EP3097300B1 - Kolben für eine kolbenmaschine - Google Patents

Kolben für eine kolbenmaschine Download PDF

Info

Publication number
EP3097300B1
EP3097300B1 EP15700590.1A EP15700590A EP3097300B1 EP 3097300 B1 EP3097300 B1 EP 3097300B1 EP 15700590 A EP15700590 A EP 15700590A EP 3097300 B1 EP3097300 B1 EP 3097300B1
Authority
EP
European Patent Office
Prior art keywords
piston
layer
heat
alloy
stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15700590.1A
Other languages
English (en)
French (fr)
Other versions
EP3097300A1 (de
Inventor
Tobias KAUDEWITZ
Aiko Mork
Ralf RABLBAUER
Martin Schüttenhelm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to EP19193660.8A priority Critical patent/EP3608532A1/de
Publication of EP3097300A1 publication Critical patent/EP3097300A1/de
Application granted granted Critical
Publication of EP3097300B1 publication Critical patent/EP3097300B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers

Definitions

  • the invention relates to a piston for a piston machine, in particular a reciprocating piston engine, according to the preamble of claim 1.
  • a piston In mechanical engineering, a piston is a moving component that, together with a stationary component, the cylinder, forms a closed combustion chamber, the volume of which can be changed by moving the piston.
  • a simple embodiment of this arrangement is a piston that is immersed in a correspondingly shaped housing. The position of the piston in the housing determines the size of the combustion chamber.
  • piston machines in which pistons are used are called piston machines.
  • the piston machines most widely used today are motor vehicle engines, especially gasoline and diesel engines.
  • the piston In motor vehicle engines, the piston has to transmit the gas forces of the fuel gas to the connecting rod, among other things. In addition, it has the task of sealing the combustion chamber against the crankcase with sealing elements and of transferring the heat transferred to it to the coolant.
  • the coating contains further alloy elements and impurities, in particular chromium, silicon and carbon.
  • DE 10 2006 007 148 A1 discloses a piston which has an iron-aluminum-chromium alloy in order to improve the physical and mechanical properties of the piston, in particular with regard to the strength at higher temperatures.
  • EP 0 663 020 B1 provides the application of a thermal barrier coating consisting of a metal bond coating, a metal / ceramic layer applied thereon and a ceramic composite material cover layer applied thereon to a piston in order to protect the piston from rapid thermal cycling.
  • the font DE 36 22 301 A1 discloses a piston in which the entire piston crown and also a region of the piston skirt are coated with a heat-insulating layer made of asbestos. It is also proposed to apply a heat-resistant yet thermally conductive layer to the heat-insulating layer on the heat-insulating layer in order to store the heat generated in the combustion chamber in this layer.
  • the document EP 0 321 159 A2 shows a built piston with a heat-insulating component facing the combustion chamber made of potassium titanate whisker, zirconium dioxide fibers, carbon fibers or aluminum oxide fibers.
  • the component is completely made up of one layer Surrounding silicon nitride or silicon carbide, which is applied by means of vapor deposition.
  • JP 2012-72747 A describes a piston made of an aluminum alloy, on the piston crown of which a porous layer and a film layer are arranged.
  • the thermal conductivity of the final film layer is greater than that of the underlying porous layer.
  • Composite material composed of a porous metal structure and metallic or inorganic fibers, for example ceramic fibers, is described as the material of the porous layer.
  • the invention is now based on the object of solving or at least reducing the problems of the prior art and further increasing the insulating effect.
  • a piston is to be provided which achieves a reduction in temperature peaks.
  • the invention thus relates to a piston for a piston machine, the piston comprising a stack of layers arranged on a piston head of the piston.
  • the stack of layers comprises at least one first layer, which is directly or indirectly connected to the surface of the piston head and comprises a heat-insulating material, and a second layer, which is directly or indirectly connected to the first layer and which contains a thermally conductive material.
  • the arrangement of a stack of layers according to the invention on the piston crown leads in an advantageous manner to an increase in the efficiency of the combustion process.
  • the efficiency of the internal combustion engine is increased in particular by the fact that less heat is transported away from the combustion chamber or the cylinder chamber.
  • higher temperatures prevail in the combustion chamber than known from the prior art.
  • higher temperatures lead to higher efficiency.
  • an increase in temperature in the combustion chamber has a positive effect on the exhaust gas treatment, since the exhaust gases also have a higher temperature and thus lead to accelerated heating of the catalytic converters.
  • the stack of layers according to the invention advantageously provides insulation and / or protection against corrosion of the piston surface or the piston on the piston crown.
  • the second layer has the function of harmonizing the temperature on the surface of the piston crown.
  • the heat-conducting material of the second layer advantageously ensures temperature equalization on the surface of the layer stack and thus on the surface of the piston crown. This in turn leads to a reduction in locally limited temperature peaks on the substrate surface, since the temperature is evenly distributed over the surface by the heat-conducting second layer.
  • the heat insulating material of the first layer decouples the second layer and thus the heat conduction from the piston crown or from the piston. This ensures that the heat is evenly distributed on the surface of the piston crown of a piston according to the invention without being transported away from the combustion chamber.
  • Piston machines are fluid energy machines in which a displacer defines a periodically changing working space by means of its movement.
  • the displacer is a piston, which can have a cylindrical shape, for example.
  • a piston engine is understood to mean both a rotary piston engine, which has a disc piston, for example, and a reciprocating piston engine, in particular with a cylindrical piston.
  • the area of the piston which faces the combustion chamber and is thus in contact with the fluid is referred to in the present invention as the piston head.
  • this piston head is a top side with a round shape, which is arranged on a cylindrical circumferential side wall, the piston skirt.
  • the piston crown in turn, can have a wide variety of shapes. In the present invention, both planar and concave or convex shapes of the piston head are possible.
  • the piston head can also have depressions and elevations, for example in the form of lugs, which are let into the piston head and / or protrude from it.
  • the pistons described in the present invention, in particular piston heads are at least partially manufactured from a light metal alloy or a steel, light metal alloys being preferred as the piston material. Light metal alloys are to be understood in principle as all conceivable light metal alloys. In the present invention however, aluminum alloys are preferred, in particular aluminum-silicon alloys with varying aluminum contents up to hypereutectic concentrations.
  • a stack of layers is arranged on the surface, in particular on the light metal alloy, of the piston crown of a piston described here. This is to be understood as an arrangement of successively applied layers of different or the same thickness made of different or the same materials, a first layer being arranged directly or indirectly on the piston surface.
  • the layers applied one after the other are basically functional layers, that is to say those which change, in particular improve, at least one physical property of the surface of the piston crown.
  • the essence of the present invention thus lies in the combination of heat-insulating or heat-conducting properties of the layers. These can be defined via the thermal resistance R th or its reciprocal value, the thermal conductivity ⁇ . R th results from the quotient of the temperature difference ⁇ T and the heat flow Q V.
  • thermally conductive materials are to be understood in particular as those which have a thermal conductivity ⁇ > 50 W / mK, in particular ⁇ > 100 W / mK.
  • heat-insulating materials are distinguished by a thermal conductivity ⁇ ⁇ 15 W / mK, in particular ⁇ ⁇ 3 W / mK.
  • a diameter d S of the stack of layers is smaller than a diameter d K of the piston head.
  • the layer stack preferably has a diameter d S which corresponds to more than 90%, preferably more than 95%, in particular more than 98% of the diameter d K.
  • this has the advantage that the layer stack and in particular the heat-conducting layer is not connected to the edge of the piston crown, in particular not to the top land, and via such a connection no heat conduction via the heat-conducting material of the second layer in the piston and beyond, for example in the cylinder material can take place.
  • Another tribological advantage is in particular that the particularly hard layer stack does not come into contact with a running surface of the piston or liner.
  • the heat-insulating material of the first layer comprises an intermetallic compound. It could advantageously be shown that pistons which are coated with a stack of layers according to the invention are used as heat-insulating Materials have intermetallic compounds, have a particularly high thermal stability at temperatures> 500 ° C.
  • Intermetallic compounds are homogeneous chemical compounds made up of two or more metals. In contrast to alloys, they show lattice structures that differ from those of the constituent metals. In their lattice there is a mixed bond consisting of a metallic bond component and lower atomic bond or ion bond components, which can result in superstructures.
  • the intermetallic compounds are based on iron aluminum, namely on FeAl (Cr, Nb, Zr, C, B) and / or Fe 3 Al (Cr, Nb, Zr, C, B).
  • the intermetallic compound is composed of 50% to 95% by weight of iron, in particular 70% to 95% by weight of iron and 5% to 50% by weight composed of aluminum, in particular from 5% to 30% by weight of aluminum.
  • the intermetallic compounds can contain contents of further alloying elements and impurities, in particular of chromium, niobium, zirconium, carbon and boron.
  • the intermetallic compounds used as heat-insulating material have in common that, in addition to a particularly high temperature resistance of over 500 ° C., they have a coefficient of expansion that is compatible with the piston material.
  • the volume expansion that a material experiences as a result of a temperature increase, in a layer stack in a preferred embodiment is related between the heat-insulating material and the piston crown in such a way that the temperature prevailing on the heat-insulating material just expands this material to such an extent that it does not become one Delamination comes from the piston crown as a result of the increase in temperature of the layer stack.
  • the service life of the stack of layers on the piston can be significantly increased by a suitable choice of the heat-insulating material.
  • the thermally conductive material of the second layer comprises a metal and / or a thermally conductive ceramic, since these in particular have thermal conductivity values ⁇ > 50 W / mK.
  • the thermally conductive material comprises beryllium, aluminum, copper, silver, silicon, molybdenum, tungsten, carbon, beryllium oxide, beryllium nitrite, silicon nitrite and / or silicon carbide and mixtures and / or alloys thereof. As bulk material, these materials have a thermal conductivity ⁇ > 100 W / mK.
  • silicon carbide can achieve thermal conductivity of up to 350 W / mK.
  • the materials mentioned are therefore particularly suitable for achieving a particularly rapid and uniform temperature distribution on the surface of the piston crown and thus preventing, in particular, locally limited temperature peaks. If temperature peaks nevertheless occur, that is to say local temperature maxima on the surface of the piston crown, the very high temperature prevailing there can be distributed very quickly over the entire surface of the piston crown and thus reduced.
  • temperature peaks occur in particular when the temperature in areas of a surface suddenly increases by more than 50 ° C., in particular by more than 100 ° C. with respect to the mean surface temperature, and thus a high temperature gradient arises.
