EP3087160B1 - Verbessertes verfahren zur entfernung von aromen aus erdölfraktionen - Google Patents

Verbessertes verfahren zur entfernung von aromen aus erdölfraktionen Download PDF

Info

Publication number
EP3087160B1
EP3087160B1 EP14814825.7A EP14814825A EP3087160B1 EP 3087160 B1 EP3087160 B1 EP 3087160B1 EP 14814825 A EP14814825 A EP 14814825A EP 3087160 B1 EP3087160 B1 EP 3087160B1
Authority
EP
European Patent Office
Prior art keywords
reactor
reactors
catalyst
effluent
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14814825.7A
Other languages
English (en)
French (fr)
Other versions
EP3087160A1 (de
Inventor
Xavier CHOUAN
Patrick VEDRINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP3087160A1 publication Critical patent/EP3087160A1/de
Application granted granted Critical
Publication of EP3087160B1 publication Critical patent/EP3087160B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4031Start up or shut down operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80.degree. and 180 ° C and at a pressure of between 50 and 160 bar.
  • the invention relates to a method of deep dearomatisation of petroleum cutting in which the catalytic hydrogenation step comprises several intervertible reactors connected in series.
  • Hydrocarbon fluids are widely used as solvents, for example in adhesives, cleaning liquids, explosives, solvents for decorative coatings, paints and printing inks, light oils for applications such as metal extraction, metal working or demolding, industrial lubricants and drilling fluids.
  • the hydrocarbon fluids can also be used as diluting oils in adhesives and sealing systems such as silicone sealants, as viscosity-lowering agents in plasticized polyvinylchloride formulations, as solvents in polymeric flocculant formulations, for example in water treatment, mining operations or papermaking and also as thickeners in printing pastes.
  • Hydrocarbon fluids can moreover be used as solvents in a wide range of other applications, for example in chemical reactions.
  • the petroleum fractions as feeds are treated on hydrodearomatization units by a catalytic hydrogenation process consisting of several high pressure operated serial reactors. These reactors have one or more catalytic beds.
  • the units are composed of main processing sections which are generally: charge storage, multi-reactor hydrogenation section, distillate separation section and distillation column. (See Figure 10 )
  • the configuration generally set up for the hydrogenation section is a series of several reactors in series.
  • the efficiency of the hydrodearomatization unit by hydrogenation is dependent on several parameters and particularly the level of catalytic activity of the first reactor used as a sulfur trap. This activity decreases over time until it becomes nil after a full period of use.
  • the catalytic activity depends on the amount of sulfur supplied to the catalyst surface by the charges to be treated.
  • the quantity of Sulfur captured by the catalyst from the first reactor is directly proportional to the sulfur concentration of the petroleum feedstock. Very little sulfur thus arrives at the second and third reactors in series.
  • Sulfur is a poison for the catalyst needed for the dearomatization reaction, and the aromatic compounds must be hydrogenated to obtain high purity products.
  • the catalyst of the first reactor used as a sulfur trap is thereby rapidly saturated by the amount of sulfur added with the feeds to be treated. It is then necessary to change the catalyst of this first reactor.
  • the catalyst of the first reactor will be changed to a maximum saturation of 90% and not of 100% thus causing a decrease in profitability.
  • the second and third reactors receiving little sulfur they will see their replaced catalyst after longer treatment cycles of up to several years.
  • the current configurations of the hydrodearomatization units impose a total shutdown of the whole unit for the catalyst change even if only the reactor 1 is concerned.
  • US2012 / 0283492 discloses a method of dearomatization of a petroleum fraction comprising a catalytic hydrogenation step.
  • One objective of the application is to provide an improved method of dearomatization for the continuous preparation of hydrocarbon fluids.
  • Another object of the invention is to provide an optimized treatment system of petroleum feeds allowing a reduction of production losses and a flexibility of operability.
  • the invention also aims to allow complete saturation of hydrodearomatization process hydrogenation catalysts before unloading.
  • the invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80 and 180 ° C. C and at a pressure of between 60 and 160 bar, said hydrogenation step comprises several intervertible reactors, that is to say which one can reverse the order, connected in series, as defined in claim 1.
  • the process according to the invention comprises 3 reactors connected in series.
  • the first and second reactors of the process according to the invention can be isolated in turn from other reactors.
  • the process according to the invention makes it possible to change the catalysts of the first and second reactors without prolonged interruption of production.
  • the series reactors of the process according to the invention are connected by fixed additional connections making it possible to isolate one of the reactors.
  • the series reactors of the process according to the invention are connected by removable additional connections making it possible to isolate one of the reactors.
  • the series reactors of the process according to the invention comprise catalysts. Said catalysts are changed to 100% saturation.
  • the method according to the invention allows a hydrogenation rate of between 50 to 300 Nm 3 / tonne of charge.
  • the amount by weight of catalyst in each of the 3 reactors connected in series of the process according to the invention is 0.05-0.5 / 0.10-0.70 / 0.25-0.85, respectively.
  • the process according to the invention relates to an improvement of the operating conditions of the hydrogenation reactors of a desaromatization unit enabling the production of hydrocarbon fluids.
