EP3087160B1 - Improved method for the removal of aromatics from petroleum fractions - Google Patents

Improved method for the removal of aromatics from petroleum fractions Download PDF

Info

Publication number
EP3087160B1
EP3087160B1 EP14814825.7A EP14814825A EP3087160B1 EP 3087160 B1 EP3087160 B1 EP 3087160B1 EP 14814825 A EP14814825 A EP 14814825A EP 3087160 B1 EP3087160 B1 EP 3087160B1
Authority
EP
European Patent Office
Prior art keywords
reactor
reactors
catalyst
effluent
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14814825.7A
Other languages
German (de)
French (fr)
Other versions
EP3087160A1 (en
Inventor
Xavier CHOUAN
Patrick VEDRINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Original Assignee
Total Marketing Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA filed Critical Total Marketing Services SA
Publication of EP3087160A1 publication Critical patent/EP3087160A1/en
Application granted granted Critical
Publication of EP3087160B1 publication Critical patent/EP3087160B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4031Start up or shut down operations
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80.degree. and 180 ° C and at a pressure of between 50 and 160 bar.
  • the invention relates to a method of deep dearomatisation of petroleum cutting in which the catalytic hydrogenation step comprises several intervertible reactors connected in series.
  • Hydrocarbon fluids are widely used as solvents, for example in adhesives, cleaning liquids, explosives, solvents for decorative coatings, paints and printing inks, light oils for applications such as metal extraction, metal working or demolding, industrial lubricants and drilling fluids.
  • the hydrocarbon fluids can also be used as diluting oils in adhesives and sealing systems such as silicone sealants, as viscosity-lowering agents in plasticized polyvinylchloride formulations, as solvents in polymeric flocculant formulations, for example in water treatment, mining operations or papermaking and also as thickeners in printing pastes.
  • Hydrocarbon fluids can moreover be used as solvents in a wide range of other applications, for example in chemical reactions.
  • the petroleum fractions as feeds are treated on hydrodearomatization units by a catalytic hydrogenation process consisting of several high pressure operated serial reactors. These reactors have one or more catalytic beds.
  • the units are composed of main processing sections which are generally: charge storage, multi-reactor hydrogenation section, distillate separation section and distillation column. (See Figure 10 )
  • the configuration generally set up for the hydrogenation section is a series of several reactors in series.
  • the efficiency of the hydrodearomatization unit by hydrogenation is dependent on several parameters and particularly the level of catalytic activity of the first reactor used as a sulfur trap. This activity decreases over time until it becomes nil after a full period of use.
  • the catalytic activity depends on the amount of sulfur supplied to the catalyst surface by the charges to be treated.
  • the quantity of Sulfur captured by the catalyst from the first reactor is directly proportional to the sulfur concentration of the petroleum feedstock. Very little sulfur thus arrives at the second and third reactors in series.
  • Sulfur is a poison for the catalyst needed for the dearomatization reaction, and the aromatic compounds must be hydrogenated to obtain high purity products.
  • the catalyst of the first reactor used as a sulfur trap is thereby rapidly saturated by the amount of sulfur added with the feeds to be treated. It is then necessary to change the catalyst of this first reactor.
  • the catalyst of the first reactor will be changed to a maximum saturation of 90% and not of 100% thus causing a decrease in profitability.
  • the second and third reactors receiving little sulfur they will see their replaced catalyst after longer treatment cycles of up to several years.
  • the current configurations of the hydrodearomatization units impose a total shutdown of the whole unit for the catalyst change even if only the reactor 1 is concerned.
  • US2012 / 0283492 discloses a method of dearomatization of a petroleum fraction comprising a catalytic hydrogenation step.
  • One objective of the application is to provide an improved method of dearomatization for the continuous preparation of hydrocarbon fluids.
  • Another object of the invention is to provide an optimized treatment system of petroleum feeds allowing a reduction of production losses and a flexibility of operability.
  • the invention also aims to allow complete saturation of hydrodearomatization process hydrogenation catalysts before unloading.
  • the invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80 and 180 ° C. C and at a pressure of between 60 and 160 bar, said hydrogenation step comprises several intervertible reactors, that is to say which one can reverse the order, connected in series, as defined in claim 1.
  • the process according to the invention comprises 3 reactors connected in series.
  • the first and second reactors of the process according to the invention can be isolated in turn from other reactors.
  • the process according to the invention makes it possible to change the catalysts of the first and second reactors without prolonged interruption of production.
  • the series reactors of the process according to the invention are connected by fixed additional connections making it possible to isolate one of the reactors.
  • the series reactors of the process according to the invention are connected by removable additional connections making it possible to isolate one of the reactors.
  • the series reactors of the process according to the invention comprise catalysts. Said catalysts are changed to 100% saturation.
  • the method according to the invention allows a hydrogenation rate of between 50 to 300 Nm 3 / tonne of charge.
  • the amount by weight of catalyst in each of the 3 reactors connected in series of the process according to the invention is 0.05-0.5 / 0.10-0.70 / 0.25-0.85, respectively.
  • the process according to the invention relates to an improvement of the operating conditions of the hydrogenation reactors of a desaromatization unit enabling the production of hydrocarbon fluids.
  • a pre-fractionation step of the petroleum fraction may optionally be carried out before introduction of the cut into the hydrogenation unit.
  • the optionally pre-fractionated petroleum fractions are then hydrogenated.
  • the hydrogen that is used in the hydrogenation unit is typically a high purity hydrogen, for example, whose purity exceeds 99%, but other levels of purity may also be employed.
  • the reactors may comprise one or more catalytic beds.
  • Catalytic beds are generally fixed catalytic beds.
  • the process of the present invention comprises three separate reactors.
  • the first reactor involves sulfur scavenging allowing the hydrogenation of essentially all unsaturated compounds and up to about 90% of the aromatic compounds.
  • the flow leaving the first reactor contains essentially no sulfur.
  • the hydrogenation of aromatics is continued and up to 99% of the aromatics are thus hydrogenated.
  • the third stage in the third reactor is a finishing stage which makes it possible to obtain aromatic contents of less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm, even in the case of high-point products. boiling.
  • the sequence of reactors is configured so as to allow continuous operation of the unit and thus production without prolonged interruption of hydrocarbon fluids even during the change of the catalysts of the reactors.
  • a prolonged interruption means an interruption of the unit greater than several days, preferably greater than 2 days. If there is interruption in the process according to the invention, it will be of the order of a few hours and always less than 2 days or even 1 day.
  • the hydrogenation unit comprises according to the figure 1 , 3 reactors R1, R2 and R3 connected in series.
  • the improved method comprises 4 additional fixed links (a), (b1), (b2) and (c).
  • the reactor R2 is directly fed with the feed via the link (a) without passing through the reactor R1.
  • the reactor R2 then becomes the first reactor and is thus directly fed with the feed via section (a) which no longer passes through the reactor of R1.
  • the reactor R2 remains the first reactor and the sections (b1) and (b2) connect the effluent of the reactor R2 to the inlet of the reactor R1 which becomes the second reactor.
  • Section (c) makes it possible to connect the effluent from the reactor R1 to the inlet of the reactor R3.
  • the hydrogenation unit according to the invention comprises additional removable connections also making it possible to maintain the production during the change of the catalyst of the reactor R1.
  • Section (d) thus completely isolates the reactor R1 during the change of its catalyst and thus to ensure increased safety conditions.
  • the reactor R2 will be directly fed with the feed without passing through the reactor R1.
  • the effluent from the reactor R2 will then be directly directed to the reactor inlet R3.
  • Sections (e) and (f) of the figure 4 show the sequence of the hydrogenation reactors after the change of the reactor catalyst R1.
  • the reactor R2 fed with the feed via section (d) remains the first reactor.
  • Section (e) then connects the effluent from reactor R2 to the inlet of reactor R1 which becomes the second reactor.
  • Section (f) makes it possible to connect the effluent from reactor R1 to the inlet of reactor R3.
  • the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production.
  • the additional fixed links (a), (b1) and (b2) of the figure 5 will be closed while the link (c) will be open thus allowing a treatment of the charges via the reactors R1 then R3 only.
  • the reactor R2 is thus short-circuited for the duration necessary for the change of its catalyst.
  • the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production by the connection of the additional removable links (g) and (h) as indicated on the figure 6 .
  • the feedstock to be treated will feed the reactor R1 directly via section (g) and then the reactor effluent R1 will be directed to the reactor inlet R3 via section (h) so as never to go through reactor R2.
  • the dearomatization process optimized according to the third and fourth embodiments will be carried out according to the Figures 7 and 8 by closing the additional fixed links (a), (b1), (b2) and (c) or by virtue of the additional removable connections connected (g), (i) and (j) so that the load to be treated is directed to the reactor R1 then the reactor R2 and finally the reactor R3.
  • each additional fixed or removable section will be adapted to the hydrogenation unit and to the forecasting capacities of production.
  • each section, (a), (b1), (b2) and (c) will include valves to open or close the section as required.
  • the improvement of the process according to the invention thus allows a maximum utilization at 100% saturation of the catalyst of the reactor R1.
  • the yield is thus optimal in contrast to the conventional sequence or the reactor catalyst R1 must be replaced at 90% maximum saturation to avoid overflowing sulfur on the next reactor.
  • the dearomatization process according to the invention allows the use of the reactor R2 as the first reactor during the change of the catalyst of the reactor R1.
  • the reactor R2 will therefore be in direct contact with the sulfur contained in the feeds to be treated for the production of hydrocarbon fluids.
  • the catalyst of the reactor R2 according to the invention will also have to be changed to 100% saturation.
  • Typical hydrogenation catalysts may include the following metals: nickel, platinum, palladium, rhenium, rhodium, nickel tungstate, nickel-molybdenum, molybdenum, cobalt molybdate, nickel molybdate on silica and / or alumina supports, or on zeolites.
  • a preferred catalyst is a Ni-based catalyst on an alumina support whose specific surface area varies between 100 and 200 m 2 / g of catalyst.
  • the catalysts may be present in varying or substantially equal amounts in each reactor; for three reactors, the amounts by weight can for example be 0.05-0.5 / 0.10-0.70 / 0.25-0.85, preferably 0.07-0.25 / 0 , 15-0.35 / 0.4-0.78 and more preferably 0.10-0.20 / 0.20-0.32 / 0.48-0.70.
  • the product obtained and / or the separated gases are at least partially recycled (s) in the feed system stages hydrogenation.
  • This dilution helps to maintain the exothermicity of the reaction within controlled limits, particularly in the first stage. Recycling also allows heat exchange before the reaction and also better control of the temperature.
  • the effluent from the hydrogenation unit contains the hydrogenated product and hydrogen.
  • Flash separators are used to separate the effluents in the gas phase, mainly the residual hydrogen, and in the liquid phase, mainly the hydrogenated hydrocarbons.
  • the process can be carried out using three flash separators, one high pressure, one intermediate pressure and one low pressure very close to atmospheric pressure.
  • the hydrogen gas that is collected at the top of the flash separators can be recycled to the feed system of the hydrogenation unit or at different levels in the hydrogenation units between the reactors.
  • the final product separated is at atmospheric pressure. It then directly feeds the vacuum fractionation unit.
  • the fractionation will be at a pressure of between 10 and 50 mbar and more preferably at about 30 mbar.
  • the fractionation can be carried out in such a way that it is possible to simultaneously remove various hydrocarbon fluids from the fractionation column and that their boiling temperature can be predetermined.
  • the hydrogenation reactors, the separators and the fractionation unit can therefore be directly connected without the need to use intermediate tanks, which is usually the case.
  • This integration of hydrogenation and fractionation allows optimized thermal integration combined with a reduction in the number of devices and energy savings.
  • the petroleum fraction used as a feedstock is a typical refinery type petroleum cut which can come from a hydrocracking unit of distillates and may also include high aromatics such as conventional ultra-low sulfur diesel, heavy diesel or aviation fuel.
  • the petroleum refinery cut can optionally be hydrocracked to obtain shorter and single molecules by adding hydrogen under high pressure in the presence of a catalyst.
  • Descriptions of hydrocracking processes are provided in Hydrocarbon Processing (November 1996, pages 124-128), in Hydrocracking Science and Technology (1996) and in patents. US 4347124 , US 4447315 and WO-A-99/47626 .
  • a preferred petroleum cut as a refinery petroleum cutter according to the invention is a hydrocracked gasoil fraction resulting from the vacuum distillation.
  • the optionally hydrocracked refinery oil cut can also be mixed with a hydrocarbon cut resulting from a gas to liquid (GOT) process and / or gaseous condensates and / or a hydrodeoxygenated hydrocarbon cut obtained at from biomass.
  • GOT gas to liquid
  • the petroleum fraction whether or not mixed, contains less than 15 ppm of sulfur, preferably less than 8 ppm and more preferably less than 5 ppm (according to EN ISO 20846) and less of 70% by weight of aromatics, preferably less than 50% by weight and more preferably less than 30% by weight (according to the standard IP391 or EN 12916) and has a density of less than 0.830 g / cm 3 (according to EN standard ISO 12185).
  • the fluids produced in accordance with the process of the invention have a boiling range of between 100 and 400 ° C. and have a very low aromatic content generally less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm. .
  • the fluids produced according to the process of the invention also have an extremely low sulfur content, less than 5 ppm, preferably less than 3 ppm and more preferably less than 0.5 ppm, at a level too low to be detectable at conventional analyzers capable of measuring very low levels of sulfur.
  • the fluids produced according to the process of the invention have remarkable properties in terms of aniline point or solvent power, molecular weight, vapor pressure, viscosity, evaporation conditions defined for systems for which a drying is important and defined surface tension.
  • the fluids produced according to the process of the invention can be used as drilling liquids, as industrial solvents, in coating fluids, for the extraction of metals, in the mining industry, in explosives, in demoulding formulations concrete, in adhesives, in printing inks, for metal working, as rolling oils, as electro-erosion machining liquids, as anti-rust agents in industrial lubricants, as diluting oils, in sealing or silicone-based polymeric formulations, such as viscosity-lowering in plasticized polyvinyl chloride formulations, in resins, in crop protection phytosanitary formulations, in pharmaceuticals, in paint compositions , in polymers used in the treatment of water, in the manufacture of paper or in printing pastes or as cleaning solvents.
  • the scheme of the figure 9 shows a comparison between a normal system of series hydrogenation reactors and the optimized system according to the invention during the change of the catalyst of the reactor R1 and the catalyst of the reactor R2.
  • the 3 reactors of the hydrodearomatization unit have a volume equal to 110 m3 with a catalyst volume for the reactor R1 equal to 25 m3 and equal to 35 m3 for the reactor R2 .
  • the time required to change the reactor catalyst R1 in an optimized dearomatization unit configuration is the same as that of a normal configuration, about 9 days.
  • the optimized configuration of the reactors R1 and R2 of the desaromatisation unit according to the invention makes it possible to continue the production of hydrocarbon fluids during the changes of the catalysts of the reactors R1 and R2 contrary to a normal configuration.
  • the catalyst of the reactors R1 and R2 in the optimized configuration according to the invention are changed to 100% saturation in contrast to a normal configuration with which it is necessary to change the catalyst to 90% saturation to avoid overflow. sulfur to the next reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention se rapporte à un procédé de désaromatisation en continu d'une coupe pétrolière en un fluide hydrocarboné à très basse teneur en soufre et très basse teneur en composés aromatiques, comprenant au moins une étape d'hydrogénation catalytique à une température comprise entre 80 et 180°C et à une pression comprise entre 50 et 160 bars. En particulier l'invention concerne un procédé de désaromatisation profonde de coupe pétrolière dans lequel l'étape d'hydrogénation catalytique comprend plusieurs réacteurs intervertibles reliés en série.The invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80.degree. and 180 ° C and at a pressure of between 50 and 160 bar. In particular, the invention relates to a method of deep dearomatisation of petroleum cutting in which the catalytic hydrogenation step comprises several intervertible reactors connected in series.