  • an adhesion promoter layer is arranged between the surface of the piston crown and the first layer and / or between the first layer and the second layer.
  • Adhesion promoters are substances that are used to increase the adhesive strength of composites directly and / or indirectly. In this case, the adhesive strength between the functional layer and the surface of the piston crown or between functional layers can be increased.
  • the adhesive strength of coatings is defined as the measure of the resistance of a coating to its mechanical separation from the substrate. In the direct case this means that an improved adhesive strength of the functional layer on the surface of the piston crown or an improved adhesive strength of the second layer on the first layer leads to the fact that these can be separated from one another more difficultly by external influences.
  • the occurrence of strong temperature fluctuations can be understood as an external influence.
  • the adhesion promoter layer can act as a corrosion protection layer and thus indirectly increase the adhesive strength of the composite.
  • the arrangement of an adhesion promoter can advantageously lead to an increase in the wettability of the substrate surface.
  • an adhesion promoter can increase the formation of chemical bonds between the substrate surface and the layer. This is particularly the case when the two layers have very different physical properties with regard to their surface, such as polarity or lattice structure.
  • the arrangement of an adhesion promoter between the piston crown and the first layer or between the first and second layer can Increase the durability and thus the service life of the stack of layers on the surface of the piston crown.
  • the adhesion promoter layer preferably comprises an Fe 3 Al, FeAl, FeAl / Fe 3 Al, NiCr, NiCrAl, NiCrAIY, FeCrAIY, CuCrAlY alloy and / or an intermetallic compound made of FeAl (Cr, Nb, Zr, C, B) and / or Fe 3 Al (Cr, Nb, Zr, C, B).
  • the individual layers can have a gradient based on the layer composition. If, for example, individual layers are composed of mixtures and / or several components, the ratio of these to one another can vary within the relevant layer.
  • the piston head has a depression and the layer stack is arranged within the depression.
  • a depression is to be understood as an area of the piston crown which is lower than a surrounding surface of the piston crown.
  • a depression is therefore an indentation or also a depression within the piston head, which is designed to at least partially accommodate a stack of layers.
  • the diameter or the width of the recess corresponds at least to the width or the diameter of the layer stack, so that the layer stack is preferably arranged in the region of the recess and is not in contact with the surface of the piston head beyond this region.
  • the stack of layers is preferably arranged completely in the recess in the piston head and does not protrude above the surface level of the piston head, but is flush with the circumferential edge of the piston head. This ensures that the stack of layers does not affect the flow pattern on the surface of the piston crown.
  • at least the second layer that is to say the layer which comprises the thermally conductive material, protrudes from the recess and / or has a diameter which is smaller than the diameter of the recess.
  • the advantage of this configuration is that the second layer and in particular the thermally conductive material are not in contact with the surface of the piston surface. Such contact would weaken the thermal insulation effect of the lower, i.e. the first, layer. The heat would be transferred to the piston crown via the heat-conducting layer and could be conducted out of the combustion chamber via the piston.
  • Another aspect of the invention relates to a piston machine having a piston according to the present invention.
  • the piston machine according to the invention is characterized by a high degree of efficiency, efficient exhaust gas treatment and a very long service life of the individual components.
  • FIG Figure 1 shows a cylindrical piston 10 of a reciprocating piston engine, not shown further.
  • the piston 10 has a cylindrically shaped piston skirt 14 on which a substantially planar circular piston head 11 is arranged.
  • the piston 10 also has circumferential grooves which are designed to accommodate sealing elements, in particular piston rings.
  • the piston 10 is preferably made from a light metal alloy 15. Aluminum alloys, in particular aluminum-silicon alloys, are particularly preferred. Iron compounds, i.e. steels, can also be used as piston material.
  • the piston head 11 has a recess 12 in which a stack of layers 20 is arranged.
  • the diameter d S of the stack of layers 20 essentially corresponds to the diameter of the recess 12.
  • the diameter d S of the stack of layers 20 is made smaller in comparison to the diameter d K of the piston head 11.
  • the depth of the recess 12 corresponds to the height of the layer stack 20, so that it does not protrude from the recess 12 and does not protrude beyond the surface of the piston head 11.
  • the layer stack 20 preferably ends flush with the edge surrounding the recess 12. A detailed structure of the layer stack 20 is shown in a detailed drawing described below in FIG Figure 3 explained in more detail.
  • a layer stack 20 functionalizes the surface of a piston head 11 in a large area.
  • FIG Figure 2 Another preferred embodiment of a piston according to the invention is shown in FIG Figure 2 shown.
  • the piston 10, also shown in a sectional drawing, is basically constructed in the same way as that in FIG Figure 1
  • the piston 10 shown here differs from the first embodiment in that the piston head 11 of the cylindrical piston 10 is not designed in a planar manner, but rather has a depression 13.
  • a functional layer stack 20 is arranged as shown in the second embodiment of the piston 10.
  • the piston head 11 has no recess for receiving the stack of layers 20.
  • the stack of layers 20 has, as in FIG Figure 1 shown has a smaller diameter than the piston head 11. There is thus a distance between the layer stack 20 and the outer edge of the piston head 11.
  • the remaining area of the piston head 11 is completely covered by the layer stack 20, including the part of the piston head 11, which represents the trough 13.
  • the circumferential edge of the piston head 11 preferably corresponds to less than 10%, in particular less than 5%, preferably less than 2% of the surface of the piston head 11.
  • the one in the Figures 1 and 2 The functional layer stack 20 shown has both heat-insulating and heat-conducting functions. This is done by the in Figure 3 Outlined structure of the layer stack is achieved.
  • Figure 3 shows a layer stack 20 according to the invention, which is arranged on a light metal alloy 15.
  • the light metal alloy 15 is preferably aluminum alloys, in particular aluminum-silicon alloys.
  • An adhesion promoter 23 can optionally be arranged on this light metal alloy 15.
  • the layer of adhesion promoter 23 preferably comprises materials which increase the adhesive strength between light metal alloy 15 and first layer 21.
  • materials are suitable which, on the one hand, increase the wettability of the light metal alloy 15 and, on the other hand, and in particular compensate for the structural differences between the light metal alloy 15 and the first layer 21.
  • alloys based on iron and aluminum in particular Fe 3 Al, FeAl, FeAl / Fe 3 Al, NiCr, NiCrAl, NiCrAlY, FeCrAlY, CuCrAlY alloys are preferred.
  • intermetallic compounds based on iron aluminum are suitable as adhesion promoters.
  • chromium and / or niobium and / or zirconium, carbon and / or boron are added to an alloy made of iron and aluminum.
  • a suitable material which is used, for example, in the aerospace industry, is a nickel-chromium-aluminum composition.
  • adhesion promoters based on austenitic iron, nickel and cobalt alloys, as well as compounds alloyed with Cr, Al and Y (so-called MCrAlY layers) or with Hf, Ta or Si can also be used. Suitable adhesion promoters are commercially available under the brand names Amdry® 365, Amdry® 386, Amdry® 995, Amdry® 962, Amperit® 415, Metco 443 or Sulzer Metco® 445.
  • the adhesion promoter 23 is applied much thinner than the following layers and preferably has thicknesses in the range from 0.1 mm to 0.2 mm, in particular between 0.1 mm and 0.15 mm.
  • a first layer 21 adjoins this adhesion promoter 23 or, alternatively, directly to the piston head.
  • This first layer 21 consists of a material which has heat-insulating properties. Materials which have a thermal conductivity ⁇ ⁇ 15 W / mK, in particular ⁇ ⁇ 3 W / mK, are particularly preferred here.
  • the heat insulating materials used are intermetallic compounds based on iron-aluminum alloys, namely FeAl and Fe 3 Al, which can preferably comprise constituents added up to a maximum of 10% of the total mass of the coating.
  • the added materials are preferably chromium, niobium, zirconium, carbon or boron.
  • the thickness of the first layer 21 is adapted, depending on the material, to the ambient conditions, in particular the ambient temperatures of the piston 10, during operation.
  • the first layer 21 preferably has a thickness in the range from 0.02 mm to 5 mm, in particular in the range from 0.1 mm to 1.5 mm.
  • a further layer of an adhesion promoter 24 is optionally arranged on the first layer 21.
  • This adhesion promoter basically has the same properties as the optional between Adhesion promoter 23 arranged on the piston crown surface and the first layer.
  • the adhesion promoter layers 23 and 24 can be designed identically in one embodiment, but they can also vary within the preferred limits described, in particular in the composition and thickness of the layers.
  • a further functional layer, the second layer 22, is arranged on the first layer 21 or on the adhesion promoter 24 arranged on this first layer 21.
  • the second layer 22 comprises at least 70%, in particular at least 95%, preferably at least 98%, a thermally conductive material.
  • This thermally conductive material is characterized by a thermal conductivity ⁇ which is preferably> 50 W / mK, in particular> 100 W / mK.
  • Materials suitable for this purpose are, in particular, metals such as beryllium, aluminum, copper, molybdenum and tungsten, but also silicon and carbon and compounds, in particular ceramics such as beryllium oxide, beryllium nitrite, silicon nitrite and silicon carbide.
  • the second layer 22 is preferably made thinner than the first layer 21.
  • Preferred thicknesses of the second layer 22 are in the range between 0.1 mm and 1 mm, particularly preferably between 0 , 05 mm and 0.8 mm.
  • the individual layers 21, 22, 23 and 24 of the layer stack 20 are preferably applied by means of flame spraying or plasma spraying under vacuum, high-speed flame spraying or atmospheric plasma spraying or by means of chemical and / or electrochemical processes such as painting, electroplating or the like. It is useful here to sharply define the areas of the individual layers 21, 22, 23 and 24. This can be achieved on the one hand by a mold applied to the piston head 11 before the injection, on the other hand by a recess 12 present in the piston head 11 and / or by post-treating the applied layer stack 20, in particular by removing the outermost edge of the layer stack 20.
  • the layer stack 20 has a heat-insulating, in particular insulating, function due to the heat-insulating properties of the first layer 21. Due to the very low thermal conductivity ⁇ of the insulating materials applied through the first layer 21, only a very small part of the heat in the combustion chamber is dissipated to the surface of the piston crown and from there out of the cylinder chamber. Rather, the heat remains within the combustion chamber and is therefore still available for combustion Available. As a result, a higher degree of efficiency is achieved in the combustion chamber than at lower temperatures. At the same time, the exhaust gases discharged from the combustion chamber also have a higher temperature, which ultimately benefits exhaust gas treatment.
  • a pure thermal insulation layer on the surface of the piston crown 11 would, however, at the same time mean that the temperatures cannot be evenly distributed on the surface. Rather, areas with increased temperature peaks would form.
  • a second layer 22, which consists of material that has a very high thermal conductivity ⁇ the temperature from areas of temperature peaks is evenly distributed over the entire area of the layer stack 20.
  • the optionally usable layers of adhesion promoters 23 and 24 increase the adhesive strength and corrosion resistance of the layer stack 20 on the light metal alloy 15 or between the first layer 21 and the second layer 22 and thus the service life of the layer stack 20.