  • a pre-fractionation step of the petroleum fraction may optionally be carried out before introduction of the cut into the hydrogenation unit.
  • the optionally pre-fractionated petroleum fractions are then hydrogenated.
  • the hydrogen that is used in the hydrogenation unit is typically a high purity hydrogen, for example, whose purity exceeds 99%, but other levels of purity may also be employed.
  • the reactors may comprise one or more catalytic beds.
  • Catalytic beds are generally fixed catalytic beds.
  • the process of the present invention comprises three separate reactors.
  • the first reactor involves sulfur scavenging allowing the hydrogenation of essentially all unsaturated compounds and up to about 90% of the aromatic compounds.
  • the flow leaving the first reactor contains essentially no sulfur.
  • the hydrogenation of aromatics is continued and up to 99% of the aromatics are thus hydrogenated.
  • the third stage in the third reactor is a finishing stage which makes it possible to obtain aromatic contents of less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm, even in the case of high-point products. boiling.
  • the sequence of reactors is configured so as to allow continuous operation of the unit and thus production without prolonged interruption of hydrocarbon fluids even during the change of the catalysts of the reactors.
  • a prolonged interruption means an interruption of the unit greater than several days, preferably greater than 2 days. If there is interruption in the process according to the invention, it will be of the order of a few hours and always less than 2 days or even 1 day.
  • the hydrogenation unit comprises according to the figure 1 , 3 reactors R1, R2 and R3 connected in series.
  • the improved method comprises 4 additional fixed links (a), (b1), (b2) and (c).
  • the reactor R2 is directly fed with the feed via the link (a) without passing through the reactor R1.
  • the reactor R2 then becomes the first reactor and is thus directly fed with the feed via section (a) which no longer passes through the reactor of R1.
  • the reactor R2 remains the first reactor and the sections (b1) and (b2) connect the effluent of the reactor R2 to the inlet of the reactor R1 which becomes the second reactor.
  • Section (c) makes it possible to connect the effluent from the reactor R1 to the inlet of the reactor R3.
  • the hydrogenation unit according to the invention comprises additional removable connections also making it possible to maintain the production during the change of the catalyst of the reactor R1.
  • Section (d) thus completely isolates the reactor R1 during the change of its catalyst and thus to ensure increased safety conditions.
  • the reactor R2 will be directly fed with the feed without passing through the reactor R1.
  • the effluent from the reactor R2 will then be directly directed to the reactor inlet R3.
  • Sections (e) and (f) of the figure 4 show the sequence of the hydrogenation reactors after the change of the reactor catalyst R1.
  • the reactor R2 fed with the feed via section (d) remains the first reactor.
  • Section (e) then connects the effluent from reactor R2 to the inlet of reactor R1 which becomes the second reactor.
  • Section (f) makes it possible to connect the effluent from reactor R1 to the inlet of reactor R3.
  • the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production.
  • the additional fixed links (a), (b1) and (b2) of the figure 5 will be closed while the link (c) will be open thus allowing a treatment of the charges via the reactors R1 then R3 only.
  • the reactor R2 is thus short-circuited for the duration necessary for the change of its catalyst.
  • the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production by the connection of the additional removable links (g) and (h) as indicated on the figure 6 .
  • the feedstock to be treated will feed the reactor R1 directly via section (g) and then the reactor effluent R1 will be directed to the reactor inlet R3 via section (h) so as never to go through reactor R2.
  • the dearomatization process optimized according to the third and fourth embodiments will be carried out according to the Figures 7 and 8 by closing the additional fixed links (a), (b1), (b2) and (c) or by virtue of the additional removable connections connected (g), (i) and (j) so that the load to be treated is directed to the reactor R1 then the reactor R2 and finally the reactor R3.
  • each additional fixed or removable section will be adapted to the hydrogenation unit and to the forecasting capacities of production.
  • each section, (a), (b1), (b2) and (c) will include valves to open or close the section as required.
  • the improvement of the process according to the invention thus allows a maximum utilization at 100% saturation of the catalyst of the reactor R1.
  • the yield is thus optimal in contrast to the conventional sequence or the reactor catalyst R1 must be replaced at 90% maximum saturation to avoid overflowing sulfur on the next reactor.
  • the dearomatization process according to the invention allows the use of the reactor R2 as the first reactor during the change of the catalyst of the reactor R1.
  • the reactor R2 will therefore be in direct contact with the sulfur contained in the feeds to be treated for the production of hydrocarbon fluids.
  • the catalyst of the reactor R2 according to the invention will also have to be changed to 100% saturation.
  • Typical hydrogenation catalysts may include the following metals: nickel, platinum, palladium, rhenium, rhodium, nickel tungstate, nickel-molybdenum, molybdenum, cobalt molybdate, nickel molybdate on silica and / or alumina supports, or on zeolites.
  • a preferred catalyst is a Ni-based catalyst on an alumina support whose specific surface area varies between 100 and 200 m 2 / g of catalyst.
  • the catalysts may be present in varying or substantially equal amounts in each reactor; for three reactors, the amounts by weight can for example be 0.05-0.5 / 0.10-0.70 / 0.25-0.85, preferably 0.07-0.25 / 0 , 15-0.35 / 0.4-0.78 and more preferably 0.10-0.20 / 0.20-0.32 / 0.48-0.70.