CONTEXTE TECHNIQUE DE L'INVENTIONTECHNICAL BACKGROUND OF THE INVENTION

Les fluides hydrocarbonés sont largement utilisés en tant que solvants, par exemple dans des adhésifs, liquides de nettoyage, explosifs, solvants pour des revêtements décoratifs, peintures et encres d'imprimerie, huiles légères servant dans des applications telles que l'extraction de métaux, le travail des métaux ou le démoulage, lubrifiants industriels et fluides de forage. Les fluides hydrocarbonés peuvent également être employés comme huiles de dilution dans des adhésifs et systèmes d'étanchéité tels que les mastics siliconés, comme abaisseurs de viscosité dans des formulations à base de chlorure de polyvinyle plastifié, comme solvants dans des formulations polymériques servant de floculants, par exemple dans le traitement des eaux, les opérations minières ou la fabrication du papier et également comme épaississants dans des pâtes d'impression. Les fluides hydrocarbonés peuvent par ailleurs être utilisés comme solvants dans un vaste éventail d'autres applications, par exemple dans des réactions chimiques.Hydrocarbon fluids are widely used as solvents, for example in adhesives, cleaning liquids, explosives, solvents for decorative coatings, paints and printing inks, light oils for applications such as metal extraction, metal working or demolding, industrial lubricants and drilling fluids. The hydrocarbon fluids can also be used as diluting oils in adhesives and sealing systems such as silicone sealants, as viscosity-lowering agents in plasticized polyvinylchloride formulations, as solvents in polymeric flocculant formulations, for example in water treatment, mining operations or papermaking and also as thickeners in printing pastes. Hydrocarbon fluids can moreover be used as solvents in a wide range of other applications, for example in chemical reactions.

Pour produire ces fluides hydrocarbonés, les coupes pétrolières en tant que charges sont traitées sur des unités d'hydrodéaromatisation par un procédé d'hydrogénation catalytique composé de plusieurs réacteurs en série opérés à pression élevée. Ces réacteurs possèdent un ou plusieurs lits catalytiques.In order to produce these hydrocarbon fluids, the petroleum fractions as feeds are treated on hydrodearomatization units by a catalytic hydrogenation process consisting of several high pressure operated serial reactors. These reactors have one or more catalytic beds.

Les unités sont composées de sections de traitement principales qui sont généralement : le stockage des charges, la section d'hydrogénation à plusieurs réacteurs, la section de séparation des distillats et la colonne de distillation. (Voir Figure 10)The units are composed of main processing sections which are generally: charge storage, multi-reactor hydrogenation section, distillate separation section and distillation column. (See Figure 10 )

La configuration généralement mise en place pour la section d'hydrogénation est un enchaînement de plusieurs réacteurs en série. L'efficacité de l'unité d'hydrodéaromatisation par hydrogénation est dépendante de plusieurs paramètres et particulièrement du niveau d'activité catalytique du premier réacteur utilisé en tant que piège à soufre. Cette activité décroit avec le temps jusqu'à devenir nulle après une période complète d'utilisation. L'activité catalytique dépend de la quantité de soufre apportée à la surface du catalyseur par les charges à traiter. La quantité de soufre capté par le catalyseur du premier réacteur est directement proportionnelle à la concentration en soufre de la charge pétrolière. Très peu de soufre arrive ainsi au second et troisième réacteur en série.The configuration generally set up for the hydrogenation section is a series of several reactors in series. The efficiency of the hydrodearomatization unit by hydrogenation is dependent on several parameters and particularly the level of catalytic activity of the first reactor used as a sulfur trap. This activity decreases over time until it becomes nil after a full period of use. The catalytic activity depends on the amount of sulfur supplied to the catalyst surface by the charges to be treated. The quantity of Sulfur captured by the catalyst from the first reactor is directly proportional to the sulfur concentration of the petroleum feedstock. Very little sulfur thus arrives at the second and third reactors in series.

