteinlass 6 in den ersten Sichtraum 4 eingebracht wird, wird schwerkraftbedingt entlang dieser Führungsebene zu dem Grobgutauslass 7 geführt und gleichzeitig von dem durch die Belüftungsschlitze des Belüftungsbodens 9 hindurch strömenden Sichtgas durchströmt wird. Das Sichtgas reißt dabei ausreichend kleine und somit leichte Partikel des Sichtguts 10, das Feingut 11, mit. Das Feingut 11 wird zusammen mit der Sichtgasströmung in den Feingutauslass 8 ausgetragen und von dort dem nachgeschalteten dynamischen Feinsichter 2 zugeführt. Der nicht mitgerissene Teil des Sichtguts 10, das Grobgut 12, wird über den Grobgutauslass 7 abgeführt.The (partial) housing 3 of the static coarse classifier 1 forms a (first) classifying room 4, a classifying gas inlet 5, a classifying material inlet 6, a coarse material outlet 7 and a fine material outlet 8. Provided in the first viewing space 4 is a ventilation floor 9 which is oriented obliquely to the vertical and has a large number of ventilation slots (cf. Fig. 3 ). The ventilation floor forms a guide level connecting the sight goods inlet 6 with the coarse goods outlet 7. Visible material 10, which is introduced into the first classifying room 4 via the classifying material inlet 6, is guided by gravity along this guide level to the coarse material outlet 7 and at the same time flows through the classifying gas flowing through the ventilation slots of the ventilation floor 9. The classifying gas entrains sufficiently small and thus light particles of the classifying material 10, the fine material 11. The fine material 11 is discharged together with the sight gas flow into the fine material outlet 8 and from there it is fed to the downstream dynamic fine classifier 2. The part of the visible material 10 which is not entrained, the coarse material 12, is discharged via the coarse material outlet 7.

Über den Feingutauslass 8 wird das Feingut 11 dem dynamischen Feinsichter 2 zugeführt. Durch ein Zusammenwirken eines in einem (zweiten) Sichtraum 13 angeordneten, rotierend angetriebenen Sichtrotors 14 mit Leitschaufeln 15 kommt es zu einer Feinsichtung, wobei größere Partikel des Feinguts 11, das Mittelfeingut, über einen Mittelfeingutauslass 16 aus dem zweiten Sichtraum 13 abgeführt wird, während kleinere Partikel, das Feinstgut, bei dem es sich insbesondere auch um ein herzustellendes Fertiggut handeln kann, mit der Sichtgasströmung über einen Feinstgutauslass 17 abströmt.The fine material 11 is fed to the dynamic fine classifier 2 via the fine material outlet 8. By interaction of one in a (second) visual space 13 Arranged, rotatably driven classifying rotor 14 with guide vanes 15 there is a fine classifying, larger particles of the fine material 11, the medium-sized material, being discharged from the second classifying chamber 13 via a medium-fine material outlet 16, while smaller particles, the very fine material, which in particular is also can be a finished product to be produced, with which the sight gas flow flows out through a fine material outlet 17.

Der statische Grobsichter 1 ist mit zwei Bypasskanälen 18 versehen, die in das (Teil-)Gehäuse 3 des Grobsichters 1 integriert und dazu vorgesehen sind, Teilströmungen der Gesamtströmung des über den Sichtgaseinlass 5 in den Sichter eintretenden Sichtgases an dem ersten Sichtraum 4 regelbar vorbeizuführen, wodurch diese Teilströmungen nicht an der in dem ersten Sichtraum 4 ablaufenden Grobsichtung teilnehmen. Die beiden Bypasskanäle 18 sind auf zwei gegenüberliegenden Seiten des rechteckige Querschnitte aufweisenden ersten Sichtraums 4 und Feingutauslasses 8 angeordnet. Dabei umschließen Außenwände des Gehäuses 3 sowohl die Bypasskanäle 18 als auch den Sichtraum 4 und den Feingutauslass 8, während eine räumliche Trennung zwischen den Bypasskanälen 18 einerseits und dem Sichtraum 4 sowie dem Feingutauslass 8 andererseits über zwei Trennwände 19 realisiert wird.The static coarse sifter 1 is provided with two bypass channels 18, which are integrated in the (partial) housing 3 of the coarse sifter 1 and are provided for regulatingly passing partial flows of the total flow of the sighting gas entering the sifter via the sighting gas inlet 5 past the first sighting space 4, whereby these partial flows do not take part in the rough view taking place in the first viewing space 4. The two bypass channels 18 are arranged on two opposite sides of the first cross-sectional area 4 with fine cross-sections and fine material outlet 8. The outer walls of the housing 3 enclose both the bypass channels 18 and the visible space 4 and the fine material outlet 8, while a spatial separation between the bypass channels 18 on the one hand and the visible space 4 and the fine material outlet 8 is realized via two partition walls 19.