  • the product obtained and / or the separated gases are at least partially recycled (s) in the feed system stages hydrogenation.
  • This dilution helps to maintain the exothermicity of the reaction within controlled limits, particularly in the first stage. Recycling also allows heat exchange before the reaction and also better control of the temperature.
  • the effluent from the hydrogenation unit contains the hydrogenated product and hydrogen.
  • Flash separators are used to separate the effluents in the gas phase, mainly the residual hydrogen, and in the liquid phase, mainly the hydrogenated hydrocarbons.
  • the process can be carried out using three flash separators, one high pressure, one intermediate pressure and one low pressure very close to atmospheric pressure.
  • the hydrogen gas that is collected at the top of the flash separators can be recycled to the feed system of the hydrogenation unit or at different levels in the hydrogenation units between the reactors.
  • the final product separated is at atmospheric pressure. It then directly feeds the vacuum fractionation unit.
  • the fractionation will be at a pressure of between 10 and 50 mbar and more preferably at about 30 mbar.
  • the fractionation can be carried out in such a way that it is possible to simultaneously remove various hydrocarbon fluids from the fractionation column and that their boiling temperature can be predetermined.
  • the hydrogenation reactors, the separators and the fractionation unit can therefore be directly connected without the need to use intermediate tanks, which is usually the case.
  • This integration of hydrogenation and fractionation allows optimized thermal integration combined with a reduction in the number of devices and energy savings.
  • the petroleum fraction used as a feedstock is a typical refinery type petroleum cut which can come from a hydrocracking unit of distillates and may also include high aromatics such as conventional ultra-low sulfur diesel, heavy diesel or aviation fuel.
  • the petroleum refinery cut can optionally be hydrocracked to obtain shorter and single molecules by adding hydrogen under high pressure in the presence of a catalyst.
  • Descriptions of hydrocracking processes are provided in Hydrocarbon Processing (November 1996, pages 124-128), in Hydrocracking Science and Technology (1996) and in patents. US 4347124 , US 4447315 and WO-A-99/47626 .
  • a preferred petroleum cut as a refinery petroleum cutter according to the invention is a hydrocracked gasoil fraction resulting from the vacuum distillation.
  • the optionally hydrocracked refinery oil cut can also be mixed with a hydrocarbon cut resulting from a gas to liquid (GOT) process and / or gaseous condensates and / or a hydrodeoxygenated hydrocarbon cut obtained at from biomass.
  • GOT gas to liquid
  • the petroleum fraction whether or not mixed, contains less than 15 ppm of sulfur, preferably less than 8 ppm and more preferably less than 5 ppm (according to EN ISO 20846) and less of 70% by weight of aromatics, preferably less than 50% by weight and more preferably less than 30% by weight (according to the standard IP391 or EN 12916) and has a density of less than 0.830 g / cm 3 (according to EN standard ISO 12185).
  • the fluids produced in accordance with the process of the invention have a boiling range of between 100 and 400 ° C. and have a very low aromatic content generally less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm. .
  • the fluids produced according to the process of the invention also have an extremely low sulfur content, less than 5 ppm, preferably less than 3 ppm and more preferably less than 0.5 ppm, at a level too low to be detectable at conventional analyzers capable of measuring very low levels of sulfur.
  • the fluids produced according to the process of the invention have remarkable properties in terms of aniline point or solvent power, molecular weight, vapor pressure, viscosity, evaporation conditions defined for systems for which a drying is important and defined surface tension.
  • the fluids produced according to the process of the invention can be used as drilling liquids, as industrial solvents, in coating fluids, for the extraction of metals, in the mining industry, in explosives, in demoulding formulations concrete, in adhesives, in printing inks, for metal working, as rolling oils, as electro-erosion machining liquids, as anti-rust agents in industrial lubricants, as diluting oils, in sealing or silicone-based polymeric formulations, such as viscosity-lowering in plasticized polyvinyl chloride formulations, in resins, in crop protection phytosanitary formulations, in pharmaceuticals, in paint compositions , in polymers used in the treatment of water, in the manufacture of paper or in printing pastes or as cleaning solvents.
  • the scheme of the figure 9 shows a comparison between a normal system of series hydrogenation reactors and the optimized system according to the invention during the change of the catalyst of the reactor R1 and the catalyst of the reactor R2.
  • the 3 reactors of the hydrodearomatization unit have a volume equal to 110 m3 with a catalyst volume for the reactor R1 equal to 25 m3 and equal to 35 m3 for the reactor R2 .
  • the time required to change the reactor catalyst R1 in an optimized dearomatization unit configuration is the same as that of a normal configuration, about 9 days.
  • the optimized configuration of the reactors R1 and R2 of the desaromatisation unit according to the invention makes it possible to continue the production of hydrocarbon fluids during the changes of the catalysts of the reactors R1 and R2 contrary to a normal configuration.
  • the catalyst of the reactors R1 and R2 in the optimized configuration according to the invention are changed to 100% saturation in contrast to a normal configuration with which it is necessary to change the catalyst to 90% saturation to avoid overflow. sulfur to the next reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (11)