Le soufre est un poison pour le catalyseur nécessaire à la réaction de désaromatisation, et les composés aromatiques doivent être hydrogénés pour obtenir des produits de haute pureté.
Le catalyseur du premier réacteur utilisé en tant que piège à soufre est de ce fait rapidement saturé par la quantité de soufre apportée avec les charges à traiter. Il est alors nécessaire de changer le catalyseur de ce premier réacteur. D'autre part afin d'éviter un débordement de soufre sur le second réacteur, le catalyseur du premier réacteur sera changé à une saturation maximale de 90% et non de 100% entraînant ainsi une baisse de rentabilité. A l'opposé, les second et troisième réacteurs ne recevant que peu de soufre, ils ne verront leur catalyseur remplacé qu'après des cycles de traitement plus longs pouvant aller jusqu'à plusieurs années. Les configurations actuelles des unités d'hydrodéaromatisation imposent un arrêt total de l'ensemble de l'unité pour le changement du catalyseur même si seul le réacteur 1 est concerné. Cet arrêt complet des unités implique une perte de production considérable, l'arrêt pouvant durer plusieurs jours. US2012/0283492 divulgue un procédé de désaromatisation d'une coupe pétrolière comprenant une étape d'hydrogénation catalytique. Un objectif de la demande est de fournir un procédé amélioré de désaromatisation pour la préparation en continu de fluides hydrocarbonés.
Sulfur is a poison for the catalyst needed for the dearomatization reaction, and the aromatic compounds must be hydrogenated to obtain high purity products.
The catalyst of the first reactor used as a sulfur trap is thereby rapidly saturated by the amount of sulfur added with the feeds to be treated. It is then necessary to change the catalyst of this first reactor. On the other hand, in order to avoid a sulfur overflow on the second reactor, the catalyst of the first reactor will be changed to a maximum saturation of 90% and not of 100% thus causing a decrease in profitability. In contrast, the second and third reactors receiving little sulfur, they will see their replaced catalyst after longer treatment cycles of up to several years. The current configurations of the hydrodearomatization units impose a total shutdown of the whole unit for the catalyst change even if only the reactor 1 is concerned. This complete stop of the units implies a considerable loss of production, the stop being able to last several days. US2012 / 0283492 discloses a method of dearomatization of a petroleum fraction comprising a catalytic hydrogenation step. One objective of the application is to provide an improved method of dearomatization for the continuous preparation of hydrocarbon fluids.

Un autre objectif de l'invention est de fournir un système de traitement optimisé de charges pétrolières permettant une réduction des pertes de production et une flexibilité d'opérabilité.Another object of the invention is to provide an optimized treatment system of petroleum feeds allowing a reduction of production losses and a flexibility of operability.

L'invention a également pour objectif de permette une saturation complète des catalyseurs d'hydrogénation de procédé d'hydrodéaromatisation avant déchargement.The invention also aims to allow complete saturation of hydrodearomatization process hydrogenation catalysts before unloading.

RESUME DE L'INVENTIONSUMMARY OF THE INVENTION

L'invention concerne un procédé de désaromatisation en continu d'une coupe pétrolière en un fluide hydrocarboné à très basse teneur en soufre et très basse teneur en composés aromatiques comprenant au moins une étape d'hydrogénation catalytique à une température comprise entre 80 et 180°C et à une pression comprise entre 60 et 160 bars, ladite étape d'hydrogénation comprend plusieurs réacteurs intervertibles, c'est-à-dire dont on peut inverser l'ordre, reliés en série, comme défini dans la revendication 1. Le procédé selon l'invention comprend 3 réacteurs reliés en série. Les premier et second réacteurs du procédé selon l'invention peuvent être isolés à tour de rôle des autres réacteurs.The invention relates to a process for the continuous dearomatization of a petroleum fraction in a hydrocarbon fluid with a very low sulfur content and a very low content of aromatic compounds, comprising at least one catalytic hydrogenation step at a temperature of between 80 and 180 ° C. C and at a pressure of between 60 and 160 bar, said hydrogenation step comprises several intervertible reactors, that is to say which one can reverse the order, connected in series, as defined in claim 1. The process according to the invention comprises 3 reactors connected in series. The first and second reactors of the process according to the invention can be isolated in turn from other reactors.

Le procédé selon l'invention permet un changement des catalyseurs des premier et second réacteurs sans interruption prolongée de la production.The process according to the invention makes it possible to change the catalysts of the first and second reactors without prolonged interruption of production.

Selon un mode de réalisation, les réacteurs en série du procédé selon l'invention sont reliés par des liaisons additionnelles fixes permettant d'isoler un des réacteurs.According to one embodiment, the series reactors of the process according to the invention are connected by fixed additional connections making it possible to isolate one of the reactors.

Selon un second mode de réalisation, les réacteurs en série du procédé selon l'invention sont reliés par des liaisons additionnelles amovibles permettant d'isoler un des réacteurs.According to a second embodiment, the series reactors of the process according to the invention are connected by removable additional connections making it possible to isolate one of the reactors.

Les réacteurs en série du procédé selon l'invention comprennent des catalyseurs. Lesdits catalyseurs sont changés à 100% de saturation.The series reactors of the process according to the invention comprise catalysts. Said catalysts are changed to 100% saturation.

Le procédé selon l'invention permet une vitesse d'hydrogénation comprise entre 50 à 300 Nm3/tonne de charge.The method according to the invention allows a hydrogenation rate of between 50 to 300 Nm 3 / tonne of charge.

La quantité en poids de catalyseur dans chacun des 3 réacteurs reliés en série du procédé selon l'invention est respectivement de 0,05-0,5/0,10-0,70/0,25-0,85.The amount by weight of catalyst in each of the 3 reactors connected in series of the process according to the invention is 0.05-0.5 / 0.10-0.70 / 0.25-0.85, respectively.

De préférence la quantité en poids de catalyseur dans chacun des 3 réacteurs reliés en série du procédé selon l'invention est 0.07-0.25/0.15-0.35/0.4-0.78 et plus préférentiellement 0.10-0.20/0.20-0.32/0.48-0.70. Le procédé selon l'invention comprend les étapes de :

  1. a) isolement de l'un des réacteurs,
  2. b) alimentation de l'un des deux réacteurs non isolés par la coupe pétrolière et alimentation du second réacteur non isolé par l'effluent du premier réacteur non isolé,
  3. c) régénération du réacteur isolé par remplacement du catalyseur,
  4. d) alimentation du réacteur régénéré par l'effluent du premier des deux réacteurs non isolés de l'étape b) et alimentation du second réacteur non isolé de l'étape b) par l'effluent du réacteur régénéré.
Preferably the amount by weight of catalyst in each of the 3 reactors connected in series of the process according to the invention is 0.07-0.25 / 0.15-0.35 / 0.4-0.78 and more preferably 0.10-0.20 / 0.20-0.32 / 0.48-0.70. The method according to the invention comprises the steps of:
  1. a) isolation of one of the reactors,
  2. b) supplying one of the two non-isolated reactors with the oil cut and supplying the second non-isolated reactor with the effluent from the first uninsulated reactor,
  3. c) regeneration of the isolated reactor by replacing the catalyst,
  4. d) supplying the regenerated reactor with the effluent from the first of the two non-isolated reactors of step b) and supplying the second non-isolated reactor of step b) with the effluent from the regenerated reactor.

Selon un mode de réalisation, le procédé selon l'invention comprend les étapes de:

  • isolement du premier réacteur en série,
  • alimentation du second réacteur en série par la coupe pétrolière et alimentation du troisième réacteur en série par l'effluent du second réacteur,
  • remplacement du catalyseur du premier réacteur,
  • alimentation du premier réacteur par l'effluent du second réacteur et alimentation du troisième réacteur par l'effluent du premier réacteur.
According to one embodiment, the method according to the invention comprises the steps of:
  • isolation of the first reactor in series,
  • supplying the second reactor in series by the petroleum fraction and supplying the third reactor in series with the effluent from the second reactor,
  • replacement of the catalyst of the first reactor,
  • supplying the first reactor with the effluent from the second reactor and supplying the third reactor with the effluent from the first reactor.

Selon un mode de réalisation, le procédé selon l'invention comprend les étapes de:

  • isolement du second réacteur en série,
  • alimentation du premier réacteur en série par la coupe pétrolière et alimentation du troisième réacteur en série par l'effluent du premier réacteur,
  • remplacement du catalyseur du second réacteur,
  • alimentation du second réacteur par l'effluent du premier réacteur et alimentation du troisième réacteur par l'effluent du second réacteur.
According to one embodiment, the method according to the invention comprises the steps of:
  • isolation of the second reactor in series,
  • feeding the first reactor in series by the oil cut and feeding the third reactor in series by the effluent of the first reactor,
  • replacement of the catalyst of the second reactor,
  • supplying the second reactor with the effluent from the first reactor and supplying the third reactor with the effluent from the second reactor.

