EP3081744B1 - Pumpe mit axialer druckfeder - Google Patents

Pumpe mit axialer druckfeder Download PDF

Info

Publication number
EP3081744B1
EP3081744B1 EP16164901.7A EP16164901A EP3081744B1 EP 3081744 B1 EP3081744 B1 EP 3081744B1 EP 16164901 A EP16164901 A EP 16164901A EP 3081744 B1 EP3081744 B1 EP 3081744B1
Authority
EP
European Patent Office
Prior art keywords
housing part
pump
spring
housing
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16164901.7A
Other languages
English (en)
French (fr)
Other versions
EP3081744A1 (de
Inventor
Claus Welte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schwaebische Huettenwerke Automotive GmbH
Original Assignee
Schwaebische Huettenwerke Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schwaebische Huettenwerke Automotive GmbH filed Critical Schwaebische Huettenwerke Automotive GmbH
Publication of EP3081744A1 publication Critical patent/EP3081744A1/de
Application granted granted Critical
Publication of EP3081744B1 publication Critical patent/EP3081744B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3448Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member with axially movable vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0023Axial sealings for working fluid
    • F04C15/0026Elements specially adapted for sealing of the lateral faces of intermeshing-engagement type machines or pumps, e.g. gear machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C15/0073Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/005Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/20Fluid liquid, i.e. incompressible
    • F04C2210/206Oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/603Centering; Aligning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings

Definitions

  • the invention relates to a pump, in particular a positive displacement pump for a liquid such as oil.
  • the pump can be designed, for example, as a vane pump or rotary vane pump.
  • the pump is particularly suitable for installation in a vehicle, such as a motor vehicle, and / or for supplying a consumer in a motor vehicle.
  • the consumer can be, for example, an internal combustion engine, a transmission, such as a steering gear or an automatic transmission.
  • the invention relates to the design or attachment of a spring of the pump.
  • a so-called cartridge pump which has a pump assembly which essentially consists of a rotor, a stroke ring, a pressure plate, press pins and a spring element.
  • the rotor is rotatably received between the pressure plate and the side plate and is surrounded by the cam ring, which is also arranged between the pressure plate and the side plate.
  • Several press pins which are pressed axially fixed into the pressure plate and penetrate the side plate and the cam ring, secure the pressure plate, the side plate and the cam ring in a rotationally and axially fixed manner to one another.
  • the spring element is attached to the pressure plate on the end face of the pressure plate pointing away from the rotor.
  • the pump assembly can be inserted into a cup-shaped housing, the spring element being supported on the bottom of the cup-shaped housing.
  • the housing is closed by a housing cover that holds the pump unit in its installed position.
  • the rotor has an internal structure for a shaft-hub connection with a pump shaft.
  • the U.S. 3,207,077 discloses a fluid pump having a rotor enclosed between a ring and two pressure plates, the ring and the pressure plates being positioned relative to one another by means of pins. On each of the pins there is a coil spring that is supported on the one hand on one of the pressure plates and on the other hand on a housing cover, whereby the pressure plate is pressed against the ring.
  • a housing cover that closes a pump chamber in which a rotor is located can be pressed by a spring with a spring force against the housing part surrounding the pump chamber.
  • a leaf spring is fastened to the face of the pump with two screws, a main section of the spring located between the screws pressing against the housing cover.
  • a plurality of leaf springs are provided, each of which is fastened to the end face of the pump by means of a screw, each leaf spring having a section which presses against the housing cover.
  • the housing cover itself forms a plurality of resilient arms, the free ends of which are each fastened to the housing part on the front side with a screw.
  • several screws attached to the housing part are provided on the front of the pump, the screw shafts of which are each surrounded by a helical spring that is indirectly supported on the one hand on the screw head and on the other hand on the housing cover.
  • the DE 10 2013 209 877 A1 shows a pendulum vane pump, which essentially has a shaft, an inner rotor, a pendulum and an outer rotor which is surrounded by a housing.