  1. Verfahren zur kontinuierlichen Dearomatisierung einer Erdölfraktion zu einem Kohlenwasserstofffluid mit sehr niedrigem Gehalt an Schwefel und sehr niedrigem Gehalt an aromatischen Verbindungen, umfassend mindestens einen katalytischen Hydrierungsschritt bei einer Temperatur zwischen 80 und 180°C und einem Druck zwischen 50 und 160 bar, dadurch gekennzeichnet, dass der katalytische Hydrierungsschritt drei, in Reihe miteinander verbundene austauschbare Reaktoren umfasst, die jeweils mindestens einen Katalysator umfassen, wobei das Verfahren die folgenden Schritte umfasst:
    a) Isolierung eines der Reaktoren,
    b) Speisung eines der zwei nicht isolierten Reaktoren mit der Erdölfraktion und Speisung des zweiten nicht isolierten Reaktors mit dem Ausfluss des ersten, nicht isolierten Reaktors,
    c) Regenerierung des isolierten Reaktors durch Austausch des Katalysators,
    d) Speisung des regenerierten Reaktors mit dem Ausfluss des ersten der zwei nicht isolierten Reaktoren von Schritt b) und Speisung des zweiten nicht isolierten Reaktors von Schritt b) mit dem Ausfluss des regenerierten Reaktors.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der erste und der zweite Reaktor abwechselnd isoliert werden können.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Wechseln der Katalysatoren des ersten und des zweiten Reaktors ohne längere Unterbrechung der Produktion von Kohlenwasserstofffluiden durchgeführt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Reaktoren in Reihe durch zusätzliche, ortsfeste Verbindungen miteinander verbunden sind, die das Isolieren eines der Reaktoren ermöglichen.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Reaktoren in Reihe durch zusätzliche, abnehmbare Verbindungen miteinander verbunden sind, die das Isolieren eines der Reaktoren ermöglichen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Reaktoren Katalysatoren umfassen, wobei die Katalysatoren der Reaktoren bei einer Sättigung von 100% gewechselt werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Hydrierungsgeschwindigkeit zwischen 50 und 300 Nm3/Tonne Erdölfraktion liegt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Gewichtsmenge an Katalysator in jedem der Reaktoren 0,05-0,5/0,10-0,70/0,25-0,85 beträgt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Gewichtsmenge an Katalysator in jedem der Reaktoren 0,07-0,25/0,15-0,35/0,4-0,78 und, stärker bevorzugt, 0,10-0,20/0,20-0,32/0,48-0,70 beträgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, das die folgenden Schritte umfasst:
    a) Isolierung des ersten Reaktors in Reihe,
    b) Speisung des zweiten Reaktors in Reihe mit der Erdölfraktion und Speisung des dritten Reaktors in Reihe mit dem Ausfluss des zweiten Reaktors,
    c) Austausch des Katalysators des ersten Reaktors,
    d) Speisung des ersten Reaktors mit dem Ausfluss des zweiten Reaktors und Speisung des dritten Reaktors mit dem Ausfluss des ersten Reaktors.
  11. Verfahren nach einem der Ansprüche 1 bis 9, das die folgenden Schritte umfasst:
    a) Isolierung des zweiten Reaktors in Reihe,
    b) Speisung des ersten Reaktors in Reihe mit der Erdölfraktion und Speisung des dritten Reaktors in Reihe mit dem Ausfluss des ersten Reaktors,
    c) Austausch des Katalysators des zweiten Reaktors,
    d) Speisung des zweiten Reaktors mit dem Ausfluss des ersten Reaktors und Speisung des dritten Reaktors mit dem Ausfluss des zweiten Reaktors.
EP14814825.7A 2013-12-23 2014-12-15 Verbessertes verfahren zur entfernung von aromen aus erdölfraktionen Active EP3087160B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363388A FR3015514B1 (fr) 2013-12-23 2013-12-23 Procede ameliore de desaromatisation de coupes petrolieres
PCT/EP2014/077744 WO2015097009A1 (fr) 2013-12-23 2014-12-15 Procede ameliore de desaromatisation de coupes petrolieres