FIGURESFIGURES

  • Les figures 1 à 8 sont des représentations schématiques de l'unité optimisée de désaromatisation selon l'invention.The Figures 1 to 8 are schematic representations of the optimized unit of dearomatization according to the invention.
  • La figure 9 est une comparaison entre un système normal de réacteurs d'hydrogénation en série et le système optimisé selon l'invention pendant le changement du catalyseur du réacteur R1 puis du catalyseur du réacteur R2.The figure 9 is a comparison between a normal system of hydrogenation reactors in series and the optimized system according to the invention during the change of the catalyst of the reactor R1 and the catalyst of the reactor R2.
  • La figure 10 représente un schéma général d'un procédé conventionnel de désaromatisation.The figure 10 represents a general scheme of a conventional process of dearomatization.
DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION

Le procédé selon l'invention concerne une amélioration des conditions opératoires des réacteurs d'hydrogénation d'une unité de désaromatisation permettant la production de fluides hydrocarbonés.The process according to the invention relates to an improvement of the operating conditions of the hydrogenation reactors of a desaromatization unit enabling the production of hydrocarbon fluids.

Une étape de préfractionnement de la coupe pétrolière peut éventuellement être effectuée avant l'introduction de la coupe dans l'unité d'hydrogénation. Les coupes pétrolières optionnellement préfractionnées sont ensuite hydrogénées. L'hydrogène qui est utilisé dans l'unité d'hydrogénation est typiquement un hydrogène de haute pureté, par exemple dont la pureté dépasse 99 %, mais d'autres niveaux de pureté peuvent également être employés.A pre-fractionation step of the petroleum fraction may optionally be carried out before introduction of the cut into the hydrogenation unit. The optionally pre-fractionated petroleum fractions are then hydrogenated. The hydrogen that is used in the hydrogenation unit is typically a high purity hydrogen, for example, whose purity exceeds 99%, but other levels of purity may also be employed.

L'hydrogénation a lieu dans trois réacteurs en série. Les réacteurs peuvent comprendre un ou plusieurs lits catalytiques. Les lits catalytiques sont généralement des lits catalytiques fixes.Hydrogenation takes place in three reactors in series. The reactors may comprise one or more catalytic beds. Catalytic beds are generally fixed catalytic beds.

Le procédé de la présente invention comprend trois réacteurs séparés. Le premier réacteur fait intervenir un piégeage du soufre permettant l'hydrogénation d'essentiellement tous les composés insaturés et jusqu'à environ 90 % des composés aromatiques. Le flux sortant du premier réacteur ne contient essentiellement pas de soufre. Au second stade c'est-à-dire dans le second réacteur, l'hydrogénation des aromatiques se poursuit et jusqu'à 99 % des aromatiques sont de ce fait hydrogénés. Le troisième stade dans le troisième réacteur est un stade de finition permettant d'obtenir des teneurs en aromatiques inférieures à 300 ppm, de préférence inférieures à 100 ppm et plus préférentiellement inférieures à 50 ppm, même dans le cas de produits à haut point d'ébullition.The process of the present invention comprises three separate reactors. The first reactor involves sulfur scavenging allowing the hydrogenation of essentially all unsaturated compounds and up to about 90% of the aromatic compounds. The flow leaving the first reactor contains essentially no sulfur. In the second stage, that is to say in the second reactor, the hydrogenation of aromatics is continued and up to 99% of the aromatics are thus hydrogenated. The third stage in the third reactor is a finishing stage which makes it possible to obtain aromatic contents of less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm, even in the case of high-point products. boiling.

Selon l'invention, l'enchainement des réacteurs est configuré de manière à permettre un fonctionnement continu de l'unité et donc une production sans interruption prolongée de fluides hydrocarbonés même pendant le changement des catalyseurs des réacteurs. Par interruption prolongée, on entend une interruption de l'unité supérieure à plusieurs jours, de préférence supérieure à 2 jours. SI interruption il y a dans le procédé selon l'invention, elle ne sera de l'ordre que de quelques heures et toujours inférieure à 2 jours voire 1 jour.According to the invention, the sequence of reactors is configured so as to allow continuous operation of the unit and thus production without prolonged interruption of hydrocarbon fluids even during the change of the catalysts of the reactors. A prolonged interruption means an interruption of the unit greater than several days, preferably greater than 2 days. If there is interruption in the process according to the invention, it will be of the order of a few hours and always less than 2 days or even 1 day.

Le procédé selon l'invention sera décrit en référence aux dessins ci-joints.The process according to the invention will be described with reference to the accompanying drawings.

L'unité d'hydrogénation comprend selon la figure 1, 3 réacteurs R1, R2 et R3 connectés en série.The hydrogenation unit comprises according to the figure 1 , 3 reactors R1, R2 and R3 connected in series.

Selon un mode de réalisation de l'invention, le procédé amélioré comprend 4 liaisons fixes additionnelles (a), (b1), (b2) et (c). Pendant le changement du catalyseur de R1, le réacteur R2 est directement alimenté par la charge via la liaison (a) sans passer par le réacteur R1. Pendant le changement du catalyseur de R1, le réacteur R2 devient alors le premier réacteur et est ainsi directement alimenté par la charge via la section (a) qui ne passe donc plus par le réacteur de R1. Après le changement du catalyseur de R1, le réacteur R2 reste le premier réacteur et les sections (b1) et (b2) relient l'effluent du réacteur R2 à l'entrée du réacteur R1 qui devient le second réacteur. La section (c) permet de relier l'effluent du réacteur R1 à l'entrée du réacteur R3. (Figure 3)According to one embodiment of the invention, the improved method comprises 4 additional fixed links (a), (b1), (b2) and (c). During the change of the catalyst of R1, the reactor R2 is directly fed with the feed via the link (a) without passing through the reactor R1. During the change of the catalyst of R1, the reactor R2 then becomes the first reactor and is thus directly fed with the feed via section (a) which no longer passes through the reactor of R1. After the change of the catalyst of R1, the reactor R2 remains the first reactor and the sections (b1) and (b2) connect the effluent of the reactor R2 to the inlet of the reactor R1 which becomes the second reactor. Section (c) makes it possible to connect the effluent from the reactor R1 to the inlet of the reactor R3. ( Figure 3 )

Selon un second mode de réalisation (figure 2), l'unité d'hydrogénation selon l'invention, comprend des liaisons additionnelles amovibles permettant également de maintenir la production pendant le changement du catalyseur du réacteur R1. La section (d) permet ainsi d'isoler totalement le réacteur R1 pendant le changement de son catalyseur et ainsi de garantir des conditions de sécurité accrues. Le réacteur R2 sera directement alimenté par la charge sans passer par le réacteur R1. L'effluent du réacteur R2 sera ensuite directement dirigé vers l'entrée du réacteur R3. Les sections (e) et (f) de la figure 4 montrent l'enchaînement des réacteurs d'hydrogénation après le changement du catalyseur du réacteur R1. Le réacteur R2 alimenté par la charge via la section (d) reste le premier réacteur. La section (e) relie alors l'effluent du réacteur R2 à l'entrée du réacteur R1 qui devient le second réacteur. La section (f) permet de relier l'effluent du réacteur R1 à l'entrée du réacteur R3.According to a second embodiment ( figure 2 ), the hydrogenation unit according to the invention comprises additional removable connections also making it possible to maintain the production during the change of the catalyst of the reactor R1. Section (d) thus completely isolates the reactor R1 during the change of its catalyst and thus to ensure increased safety conditions. The reactor R2 will be directly fed with the feed without passing through the reactor R1. The effluent from the reactor R2 will then be directly directed to the reactor inlet R3. Sections (e) and (f) of the figure 4 show the sequence of the hydrogenation reactors after the change of the reactor catalyst R1. The reactor R2 fed with the feed via section (d) remains the first reactor. Section (e) then connects the effluent from reactor R2 to the inlet of reactor R1 which becomes the second reactor. Section (f) makes it possible to connect the effluent from reactor R1 to the inlet of reactor R3.

Selon un troisième mode de réalisation de l'invention (figure 5), le réacteur R2 est isolé des réacteurs R1 et R3 pendant le changement de son catalyseur sans interrompre la production. Les liaisons fixes (a), (b1) et (b2) additionnelles de la figure 5 seront fermées tandis que la liaison (c) sera ouverte permettant ainsi un traitement des charges via les réacteurs R1 puis R3 uniquement. Le réacteur R2 est ainsi court-circuité pendant toute la durée nécessaire au changement de son catalyseur.According to a third embodiment of the invention ( figure 5 ), the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production. The additional fixed links (a), (b1) and (b2) of the figure 5 will be closed while the link (c) will be open thus allowing a treatment of the charges via the reactors R1 then R3 only. The reactor R2 is thus short-circuited for the duration necessary for the change of its catalyst.

Selon un quatrième mode de réalisation de l'invention (figure 6), le réacteur R2 est isolé des réacteurs R1 et R3 pendant le changement de son catalyseur sans interrompre la production par la connexion des liaisons amovibles additionnelles (g) et (h) telles qu'indiquées sur la figure 6. La charge à traiter alimentera directement le réacteur R1 via la section (g) puis l'effluent du réacteur R1 sera dirigé vers l'entrée du réacteur R3 via la section (h) de manière à ne jamais passer par le réacteur R2.According to a fourth embodiment of the invention ( figure 6 ), the reactor R2 is isolated from the reactors R1 and R3 during the change of its catalyst without interrupting the production by the connection of the additional removable links (g) and (h) as indicated on the figure 6 . The feedstock to be treated will feed the reactor R1 directly via section (g) and then the reactor effluent R1 will be directed to the reactor inlet R3 via section (h) so as never to go through reactor R2.