Die Trennwände 19 sind dabei stromaufwärts des ersten Sichtraums 4 verlängert ausgeführt (vgl. Fig. 4) und ragen dabei in den Sichtgaseinlass 5. Dadurch wird ein Separieren der über die Bypasskanäle 18 geführten Teilströmungen des Sichtgases von der über den ersten Sichtraum 4 geführten Hauptströmung in einem relativ großen Abstand vor (stromauf) dem Belüftungsboden 9 realisiert. Dadurch kann möglichst vermieden werden, dass das Abzweigen der Teilströmungen die Durchströmung des Belüftungsbodens 9 mittels der Hauptströmung negativ beeinflusst.The partitions 19 are extended upstream of the first viewing space 4 (cf. Fig. 4 ) and protrude into the classifying gas inlet 5. As a result, the partial flows of the classifying gas guided via the bypass channels 18 are separated from the main flow running through the first classifying chamber 4 at a relatively large distance in front of (upstream) the ventilation base 9. As a result, it can be avoided as far as possible that the branching off of the partial flows negatively influences the flow through the ventilation base 9 by means of the main flow.

Die abgezweigten Teilströmungen werden innerhalb der Bypasskanäle 18 in mehreren parallel verlaufenden, mittels Unterteilungswänden 20 räumlich getrennten Strömungskanälen 21 geführt. Dabei ist jedem Strömungskanal 21 eingangsseitig jeweils ein Regelelement in Form einer um eine Welle um ca. 90° drehbaren Regelklappe 22 zugeordnet. Über die Regelklappen 22 ist der Volumenstrom der über die Bypasskanäle 18 geführten Teilströmungen des Sichtgases zwischen einem bei vollständig geschlossenen Regelklappen 22 vorliegendem Minimalwert, der im wesentlichen Null beträgt, und einem Maximalwert bei vollständig geöffneten Regelklappen 22 regelbar. Die Fig. 6 und 8 zeigen die Regelklappen 22 in der vollständig geschlossenen Stellung, während in der Fig. 4 eine teilweise geöffnete Stellung der Regelklappen 22 gezeigt ist.The branched partial flows are guided within the bypass channels 18 in a plurality of parallel flow channels 21 which are spatially separated by means of partition walls 20. Each flow channel 21 has on the input side a control element in the form of a shaft which can be rotated by about 90 ° about a shaft Control flap 22 assigned. Via the control flaps 22, the volume flow of the partial flows of the sight gas guided through the bypass channels 18 can be controlled between a minimum value, which is essentially zero when the control flaps 22 are completely closed, and a maximum value when the control flaps 22 are fully open. The Fig. 6 and 8th show the control flaps 22 in the fully closed position, while in the Fig. 4 a partially open position of the control flaps 22 is shown.

Ein Verstellen der Regelklappen 22 erfolgt mittels jeweils eines Stellantriebs 23 je Bypasskanal, der direkt auf die Welle jeweils einer der Regelklappen 22 wirkt, während ein Verdrehen dieser einen Regelklappe 22 über Schub-Zug-Stangen 24 und Hebel 25 auf die anderen Regelklappen 22 des jeweiligen Bypasskanals 18 übertragen wird.The control flaps 22 are adjusted by means of one actuator 23 per bypass channel, which acts directly on the shaft of one of the control flaps 22, while twisting this one control flap 22 via push-pull rods 24 and levers 25 onto the other control flaps 22 of the respective one Bypass channel 18 is transmitted.