Description

  • Die Erfindung betrifft einen Kolben für eine Kolbenmaschine, insbesondere einen Hubkolbenmotor, gemäß dem Oberbegriff des Anspruchs 1.
  • Als Kolben bezeichnet man im Maschinenbau ein bewegliches Bauteil, das zusammen mit einem feststehenden Bauteil, dem Zylinder, einen abgeschlossenen Brennraum bildet, dessen Volumen durch Bewegung des Kolbens verändert werden kann. Eine einfache Ausführung dieser Anordnung ist ein Kolben, der in ein entsprechend geformtes Gehäuse eintaucht. Die jeweilige Stellung des Kolbens im Gehäuse bestimmt so die Größe des Brennraumes.
  • Maschinen, in denen Kolben zum Einsatz gelangen, nennt man Kolbenmaschinen. Die heute am weitesten verbreiteten Kolbenmaschinen stellen Kraftfahrzeugmotoren, insbesondere Otto- und Dieselmotoren, dar.
  • Die am häufigsten angewandten Werkstoffe für derartige Kolben sind Aluminium und Stahl. Der Kolben muss bei Kraftfahrzeugmotoren unter anderem die Gaskräfte des Brenngases auf die Pleuelstange übertragen. Darüber hinaus hat er die Aufgabe den Verbrennungsraum durch Dichtelemente gegen das Kurbelgehäuse abzudichten und die auf ihn übertragene Wärme an das Kühlmittel weiterzuleiten.
  • Zur Verbesserung der Leistung und des Wirkungsgrads führt eine Optimierung von Motoren häufig zu erhöhten Temperaturen und Drücken im Verbrennungsraum und insbesondere am Kolben eines Verbrennungsmotors. Beispielsweise arbeiten Dieselmotoren bereits bei Zylindertemperaturen von 650 °C bis etwa 1100 °C und effektiven Mitteldrücken bis zu etwa 2000 kPa. Derartige Bedingungen in Verbindung mit schneller thermischer Wechselbeanspruchung, die durch den Verbrennungsprozess im Zylinder herbeigeführt werden, erzeugen für Motorenteile innerhalb des Zylinders eine anspruchsvolle Umgebung. Um zum einen einer Korrosion am Kolbenboden und zum anderen einem Wärmeabtransport aus dem Verbrennungsraum entgegenzuwirken, ist es sinnvoll, Teile des Kolbens mit isolierenden Materialien zu beschichten.
  • Ein Ansatz, um die Korrosionsbeständigkeit zu verbessern, findet sich bei der in DE 196 03 515 C1 beschriebenen Beschichtung auf der Basis von Aluminium und Eisen. Daneben beinhaltet die Beschichtung weitere Legierungselemente und Verunreinigungen, insbesondere Chrom, Silizium und Kohlenstoff.
  • In DE 10 2006 007 148 A1 ist ein Kolben offenbart, welcher eine Eisen-Aluminium-Chrom-Legierung aufweist, um die physikalischen und mechanischen Eigenschaften des Kolbens, insbesondere in Hinblick auf die Festigkeit bei höheren Temperaturen, zu verbessern.
  • EP 0 663 020 B1 sieht das Auftragen einer Wärmesperre-Beschichtung aus einer Metall-Bindungsbeschichtung, einer darauf aufgetragenen Metall-/Keramik-Schicht sowie einer darauf aufgetragenen Keramikverbundwerkstoff-Deckschicht auf einen Kolben vor, um den Kolben vor schneller thermischer Wechselbeanspruchung zu schützen.
  • Diesen Ansätzen ist gemein, dass sie den Wärmeaustrag aus dem Zylinderraum reduzieren. Nachteilig ist jedoch, dass Temperaturspitzen, welche bei der Verbrennung lokal auf dem Kolbenboden entstehen, nicht abgeleitet werden, sondern sich vielmehr verstärken. Somit kommt es zu einer thermischen Drosselung im Ladungswechsel oder einer ungewollten Verkürzung des Zündverzugs. Zum anderen findet punktuell eine starke thermische Beanspruchung des Materials statt mit der Folge, dass die Beschichtung beschädigt und das darunter liegende Material zerstört wird.
  • Die Schrift DE 36 22 301 A1 offenbart einen Kolben, bei welchem der gesamte Kolbenboden und auch ein Bereich des Kolbenmantels mit einer wärmedämmenden Schicht aus Asbest beschichtet ist. Es wird weiterhin vorgeschlagen, auf die wärmedämmende Schicht ein hitzebeständige und dennoch wärmeleitende Schicht auf die wärmedämmende Schicht aufzubringen, um die im Brennraum anfallende Wärme in dieser Schicht zu speichern.
  • Das Dokument EP 0 321 159 A2 zeigt einen gebauten Kolben mit einem dem Brennraum zugewandten wärmeisolierenden Bauteil aus Kaliumtitanat-Whisker, Zirkoniumdioxid-Fasern, Carbon-Fasern oder Aluminiumoxid-Fasern. Das Bauteil ist vollständig von einer Schicht aus Siliziumnitrid oder Siliziumkarbid umgeben, welche mittels Gasphasenabscheidung aufgebracht wird.
  • JP 2012-72747 A beschreibt einen Kolben aus einer Aluminiumlegierung, auf dessen Kolbenboden eine poröse Schicht und darauf eine Filmschicht angeordnet sind. Dabei ist die Wärmeleitfähigkeit der abschließenden Filmschicht größer als die der darunterliegenden porösen Schicht. Als Material der porösen Schicht wird Kompositmaterial aus einer porösen Metallstruktur und metallischen oder anorganischen Fasern beispielsweise keramischen Fasern beschrieben.
  • Eine ähnliche Struktur ist in EP 2 436 896 A1 offenbart, wobei hier die poröse Schicht aus keramischen Hohlpartikeln besteht.
  • Der Erfindung liegt nun die Aufgabe zugrunde, die Probleme des Standes der Technik zu lösen oder zumindest zu mindern und die isolierende Wirkung weiter zu erhöhen. Insbesondere soll ein Kolben bereitgestellt werden, welcher eine Reduzierung von Temperaturspitzen erzielt.
  • Diese Aufgabe wird erfindungsgemäß durch einen Kolben und eine Kolbenmaschine mit den Merkmalen der unabhängigen Ansprüche gelöst.
  • Somit betrifft die Erfindung einen Kolben für eine Kolbenmaschine, wobei der Kolben einen auf einem Kolbenboden des Kolbens angeordneten Schichtstapel umfasst. Erfindungsgemäß umfasst der Schichtstapel zumindest eine an die Oberfläche des Kolbenbodens mittelbar oder unmittelbar anschließende, ein wärmedämmendes Material umfassende erste Schicht sowie eine an die erste Schicht mittelbar oder unmittelbar anschließende zweite Schicht, welche ein wärmeleitendes Material beinhaltet.
  • Die Anordnung eines erfindungsgemäßen Schichtstapels auf dem Kolbenboden führt in vorteilhafter Weise zu einer Wirkungsgradsteigerung des Verbrennungsprozesses. Der Wirkungsgrad der Verbrennungsmaschine wird insbesondere dadurch erhöht, dass weniger Wärme aus dem Verbrennungsraum beziehungsweise dem Zylinderraum abtransportiert wird. Im Verbrennungsraum herrschen bei Verwendung eines erfindungsgemäßen Kolbens höhere Temperaturen, als aus dem Stand der Technik bekannt. Höhere Temperaturen wiederum führen zu einem höheren Wirkungsgrad. Zusätzlich wirkt sich eine Temperaturerhöhung im Verbrennungsraum positiv auf die Abgasbehandlung aus, da auch die Abgase eine höhere Temperatur aufweisen und somit zu einem beschleunigten Aufheizen der Katalysatoren führen. Vorteilhafterweise sorgt der erfindungsgemäße Schichtstapel auf dem Kolbenboden für eine Isolation und/oder einen Korrosionsschutz der Kolbenoberfläche beziehungsweise des Kolbens.
  • Die zweite Schicht hat entgegen der wärmedämmenden und damit isolierenden Funktion der ersten Schicht die Funktion, die Temperatur auf der Oberfläche des Kolbenbodens zu harmonisieren. Das heißt, das wärmeleitende Material der zweiten Schicht sorgt mit Vorteil für einen Temperaturausgleich auf der Oberfläche des Schichtstapels und somit auf der Oberfläche des Kolbenbodens. Dies führt wiederum zu einer Minderung von lokal begrenzten Temperaturspitzen auf der Substratoberfläche, da die Temperatur durch die wärmeleitende zweite Schicht gleichmäßig auf der Oberfläche verteilt wird. Durch das wärmedämmende Material der ersten Schicht ist die zweite Schicht und damit die Wärmeleitung vom Kolbenboden beziehungsweise vom Kolben entkoppelt. Dies stellt sicher, dass die Wärme auf der Oberfläche des Kolbenbodens eines erfindungsgemäßen Kolbens gleichmäßig verteilt wird, ohne aus dem Verbrennungsraum abtransportiert zu werden.
  • Ein erfindungsgemäßer Kolben wird mit Vorteil in Kolbenmaschinen eingesetzt. Kolbenmaschinen sind Fluid-Energie-Maschinen, in denen ein Verdränger mittels seiner Bewegung einen sich periodisch verändernden Arbeitsraum definiert. Den Verdränger stellt ein Kolben dar, welcher beispielsweise zylindrische Form haben kann. In vorliegender Erfindung wird unter Kolbenmaschine sowohl ein Drehkolbenmotor, welcher beispielsweise über einen Scheibenkolben verfügt, als auch ein Hubkolbenmotor mit insbesondere zylindrischem Kolben verstanden. Der Bereich des Kolbens, der dem Verbrennungsraum zugewandt ist und somit in Kontakt mit dem Fluid steht, ist in vorliegender Erfindung als Kolbenboden bezeichnet.