Une fois le catalyseur du réacteur R2 renouvelé et activé, le procédé de désaromatisation optimisé selon les troisième et quatrième modes de réalisation s'opérera selon les figures 7 et 8 par fermeture des liaisons fixes additionnelles (a), (b1), (b2) et (c) ou grâce aux liaisons amovibles additionnelles connectées (g), (i) et (j) de manière à ce que la charge à traiter soit dirigée vers le réacteur R1 puis le réacteur R2 et enfin le réacteur R3.Once the catalyst of the reactor R2 is renewed and activated, the dearomatization process optimized according to the third and fourth embodiments will be carried out according to the Figures 7 and 8 by closing the additional fixed links (a), (b1), (b2) and (c) or by virtue of the additional removable connections connected (g), (i) and (j) so that the load to be treated is directed to the reactor R1 then the reactor R2 and finally the reactor R3.

Le diamètre de chaque section fixe ou amovible additionnelle sera adapté à l'unité d'hydrogénation et aux capacités prévisionnelles de production. En outre, chaque section, (a), (b1), (b2) et (c) comprendra des vannes permettant l'ouverture ou la fermeture de la section selon les besoins.The diameter of each additional fixed or removable section will be adapted to the hydrogenation unit and to the forecasting capacities of production. In addition, each section, (a), (b1), (b2) and (c) will include valves to open or close the section as required.

L'amélioration du procédé selon l'invention permet ainsi une utilisation maximale à 100% de saturation du catalyseur du réacteur R1. Le rendement est ainsi optimal contrairement à l'enchaînement classique ou le catalyseur du réacteur R1 doit être remplacé à 90% de saturation maximum pour éviter le débordement du soufre sur le réacteur suivant.The improvement of the process according to the invention thus allows a maximum utilization at 100% saturation of the catalyst of the reactor R1. The yield is thus optimal in contrast to the conventional sequence or the reactor catalyst R1 must be replaced at 90% maximum saturation to avoid overflowing sulfur on the next reactor.

Le procédé de désaromatisation selon l'invention permet l'utilisation du réacteur R2 en tant que premier réacteur pendant le changement du catalyseur du réacteur R1. Le réacteur R2 sera donc directement en contact avec le soufre contenu dans les charges à traiter pour la production de fluides hydrocarbonés. Le catalyseur du réacteur R2 selon l'invention devra également être changé à 100% de saturation.The dearomatization process according to the invention allows the use of the reactor R2 as the first reactor during the change of the catalyst of the reactor R1. The reactor R2 will therefore be in direct contact with the sulfur contained in the feeds to be treated for the production of hydrocarbon fluids. The catalyst of the reactor R2 according to the invention will also have to be changed to 100% saturation.

Les catalyseurs d'hydrogénation types peuvent comprendre les métaux suivants : nickel, platine, palladium, rhénium, rhodium, tungstate de nickel, nickel-molybdène, molybdène, molybdate de cobalt, molybdate de nickel sur supports de silice et/ou d'alumine ou sur zéolites. Un catalyseur préféré est un catalyseur à base de Ni sur un support d'alumine dont l'aire de surface spécifique varie entre 100 et 200 m2/g de catalyseur.Typical hydrogenation catalysts may include the following metals: nickel, platinum, palladium, rhenium, rhodium, nickel tungstate, nickel-molybdenum, molybdenum, cobalt molybdate, nickel molybdate on silica and / or alumina supports, or on zeolites. A preferred catalyst is a Ni-based catalyst on an alumina support whose specific surface area varies between 100 and 200 m 2 / g of catalyst.

Les conditions d'hydrogénation types sont les suivantes :

  • Pression : 50 à 160 bars, préférablement 100 à 150 bars et plus préférablement 110 à 120 bars
  • Température : 80 à 180 °C, préférablement 120 à 160 °C et plus préférablement 130 à 150 °C
  • Vitesse volumique horaire (VVH) : 0,2 à 5 h-1, préférablement 0,5 à 3 et plus préférablement 0,8 à 2
  • Vitesse de traitement par l'hydrogène : 50 à 300 Nm3/tonne de charge, préférablement 80 à 250 et plus préférablement 100 à 200.
Typical hydrogenation conditions are as follows:
  • Pressure: 50 to 160 bar, preferably 100 to 150 bar and more preferably 110 to 120 bar
  • Temperature: 80 to 180 ° C, preferably 120 to 160 ° C and more preferably 130 to 150 ° C
  • Hourly volume velocity (VVH): 0.2 to 5 h -1, preferably 0.5 to 3 and more preferably 0.8 to 2
  • Hydrogen treatment rate: 50 to 300 Nm 3 / ton of feed, preferably 80 to 250 and more preferably 100 to 200.

Aucune hydrodésulfuration préalable de la charge n'a essentiellement lieu : les composés soufrés sont piégés par le catalyseur plutôt que d'être libérés sous forme de H2S. Dans ces conditions, la teneur en aromatiques du produit final demeurera très basse, typiquement inférieure à 100 ppm, même si son point d'ébullition est élevé (typiquement supérieur à 300 °C voire supérieur à 320 °C).No prior hydrodesulphurization of the feed essentially takes place: the sulfur compounds are trapped by the catalyst rather than being released as H2S. Under these conditions, the aromatic content of the final product will remain very low, typically less than 100 ppm, even if its boiling point is high (typically greater than 300 ° C or even greater than 320 ° C).

Il est possible d'utiliser un réacteur qui comporte deux ou trois lits catalytiques ou plus. Les catalyseurs peuvent être présents à des quantités variables ou essentiellement égales dans chaque réacteur ; pour trois réacteurs, les quantités en fonction du poids peuvent par exemple être de 0,05-0,5/0,10-0,70/0,25-0,85, de préférence 0,07-0,25/0,15-0,35/0,4-0,78 et plus préférentiellement de 0,10-0,20/0,20-0,32/0,48-0,70.It is possible to use a reactor that has two or three or more catalyst beds. The catalysts may be present in varying or substantially equal amounts in each reactor; for three reactors, the amounts by weight can for example be 0.05-0.5 / 0.10-0.70 / 0.25-0.85, preferably 0.07-0.25 / 0 , 15-0.35 / 0.4-0.78 and more preferably 0.10-0.20 / 0.20-0.32 / 0.48-0.70.

Il peut être nécessaire d'insérer des boîtes de quench (au sens anglais « d'étouffement de la réaction ») dans le système de recycle pour refroidir les effluents d'un réacteur ou d'un lit catalytique à un autre afin de contrôler les températures de réaction et de ce fait l'équilibre hydrothermique de la réaction d'hydrogénation.It may be necessary to insert quench boxes in the recycle system to cool effluents from one reactor or catalytic bed to another to control reaction temperatures and thereby the hydrothermal equilibrium of the hydrogenation reaction.

Dans un mode de réalisation, le produit obtenu et/ou les gaz séparés sont au moins en partie recyclé(s) dans le système d'alimentation des stades d'hydrogénation. Cette dilution contribue à maintenir l'exothermie de la réaction dans des limites contrôlées, en particulier au premier stade. Le recyclage permet en outre un échange de chaleur avant la réaction et aussi un meilleur contrôle de la température.In one embodiment, the product obtained and / or the separated gases are at least partially recycled (s) in the feed system stages hydrogenation. This dilution helps to maintain the exothermicity of the reaction within controlled limits, particularly in the first stage. Recycling also allows heat exchange before the reaction and also better control of the temperature.

L'effluent de l'unité d'hydrogénation contient le produit hydrogéné et de l'hydrogène. Des séparateurs flash sont utilisés pour séparer les effluents en phase gazeuse, principalement l'hydrogène résiduel, et en phase liquide, principalement les hydrocarbures hydrogénés. Le procédé peut être effectué en utilisant trois séparateurs flash, un à pression élevée, un à pression intermédiaire et un à basse pression très proche de la pression atmosphérique.The effluent from the hydrogenation unit contains the hydrogenated product and hydrogen. Flash separators are used to separate the effluents in the gas phase, mainly the residual hydrogen, and in the liquid phase, mainly the hydrogenated hydrocarbons. The process can be carried out using three flash separators, one high pressure, one intermediate pressure and one low pressure very close to atmospheric pressure.

L'hydrogène gazeux qui est recueilli en haut des séparateurs flash peut être recyclé dans le système d'alimentation de l'unité d'hydrogénation ou à différents niveaux dans les unités d'hydrogénation entre les réacteurs.The hydrogen gas that is collected at the top of the flash separators can be recycled to the feed system of the hydrogenation unit or at different levels in the hydrogenation units between the reactors.

Selon l'invention, le produit final séparé est à pression atmosphérique. Il alimente ensuite directement l'unité de fractionnement sous vide. De préférence, le fractionnement se fera à une pression comprise entre 10 et 50 mbars et plus préférentiellement à environ 30 mbars.According to the invention, the final product separated is at atmospheric pressure. It then directly feeds the vacuum fractionation unit. Preferably, the fractionation will be at a pressure of between 10 and 50 mbar and more preferably at about 30 mbar.

Le fractionnement peut être effectué de façon à ce qu'il soit possible de retirer simultanément divers fluides hydrocarbonés de la colonne de fractionnement et à ce que leur température d'ébullition puisse être prédéterminée.The fractionation can be carried out in such a way that it is possible to simultaneously remove various hydrocarbon fluids from the fractionation column and that their boiling temperature can be predetermined.