Die die Bypasskanäle 18 von dem ersten Sichtraum 4 und dem entsprechenden Teil des Feingutauslasses 8 separierenden Trennwände 19 enden in etwa auf derselben Höhe wie die die Bypasskanäle 18 in die Strömungskanäle 21 unterteilenden Unterteilungswände 20. Stromabwärts davon bildet das Gehäuse noch jeweils einen Auslassraum 26 als Teil der Bypasskanäle 18 aus (vgl. Fig. 5). In diesen Auslassräumen 26 werden die in den einzelnen Strömungskanälen 21 der Bypasskanäle 18 geführten Teilströmungen wieder zusammengeführt und treten dann über jeweils eine Mündungsöffnung 27, die sich nur über einen Teil der entsprechenden Seite des Feingutauslasses 8 erstreckt, in den Feingutauslass 8 ein. Dabei ist vorgesehen, dass die zwei Mündungsöffnungen 27 der beiden Bypasskanäle 18 jeweils dezentral und zudem zueinander diametral bezüglich einer Mittellängsachse 28 des Feingutauslasses 8 angeordnet sind (vgl. Fig. 9; in der Fig. 5 sind die entsprechenden Blenden 30 zur teilweisen räumlichen Trennung der Auslassräume 26 von dem Feingutauslass 8 nicht gezeigt). Dadurch bewirken die aus den Bypasskanälen 18 in den Feingutauslass 8 eintretenden Teilströmungen einen Drall der dann wieder vereinigten Gesamtströmung des Sichtgases um die Mittellängsachse 28 des Feingutauslasses 8. Die Drehrichtung des Dralls entspricht dabei der Drehrichtung des Sichtrotors 14 des dynamischen Feinsichters 2.The partition walls 19 separating the bypass ducts 18 from the first viewing space 4 and the corresponding part of the fine material outlet 8 end at approximately the same height as the partition walls 20 dividing the bypass ducts 18 into the flow ducts 21. Downstream thereof, the housing still forms an outlet space 26 as part the bypass channels 18 (cf. Fig. 5 ). In these outlet spaces 26, the partial flows guided in the individual flow channels 21 of the bypass channels 18 are brought together again and then enter the fine material outlet 8 via an orifice opening 27, which extends only over part of the corresponding side of the fine material outlet 8. It is provided that the two orifices 27 of the two bypass channels 18 are each arranged decentrally and also diametrically to one another with respect to a central longitudinal axis 28 of the fine material outlet 8 (cf. Fig. 9 ; in the Fig. 5 the corresponding diaphragms 30 for the partial spatial separation of the outlet spaces 26 from the fine material outlet 8 are not shown). As a result, the partial flows entering the fine material outlet 8 from the bypass channels 18 cause a swirl of the then combined total flow of the classifying gas about the central longitudinal axis 28 of the fine material outlet 8. The direction of rotation of the swirl corresponds to the direction of rotation of the classifying rotor 14 of the dynamic fine classifier 2.

In der Fig. 5 ist noch ersichtlich, dass der Feingutauslass 8 von mehreren (hier: drei) Zwischenwänden 29 in Teilräume unterteilt wird, wobei die Zwischenwände 29 quer und insbesondere senkrecht zu dem Belüftungsboden 9 ausgerichtet sind. Die Zwischenwände 29 dienen zum einen einer Versteifung des Gehäuses 3 und zum anderen einer Erhöhung der Tragfähigkeit der infolge einer gegebenenfalls erfolgenden Abzweigung von über die Bypasskanäle 18 geführten Teilströmungen reduzierten Hauptströmung des Sichtgases mittels einer Erhöhung der Froude-Zahl. Die Zwischenwände 29 enden stromabwärts in etwa auf derselben Höhe wie die Trennwände 19 und die Unterteilungswände 20 und somit stromauf der Mündungsöffnungen 27 der Bypasskanäle 18. Dadurch behindern diese das Zumischen der aus den Bypasskanälen 18 austretenden Teilströmungen in die Hauptströmung des Sichtgases sowie die dabei erfolgende Ausbildung eines Dralls um die Mittellängsachse 28 des Feingutauslasses 8 möglichst wenig.In the Fig. 5 it can also be seen that the fine material outlet 8 is divided into subspaces by several (here: three) partitions 29, the partitions 29 being oriented transversely and in particular perpendicularly to the ventilation floor 9. The intermediate walls 29 serve, on the one hand, to stiffen the housing 3 and, on the other hand, to increase the load-bearing capacity of the main flow of the sight gas, which is reduced as a result of a branching of partial flows conducted via the bypass channels 18, if necessary, by increasing the Froude number. The intermediate walls 29 end downstream at approximately the same height as the partition walls 19 and the partition walls 20 and thus upstream of the orifices 27 of the bypass channels 18. As a result, they prevent the partial flows emerging from the bypass channels 18 from being mixed into the main flow of the sighting gas and the formation which occurs in the process of a twist around the central longitudinal axis 28 of the fine material outlet 8 as little as possible.