  • the outer rotor is connected to the inner rotor via a pendulum, which in turn is connected to the shaft in a rotationally fixed manner and is driven by it.
  • the housing surrounding the outer rotor is closed on the front side by a pressure plate pierced by the shaft.
  • the shaft is secured by means of a securing element on the side of the pressure plate facing away from the outer rotor.
  • the spring element is supported on the securing element.
  • the invention is based on the object of specifying a space-saving pump that can be produced inexpensively.
  • the invention is based on a pump, in particular a positive displacement pump, such as a vane or rotary vane pump.
  • the pump comprises a housing which encloses a pump space.
  • a rotor is arranged in the pump chamber so that it can rotate about an axis of rotation relative to the housing.
  • the pump comprises the rotor and at least a first housing part, in particular a first housing cover, and a second housing part, in particular a second housing cover, between which the rotor is arranged such that it can rotate about an axis of rotation relative to the first and second housing parts.
  • the rotor can be directly or indirectly connected to a pump shaft to transmit torque or be connectable, for example via a shaft-hub connection.
  • the rotor When the pump shaft is rotated relative to the first and second housing parts, the rotor rotates with it.
  • the rotor has recesses, in particular guides, in which conveying elements, such as, for example, vanes, slides or rollers, can be moved, in particular displaced, radially to the axis of rotation.
  • the conveying elements are received or supported by the rotor in such a way that they rotate with the rotor about its axis of rotation.
  • the pump shaft can extend through the housing and be mounted on the housing so as to be rotatable about the axis of rotation, for example with a first section on the first housing part and with a second section on the second housing part.
  • An outer structure for the shaft-hub connection can be formed between the first section and the second section of the pump shaft.
  • the rotor and the pump shaft can be connected non-rotatably by means of a straight-toothed shaft-hub connection.
  • the shaft-hub connection has an internal toothing with several teeth and an external toothing engaging in the internal toothing with several teeth.
  • a third housing part in particular a cam ring, which surrounds the rotor over its circumference, can be arranged between the first housing part and the second housing part.
  • the ring-shaped third housing part can be a separate part from the first and second housing parts.
  • the third housing part can be a section of the first housing part formed by the first housing part or a section of the second housing part formed by the second housing part.
  • the first housing part or the second housing part or both can surround the rotor and in particular its conveying elements, for example in an annular manner.
  • the first housing part, the second housing part and the third housing part enclose and delimit a pump chamber in which the rotor and the conveying elements are arranged. At least one delivery chamber is formed radially between the third housing part and the rotor, which is rotatably enclosed between the first and second housing parts.
  • a conveying cell is formed which is delimited on the circumferential side by an inner circumferential surface of the third housing part and along the axis of rotation by the first housing part on one side and by the second housing part on the other side, and the volume of which changes depending on the rotational position of the rotor changed around its axis of rotation.
  • the pump has a multiplicity of delivery elements and thus, in particular, an identical multiplicity of delivery cells which are formed between the delivery elements.
  • the inner circumference of the third housing part has a contour along which the conveying elements slide when the rotor rotates.
  • the contour is designed, in particular, in such a way that the volumes of the conveyor cells moving through the conveyor chamber due to the rotation of the rotor initially increase and then decrease. With one complete revolution of the rotor, the conveying elements are moved away from the axis of rotation and towards the axis of rotation at least once.
  • the pump can, for example, have a double stroke, i.e. H. with a first conveying chamber and a second conveying chamber, which are traversed once by the conveying elements or the conveying cells in a full revolution.
  • the pump can have a first channel which opens into the area of the delivery chamber in which the volume increase takes place and a second channel which opens into the area of the delivery chamber in which the volume reduction of this delivery cell takes place.
  • the first channel acts as a suction channel.
  • the second channel acts as a pressure channel.
  • a multi-stroke pump can have several suction channels and several pressure channels. In the case of a double-stroke pump, two pressure channels and two suction channels can be provided.
  • a first suction channel can open into the first delivery chamber and a second suction channel can open into the second delivery chamber.