Les réacteurs d'hydrogénation, les séparateurs et l'unité de fractionnement peuvent donc être directement connectés sans qu'il soit nécessaire d'utiliser des cuves intermédiaires, ce qui est habituellement le cas. Cette intégration de l'hydrogénation et du fractionnement permet une intégration thermique optimisée associée à une réduction du nombre d'appareils et à une économie d'énergie.The hydrogenation reactors, the separators and the fractionation unit can therefore be directly connected without the need to use intermediate tanks, which is usually the case. This integration of hydrogenation and fractionation allows optimized thermal integration combined with a reduction in the number of devices and energy savings.

Conformément au procédé selon l'invention, la coupe pétrolière utilisée en tant que charge est une coupe pétrolière de raffinerie type qui peut être issue d'une unité d'hydrocraquage des distillats et peut aussi comprendre de hautes teneurs en aromatiques comme un Diesel classique à teneur ultra-basse en soufre, un Diesel lourd ou un carburant aviation.According to the process according to the invention, the petroleum fraction used as a feedstock is a typical refinery type petroleum cut which can come from a hydrocracking unit of distillates and may also include high aromatics such as conventional ultra-low sulfur diesel, heavy diesel or aviation fuel.

La coupe pétrolière de raffinerie peut optionnellement subir un hydrocraquage pour obtenir des molécules plus courtes et simples par addition d'hydrogène sous pression élevée en la présence d'un catalyseur. Des descriptions de procédés d'hydrocraquage sont fournies dans Hydrocarbon Processing (novembre 1996, pages 124 à 128), dans Hydrocracking Science and Technology (1996) et dans les brevets US 4347124 , US 4447315 et WO-A-99/47626 .The petroleum refinery cut can optionally be hydrocracked to obtain shorter and single molecules by adding hydrogen under high pressure in the presence of a catalyst. Descriptions of hydrocracking processes are provided in Hydrocarbon Processing (November 1996, pages 124-128), in Hydrocracking Science and Technology (1996) and in patents. US 4347124 , US 4447315 and WO-A-99/47626 .

Une coupe pétrolière préférée en tant que coupe pétrolière de raffinerie selon l'invention est une coupe gazole hydrocraquée issue de la distillation sous-vide.A preferred petroleum cut as a refinery petroleum cutter according to the invention is a hydrocracked gasoil fraction resulting from the vacuum distillation.

La coupe pétrolière de raffinerie optionnellement hydrocraquée peut aussi être mélangée avec une coupe hydrocarbonnée issue d'un procédé de transformation des gaz en liquides (Gas to liquid en anglais ou GTL) et/ou de condensats gazeux et/ou une coupe hydrocarbonnée hydrodésoxygénée obtenue à partir de la biomasse.The optionally hydrocracked refinery oil cut can also be mixed with a hydrocarbon cut resulting from a gas to liquid (GOT) process and / or gaseous condensates and / or a hydrodeoxygenated hydrocarbon cut obtained at from biomass.

Dans l'idéal et conformément au procédé selon l'invention la coupe pétrolière en mélange ou non contient moins de 15 ppm de soufre, de préférence moins de 8 ppm et plus préférentiellement moins de 5 ppm (selon la norme EN ISO 20846) et moins de 70 % en poids d'aromatiques, de préférence moins de 50 % en poids et plus préférentiellement moins de 30 % en poids (selon la norme IP391 ou EN 12916) et présente une densité inférieure à 0,830 g/cm3 (selon la norme EN ISO 12185).Ideally, and in accordance with the process according to the invention, the petroleum fraction, whether or not mixed, contains less than 15 ppm of sulfur, preferably less than 8 ppm and more preferably less than 5 ppm (according to EN ISO 20846) and less of 70% by weight of aromatics, preferably less than 50% by weight and more preferably less than 30% by weight (according to the standard IP391 or EN 12916) and has a density of less than 0.830 g / cm 3 (according to EN standard ISO 12185).

Les fluides produits conformément au procédé de l'invention ont un domaine d'ébullition compris entre 100 à 400 °C et ont une très basse teneur en aromatiques généralement inférieure à 300 ppm, de préférence inférieure à 100 ppm et plus préférentiellement inférieure à 50 ppm.The fluids produced in accordance with the process of the invention have a boiling range of between 100 and 400 ° C. and have a very low aromatic content generally less than 300 ppm, preferably less than 100 ppm and more preferably less than 50 ppm. .

Les fluides produits conformément au procédé de l'invention ont en outre une teneur en soufre extrêmement basse, inférieure à 5 ppm, de préférence inférieure à 3 ppm et plus préférentiellement inférieure à 0,5 ppm, à un niveau trop faible pour être décelable au moyen d'analyseurs conventionnels capables de mesurer de très basses teneurs en soufre.The fluids produced according to the process of the invention also have an extremely low sulfur content, less than 5 ppm, preferably less than 3 ppm and more preferably less than 0.5 ppm, at a level too low to be detectable at conventional analyzers capable of measuring very low levels of sulfur.

Les fluides produits conformément au procédé de l'invention ont de plus:

  • une teneur en naphtènes inférieure à 60 % en poids, en particulier inférieure à 50 % voire inférieure à 40 % et/ou
  • une teneur en polynaphtènes inférieure à 30 % en poids, en particulier inférieure à 25 % voire inférieure à 20 % et/ou
  • une teneur en paraffines supérieure à 40 % en poids, en particulier supérieure à 60 % voire supérieure à 70 % et/ou
  • une teneur en isoparaffines supérieure à 20 % en poids, en particulier supérieure à 30 % voire supérieure à 40 %.
The fluids produced in accordance with the process of the invention furthermore have:
  • a naphthene content of less than 60% by weight, in particular less than 50% or even less than 40% and / or
  • a polynaphthene content of less than 30% by weight, in particular less than 25% or even less than 20% and / or
  • a paraffin content greater than 40% by weight, in particular greater than 60% or even greater than 70% and / or
  • an isoparaffin content greater than 20% by weight, in particular greater than 30% or even greater than 40%.

Les fluides produits conformément au procédé de l'invention possèdent des propriétés remarquables en termes de point d'aniline ou de pouvoir solvant, de poids moléculaire, de pression de vapeur, de viscosité, de conditions d'évaporation définies pour les systèmes pour lesquels un séchage est important et de tension superficielle définie.The fluids produced according to the process of the invention have remarkable properties in terms of aniline point or solvent power, molecular weight, vapor pressure, viscosity, evaporation conditions defined for systems for which a drying is important and defined surface tension.

Les fluides produits conformément au procédé de l'invention peuvent être utilisés comme liquides de forage, comme solvants industriels, dans des fluides de revêtement, pour l'extraction des métaux, dans l'industrie minière, dans les explosifs, dans des formulations de démoulage du béton, dans des adhésifs, dans des encres d'imprimerie, pour le travail des métaux, comme huiles de laminage, comme liquides d'usinage par électroérosion, comme agents antirouille dans des lubrifiants industriels, comme huiles de dilution, dans des produits d'étanchéité ou des formulations polymériques à base de silicone, comme abaisseurs de viscosité dans des formulations à base de chlorure de polyvinyle plastifié, dans des résines, dans des formulations phytosanitaires pour la protection des cultures, dans des produits pharmaceutiques, dans des compositions de peinture, dans des polymères utilisés dans le traitement des eaux, dans la fabrication du papier ou dans des pâtes d'impression ou encore en tant que solvants de nettoyage.The fluids produced according to the process of the invention can be used as drilling liquids, as industrial solvents, in coating fluids, for the extraction of metals, in the mining industry, in explosives, in demoulding formulations concrete, in adhesives, in printing inks, for metal working, as rolling oils, as electro-erosion machining liquids, as anti-rust agents in industrial lubricants, as diluting oils, in sealing or silicone-based polymeric formulations, such as viscosity-lowering in plasticized polyvinyl chloride formulations, in resins, in crop protection phytosanitary formulations, in pharmaceuticals, in paint compositions , in polymers used in the treatment of water, in the manufacture of paper or in printing pastes or as cleaning solvents.

EXEMPLEEXAMPLE

Dans la suite de la présente description, des exemples sont donnés à titre illustratif de la présente invention et ne visent en aucun cas à en limiter la portée.In the remainder of the present description, examples are given by way of illustration of the present invention and are not intended in any way to limit its scope.

Le schéma de la figure 9 montre une comparaison entre un système normal de réacteurs d'hydrogénation en série et le système optimisé selon l'invention pendant le changement du catalyseur du réacteur R1 puis du catalyseur du réacteur R2.The scheme of the figure 9 shows a comparison between a normal system of series hydrogenation reactors and the optimized system according to the invention during the change of the catalyst of the reactor R1 and the catalyst of the reactor R2.

Pour les besoins de la présente comparaison, il est considéré que les 3 réacteurs de l'unité d'hydrodéaromatisation ont un volume égal à 110 m3 avec un volume de catalyseur pour le réacteur R1 égal à 25 m3 et égal à 35m3 pour le réacteur R2.For the purposes of this comparison, it is considered that the 3 reactors of the hydrodearomatization unit have a volume equal to 110 m3 with a catalyst volume for the reactor R1 equal to 25 m3 and equal to 35 m3 for the reactor R2 .

Selon ce schéma, on constate que 221 heures soit environ 9 jours sont nécessaires pour les opérations de changement du catalyseur du réacteur R1 et 245 heures, soit environ 10 jours pour le changement du catalyseur du réacteur R2. Ce temps est plus important pour le changement du catalyseur du réacteur R2 que pour celui du réacteur R1 car le volume du catalyseur de R2 est plus important.According to this scheme, it is found that 221 hours or about 9 days are necessary for the reactor R1 catalyst change operations and 245 hours, or about 10 days for the change of the reactor R2 catalyst. This time is more important for the change of the catalyst of the reactor R2 than for that of the reactor R1 because the volume of the catalyst of R2 is greater.