Fig. 10 zeigt einen Sichter gemäß einem weiteren Ausführungsbeispiel. Der Sichter weist einen statischen Grobsichter 32 sowie einen diesem nachgeschalteten dynamischen Feinsichter 34 auf. Der statische Grobsichter 32 ist in einer Vorderansicht dargestellt und entspricht im Wesentlichen dem in Fig. 2 dargestellten statischen Grobsichter 1 mit einem Belüftungsboden 42. Im Unterschied zu dem in Fig. 2 dargestellten statischen Sichter 1 weist der in Fig. 10 gezeigte statische Grobsichter 32 ein Gehäuse 36 auf, das beispielsweise rohrförmig oder mit einem rechteckigen Querschnitt ausgebildet sein kann und als Verbindungsstück zwischen dem Belüftungsboden 42 und dem Feingutauslass dient. Um den Sichtraum 38 und innerhalb des Gehäuses 36 sind zwei Bypasskanäle 40 angeordnet, über welche Teilströmungen der in den statischen Sichter 32 eintretenden Gesamtströmung an dem Belüftungsboden 42 und dem ersten Sichtraum 38 regelbar vorbeigeführt werden. In dem in Fig. 10 dargestellten Ausführungsbeispiel des Sichters erstreckt sich das Gehäuse 36 bogenförmig hin zu einem sich an den statischen Sichter 36 anschließenden dynamischen Sichter 34, sodass die den statischen Sichter 32 durchströmende Strömung um etwa 180° umgelenkt wird und in den dynamischen Sichter 34 strömt. Die räumliche Trennung des Sichtraumes 38 bzw. des Feingutauslass des statischen Sichters 34 und der Bypasskanäle 40 wird durch Trennwände 46 realisiert. Die Trennwände 46 erstrecken sich entlang des Gehäuses 36 des statischen Sichters 32. An den Sichtraum 38 des statischen Sichters schließt sich der Bereich des statischen Sichters an, in dem keine Materialsichtung mehr erfolgt. Die Trennwände 46 der Bypasskanäle 40 erstrecken sich in Fig. 10 über die Länge des Sichtraums 38 sowie über die Länge des Gehäuses 36, in dem eine Abscheidung von Grobgut erfolgt. In dem sich an den Sichtraum 38 anschließenden Feingutauslass enden die Trennwände 46 und die Bypassströmung und der gesichtete Feingutstrom werden zusammengeführt und treten in den dynamischen Sichter 34 ein. Fig. 10 shows a classifier according to a further embodiment. The classifier has a static coarse classifier 32 and a dynamic fine classifier 34 connected downstream of it. The static coarse sifter 32 is shown in a front view and essentially corresponds to that in FIG Fig. 2 shown static coarse sifter 1 with a ventilation floor 42. In contrast to that in Fig. 2 The static classifier 1 shown in FIG Fig. 10 shown static coarse sifter 32 on a housing 36, which may be tubular or with a rectangular cross section, for example, and serves as a connecting piece between the ventilation base 42 and the fine material outlet. Two bypass channels 40 are arranged around the viewing space 38 and within the housing 36, via which partial flows of the total flow entering the static classifier 32 are controllably guided past the ventilation floor 42 and the first viewing space 38. In the in Fig. 10 In the illustrated embodiment of the classifier, the housing 36 extends in an arc towards a dynamic classifier 34 adjoining the static classifier 36, so that the flow flowing through the static classifier 32 is deflected by approximately 180 ° and flows into the dynamic classifier 34. The spatial separation of the viewing space 38 and the Fine material outlet of the static classifier 34 and the bypass channels 40 is realized by partition walls 46. The partition walls 46 extend along the housing 36 of the static classifier 32. The area of the static classifier adjoins the classifying room 38 of the static classifier, in which the material is no longer viewed. The partition walls 46 of the bypass channels 40 extend in Fig. 10 over the length of the viewing space 38 and over the length of the housing 36 in which coarse material is separated. The dividing walls 46 end in the fine material outlet adjoining the visible space 38 and the bypass flow and the sighted fine material flow are brought together and enter the dynamic classifier 34.