  • In Hubkolbenmotoren, welche über Kolben mit im Wesentlichen zylindrischer Geometrie verfügen, ist dieser Kolbenboden eine Deckseite mit runder Form, welche an eine zylindrisch umlaufende Seitenwand, dem Kolbenhemd, angeordnet ist. Der Kolbenboden wiederum kann vielfältige Formen aufweisen. So sind in vorliegender Erfindung sowohl planare als auch konkav oder konvex gewölbte Formgestaltungen des Kolbenbodens möglich. Ebenfalls kann der Kolbenboden über Mulden und über Erhöhungen beispielsweise in Form von Nasen verfügen, die in dem Kolbenboden eingelassen sind und/oder aus diesem herausragen. Die in der vorliegenden Erfindung beschriebenen Kolben, insbesondere Kolbenböden sind zumindest teilweise aus einer Leichtmetalllegierung oder einem Stahl gefertigt, wobei Leichtmetalllegierungen als Kolbenmaterial bevorzugt sind. Unter Leichtmetalllegierung sind grundsätzlich alle denkbaren Leichtmetalllegierungen zu verstehen. In vorliegender Erfindung bevorzugt sind jedoch Aluminiumlegierungen, insbesondere Aluminium-Silizium-Legierungen mit variierenden Aluminiumgehalten bis zu übereutektischen Konzentrationen.
  • Auf der Oberfläche, insbesondere auf der Leichtmetalllegierung, des Kolbenbodens eines vorliegend beschriebenen Kolbens ist ein Schichtstapel angeordnet. Darunter ist eine Anordnung von nacheinander aufgebrachten Schichten verschiedener oder gleicher Dicke aus unterschiedlichen oder gleichen Materialien zu verstehen, wobei eine erste Schicht direkt oder indirekt auf die Kolbenoberfläche angeordnet ist. Bei den nacheinander aufgetragenen Schichten handelt es sich grundsätzlich um funktionale Schichten, also solche, die zumindest eine physikalische Eigenschaft der Oberfläche des Kolbenbodens verändern, insbesondere verbessern.
  • Der Kern der vorliegenden Erfindung liegt somit in der Kombination von wärmedämmenden beziehungsweise wärmeleitenden Eigenschaften der Schichten. Diese können über den Wärmewiderstand Rth oder dessen Kehrwert, den Wärmeleitwert λ definiert werden. Rth ergibt sich dabei aus dem Quotienten aus Temperaturdifferenz ΔT und Wärmestrom QV. Unter wärmeleitenden Materialien sind in vorliegender Erfindung insbesondere solche zu verstehen, welche einen Wärmeleitwert λ > 50 W/mK, insbesondere λ > 100 W/mK aufweisen. Wärmedämmende Materialien zeichnen sich in vorliegender Erfindung hingegen durch einen Wärmeleitwert λ < 15 W/mK, insbesondere λ < 3 W/mK aus.
  • Erfindungsgemäß ist ein Durchmesser dS des Schichtstapels kleiner als ein Durchmesser dK des Kolbenbodens. Bevorzugt weist der Schichtstapel einen Durchmesser dS auf, der mehr als 90 %, vorzugsweise mehr als 95 %, insbesondere mehr als 98% des Durchmessers dK entspricht. Dies hat einerseits den Vorteil, dass der Schichtstapel und insbesondere die Wärmeleitschicht nicht mit dem Rand des Kolbenbodens, insbesondere nicht mit dem Feuersteg in Verbindung steht und über eine solche Verbindung keine Wärmeleitung über das wärmeleitende Material der zweiten Schicht in den Kolben und darüber hinaus beispielsweise in das Zylindermaterial stattfinden kann. Ein weiterer tribologischer Vorteil besteht insbesondere darin, dass der insbesondere harte Schichtstapel nicht mit einer Lauffläche des Kolbens beziehungsweise Liners in Verbindung tritt.
  • Erfindungsgemäß umfasst das wärmedämmende Material der ersten Schicht eine intermetallische Verbindung. Vorteilhafterweise konnte gezeigt werden, dass Kolben, welche mit einem erfindungsgemäßen Schichtstapel beschichtet sind, welche als wärmedämmende Materialien intermetallische Verbindungen aufweisen, eine besonders hohe thermische Stabilität bei Temperaturen > 500 °C aufweisen.
  • Intermetallische Verbindungen, beziehungsweise intermetallische Phasen, sind homogene chemische Verbindungen aus zwei oder mehr Metallen. Sie zeigen im Unterschied zu Legierungen Gitterstrukturen, die sich von denen der konstituierenden Metalle unterscheiden. In ihrem Gitter herrscht eine Mischbindung aus einem metallischen Bindungsanteil und geringeren Atombindungs- beziehungsweise Ionenbindungsanteilen, die in Überstrukturen resultieren können. Erfindungsgemäß basieren die intermetallischen Verbindungen auf Eisenaluminium, nämlich auf FeAl(Cr, Nb, Zr, C, B) und/oder Fe3Al(Cr, Nb, Zr, C, B). Das heißt je nach Verhältnis von Eisen und Aluminium zueinander setzt sich die intermetallische Verbindung zu 50 % bis 95 Gew.-% aus Eisen, insbesondere zu 70 % bis 95 Gew.-% aus Eisen und zu 5 % bis 50 % Gew.-% aus Aluminium, insbesondere zu 5 % bis 30 Gew.-% aus Aluminium zusammen. Mit einem Masseanteil von in Summe 0 bis 10 Gew.-% bezogen auf die Gesamtmasse können die intermetallischen Verbindungen Gehalte von weiteren Legierungselementen und Verunreinigungen, insbesondere von Chrom, Niob, Zirkonium, Kohlenstoff und Bor enthalten.
  • Den als wärmedämmendes Material eingesetzten intermetallischen Verbindungen ist gemein, dass sie neben einer besonders hohen Temperaturfestigkeit von über 500 °C einen mit dem Kolbenmaterial kompatiblen Ausdehnungskoeffizienten aufweisen. Das bedeutet, dass die Volumenausdehnung, welche ein Material in Folge von Temperaturerhöhung erfährt, bei einem Schichtstapel in bevorzugter Ausgestaltung zwischen wärmedämmendem Material und Kolbenboden derart im Verhältnis stehen, dass die am wärmedämmenden Material herrschende Temperatur dieses Material gerade soweit ausdehnt, dass es nicht zu einer Delamination in Folge der Temperaturerhöhung des Schichtstapels von dem Kolbenboden kommt. Somit kann durch eine geeignete Wahl des wärmedämmenden Materials die Lebensdauer des Schichtstapels auf den Kolben deutlich erhöht werden.
  • In weiter bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass das wärmeleitende Material der zweiten Schicht ein Metall und/oder eine wärmeleitende Keramik umfasst, da diese insbesondere über Wärmeleitwerte λ > 50 W/mK verfügen. Insbesondere ist bevorzugt, dass das wärmeleitende Material Beryllium, Aluminium, Kupfer, Silber, Silizium, Molybdän, Wolfram, Kohlenstoff, Berylliumoxid, Berylliumnitrit, Siliziumnitrit und/oder Siliziumcarbit sowie Mischungen und/oder Legierungen daraus umfasst. Diese Materialien weisen als Bulkmaterial einen Wärmeleitwert λ > 100 W/mK auf. Beispielsweise weist das Metall Aluminium bei einer Reinheit von 99,5 % einen Wärmeleitwert λ = 236 W/mK auf, Kupfer einen Wärmeleitwert λ = 401 W/mK und Silber einen Wärmeleitwert λ = 429 W/mK, während bei Siliziumcarbit bis zu 350 W/mK Wärmeleitung erzielt werden können. Somit eignen sich die genannten Materialien besonders gut, um eine insbesondere schnelle und gleichmäßige Temperaturverteilung auf der Oberfläche des Kolbenbodens zu erreichen und somit, insbesondere lokal begrenzte, Temperaturspitzen zu verhindern. Treten dennoch Temperaturspitzen, also lokale Temperaturmaxima auf der Oberfläche des Kolbenbodens auf, so kann die dort herrschende sehr hohe Temperatur sehr schnell über die gesamte Oberfläche des Kolbenbodens verteilt und somit reduziert werden. Temperaturspitzen treten in diesem Zusammenhang insbesondere dann auf, wenn sich die Temperatur in Bereichen einer Oberfläche schlagartig um mehr als 50°C, insbesondere um mehr als 100°C bezüglich der mittleren Oberflächentemperatur erhöht und somit ein hoher Temperaturgradient entsteht.