Publications (2)

Publication Number Publication Date
EP3087160A1 EP3087160A1 (de) 2016-11-02
EP3087160B1 true EP3087160B1 (de) 2017-10-25

Family

ID=50483045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14814825.7A Active EP3087160B1 (de) 2013-12-23 2014-12-15 Verbessertes verfahren zur entfernung von aromen aus erdölfraktionen

Country Status (9)

Country Link
US (1) US10246652B2 (de)
EP (1) EP3087160B1 (de)
KR (1) KR102553702B1 (de)
CN (1) CN105992809A (de)
AR (1) AR098916A1 (de)
CA (1) CA2934605A1 (de)
FR (1) FR3015514B1 (de)
TW (1) TW201533230A (de)
WO (1) WO2015097009A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947529B (zh) * 2016-01-06 2019-03-19 中国石油化工股份有限公司 一种含芳烃柴油馏分加氢转化生产汽油的方法
CN106947531B (zh) * 2016-01-06 2019-04-12 中国石油化工股份有限公司 一种含芳烃柴油催化加氢转化方法
CN106947528B (zh) * 2016-01-06 2019-03-19 中国石油化工股份有限公司 一种含芳烃柴油加氢转化方法
KR101971360B1 (ko) * 2017-10-30 2019-04-22 한화토탈 주식회사 나프텐 함량이 풍부한 탈방향족 탄화수소 유체의 제조 방법