  • a first pressure channel can open into the first delivery chamber and a second pressure channel can open into the second delivery chamber.
  • the fluid conveyed to the conveying chamber can, for example, be supplied with consumers other than or the same as with the fluid conveyed via the second conveying chamber.
  • different pressure levels can arise between the first pressure channel and the second pressure channel.
  • the conveying elements and / or the rotor each form a sealing gap with the first housing part and the second housing part.
  • the at least one suction channel can be connected to a fluid storage container, such as for example an oil container, in particular be in fluid connection.
  • the at least one pressure channel can be connected to at least one fluid consumer, such as being in fluid connection with a transmission.
  • the pump has at least one positioning element which positions the second housing part with respect to its angular position about the axis of rotation relative to the first housing part.
  • the at least one positioning element can be formed by the first housing part, in particular formed in one piece or monolithically.
  • the at least one positioning element can be formed as a part which is separate from the first housing part and which is anchored in the first housing part.
  • the positioning element can be screwed or pressed into the first housing part, i. H. be positively and / or non-positively anchored.
  • the at least one positioning element can be firmly anchored in the first housing part, such as glued, soldered or welded, for example.
  • the first housing part can have a bore for each positioning element, into which one end of the positioning element is inserted and thereby anchored in the first housing part.
  • the at least one positioning element can in particular be pin-shaped or cylindrical.
  • the end of the positioning element opposite the anchored end can have the same outer diameter as the anchored end.
  • the second housing part and in particular also the third housing part are mounted on the at least one positioning element, secured against rotation about the axis of rotation.
  • the at least one positioning element can extend through a recess of the second housing part provided for each positioning element, for example through a bore or through bore.
  • the at least one positioning element can, for example, by a Extending recess of the third housing part z. B. can be designed as a bore, elongated hole or the like.
  • the end of the at least one positioning element which is opposite the end anchored in the first housing part, protrudes from the second housing part, in particular from the end face of the second housing part which is opposite the end face facing the rotor or which faces an end wall of a receiving housing shows.
  • the pump includes a spring, such as a plate spring.
  • the second housing part is arranged between the spring and the rotor.
  • the spring is supported on the second housing part and, for example, on a receiving housing, in particular an end wall of the receiving housing.
  • the receiving housing can be cup-shaped, for example.
  • the receiving housing can have a circumferential wall extending around the axis of rotation of the rotor and an end wall arranged at the end of the circumferential wall, the second housing part being surrounded over its circumference by the circumferential wall and the spring, such as a main section of the spring, being supported on the end wall .
  • the spring tends to push the second housing part away from the end wall of the receiving housing.
  • the spring is attached to the at least one positioning element.
  • the spring can, for example, be positively, in particular snapped, or non-positively connected to the positioning element, so that the spring is held on the at least one positioning element and is supported or can be supported on the second housing part. It is preferred that the spring is secured against rotation about the axis of rotation, in particular positively and / or non-positively, to which at least one positioning element is attached.
  • the spring can be attached to the second housing part, for example in a form-fitting manner.
  • the spring has a main section which can spring towards the first housing part and away from the first housing part along the axis of rotation.
  • the spring has support portions which are connected to the main section, with the spring gap between the second housing part and the main section.
  • the support sections are supported flat on the second housing part, for example.
  • the main section is particularly intended to be attached to the end wall of the receiving housing, in particular on a z. B. annular projection of the end wall, z. B. support flat.
  • At least a part of the main section can be arranged between the axis of rotation and the at least one support section. This has the effect that the main section is offset closer to the axis of rotation than the at least one support section.
  • the main section can be ring-shaped, with several support sections protruding from the main section, in particular one per positioning element.
  • the main section is arranged offset with respect to the at least one support section along the axis of rotation.
  • the main section of the spring can have a recess, in particular a circular opening, for example, through which the pump shaft and / or a structure of the second housing part that forms the pump shaft bearing extends.
  • the structure forming the pump shaft bearing can be a ring structure formed on the second housing part, which protrudes from the second housing part towards the end wall of the receiving housing.