Im Unterschied zu dem voran mit Bezug auf die Figuren 1 bis 9 beschriebenen Sichter wird das den statischen Sichter verlassende Feingut in den dynamischen Sichter 34 auf der Höhe des Sichtrotors 44 im Wesentlichen horizontal aufgegeben.In contrast to the previous one with regard to the Figures 1 to 9 Sifter described, the fine material leaving the static sifter is fed into the dynamic sifter 34 at the level of the sifting rotor 44 essentially horizontally.

Fig. 11 zeigt einen Sichter gemäß einem weiteren Ausführungsbeispiel. Der in Fig. 11 dargestellte Sichter entspricht im Wesentlichen dem in Fig. 10 dargestellten Sichter mit dem Unterschied, dass sich die Trennwand 48 der Fig. 11 über den Feingutauslass hinaus bis zum Einlass in den dynamischen Sichter 34 erstreckt. Die Bypassströmung und der gesichtete Feingutstrom werden in dem in Fig. 11 gezeigten Ausführungsbeispiel stromabwärts des Sichtraums 38 und stromabwärts des Feingutauslasses zusammengeführt. Die Trennwände 48 enden am stromabwärtigen Ende des Feingutauslasses am Eintritt in den dynamischen Sichter. Es ist ebenfalls denkbar, dass sich die Trennwände 48 ein Stück weit in den Gaseintritt des dynamischen Sichters 34 hinein erstrecken. Fig. 11 shows a classifier according to a further embodiment. The in Fig. 11 sifter essentially corresponds to that in Fig. 10 shown classifier with the difference that the partition 48 of the Fig. 11 extends beyond the fine material outlet to the inlet into the dynamic classifier 34. The bypass flow and the sighted fine material flow are in the in Fig. 11 Embodiment shown merged downstream of the viewing space 38 and downstream of the fines outlet. The partitions 48 end at the downstream end of the fines outlet at the entrance to the dynamic classifier. It is also conceivable that the partition walls 48 extend a little into the gas inlet of the dynamic classifier 34.

BezugszeichenlisteReference list

1.1.
statischer Grobsichterstatic coarse sifter
2.Second
dynamischer Feinsichterdynamic fine classifier
3.Third
Gehäusecasing
4.4th
erster Sichtraumfirst visual space
5.5th
SichtgaseinlassSight gas inlet
6.6th
SichtguteinlassVisible material inlet
7.7th
GrobgutauslassCoarse material outlet
8.8th.
FeingutauslassFines outlet
9.9th
BelüftungsbodenVentilation floor
10.10th
SichtgutVisible goods
11.11th
FeingutFine goods
12.12th
GrobgutCoarse
13.13th
zweiter Sichtraumsecond visual space
14.14th
SichtrotorClassifying rotor
15.15th
LeitschaufelnGuide vanes
16.16th
MittelfeingutauslassMedium fine outlet
17.17th
FeinstgutauslassFine material outlet
18.18th
BypasskanalBypass channel
19.19th
Trennwandpartition wall
20.20th
UnterteilungswandPartition wall
21.21st
StrömungskanalFlow channel
22.22.
RegelklappeControl flap
23.23rd
Stellantriebactuator
24.24th
Schub-Zug-StangePush-pull rod
25.25th
Hebellever
26.26th
AuslassraumOutlet space
27.27th
MündungsöffnungMouth opening
28.28th
Mittellängsachse des FeingutauslassesCentral longitudinal axis of the fine material outlet
29.29.
ZwischenwandPartition
30.30th
Blendecover
31.31st
statischer Grobsichterstatic coarse sifter
32.32nd
dynamischer Feinsichterdynamic fine classifier
36.36th
Gehäusecasing
38.38.
erster Sichtraumfirst visual space
40.40th
BypasskanalBypass channel
42.42nd
BelüftungsbodenVentilation floor
44.44.
SichtrotorClassifying rotor
46.46.
Trennwandpartition wall
48.48.
Trennwandpartition wall

Claims (15)