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1217096A (fr) 1957-11-26 1960-05-02 Bataafsche Petroleum Procédé de préparation d'un carburant liquide d'hydrocarbures
GB1232594A (de) 1967-07-11 1971-05-19
JPS4934527B1 (de) 1969-04-25 1974-09-14
GB1282774A (en) 1969-08-27 1972-07-26 Shell Int Research A process for the catalytic hydrogenation of hydrocarbon oils or oil fractions and a catalyst therefor
GB1218920A (en) 1969-09-26 1971-01-13 Chevron Res Catalytic production of low pour point lubricating oils
US3767562A (en) 1971-09-02 1973-10-23 Lummus Co Production of jet fuel
US3846278A (en) 1971-09-02 1974-11-05 Lummus Co Production of jet fuel
NL153934B (nl) 1973-02-02 1977-07-15 Basf Ag Werkwijze voor de katalytische hydrogenering van aromaten, zwavel- en stikstofverbindingen bevattende minerale oliefracties.
US4036734A (en) 1973-11-02 1977-07-19 Exxon Research And Engineering Company Process for manufacturing naphthenic solvents and low aromatics mineral spirits
NL191763C (nl) * 1979-09-26 1996-07-02 Shell Int Research Werkwijze voor ontmetalliseren van een koolwaterstofolie.
JPS5820657B2 (ja) 1980-06-24 1983-04-25 日鉄鉱業株式会社 磁性流体による比重選別方法及びその装置
US4447315A (en) 1983-04-22 1984-05-08 Uop Inc. Hydrocracking process
US4816137A (en) 1983-05-27 1989-03-28 Total Engineering And Research Company Method for cracking residual oils
US4601814A (en) 1983-05-27 1986-07-22 Total Engineering And Research Company Method and apparatus for cracking residual oils
US4469590A (en) 1983-06-17 1984-09-04 Exxon Research And Engineering Co. Process for the hydrogenation of aromatic hydrocarbons
US4875992A (en) 1987-12-18 1989-10-24 Exxon Research And Engineering Company Process for the production of high density jet fuel from fused multi-ring aromatics and hydroaromatics
US5114562A (en) 1990-08-03 1992-05-19 Uop Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
FR2681871B1 (fr) * 1991-09-26 1993-12-24 Institut Francais Petrole Procede d'hydrotraitement d'une fraction lourde d'hydrocarbures en vue de la raffiner et de la convertir en fractions plus legeres.
US5498810A (en) 1991-11-21 1996-03-12 Uop Selective isoparaffin synthesis from naphtha
FR2714387B1 (fr) 1993-12-28 1996-02-02 Inst Francais Du Petrole Procédé d'obtention d'une base pour carburant pour moteur à combustion interne par hydrotraitement et extraction et le produit obtenu.
US5612422A (en) 1995-05-04 1997-03-18 The Dow Chemical Company Process for hydrogenating aromatic polymers
FR2734575B1 (fr) 1995-05-22 1997-08-22 Total Raffinage Distribution Carbureacteur et procede de preparation de ce carbureacteur
FR2757872B1 (fr) 1996-12-31 1999-06-25 Total Raffinage Distribution Procede d'hydrotraitement d'une charge hydrocarbonee et dispositif pour sa mise en oeuvre
EP0921179A1 (de) 1997-12-05 1999-06-09 Fina Research S.A. Herstellung von Olefinen
HUP0101799A3 (en) 1998-03-14 2002-03-28 Chevron U S A Inc San Francisc Integrated hydroconversion process
FR2776667B1 (fr) 1998-03-31 2000-06-16 Total Raffinage Distribution Procede et dispositif d'isomerisation d'essences a teneur elevee en benzene
FR2793706B1 (fr) 1999-05-18 2001-08-03 Total Raffinage Distribution Support catalytique a base d'oxyde d'un metal du groupe ivb de la classification periodique des elements, sa preparation et ses utilisations
FR2808534B1 (fr) 2000-05-03 2002-08-02 Total Raffinage Distribution Composition lubrifiante biodegradable et ses utilisations, notamment dans un fluide de forage
FR2811327B1 (fr) 2000-07-05 2002-10-25 Total Raffinage Distribution Procede et dispositif de craquage d'hydrocarbures mettant en oeuvre deux chambres reactionnelles successives
JP2004504441A (ja) 2000-07-17 2004-02-12 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 無色潤滑基油の製造方法
MXPA03005072A (es) * 2000-12-11 2004-05-24 Inst Francais Du Petrole Metodo para el hidrotratamiento de una fraccion pesada de hidrocarburo con reactores permutables y reactores aptos de ser puestos en corto circuito.