  • the spring can have or form at least one fastening element, in particular on or in the area of one of the support sections.
  • the at least one fastening element can serve as a support section or one fastening element can be provided for each support section.
  • the spring can be fastened or fastened to the at least one positioning element or the second housing part.
  • the fastening element which is designed, for example, for a positive connection with the fastening element, can be snapped onto the at least one positioning element.
  • the at least one positioning element can have a recess, such as an annular groove over its circumference, into which the at least one fastening element of the spring engages.
  • a recess such as an annular groove over its circumference
  • Such an annular groove can be designed as a recess.
  • the at least one fastening element can be designed in the shape of a locking disk or a circlip, similar to locking washers for shafts according to DIN 6799 or locking rings for shafts according to DIN 471, in particular with the difference that they are formed by the spring, namely can be molded onto the support sections.
  • the securing element in particular the securing washer designed for example according to DIN 6799 or the circlip designed according to DIN 471, can actually be a washer or a ring, ie. H. not be formed on the spring and, for example, only serve to ensure that the second housing part cannot be pulled axially from the positioning element.
  • the spring can be fastened to the second housing part or the securing element or be framed between the securing element and the second housing part, wherein the fastening element of the spring can be pushed onto the positioning element.
  • the positioning element can be designed with a head, for example, the second housing part being framed between the first housing part and the head, so that the second housing part is prevented from being pulled off the first housing part or the positioning element.
  • the spring can be fastened to the second housing part or to the head, or it can be framed between the head and the second housing part, wherein the fastening element of the spring can be pushed onto the positioning element.
  • the recess can be an annular groove which extends over the circumference of the cylindrical or pin-shaped positioning element and which has a width which extends along the longitudinal axis of the positioning element and which is dimensioned such that the fastening element of the spring with play along the longitudinal axis in the annular groove is recorded.
  • the pump can have a pump shaft which is connected non-rotatably to the rotor and is rotatable about the axis of rotation.
  • the pump shaft can be rotatably mounted at least in the first housing part.
  • the pump shaft can be rotatably mounted in the second housing part, in particular in a sack-shaped recess or in a continuous recess, in particular a bore, through the second housing part.
  • the sack-shaped recess has the advantage that the pump chamber is sealed off from the end face of the second housing part pointing away from the pump chamber.
  • the continuous recess has the advantage that it is easier to manufacture and ensures greater stability.
  • the bearing or bearings can be plain bearings or roller bearings.
  • the pump shaft has a structure, in particular external toothing, for a shaft-hub connection with the rotor.
  • the diameter of the structure can be greater than the inner diameter of the first housing part and / or the second housing part or the bearings.
  • the structure is thus enclosed between the first housing part and the second housing part along the axis of rotation. This has the effect that the shaft cannot be pulled out of the fully assembled pump assembly.
  • the first housing part, the second housing part, the third housing part, the rotor, the conveying elements, the positioning elements, the spring and the pump shaft essentially form a pump assembly that can be handled as a unit.
  • the fact that the spring is fastened to the at least one positioning element can prevent the assembly from falling apart.
  • the fastening sections of the spring or the securing elements separate from the spring effect an axial shaft securing so that the pump assembly does not fall apart.
  • the pump assembly Due to the simple handling of the pump assembly, it can be received in the receiving housing, which can be formed, for example, by a transmission housing for a motor vehicle, or inserted into the receiving housing, for example via an opening in the receiving housing opposite the end wall.
  • a cover or an axial securing element prevents the pump or the pump assembly from falling out of the receiving housing, whereby the spring tensioned during insertion presses the pump assembly, in particular the first housing part, against the axial securing element, the axial securing element preventing the spring from being relaxed .
  • the axial securing element can, for example, be ring-shaped and inserted in an annular groove which is formed on the preferably cylindrical inner circumference of the receiving housing.
  • the axial securing element can be formed by a cover which at least partially or completely closes the opening.