  1. Separator having a housing (3; 36) which configures a separation space (4; 38) in which one or a plurality of ventilation bases (9; 42) are disposed and in which separation stock (10) is perfused by separation gas so as to separate the separation stock into fine stock (11) and coarse stock (12), wherein a separation-gas inlet (5) and a separation-stock inlet (6) open into the separation space (4; 36), and a fine-stock outlet (8) and a coarse-stock outlet (7) lead out of the separation space (4), and wherein at least one bypass duct (18; 40), integrated in the housing (3; 36), for bypassing the separation space (4; 38) is provided, wherein the bypass duct (18; 40) leads out of the separation-gas inlet (5) and opens out downstream of the separation space (4; 38) characterized in that a second separation space (13) of the separator adjoins the fine-stock outlet (8), wherein a housing (3; 36) of the separator which surrounds the second separation space (13) configures a medium-fine stock outlet (16) and a finest-stock outlet (17).
  2. Separator according to Claim 1, characterized in that the bypass duct (18; 40) opens into the fine-stock outlet (8).
  3. Separator according to Claim 1, characterized in that the bypass duct (18; 40) opens into an entry of a second separator (2; 32) which has the second separation space (13).
  4. Separator according to one of the preceding claims, characterized in that a rotatingly drivable separation rotor (14) is disposed in the second separation space (13).
  5. Separator according to one or a plurality of the preceding claims, characterized in that the bypass duct (18; 40) configures a plurality of flow ducts (21).
  6. Separator according to one or a plurality of the preceding claims, characterized in that the available flow cross section of the bypass duct (18; 40) is variable by way of a regulator element.
  7. Separator according to Claims 5 and 6, characterized in that one regulator element is provided for each of a plurality of flow ducts (21).
  8. Separator according to Claim 7, characterized in that the regulator elements are individually adjustable.
  9. Separator according to Claim 5 or one of the claims dependent on Claim 5, characterized in that the flow ducts (21) terminate in the fine-stock outlet (8) at a spacing from the port of the bypass duct (18; 40).
  10. Separator according to Claim 2 or one of the claims dependent on Claim 2, characterized in that the bypass duct (18; 40) opens into the fine-stock outlet (8) in a decentralized manner.
  11. Separator according to Claim 10, characterized by at least two bypass ducts (18; 40) which in relation to a longitudinal central axis (28) of the fine-stock outlet (8) open into the fine-stock outlet (8) in a decentralized and diametrical manner.
  12. Separator according to one or a plurality of the preceding claims, characterized by at least one intermediate wall (29) which is disposed in the fine-stock outlet (8) so as to be aligned transversely to the ventilation base(s) (9).
  13. Separator according to Claim 12, characterized in that the bypass duct (18; 40) opens into the fine-stock outlet (8) downstream of the intermediate wall (29).
  14. Separator according to one or a plurality of the preceding claims, characterized in that the bypass duct (18; 40) leads out of the separation-gas inlet (5) at a spacing from the ventilation base(s) (9).
  15. Separator according to one or a plurality of the preceding claims, characterized by a partition wall (19) which extends the bypass duct (18; 40) into the separation-gas inlet (5).
EP15703729.2A 2014-01-31 2015-01-30 Separator with a bypass Active EP3099426B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014101188 2014-01-31
PCT/EP2015/000180 WO2015113769A1 (en) 2014-01-31 2015-01-30 Separator with a bypass

Publications (2)

Publication Number Publication Date
EP3099426A1 EP3099426A1 (en) 2016-12-07
EP3099426B1 true EP3099426B1 (en) 2020-03-04

Family

ID=52465335

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15703729.2A Active EP3099426B1 (en) 2014-01-31 2015-01-30 Separator with a bypass

Country Status (5)