Le temps nécessaire au changement du catalyseur du réacteur R1 dans une configuration d'unité de désaromatisation optimisée est le même que celui d'une configuration normale, soit environ 9 jours. Toutefois, la configuration optimisée des réacteurs R1 et R2 de l'unité de désaromatisation selon l'invention permet de continuer la production de fluides hydrocarbonés pendant les changements des catalyseurs des réacteurs R1 et R2 contrairement à une configuration normale.The time required to change the reactor catalyst R1 in an optimized dearomatization unit configuration is the same as that of a normal configuration, about 9 days. However, the optimized configuration of the reactors R1 and R2 of the desaromatisation unit according to the invention makes it possible to continue the production of hydrocarbon fluids during the changes of the catalysts of the reactors R1 and R2 contrary to a normal configuration.

D'autre part, le catalyseur des réacteurs R1 et R2 dans la configuration optimisée selon l'invention sont changés à 100% de saturation contrairement à une configuration normale avec laquelle il est nécessaire de changer le catalyseur à 90% de saturation pour éviter le débordement du soufre vers le réacteur suivant.On the other hand, the catalyst of the reactors R1 and R2 in the optimized configuration according to the invention are changed to 100% saturation in contrast to a normal configuration with which it is necessary to change the catalyst to 90% saturation to avoid overflow. sulfur to the next reactor.

Claims (11)

  1. A process for continuous dearomatization of a petroleum cut to produce a hydrocarbon-containing fluid with a very low sulphur content and very low aromatic compounds content, comprising at least one stage of catalytic hydrogenation at a temperature comprised between 80 and 180°C and at a pressure comprised between 50 and 160 bar, characterized in that the stage of catalytic hydrogenation comprises three interchangeable reactors linked in series, each comprising at least one catalyst, said process comprising the stages of:
    a) isolation of one of the reactors,
    b) feeding one of the two non-isolated reactors with the petroleum cut and feeding the second non-isolated reactor with the effluent from the first non-isolated reactor,
    c) regeneration of the isolated reactor by replacement of the catalyst,
    d) feeding the regenerated reactor with the effluent from the first of the two non-isolated reactors of stage b) and feeding the second non-isolated reactor of stage b) with the effluent from the regenerated reactor.
  2. The process according to claim 1, characterized in that the first and second reactors can be isolated in turn.
  3. The process according to one of claims 1 or 2, characterized in that the catalysts of the first and second reactors are changed without prolonged interruption of the production of hydrocarbon-containing fluids.
  4. The process according to any one of claims 1 to 3, characterized in that the reactors in series are linked by fixed additional connections making it possible to isolate one of the reactors.
  5. The process according to any one of claims 1 to 3, characterized in that the reactors in series are linked by removable additional connections making it possible to isolate one of the reactors.
  6. The process according to any one of claims 1 to 5, characterized in that the reactors comprise catalysts, the catalysts of the reactors being changed at 100% saturation.
  7. The process according to any one of claims 1 to 6, characterized in that the rate of hydrogenation is comprised between 50 and 300 Nm3/tonne of petroleum cut.
  8. The process according to any one of claims 1 to 7, characterized in that the quantity by weight of catalyst in each of the reactors is 0.05-0.5/0.10-0.70/0.25-0.85.
  9. The process according to claim 8, characterized in that the quantity by weight of catalyst in each of the reactors is 0.07-0.25/0.15-0.35/0.4-0.78 and more preferentially 0.10-0.20/0.20-0.32/0.48-0.70.
  10. The process according to one of claims 1 to 9, comprising the stages of:
    a) isolation of the first reactor in series,
    b) feeding the second reactor in series with the petroleum cut and feeding the third reactor in series with the effluent from the second reactor,
    c) replacement of the catalyst of the first reactor,
    d) feeding the first reactor with the effluent from the second reactor and feeding the third reactor with the effluent from the first reactor.
  11. The process according to one of claims 1 to 9, comprising the stages of:
    a) isolation of the second reactor in series,
    b) feeding the first reactor in series with the petroleum cut and feeding the third reactor in series with the effluent from the first reactor,
    c) replacement of the catalyst of the second reactor,
    d) feeding the second reactor with the effluent from the first reactor and feeding the third reactor with the effluent from the second reactor.
EP14814825.7A 2013-12-23 2014-12-15 Improved method for the removal of aromatics from petroleum fractions Active EP3087160B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363388A FR3015514B1 (en) 2013-12-23 2013-12-23 IMPROVED PROCESS FOR DESAROMATIZATION OF PETROLEUM CUTTERS
PCT/EP2014/077744 WO2015097009A1 (en) 2013-12-23 2014-12-15 Improved method for the removal or aromatics from petroleum fractions

Publications (2)

Publication Number Publication Date
EP3087160A1 EP3087160A1 (en) 2016-11-02
EP3087160B1 true EP3087160B1 (en) 2017-10-25

Family

ID=50483045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14814825.7A Active EP3087160B1 (en) 2013-12-23 2014-12-15 Improved method for the removal of aromatics from petroleum fractions

Country Status (9)

Country Link
US (1) US10246652B2 (en)
EP (1) EP3087160B1 (en)
KR (1) KR102553702B1 (en)
CN (1) CN105992809A (en)
AR (1) AR098916A1 (en)
CA (1) CA2934605A1 (en)
FR (1) FR3015514B1 (en)
TW (1) TW201533230A (en)
WO (1) WO2015097009A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106947531B (en) * 2016-01-06 2019-04-12 中国石油化工股份有限公司 A kind of method of catalytic hydroconversion containing aromatics diesel
CN106947529B (en) * 2016-01-06 2019-03-19 中国石油化工股份有限公司 A method of the conversion production gasoline of cut fraction hydrogenation containing aromatics diesel
CN106947528B (en) * 2016-01-06 2019-03-19 中国石油化工股份有限公司 A kind of hydrogenating conversion process containing aromatics diesel
KR101971360B1 (en) * 2017-10-30 2019-04-22 한화토탈 주식회사 Method of manufacturing a naphthene-rich dearomatized hydrocarbon fluids