  • a seal can be arranged between the second housing part and the receiving housing, in particular the peripheral wall, which has a first space that is formed between the end wall and the second housing part, in relation to a second space that is between the peripheral wall and the first and / or third housing part is formed, seal.
  • the first space can be connected to the pump chamber in which the rotor is arranged by means of the first channel.
  • the second space can be connected to the pump chamber by means of the second channel.
  • the first space can be arranged on the suction side and the second space on the pressure side or the second space on the suction side and the first space on the pressure side.
  • the pressure space can be formed between the end wall and the second housing part, wherein the suction space can be formed between the peripheral wall and the first / and / or third housing part.
  • the suction chamber can be connected to the at least one delivery chamber with the at least one suction channel.
  • the pressure chamber can be connected to the at least one delivery chamber with the at least one pressure channel.
  • An additional seal can be arranged between the first housing part and the receiving housing, in particular the peripheral wall, the second space being arranged between the first and second seals.
  • the second seal can effect the sealing of the second space to the outside or to the opening of the receiving housing.
  • the axial securing element is only slightly loaded with an axial force during the pumping operation.
  • the spring force must then be selected to be at least so strong that parts of the pump assembly are compressed at least so strongly along the axis of rotation that the pump chamber is sufficiently sealed.
  • the second housing part acts like a piston, which increases the force along the axis of rotation on the axial securing element when the pressure increases and thus also presses the parts of the pump assembly together to form a seal, with an increasing force increasing delivery pressure.
  • the spring can be formed from metal such as spring steel.
  • the spring can have a plastic, such as, for example, an elastomer or polymer material.
  • the spring can be formed, for example, from an elastomer or polymer material or from a metal spring that is partially or completely coated with the plastic, such as, for example, overmolded.
  • the end wall can have a projection or a sealing seat on which the spring is supported in a sealing manner, in particular with the surface of the spring formed from the plastic.
  • the second housing part can have a sealing seat on which the spring, in particular with the surface formed from the plastic, is sealingly supported.
  • the spring designed as a seal can, for example, seal a first part of the pressure chamber into which the first outlet channel opens from a second part of the pressure chamber into which the second outlet channel opens. This allows a pump with two pressure levels to be provided.
  • the spring designed as a seal can, for example, seal the pressure chamber into which the first and possibly the second outlet channel open from the suction chamber into which the first and possibly the second inlet channel open.
  • FIG. 13 shows a pump assembly that is housed in a receptacle housing 20 as in FIG Figure 2 shown, can be used.
  • the pump assembly comprises a spring 5 designed, for example, as a plate spring, which is inserted into the Figures 4 to 10 shown in various embodiments.
  • FIG. 1 Turn off the pump or pump assembly Figure 1 has a rotor 4 which is connected non-rotatably to a pump shaft 10 of the pump 1 via a shaft-hub connection 30.
  • the rotor 4 has, in particular, slot-shaped recesses that serve as guides.
  • a conveying element 13, in particular a wing, is assigned to each recess.
  • the blade 13 is in its recess radially or away from the axis of rotation of the rotor 4 and displaceable towards the axis of rotation of the rotor 4, in particular guided with a single translational degree of freedom, displaceable back and forth, as best shown Figure 11 is recognizable.
  • the blades 13 are rotated with the rotor 4.
  • the pump 1 has an annular housing part 12, which is referred to as the third housing part 12 for better identification can be.
  • the third housing part 12 can be designed as a cam ring.
  • the third housing part 12 is enclosed between a first housing part 2 and a second housing part 3 and is non-rotatable with respect to the first and second housing parts 2, 3.
  • the space extending annularly around the pump shaft 10, which is surrounded by the inner circumference of the third housing part 12 and is axially limited by the second and third housing part 2, 3, can also be referred to as a pump chamber 26.
  • the rotor 4 and the vanes 13 are arranged in the pump chamber 26.
  • At least one delivery chamber 27, 28 is formed radially between the rotor 4 and the third housing part 12.