Country Link
US (1) US10105736B2 (en)
EP (1) EP3099426B1 (en)
CN (1) CN105939792B (en)
DK (1) DK3099426T3 (en)
WO (1) WO2015113769A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10597884B2 (en) * 2017-08-30 2020-03-24 Kelly Slater Wave Company, Llc Wave pool and wave generator for bi-directional and dynamically-shaped surfing waves
DE102019123034B3 (en) * 2019-08-28 2020-12-03 Khd Humboldt Wedag Gmbh Cyclone with rotating rod basket
DE102019008657A1 (en) * 2019-12-13 2021-06-17 Daimler Ag Particle separator for battery packs and battery pack with particle separator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2694492A (en) * 1954-11-16 Rumpf ettal
US1977479A (en) * 1933-03-01 1934-10-16 Henry F Hebley Dust extraction apparatus
US3398829A (en) * 1967-02-17 1968-08-27 Du Pont Apparatus for separating adulterants during pneumatic conveying
DE2456970C3 (en) 1974-12-03 1981-06-25 Gebr. Pfeiffer Ag, 6750 Kaiserslautern Through air sifter
DE4337215A1 (en) * 1993-10-30 1995-05-04 Kloeckner Humboldt Deutz Ag Circulating grinding plant
CA2311261C (en) * 1999-06-09 2004-02-17 Mcleod Harvest Inc. Method and apparatus for harvesting crops
CA2274288A1 (en) * 1999-06-09 2000-12-09 Mcleod Harvest Inc. Method and apparatus for harvesting crops
DE102004027128A1 (en) 2004-06-03 2005-12-22 Polysius Ag Sieve assembly, to sort granular materials into at least three fractions for a mill, has a concentric array of a static and a dynamic sieve around a common axis in a common housing
DE602005015360D1 (en) * 2004-11-01 2009-08-20 Comas Spa METHOD AND DEVICE FOR SORTING A GAS DRIVEN POWER FROM GENERALLY FLAT AND LIGHT ARTICLES
DE202006014455U1 (en) * 2006-09-18 2006-11-16 Lhs Clean Air Systems Gmbh Coarse and fine material separating device for use in separating air current of separator, has outlet that is arranged for purpose of cross flow review of material below upper inlet for separation air on side opposite to inlet of separator
CN200998711Y (en) * 2007-01-05 2008-01-02 上海宝钢冶金技术服务有限公司 Novel powder selector
EP2558215B1 (en) * 2010-04-15 2017-03-08 Allmineral Aufbereitungstechnik GmbH&Co. Kg Multi-deck air jigging machine
DE102010054849A1 (en) * 2010-12-17 2012-06-21 Zeppelin Systems Gmbh Process and device for separating fine particles from granular bulk materials in a pipeline
DE102011055762B4 (en) 2011-11-28 2014-08-28 Maschinenfabrik Köppern GmbH & Co KG Device for sifting granular material and grinding plant
CN202460990U (en) * 2012-02-24 2012-10-03 贵州成智重工科技有限公司 Air separation type screening machine
TWI510279B (en) * 2014-04-22 2015-12-01 研能科技股份有限公司 Powder recycling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3099426A1 (en) 2016-12-07
CN105939792B (en) 2019-05-31
US10105736B2 (en) 2018-10-23
DK3099426T3 (en) 2020-06-02
US20170008034A1 (en) 2017-01-12
CN105939792A (en) 2016-09-14
WO2015113769A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP0460490B1 (en) Air classifier
EP2066461B1 (en) Centrifugal separator
EP3099426B1 (en) Separator with a bypass
EP1287911B1 (en) Classifier for granular material
EP3613515B1 (en) Bulk material cleaning device with integrated air separator and bulk material cleaning device with a hollow support frame
DE3222878C1 (en) Method for operating an air classifier and wind classifier for carrying out the method
DE3814458A1 (en) Air separator
DE1910501C3 (en) Circulating air classifier
CH505651A (en) Device for grinding and sifting a granular material, in particular cement
EP0332031B1 (en) Zigzag sifter
EP0392455B1 (en) Separator
DE102016117384A1 (en) sifter
DE102015013892B3 (en) Pneumatically connected cascade classifier and Kreislaufmahlanlage with pneumatically connected Cascade classifiers
DE102012109645A1 (en) Separator for separating granular goods e.g. lime stone, in grinding mill, has ventilating base for separating areas, course good outlets connected to respective separating areas and fine good outlet formed in one of areas
DE102016117383A1 (en) sifter
WO2008113339A2 (en) Operating method for an air classifier and air classifier
DE893905C (en) Pneumatic system for conveying and sifting grainy bulk material
DE1270380B (en) Riser air separator with zigzag channel
CH669337A5 (en)
DE590040C (en) Impact sifter
DE598422C (en) Wind sifter for dusty substances
EP4359148A1 (en) Bar cage sifter with impeller
DE1221083B (en) Mill with air classifier
DE1482459A1 (en) Air separator
DE4427418A1 (en) Wind sifting plant material into fractions of preset density for tobacco, herbs etc.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

Owner name: THYSSENKRUPP AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP AG

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1239790

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015011916

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015011916

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1239790

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015011916

Country of ref document: DE

Owner name: THYSSENKRUPP POLYSIUS GMBH, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, 45143 ESSEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015011916

Country of ref document: DE

Owner name: THYSSENKRUPP AG, DE

Free format text: FORMER OWNERS: THYSSENKRUPP AG, 45143 ESSEN, DE; THYSSENKRUPP INDUSTRIAL SOLUTIONS AG, 45143 ESSEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240124

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304