CN1296460C (zh) 2002-03-06 2007-01-24 埃克森美孚化学专利公司 改进的烃流体
EP1342774A1 (de) 2002-03-06 2003-09-10 ExxonMobil Chemical Patents Inc. Verfahren zur Herstellung von Kohlenwasserstoffflüssigkeiten
FR2850978B1 (fr) 2003-02-12 2006-08-25 Totalfinaelf France Procede de fabrication de fluides hydrocarbones riches en hydrocarbures naphteniques
JP2004269685A (ja) 2003-03-07 2004-09-30 Nippon Oil Corp 軽油組成物及びその製造方法
FR2864101B1 (fr) 2003-12-19 2006-03-17 Total France Procede catalytique de purification des hydrocarbures legers
JP4664380B2 (ja) 2005-01-14 2011-04-06 エクソンモービル・ケミカル・パテンツ・インク 超純粋流体
JP5105326B2 (ja) 2007-04-19 2012-12-26 昭和電工株式会社 水素化方法及び石油化学プロセス
EP2290045A1 (de) 2009-07-27 2011-03-02 Total Petrochemicals Research Feluy Verfahren zur Herstellung von biologischem Rohbenzin aus komplexen Gemischen natürlich vorkommender Fette und Öle
FR2950072B1 (fr) 2009-09-11 2013-11-01 Inst Francais Du Petrole Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, a l'aide de reacteurs permutables pour la production d'un brut synthetique preraffine.
WO2011061576A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
WO2011061575A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
WO2011080407A1 (fr) 2009-12-16 2011-07-07 IFP Energies Nouvelles Catalyseur utilisable en hydrotraitement comprenant des metaux des groupes viii et vib et preparation avec de l'acide acetique et du succinate de dialkyle c1-c4
AR080682A1 (es) 2010-03-15 2012-05-02 Total Petrochemicals Res Feluy Produccion de propileno por deshidratacion e isomerizacion esqueletica simultaneas de isobutanol en catalizadores acidos seguido por metatesis
FR2958655B1 (fr) 2010-04-09 2013-07-05 Total Raffinage Marketing Procede de purification des extraits aromatiques contenant des composes polycycliques aromatiques
WO2011157738A1 (en) 2010-06-16 2011-12-22 Total Petrochemicals Research Feluy Sampling and analysis method to achieve a detailed analysis of a reactor effluent
EP2404670A1 (de) 2010-07-06 2012-01-11 Total Raffinage Marketing Verfahren zur Hydrokonversion eines kohlenwasserstoffhaltigen Ausgangsmaterials von geringer Qualität
EP2404982A1 (de) 2010-07-06 2012-01-11 Total Raffinage Marketing Katalysatorherstellungsreaktoren aus einer Katalysatorvorläuferverbindung, die zum Beschicken von Reaktoren verwendet wird, um schwere kohlenwasserstoffhaltige Ausgangsmaterialien aufzuwerten
EP2404983A1 (de) 2010-07-06 2012-01-11 Total Raffinage Marketing Katalysatorherstellungsreaktoren aus einer Katalysatorvorläuferverbindung, die zum Beschicken von Reaktoren verwendet wird, um schwere kohlenwasserstoffhaltige Ausgangsmaterialien aufzuwerten
EP2404981A1 (de) 2010-07-06 2012-01-11 Total Raffinage Marketing Katalysatorherstellungsreaktoren aus einer Katalysatorvorläuferverbindung, die zum Beschicken von Reaktoren verwendet wird, um schwere kohlenwasserstoffhaltige Ausgangsmaterialien aufzuwerten
CN102311789A (zh) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 一种重烃灵活加氢方法
FR2969648B1 (fr) 2010-12-24 2014-04-11 Total Raffinage Marketing Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique, et hydrocraquage
FR2969651B1 (fr) 2010-12-24 2014-02-21 Total Raffinage Marketing Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par decontamination, hydroconversion en lit bouillonnant, et fractionnement par distillation atmospherique
FR2969650B1 (fr) 2010-12-24 2014-04-11 Total Raffinage Marketing Procede de conversion de charge hydrocarbonee comprenant une huile de schiste par hydroconversion en lit bouillonnant, fractionnement par distillation atmospherique et extraction liquide/liquide de la fraction lourde
EP2658952A1 (de) 2010-12-28 2013-11-06 Total Raffinage Marketing Nitrilhaltiger kohlenwasserstoffrohstoff, verfahren zu seiner herstellung und verwendung