  • the embodiment shown here comprises two delivery chambers, namely a first delivery chamber 27 and a second delivery chamber 28.
  • a delivery cell 29 is formed between adjacent blades 13, the volume of which changes as a function of the rotational position of the rotor 4 about its axis of rotation. Since the pump has several vanes 13, it also has several delivery cells 29 accordingly. In each of the conveying chambers 27, 28 there are several conveying cells.
  • the vanes 13 and the rotor 4 form a first sealing gap with the first housing part 2 and a second sealing gap with the second housing part 3.
  • the third housing part 12, in particular the cam ring, and / or the vanes 13 can be magnetized so that the vanes 13 rest against the inner circumferential surface of the third housing part 12 due to magnetic force, especially when the rotor 4 is not rotating. This allows an early pressure build-up when starting or cold starting, ie when the pump shaft 10 begins to rotate. Alternatively or additionally, due to the centrifugal force when the rotor 4 rotates, the blades 13 can be pressed outwards, ie away from the axis of rotation of the rotor 4, against the inner circumferential surface of the third housing part 12.
  • the wings 13 or each of the wings 13 forms a third sealing gap with the inner circumferential surface of the third housing part 12.
  • the inner circumferential surface of the third housing part 12 has a contour that causes the vanes 13 to extend at least once (increase in volume of delivery cell 29) and retract once (decrease in volume of delivery cell 29) during a full revolution of rotor 4.
  • the pump 1 shown in the example is double-stroke, i. H. with two delivery chambers 27, 28, whereby the wings 13 extend once and retract once per delivery chamber 27, 28 when they are moved through the delivery chamber 27, 28 by rotating the rotor 4. This has the effect that the blades 13 extend, retract, extend and retract again during one full revolution of the rotor 4, or in other words, extend twice and retract twice.
  • a conveyor cell 29 is formed between adjacent vanes 13, the volume of which is increased or decreased by the extension and retraction of the vanes 13 delimiting this conveyor cell 29, namely depending on the contour of the inner circumferential surface of the third housing part 12.
  • the pump 1 has an opening or a channel 3b which opens into the area of the delivery chamber 27, 28 in which the volume of the delivery cells 29 decreases during the rotation of the rotor 4. This has the effect that fluid located in the delivery cells, such as oil, for example, is displaced through the channel 3b, which here serves as an outlet.
  • the pump 1 has an opening or a channel 2b which opens into the area of the delivery chamber 27, 28 in which the volume of the delivery cells 29 increases during the rotation of the rotor 4. This has the effect that fluid is conveyed or sucked through the channel 2b into the enlarging delivery cell 29. Since the pump 1 is two-stroke in this example, it has two inlet channels 2b and two outlet channels 3b, the first inlet channel 2b and the first outlet channel 3b into the first delivery chamber 27 and the second inlet channel 2b and the second outlet channel 3b into the second delivery chamber flow out. A reverse configuration of the inlet and outlet channels 2b, 3b is also conceivable. This means that channel 2b can be the outlet channel and channel 3b can be the inlet channel.
  • the pump 1 comprises at least one positioning element 6, in the example shown two positioning elements 6.
  • the positioning elements 6 are pins or pin-shaped.
  • the positioning element 6 is firmly anchored in the first housing part 2.
  • the first housing part 2 has a blind bore 2a into which the pin-shaped positioning element 6 is pressed with a first end.
  • the pin-shaped positioning element 6 positions the second housing part 3 and the third housing part 12 with regard to their angular positions about the axis of rotation relative to the first housing part 2.
  • the second housing part 3 and the third housing part 12 have recesses, openings, bores or elongated holes, preferably with a radial extension , through which the positioning element 6 extends.
  • the third housing part 12 has a recess for this purpose.
  • the second housing part 3 has a through hole through which the positioning element 6 extends.
  • the positioning element 6 protrudes with its pin-shaped second end over the end face which faces away from the pump chamber 26.
  • This protruding section of the positioning element 6 has a recess, such as an annular groove 6 a, or at least a part thereof, which extends over the circumference of the positioning element 6.