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB834776A (en) 1957-11-26 1960-05-11 Bataafsche Petroleum A method of preparing a liquid hydrocarbon fuel having a high heat of combustion perunit volume
GB1232594A (en) 1967-07-11 1971-05-19
JPS4934527B1 (en) 1969-04-25 1974-09-14
GB1282774A (en) 1969-08-27 1972-07-26 Shell Int Research A process for the catalytic hydrogenation of hydrocarbon oils or oil fractions and a catalyst therefor
GB1218920A (en) 1969-09-26 1971-01-13 Chevron Res Catalytic production of low pour point lubricating oils
US3767562A (en) 1971-09-02 1973-10-23 Lummus Co Production of jet fuel
US3846278A (en) 1971-09-02 1974-11-05 Lummus Co Production of jet fuel
NL153934B (en) 1973-02-02 1977-07-15 Basf Ag PROCEDURE FOR THE CATALYTIC HYDROGENATION OF AROMATICS, SULFUR AND NITROGEN COMPOUNDS CONTAINING MINERAL OIL FRACTIONS.
US4036734A (en) 1973-11-02 1977-07-19 Exxon Research And Engineering Company Process for manufacturing naphthenic solvents and low aromatics mineral spirits
NL191763C (en) * 1979-09-26 1996-07-02 Shell Int Research Method of demetallizing a hydrocarbon oil.
JPS5820657B2 (en) 1980-06-24 1983-04-25 日鉄鉱業株式会社 Specific gravity sorting method and device using magnetic fluid
US4447315A (en) 1983-04-22 1984-05-08 Uop Inc. Hydrocracking process
US4601814A (en) 1983-05-27 1986-07-22 Total Engineering And Research Company Method and apparatus for cracking residual oils
US4816137A (en) 1983-05-27 1989-03-28 Total Engineering And Research Company Method for cracking residual oils
US4469590A (en) 1983-06-17 1984-09-04 Exxon Research And Engineering Co. Process for the hydrogenation of aromatic hydrocarbons
US4875992A (en) 1987-12-18 1989-10-24 Exxon Research And Engineering Company Process for the production of high density jet fuel from fused multi-ring aromatics and hydroaromatics
US5114562A (en) 1990-08-03 1992-05-19 Uop Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
FR2681871B1 (en) * 1991-09-26 1993-12-24 Institut Francais Petrole PROCESS FOR HYDROTREATING A HEAVY FRACTION OF HYDROCARBONS WITH A VIEW TO REFINING IT AND CONVERTING IT TO LIGHT FRACTIONS.
US5498810A (en) 1991-11-21 1996-03-12 Uop Selective isoparaffin synthesis from naphtha
FR2714387B1 (en) 1993-12-28 1996-02-02 Inst Francais Du Petrole Process for obtaining a base for fuel for an internal combustion engine by hydrotreatment and extraction and the product obtained.
US5612422A (en) 1995-05-04 1997-03-18 The Dow Chemical Company Process for hydrogenating aromatic polymers
FR2734575B1 (en) 1995-05-22 1997-08-22 Total Raffinage Distribution CARBUREACTOR AND PROCESS FOR PREPARING THE SAME
FR2757872B1 (en) 1996-12-31 1999-06-25 Total Raffinage Distribution PROCESS FOR HYDROTREATING A HYDROCARBON CHARGE AND DEVICE FOR IMPLEMENTING SAME
EP0921179A1 (en) 1997-12-05 1999-06-09 Fina Research S.A. Production of olefins
DK1064343T3 (en) 1998-03-14 2004-06-21 Chevron Usa Inc Integrated Hydroforming Process with Hydrogen Counterflow
FR2776667B1 (en) 1998-03-31 2000-06-16 Total Raffinage Distribution METHOD AND DEVICE FOR ISOMERIZING HIGH-BENZENE GASOLINE ESSENCES
FR2793706B1 (en) 1999-05-18 2001-08-03 Total Raffinage Distribution OXIDE-BASED CATALYTIC SUPPORT OF A METAL FROM GROUP IVB OF THE PERIODIC CLASSIFICATION OF ELEMENTS, ITS PREPARATION AND USES
FR2808534B1 (en) 2000-05-03 2002-08-02 Total Raffinage Distribution BIODEGRADABLE LUBRICANT COMPOSITION AND USES THEREOF, ESPECIALLY IN A DRILLING FLUID
FR2811327B1 (en) 2000-07-05 2002-10-25 Total Raffinage Distribution HYDROCARBON CRACKING PROCESS AND DEVICE IMPLEMENTING TWO SUCCESSIVE REACTIONAL CHAMBERS
KR100808041B1 (en) 2000-07-17 2008-02-28 쉘 인터내셔날 리서치 마챠피즈 비.브이. Process to prepare water-white lubricant base oil
US20040055934A1 (en) * 2000-12-11 2004-03-25 Pascal Tromeur Method for hydrotreatment of a heavy hydrocarbon fraction with switchable reactors and reactors capable of being shorted out
CA2478195C (en) 2002-03-06 2011-08-30 Exxonmobil Chemical Patents Inc. Improved hydrocarbon fluids
EP1342774A1 (en) 2002-03-06 2003-09-10 ExxonMobil Chemical Patents Inc. A process for the production of hydrocarbon fluids
FR2850978B1 (en) 2003-02-12 2006-08-25 Totalfinaelf France PROCESS FOR MANUFACTURING HYDROCARBON FLUIDS RICH IN NAPHTHENIC HYDROCARBONS
JP2004269685A (en) 2003-03-07 2004-09-30 Nippon Oil Corp Gas oil composition and its manufacturing method
FR2864101B1 (en) 2003-12-19 2006-03-17 Total France CATALYTIC METHOD FOR PURIFYING LIGHT HYDROCARBONS
CA2593533C (en) 2005-01-14 2012-07-10 Exxonmobil Chemical Patents Inc. Ultra pure fluids
JP5105326B2 (en) 2007-04-19 2012-12-26 昭和電工株式会社 Hydrogenation method and petrochemical process
EP2290045A1 (en) 2009-07-27 2011-03-02 Total Petrochemicals Research Feluy A process for the production of bio-naphtha from complex mixtures of natural occurring fats and oils
FR2950072B1 (en) * 2009-09-11 2013-11-01 Inst Francais Du Petrole METHOD OF HYDROCONVERSION IN FIXED BED OF A CRUDE OIL, OFF OR NOT, USING PERMUTABLE REACTORS FOR THE PRODUCTION OF A SYNTHETIC RAW PRERAFFIN.
WO2011061576A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
WO2011061575A1 (en) * 2009-11-20 2011-05-26 Total Raffinage Marketing Process for the production of hydrocarbon fluids having a low aromatic content
US9174202B2 (en) 2009-12-16 2015-11-03 Total Raffinage Marketing Catalyst that can be used in hydrotreatment, comprising metals of groups VIII and VIB, and preparation with acetic acid and dialkyl succinate C1-C4
BR112012023261B1 (en) 2010-03-15 2018-09-18 Total Res & Technology Feluy propylene production by dehydration and simultaneous isomerization of the isobutanol backbone over acid catalysts followed by metathesis
FR2958655B1 (en) 2010-04-09 2013-07-05 Total Raffinage Marketing PROCESS FOR PURIFYING AROMATIC EXTRACTS CONTAINING AROMATIC POLYCYCLIC COMPOUNDS
JP2013533474A (en) 2010-06-16 2013-08-22 トタル リサーチ アンド テクノロジー フエリユイ Sampling and analysis method for obtaining detailed analysis values of reactor outlet flow
EP2404981A1 (en) 2010-07-06 2012-01-11 Total Raffinage Marketing Slurry catalyst and slurry flakes valorization
EP2404670A1 (en) 2010-07-06 2012-01-11 Total Raffinage Marketing Process for the hydroconversion of a low quality hydrocarbonaceous feedstock
EP2404983A1 (en) 2010-07-06 2012-01-11 Total Raffinage Marketing Hydroconversion process for heavy hydrocarbonaceous feedstock
EP2404982A1 (en) 2010-07-06 2012-01-11 Total Raffinage Marketing Catalyst preparation reactors from catalyst precursor used for feeding reactors to upgrade heavy hydrocarbonaceous feedstocks
CN102311789A (en) * 2010-07-07 2012-01-11 中国石油化工股份有限公司 Heavy hydrocarbon flexible hydrogenation method
FR2969651B1 (en) 2010-12-24 2014-02-21 Total Raffinage Marketing HYDROCARBONATE LOADING CONVERSION METHOD COMPRISING SCIST OIL BY DECONTAMINATION, BOILING BED HYDROCONVERSION, AND ATMOSPHERIC DISTILLATION FRACTIONATION
FR2969650B1 (en) 2010-12-24 2014-04-11 Total Raffinage Marketing HYDROCARBONATE LOADING CONVERSION METHOD COMPRISING SCHIST HYDROCONVERSION OIL IN BOILING BED, ATMOSPHERIC DISTILLATION FRACTIONATION AND LIQUID / LIQUID EXTRACTION OF HEAVY FRACTION
FR2969648B1 (en) 2010-12-24 2014-04-11 Total Raffinage Marketing HYDROCARBONATE CHARGING CONVERSION PROCESS COMPRISING SCHIST OIL BY BOILING BED HYDROCONVERSION, ATMOSPHERIC DISTILLATION FRACTIONATION, AND HYDROCRACKING
CN103282465A (en) 2010-12-28 2013-09-04 道达尔炼油与销售部 Nitrile containing hydrocarbon feedstock, process for making the same and use thereof
FR2984329B1 (en) 2011-12-20 2014-11-21 Total Raffinage Marketing GRAFTED POLYMER AND COMPOSITION BITUMEN / POLYMER THERMOREVERSIBLE CROSSLINKING CONTAINING SUCH POLYMER
FR2984915B1 (en) * 2011-12-22 2016-07-15 Ifp Energies Now METHOD FOR SELECTIVE HYDROGENATION OF OLEFINIC LOADS WITH PERMUTABLE REACTORS INCLUDING AT LEAST ONE REACTOR SHORT CIRCUITAGE STEP

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR098916A1 (en) 2016-06-22
FR3015514A1 (en) 2015-06-26
WO2015097009A1 (en) 2015-07-02
CN105992809A (en) 2016-10-05
TW201533230A (en) 2015-09-01
US20160369182A1 (en) 2016-12-22
EP3087160A1 (en) 2016-11-02
CA2934605A1 (en) 2015-07-02
KR20160102527A (en) 2016-08-30
KR102553702B1 (en) 2023-07-11
FR3015514B1 (en) 2016-10-28
US10246652B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
EP4189038B1 (en) Process for treating plastic pyrolysis oil including hydrocracking in two steps
WO2016192891A1 (en) Method for converting feedstocks comprising a hydrotreatment step, a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils
WO2022023262A1 (en) Method for the treatment of plastic pyrolysis oils including single-stage hydrocracking
EP3087160B1 (en) Improved method for the removal of aromatics from petroleum fractions
WO2012085407A1 (en) Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking
CA3189892A1 (en) Method for processing pyrolysis oils from plastics and/or solid recovered fuels loaded with impurities
FR3013357A1 (en)
EP4271784A1 (en) Method, including a hydrogenation step, for treating plastic pyrolysis oils
EP3164467B1 (en) Process for dearomatization of petroleum cuts
US20230279302A1 (en) Process for the production of fluids
WO2024149864A1 (en) Method for producing fluids
EP1310544B1 (en) Process for the conversion of heavy petroleum fractions for the production of a feedstock for a catalytic cracking process and low sulfur middle distillates
CA2937194A1 (en) Optimized use of hydrogen for the hydrotreatment of hydrocarbonated loads
CA2472906C (en) Process for the production of distillates and lubricanting oils
WO2023099304A1 (en) Method for treating plastic pyrolysis oils including a hydrogenation step and a hot separation
WO2023066694A1 (en) Method for processing pyrolysis oils from plastics and/or solid recovered fuels, loaded with impurities
EP4419627A1 (en) Method for processing pyrolysis oils from plastics and/or solid recovered fuels, loaded with impurities
FR2832159A1 (en) Treatment of petroleum feedstock involves ebulliated bed with hydroconversion catalyst that is least partly amorphous, and operates with upward flow of liquid and gas at specified conditions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170526

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 939936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014016392

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 939936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014016392

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

26N No opposition filed

Effective date: 20180726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 10

Ref country code: DE

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231220

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014016392

Country of ref document: DE

Owner name: TOTALENERGIES ONETECH, FR

Free format text: FORMER OWNER: TOTAL MARKETING SERVICES, PUTEAUX, FR

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: TOTALENERGIES ONETECH; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: VAN REET JOSEPH

Effective date: 20240423

Ref country code: BE

Ref legal event code: HC

Owner name: TOTALENERGIES MARKETING SERVICES; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: TOTAL MARKETING SERVICES

Effective date: 20240423