FR2984329B1 (fr) 2011-12-20 2014-11-21 Total Raffinage Marketing Polymere greffe et composition bitume/polymere a reticulation thermoreversible contenant un tel polymere
FR2984915B1 (fr) * 2011-12-22 2016-07-15 Ifp Energies Now Procede d'hydrogenation selective de charges olefiniques avec des reacteurs permutables incluant au moins une etape de court-circuitage d'un reacteur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201533230A (zh) 2015-09-01
US20160369182A1 (en) 2016-12-22
KR102553702B1 (ko) 2023-07-11
AR098916A1 (es) 2016-06-22
WO2015097009A1 (fr) 2015-07-02
FR3015514B1 (fr) 2016-10-28
EP3087160A1 (de) 2016-11-02
KR20160102527A (ko) 2016-08-30
FR3015514A1 (fr) 2015-06-26
CA2934605A1 (fr) 2015-07-02
US10246652B2 (en) 2019-04-02
CN105992809A (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
WO2016192891A1 (fr) Procede de conversion de charges comprenant une etape d'hydrotraitement, une etape d'hydrocraquage, une etape de precipitation et une etape de separation des sediments pour la production de fiouls
EP3087160B1 (de) Verbessertes verfahren zur entfernung von aromen aus erdölfraktionen
WO2012085407A1 (fr) Procède de conversion de charge hydrocarbonate comprenant une huile de schiste par hydre conversion en lit bouillonnant, fractionnement par distillation atmosphérique, et hydrocraquage
FR3013357A1 (de)
WO2022023263A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques incluant un hydrocraquage en deux etapes
WO2022023262A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques incluant un hydrocraquage en une etape
CA3189892A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes
WO2022144235A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques incluant une etape d'hydrogenation
EP3164467B1 (de) Verfahren zur dearomatisierung von ölfraktionen
US20230279302A1 (en) Process for the production of fluids
FR2970478A1 (fr) Procede d'hydroconversion en lit fixe d'un petrole brut, etete ou non, un fractionnement, puis un desasphaltage de la fraction lourde pour la production d'un brut synthetique preraffine
WO2024149864A1 (fr) Procede de production de fluides
EP1310544B1 (de) Verfahren zur Umwandlung von schweren teroleumfraktionen zur Herstellung einer Beschickung für ein katalytisches Crackverfahren und Mitteldestillate mit niedrigem Schwefelgehalt
CA2937194A1 (fr) Optimisation de l'utilisation d'hydrogene pour l'hydrotraitement de charges hydrocarbonees
CA2472906C (fr) Procede de production de distillats et d'huiles lubrifiantes
WO2023099304A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques incluant une etape d'hydrogenation et une separation a chaud
EP4419627A1 (de) Verfahren zur aufbereitung von pyrolyseölen aus mit verunreinigungen beladenen kunststoffen und/oder festen ersatzbrennstoffen
WO2023066694A1 (fr) Procede de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes
FR2832159A1 (fr) Procede de conversion de fractions lourdes petrolieres incluant un lit bouillonnant pour produire des distillats moyens de faible teneur en soufre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 939936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014016392

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 939936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014016392

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

26N No opposition filed

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014016392

Country of ref document: DE

Owner name: TOTALENERGIES ONETECH, FR

Free format text: FORMER OWNER: TOTAL MARKETING SERVICES, PUTEAUX, FR

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: TOTALENERGIES ONETECH; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: VAN REET JOSEPH

Effective date: 20240423

Ref country code: BE

Ref legal event code: HC

Owner name: TOTALENERGIES MARKETING SERVICES; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: TOTAL MARKETING SERVICES

Effective date: 20240423