  • In einer weiteren Ausführung der Erfindung ist bevorzugt, dass zwischen der Oberfläche des Kolbenbodens und der ersten Schicht und/oder zwischen der ersten Schicht und der zweiten Schicht eine Haftvermittlerschicht angeordnet ist. Als Haftvermittler sind Substanzen zu verstehen, welche dazu eingesetzt sind, die Haftfestigkeit von Verbünden direkt und/oder indirekt zu erhöhen. In diesem Fall kann die Haftfestigkeit zwischen der funktionellen Schicht und der Oberfläche des Kolbenbodens beziehungsweise zwischen funktionellen Schichten untereinander erhöht werden. Die Haftfestigkeit von Beschichtungen ist definiert als das Maß für den Widerstand einer Beschichtung gegen ihre mechanische Trennung vom Untergrund. Im direkten Fall bedeutet dies, dass eine verbesserte Haftfestigkeit der funktionellen Schicht auf der Oberfläche des Kolbenbodens beziehungsweise eine verbesserte Haftfestigkeit der zweiten Schicht auf der ersten Schicht untereinander dazu führt, dass diese durch äußere Einwirkungen schlechter voneinander getrennt werden können. Als äußerer Einfluss kann in diesem Zusammenhang beispielsweise das Auftreten von starken Temperaturschwankungen verstanden werden. Dehnt sich beispielsweise die angeordnete erste Schicht stärker aus als der Verbundpartner, also als beispielsweise die Leichtmetalllegierung oder die zweite Schicht, so entstehen Scherkräfte an der Verbindungsstelle. Zusätzlich kann die Haftvermittlerschicht als Korrosionsschutzschicht wirken und somit indirekt die Haftfestigkeit des Verbundes erhöhen. Die Anordnung eines Haftvermittlers kann in vorteilhafter Weise zu einer Erhöhung der Benetzbarkeit der Substratoberfläche führen. Zusätzlich kann ein Haftvermittler das Zustandekommen von chemischen Bindungen zwischen der Substratoberfläche und der Schicht erhöhen. Dies ist insbesondere dann der Fall, wenn die beiden Schichten im Bezug auf ihre Oberfläche sehr unterschiedliche physikalische Eigenschaften, wie beispielsweise Polarität oder Gitteraufbau haben. Somit kann die Anordnung eines Haftvermittlers zwischen Kolbenboden und erster Schicht beziehungsweise zwischen erster und zweiter Schicht die Haltbarkeit und somit die Lebensdauer des Schichtstapels auf der Oberfläche des Kolbenbodens erhöhen.
  • Bevorzugt umfasst die Haftvermittlerschicht eine Fe3Al-, FeAl-, FeAl/Fe3Al-, NiCr-, NiCrAl-, NiCrAIY-, FeCrAIY-, CuCrAlY-Legierung und/oder eine intermetallische Verbindung aus FeAl(Cr, Nb, Zr, C, B) und/oder Fe3Al(Cr, Nb, Zr, C, B).
  • Die einzelnen Schichten können bezogen auf die Schichtzusammensetzung einen Gradienten aufweisen. Setzen sich beispielsweise einzelne Schichten aus Mischungen und/oder mehreren Bestandteilen zusammen, so kann das Verhältnis dieser zueinander innerhalb der betreffenden Schicht variieren.
  • In weiterer Ausgestaltung ist bevorzugt, dass der Kolbenboden eine Vertiefung aufweist und der Schichtstapel innerhalb der Vertiefung angeordnet ist. Unter Vertiefung ist in vorliegender Erfindung ein Bereich des Kolbenbodens zu verstehen, der tiefer liegt, als eine umgebende Oberfläche des Kolbenbodens. Eine Vertiefung ist also eine Einbuchtung oder auch eine Senke innerhalb des Kolbenbodens, welche ausgebildet ist, einen Schichtstapel zumindest teilweise aufzunehmen. Dabei entspricht der Durchmesser beziehungsweise die Breite der Vertiefung mindestens der Breite beziehungsweise dem Durchmesser des Schichtstapels, so dass der Schichtstapel bevorzugt im Bereich der Vertiefung angeordnet ist und nicht über diesen Bereich hinaus mit der Oberfläche des Kolbenbodens in Kontakt steht. Vorzugsweise ist der Schichtstapel vollständig in der Vertiefung im Kolbenboden angeordnet, und ragt nicht über das Oberflächenniveau des Kolbenbodens heraus, sondern schließt bündig mit dem umlaufenden Rand des Kolbenbodens ab. Damit ist sichergestellt, dass der Schichtstapel das Strömungsbild auf der Oberfläche des Kolbenbodens nicht beeinflusst. In alternativer Ausgestaltung ist vorgesehen, dass zumindest die zweite Schicht, also die Schicht, welche das wärmeleitende Material umfasst, aus der Vertiefung herausragt und/oder einen Durchmesser aufweist, welcher geringer ist als der Durchmesser der Vertiefung. Der Vorteil dieser Ausgestaltung besteht darin, dass die zweite Schicht und insbesondere das wärmeleitende Material nicht mit der Oberfläche der Kolbenoberfläche in Kontakt steht. Ein solcher Kontakt würde die wärmedämmende Wirkung der unteren, also der ersten Schicht, abschwächen. Die Wärme würde über die wärmeleitende Schicht an den Kolbenboden abgegeben und über den Kolben aus dem Verbrennungsraum geleitet werden können.
  • Ein weiterer Aspekt der Erfindung betrifft eine Kolbenmaschine aufweisend einen Kolben gemäß vorliegender Erfindung. Die erfindungsgemäße Kolbenmaschine zeichnet sich durch einen hohen Wirkungsgrad, eine effiziente Abgasbehandlung sowie eine sehr hohe Lebensdauer der Einzelkomponenten aus.
  • Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
  • Die verschiedenen in dieser Anmeldung genannten Ausführungsformen der Erfindung sind, sofern im Einzelfall nicht anders ausgeführt, mit Vorteil miteinander kombinierbar.
  • Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen erläutert. Es zeigen:
  • Figur 1
    eine schematische Schnittdarstellung eines Kolbens in einer ersten Ausgestaltung der Erfindung,
    Figur 2
    eine schematische Schnittdarstellung eines Kolbens in einer zweiten Ausgestaltung der Erfindung und
    Figur 3
    schematisch einen Detailausschnitt eines erfindungsgemäßen Schichtstapels auf einem Kolbenboden gemäß Figur 2 oder 3.
  • Nachfolgend soll die Erfindung anhand der in den Figuren 1, 2 und 3 gezeigten schematischen Darstellungen näher erläutert werden.
  • Eine bevorzugte Ausgestaltung des erfindungsgemäßen Kolbens 10 ist anhand einer Schnittdarstellung in Figur 1 gezeigt. Figur 1 zeigt einen zylindrischen Kolben 10 eines nicht weiter dargestellten Hubkolbenmotors. In dieser Ausgestaltung weist der Kolben 10 ein zylindrisch geformtes Kolbenhemd 14 auf, an welchem ein im Wesentlichen planarer kreisförmiger Kolbenboden 11 angeordnet ist. Der Kolben 10 verfügt ferner über umlaufende Nuten, welche ausgebildet sind, Dichtungselemente insbesondere Kolbenringe aufzunehmen. Der Kolben 10 ist bevorzugt aus einer Leichtmetalllegierung 15 gefertigt. Besonders bevorzugt sind dabei Aluminiumlegierungen, insbesondere Aluminium-Silizium-Legierungen. Ebenfalls als Kolbenmaterial einsetzbar sind Eisenverbindungen, also Stähle. In dargestellter Ausführungsform verfügt der Kolbenboden 11 über eine Vertiefung 12, in der ein Schichtstapel 20 angeordnet ist. Dabei entspricht der Durchmesser dS des Schichtstapels 20 im Wesentlichen dem Durchmesser der Vertiefung 12. Der Durchmesser dS des Schichtstapels 20 ist im Vergleich zu dem Durchmesser dK des Kolbenbodens 11 kleiner ausgeführt. Die Tiefe der Vertiefung 12 entspricht in gezeigter Ausführungsform der Höhe des Schichtstapels 20, so dass dieser nicht aus der Vertiefung 12 herausragt und die Oberfläche des Kolbenbodens 11 nicht überragt. Vorzugsweise schließt der Schichtstapel 20 bündig mit dem die Vertiefung 12 umlaufendem Rand ab. Ein detaillierter Aufbau des Schichtstapels 20 ist in einer unten beschriebenen Detailzeichnung in Figur 3 näher erläutert.
  • Die in Figur 1 gezeigte Ausführungsform eines Kolbens 10 zeichnet sich in seiner Funktionsweise dadurch aus, dass ein Schichtstapel 20 die Oberfläche eines Kolbenbodens 11 in einem großen Bereich funktionalisiert.
  • Eine weitere bevorzugte Ausgestaltungsform eines erfindungsgemäßen Kolbens ist in Figur 2 dargestellt. Der ebenfalls in einer Schnittzeichnung dargestellte Kolben 10 ist grundsätzlich ebenso aufgebaut wie der in Figur 1 dargestellte Kolben 10. Er unterscheidet sich dahin gehend von der ersten Ausführungsform, dass der Kolbenboden 11 des zylindrischen Kolbens 10 nicht planar ausgeführt ist, sondern eine Mulde 13 aufweist. Auf dem Kolbenboden 11 der in Figur 2 gezeigten zweiten Ausgestaltung des Kolbens 10 ist ein funktionaler Schichtstapel 20 angeordnet. Dabei verfügt der Kolbenboden 11 über keine Vertiefung zur Aufnahme des Schichtstapels 20. Der Schichtstapel 20 weist ebenso wie in Figur 1 dargestellt einen kleineren Durchmesser auf als der Kolbenboden 11. Es bildet sich also ein Abstand zwischen Schichtstapel 20 und äußerem Rand des Kolbenbodens 11. Unter Einhaltung eines definierten Randes ist der verbleibende Bereich des Kolbenbodens 11 vollständig vom Schichtstapel 20 bedeckt, so auch der Teil des Kolbenbodens 11, der die Mulde 13 darstellt. Der umlaufende Rand des Kolbenbodens 11 entspricht bevorzugt weniger als 10 %, insbesondere weniger als 5 %, vorzugsweise weniger als 2 % der Oberfläche des Kolbenbodens 11.
  • Der in den Figuren 1 und 2 dargestellte funktionale Schichtstapel 20 hat sowohl wärmedämmende als auch wärmeleitende Funktionen. Dies wird durch den in Figur 3 skizzierten Aufbau des Schichtstapels erreicht. Figur 3 zeigt einen erfindungsgemäßen Schichtstapel 20, welcher auf einer Leichtmetalllegierung 15 angeordnet ist. Bei der Leichtmetalllegierung 15 handelt es sich bevorzugt um Aluminiumlegierungen, insbesondere um Aluminium-Silizium-Legierungen. Auf dieser Leichtmetalllegierung 15 kann optional ein Haftvermittler 23 angeordnet sein.
  • Die Schicht aus Haftvermittler 23 umfasst bevorzugt Materialien, welche die Haftfestigkeit zwischen Leichtmetalllegierung 15 und erster Schicht 21 erhöhen. Dazu sind Materialien geeignet, welche zum einen die Benetzbarkeit der Leichtmetalllegierung 15 erhöhen und zum anderen und insbesondere die strukturellen Unterschiede zwischen Leichtmetalllegierung 15 und erster Schicht 21 ausgleichen. Hierzu sind besonders Legierungen auf Eisen- und Aluminiumbasis, insbesondere Fe3Al-, FeAl-, FeAl/Fe3Al-, NiCr-, NiCrAl-, NiCrAIY-, FeCrAIY-, CuCrAlY-Legierung bevorzugt. Darüber hinaus sind intermetallische Verbindungen auf Basis von Eisenaluminium als Haftvermittler geeignet. Dabei ist einer Legierung aus Eisen und Aluminium insbesondere Chrom und/oder Niob und/oder Zirkonium, Kohlenstoff und/oder Bor zugesetzt. Ein geeignetes Material, welches beispielsweise in der Luftfahrtindustrie verwendet wird, ist eine Nickel-Chrom-Aluminium-Zusammensetzung. Alternativ können auch Haftvermittler auf Basis von austenitischen Eisen-, Nickel-, Kobaltlegierungen, sowie zusätzlich mit Cr, Al und Y (sog. MCrAlY-Schichten) oder mit Hf, Ta oder Si legierte Verbindungen eingesetzt werden. Im Handel sind geeignete Haftvermittler unter den Markennamen Amdry® 365, Amdry® 386, Amdry® 995, Amdry® 962, Amperit® 415, Metco 443 oder Sulzer Metco® 445 erhältlich.
  • Der Haftvermittler 23 wird im Vergleich zu den folgenden Schichten deutlich dünner aufgebracht und weist bevorzugt Dicken im Bereich von 0,1 mm bis 0,2 mm, insbesondere zwischen 0,1 mm und 0,15 mm auf.
  • An diesen Haftvermittler 23 oder alternativ unmittelbar an den Kolbenboden schließt eine erste Schicht 21 an. Diese erste Schicht 21 besteht aus einem Material, welches wärmedämmende Eigenschaften hat. Besonders bevorzugt sind hierbei Materialien, welche einen Wärmeleitwert λ < 15 W/mK, insbesondere λ < 3 W/mK aufweisen. Als wärmedämmende Materialien werden intermetallische Verbindungen eingesetzt, welche auf Eisen-Aluminium-Legierungen basieren, nämlich FeAl und Fe3Al, welche bevorzugt bis maximal 10 % der Gesamtmasse der Beschichtung zugesetzte Bestandteile umfassen können. Bei den zugesetzten Materialien handelt es sich vorzugsweise um Chrom, Niob, Zirkonium, Kohlenstoff oder Bor. Die Dicke der ersten Schicht 21 ist in Abhängigkeit vom Material an die Umgebungsbedingung, insbesondere die Umgebungstemperaturen des Kolbens 10, im Betrieb angepasst. Bevorzugt weist die erste Schicht 21 eine Dicke im Bereich von 0,02 mm bis 5 mm, insbesondere im Bereich von 0,1 mm bis 1,5 mm auf.
  • An die erste Schicht 21 ist optional eine weitere Schicht eines Haftvermittlers 24 angeordnet. Dieser Haftvermittler hat grundsätzlich die gleichen Eigenschaften, wie der optional zwischen der Kolbenbodenoberfläche und der ersten Schicht angeordnete Haftvermittler 23. Grundsätzlich können die Haftvermittlerschichten 23 und 24 in einer Ausgestaltungsform gleich ausgeführt sein, sie können jedoch auch innerhalb der beschriebenen bevorzugten Grenzen, insbesondere in Zusammensetzung und Dicke der Schichten untereinander variieren.
  • An die erste Schicht 21 beziehungsweise an den an diese erste Schicht 21 angeordneten Haftvermittler 24 ist eine weitere funktionale Schicht, die zweite Schicht 22 angeordnet. Die zweite Schicht 22 umfasst zu mindestens 70 %, insbesondere zu mindestens 95 %, bevorzugt zu mindestens 98 % ein wärmeleitendes Material. Dieses wärmeleitende Material zeichnet sich durch einen Wärmeleitwert λ aus, welcher bevorzugt > 50 W/mK, insbesondere > 100 W/mK ist. Hierzu geeignete Materialien sind insbesondere Metalle wie Beryllium, Aluminium, Kupfer, Molybdän und Wolfram, aber auch Silizium und Kohlenstoff sowie Verbindungen, insbesondere Keramiken wie Berylliumoxid, Berylliumnitrit, Siliziumnitrit sowie Siliziumkarbid. Bevorzugt können auch Mischungen und/oder Legierungen aus diesen Elementen beziehungsweise Verbindungen als wärmeleitendes Material der zweiten Schicht 22 eingesetzt werden. In Abhängigkeit vom eingesetzten wärmeleitenden Material und insbesondere von dem damit erzielten Wärmeleitwert λ ist die zweite Schicht 22 bevorzugt dünner ausgeführt als die erste Schicht 21. Bevorzugte Dicken der zweiten Schicht 22 liegen im Bereich zwischen 0,1 mm und 1 mm, insbesondere bevorzugt zwischen 0,05 mm und 0,8 mm.
  • Die einzelnen Schichten 21, 22, 23 und 24 des Schichtstapels 20 sind bevorzugt mittels Flammspritzen oder Plasmaspritzen unter Vakuum, Hochgeschwindigkeitsflammenspritzen oder atmosphärischem Plasmaspritzen oder mittels chemischen und/oder elektrochemischen Verfahren wie Lackieren, Galvanisieren oder ähnlichem aufgebracht. Hierbei ist es zweckmäßig, die Bereiche der einzelnen Schichten 21,22, 23 und 24 scharf zu definieren. Dies kann zum einen durch eine vor dem Spritzen auf den Kolbenboden 11 aufgebrachte Form, zum andern durch eine im Kolbenboden 11 vorhandene Vertiefung 12 und/oder durch Nachbehandlung des aufgetragenen Schichtstapels 20, insbesondere einem Abtragen des äußersten Randes des Schichtstapels 20, realisiert werden.
  • Der Schichtstapel 20 hat durch die wärmedämmenden Eigenschaften der ersten Schicht 21 eine wärmedämmende, insbesondere isolierende Funktion. Aufgrund des sehr niedrigen Wärmeleitwertes λ der durch die erste Schicht 21 aufgetragenen wärmedämmenden Materialien, wird nur ein sehr geringer Teil der Wärme im Verbrennungsraum an die Oberfläche des Kolbenbodens und von dort aus dem Zylinderraum abgeführt. Vielmehr verbleibt die Wärme innerhalb des Verbrennungsraums und steht somit der Verbrennung weiter zur Verfügung. Dadurch wird im Verbrennungsraum ein höherer Wirkungsgrad realisiert, als bei niedrigeren Temperaturen. Gleichzeitig weisen auch die aus dem Verbrennungsraum abgeführten Abgase eine höhere Temperatur auf, was letztendlich einer Abgasaufbereitung zugutekommt. Eine reine Wärmedämmschicht auf der Oberfläche des Kolbenbodens 11 würde jedoch gleichzeitig dazu führen, dass auf der Oberfläche die Temperaturen nicht gleichmäßig verteilt werden können. Vielmehr würden sich Bereiche mit erhöhten Temperaturspitzen bilden. Durch die Anordnung einer zweiten Schicht 22, welche aus Material besteht, das einen sehr hohen Wärmeleitwert λ hat, wird die Temperatur aus Bereichen von Temperaturspitzen gleichmäßig über den gesamten Bereich des Schichtstapel 20 verteilt. Die optional einsetzbaren Schichten aus Haftvermittler 23 und 24 erhöhen die Haftfestigkeit und Korrosionsbeständigkeit des Schichtstapels 20 auf der Leichtmetalllegierung 15 beziehungsweise zwischen der ersten Schicht 21 und der zweiten Schicht 22 und somit die Lebensdauer des Schichtstapel 20.
  • Bezugszeichenliste
  • 10
    Kolben
    11
    Kolbenboden
    12
    Vertiefung
    13
    Mulde
    14
    Kolbenhemd
    15
    Leichtmetalllegierung
    20
    Schichtstapel
    21
    erste Schicht
    22
    zweite Schicht
    23
    Haftvermittler
    24
    Haftvermittler

Claims (6)

  1. Kolben (10) für eine Kolbenmaschine, wobei der Kolben (10) bereichsweise aus einem Stahl oder einer Leichtmetalllegierung (15) besteht und einen auf einem Kolbenboden (11) des Kolbens (10) angeordneten Schichtstapel (20) umfasst, wobei der Schichtstapel (20) zumindest umfasst:
    - eine an eine Oberfläche des Kolbenbodens (11) mittelbar oder unmittelbar anschließende, ein wärmedämmendes Material umfassende erste Schicht (21),
    - eine an die erste Schicht (21) mittelbar oder unmittelbar anschließende zweite Schicht (22), welche ein wärmeleitendes Material beinhaltet,
    wobei ein Durchmesser (dS) des Schichtstapels (20) kleiner ist als ein Durchmesser (dK) des Kolbenbodens (11),
    dadurch gekennzeichnet, dass das wärmedämmende Material der ersten Schicht (21) eine intermetallische Verbindung aus FeAl(Cr, Nb, Zr, C, B) und/oder Fe3Al(Cr, Nb, Zr, C, B) umfasst.
  2. Kolben (10) nach Anspruch 1, dadurch gekennzeichnet, dass das wärmeleitende Material der zweiten Schicht (22) Be, Al, Cu, Ag, Si, Mo, Wo, C, BeO, BN, SiN und/oder SiC, sowie Mischungen und/oder Legierungen daraus umfasst.
  3. Kolben (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der Leichtmetalllegierung (15) und der ersten Schicht (21) und/oder zwischen der ersten Schicht (21) und der zweiten Schicht (22) eine Haftvermittlerschicht (23, 24) angeordnet ist.
  4. Kolben (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Haftvermittlerschicht (23, 24) eine Fe3Al-, FeAl-, FeAl/Fe3Al-, NiCr-, NiCrAl-, NiCrAIY-, FeCrAlY-, CoCrAlY-Legierung und/oder eine intermetallische Verbindung aus FeAl(Cr, Nb, Zr, C, B) und/oder Fe3Al(Cr, Nb, Zr, C, B) umfasst.
  5. Kolben (10) nach einem der vorhergehenden Ansprüche, wobei der Kolbenboden (11) eine Vertiefung (12) aufweist und der Schichtstapel (20) innerhalb der Vertiefung (12) angeordnet ist.
  6. Kolbenmaschine aufweisend einen Kolben (10) nach einem der Ansprüche 1 bis 5.
EP15700590.1A 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine Active EP3097300B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19193660.8A EP3608532A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014201337.2A DE102014201337A1 (de) 2014-01-24 2014-01-24 Kolben für eine Kolbenmaschine
PCT/EP2015/050854 WO2015110379A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19193660.8A Division EP3608532A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine
EP19193660.8A Division-Into EP3608532A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine

Publications (2)

Publication Number Publication Date
EP3097300A1 EP3097300A1 (de) 2016-11-30
EP3097300B1 true EP3097300B1 (de) 2021-05-05

Family

ID=52358783

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19193660.8A Pending EP3608532A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine
EP15700590.1A Active EP3097300B1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19193660.8A Pending EP3608532A1 (de) 2014-01-24 2015-01-19 Kolben für eine kolbenmaschine

Country Status (3)

Country Link
EP (2) EP3608532A1 (de)
DE (1) DE102014201337A1 (de)
WO (1) WO2015110379A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214825B2 (en) * 2016-12-29 2019-02-26 GM Global Technology Operations LLC Method of depositing one or more layers of microspheres to form a thermal barrier coating
DE102017207236A1 (de) * 2017-04-28 2018-10-31 Mahle International Gmbh Kolben für eine Brennkraftmaschine
DE102017208535A1 (de) * 2017-05-19 2018-11-22 Federal-Mogul Nürnberg GmbH Thermische Isolierung des Mittenkegels eines Stahlkolbens
DE102017221733A1 (de) 2017-12-01 2019-06-06 Volkswagen Aktiengesellschaft Schichtstapel zur Anordnung in einem Brennraum einer Verbrennungsmaschine, insbesondere eines Kolbens, sowie ein Verfahren zu dessen Herstellung
US10851711B2 (en) 2017-12-22 2020-12-01 GM Global Technology Operations LLC Thermal barrier coating with temperature-following layer
CN113339155B (zh) * 2021-06-29 2022-06-28 潍柴动力股份有限公司 活塞的制备方法、活塞以及工装组件

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852451A (ja) * 1981-09-24 1983-03-28 Toyota Motor Corp 耐熱・断熱性軽合金部材およびその製造方法
DE3404121A1 (de) * 1984-02-07 1985-08-08 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Waermedaemmender kolben fuer verbrennungskraftmaschinen
JPH0620638B2 (ja) * 1985-10-14 1994-03-23 トヨタ自動車株式会社 断熱ピストンの製造方法
JPS62240457A (ja) * 1986-04-10 1987-10-21 Toyota Motor Corp デイ−ゼルエンジンピストン
JP2643121B2 (ja) * 1986-04-11 1997-08-20 トヨタ自動車株式会社 デイーゼルエンジンピストン
DE3622301A1 (de) * 1986-07-03 1988-01-07 Bergmann Heinz Verbrennungsmotor
JP2526947B2 (ja) * 1987-12-14 1996-08-21 いすゞ自動車株式会社 断熱エンジンの構造
US5305726A (en) * 1992-09-30 1994-04-26 United Technologies Corporation Ceramic composite coating material
DE19542944C2 (de) * 1995-11-17 1998-01-22 Daimler Benz Ag Brennkraftmaschine und Verfahren zum Aufbringen einer Wärmedämmschicht
DE19603515C1 (de) 1996-02-01 1996-12-12 Castolin Sa Spritzwerkstoff auf Eisenbasis zum Herstellen einer korrosionsbeständigen Beschichtung, Herstellungsverfahren für die Beschichtung sowie Verwendung der Schicht
DE102006007148A1 (de) 2006-02-16 2007-08-30 Volkswagen Ag Kolben für Verbrennungsmotoren und Verfahren zur Herstellung eines Kolbens für Verbrennungsmotoren
WO2011104836A1 (ja) * 2010-02-25 2011-09-01 トヨタ自動車株式会社 中空鋳物の製造方法及び内燃機関のピストンの製造方法
JP2012072746A (ja) * 2010-09-30 2012-04-12 Mazda Motor Corp 断熱構造体
JP5356349B2 (ja) 2010-09-30 2013-12-04 日立建機株式会社 建設機械の排気装置
JP5609497B2 (ja) * 2010-09-30 2014-10-22 マツダ株式会社 断熱構造体
JP2012246802A (ja) * 2011-05-26 2012-12-13 Art Metal Mfg Co Ltd 内燃機関用ピストン及びこれを備えた内燃機関
KR101372565B1 (ko) * 2012-07-02 2014-03-13 자동차부품연구원 내연기관 및 그 제조방법
WO2014188494A1 (ja) * 2013-05-20 2014-11-27 トヨタ自動車株式会社 内燃機関のピストンおよびその製造方法

Also Published As

Publication number Publication date
WO2015110379A1 (de) 2015-07-30
DE102014201337A1 (de) 2015-07-30
EP3097300A1 (de) 2016-11-30
EP3608532A1 (de) 2020-02-12

Similar Documents

Publication Publication Date Title
EP3097300B1 (de) Kolben für eine kolbenmaschine
DE602004002606T2 (de) Zusammengesetztes, leichtes Hubventil für Brennkraftmaschine
EP0896073B1 (de) Beschichtung einer Zylinderlauffläche einer Hubkolbenmaschine
EP3030528B1 (de) Emaillepulver, metallbauteil mit einem mit einer emaillebeschichtung versehenen flächenabschnitt und verfahren zum herstellen eines solchen metallbauteils
EP2183404B1 (de) Kolbenring
EP2880193A1 (de) Zylinderlaufbuchse und verfahren zu deren herstellung
EP0759519B1 (de) Kolbenring für Verbrennungsmotoren
DE19825860A1 (de) Kolbenring und seine Verwendung
EP3169827B1 (de) Stahlkolbenring, und verfahrenzur herstellung desselben
EP1444421B1 (de) Verfahren zur herstellung eines ventilsitzes
DE102018202540B4 (de) Motorblock eines Verbrennungsmotors mit optimierten Wärmeleiteigenschaften
DE102012200378A1 (de) Kolbenring
DE102018132997A1 (de) Spaltfüllung dichtungsschicht von wärmedämmschicht
DE102017125660B4 (de) Motorblock und verfahren zur beschichtung einer innenfläche einer motorzylinderbohrung eines motorzylinders
EP3097298B1 (de) Gussteil und einsatz für ein solches gussteil
DE112014005504T5 (de) Kolbenring
DE2507899C3 (de) Leichtmetallkolben fur Dieselbrennkraftmaschinen
EP2743468B1 (de) Gaswechselventil, sowie verfahren zur herstellung eines gaswechselventils
EP3201459B1 (de) Kolben, kolbenmaschine mit einem solchen sowie kraftfahrzeug mit einer solchen kolbenmaschine
DE102006057839A1 (de) Zylinder für einen Verbrennungsmotor und Verfahren zu seiner Herstellung
WO2017004645A1 (de) Kolben für eine brennkraftmaschine
EP3054136B1 (de) Verbrennungskraftmaschine für ein kraftfahrzeug
DE10014515C2 (de) Kolbenring mit Verschleißschutzschicht sowie Verschleißschutzschicht für einen Kolbenring
DE3134771C2 (de) Zylinderbuchse für Brennkraftkolbenmaschinen
DE19851424A1 (de) Kolbenring und seine Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160824

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190404

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KAUDEWITZ, TOBIAS

Inventor name: MORK, AIKO

Inventor name: RABLBAUER, RALF

Inventor name: SCHUETTENHELM, MARTIN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1390095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015014661

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210806

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210805

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015014661

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015014661

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210905

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1390095

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230124

Year of fee payment: 9

Ref country code: DE

Payment date: 20230131

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210505