  • a securing element or fastening element 5a is arranged, which is fastened in particular non-positively and / or positively to the positioning element 6 or in the annular groove 6a.
  • the fastening element 5a prevents the first housing part 2, the second housing part 3 and the third housing part 12 from falling apart axially, or in other words the second and third housing part 3, 12 from being pulled off the positioning element.
  • the spring 5 can be designed, for example, as a plate spring, as a star disk or with the geometries of a star disk.
  • the spring has a main section 5c which is connected to the fastening element 5a via an arm.
  • the (plate) spring 5 has two fastening elements 5a, which are each connected to the main section 5c via an arm 5b.
  • the fastening element 5a prevents on the one hand that the housing parts 2, 3, 12 detach from each other, and on the other hand enables the spring 5 to be fastened to the pump unit or to the positioning element 6.
  • the main section 5c of the spring 5 is offset along the axis of rotation of the rotor 4 or the pump shaft 10 relative to the fastening element 5a or arranged to a support section 5d.
  • the fastening section 5a and / or the support section 5d facing the second housing part 3 rest on the second housing part 3 or are supported thereon.
  • the fastening section and / or the support section 5d bear as flat as possible on at least one correspondingly formed, preferably flat surface of the second housing part 3.
  • the main section 5c is spaced apart from the second housing part 3 by a gap or spring gap.
  • the main section 5c can thus spring towards the second housing part 3, whereby the spring 5 is tensioned, and can spring away from the second housing part 3, whereby the spring is relaxed.
  • the main section can preferably bear as flat as possible on at least one surface or flat surface formed by an essentially annular shoulder of the end wall 20c.
  • the spring 5 - taking into account the stiffness / stresses or the spring diagram (force-displacement characteristic) of the spring 5 - as flat as possible on the second housing part 3 and the receiving housing, in particular on the end wall or the at least one surface of the substantially annular shoulder.
  • the main section 5c of the spring 5 has an in particular circular opening 5e through which a section of the second housing part 3 extends. This enables a compact design to be achieved.
  • the spring 5 can comprise or be a spring made of metal, which can optionally be coated, encapsulated or provided with injected geometries at least partially or completely with a plastic material, in particular an elastomer or a material whose main component is an elastomer.
  • the spring 5 can take on an additional function as a seal due to the coating, overmolding or injection-molded geometries.
  • the pump shaft 10 is rotatably mounted on the first and second housing parts 2, 3, in particular by means of a sliding bearing in each case.
  • an outer structure such as an external toothing, is formed on the pump shaft 10, which is in positive engagement with a corresponding internal structure, in particular internal toothing of the rotor 4, in order to effect a shaft-hub connection 30.
  • the outer diameter of the outer structure of the pump shaft 10 is greater than the diameter of the section of the pump shaft 10 that is mounted in the first housing part 2 and / or in the second housing part 3.
  • the pump shaft 10 is arranged axially fixed between the first and second housing parts 2, 3, i.e. a displacement of the pump shaft 10 along the axis of rotation in both directions is essentially not possible.
  • the inner diameter of the sections of the first housing part 2 and of the second housing part 3, which support the pump shaft 10 is smaller than the outer diameter of the outer structure of the pump shaft 10.
  • the first housing part 2 On its end facing away from the pump chamber, the first housing part 2 has an annular pocket in which a shaft seal 11 is arranged.
  • the shaft seal 11 is non-rotatably attached to the first housing part 2 and forms a sealing gap with the pump shaft 10.
  • the shaft seal 11 seals the pump chamber from the outside.
  • the end of the pump shaft 10, which is opposite the end which is arranged in the area of the spring 5, has an outer structure for a shaft-hub connection with a gear wheel 21, in particular a chain wheel.
  • the gear wheel 21 is seated in a rotationally fixed manner on the pump shaft 10.
  • the gear wheel 21 can be driven by a chain, which in turn is driven by, for example, a crankshaft or another shaft that can be connected, for example, to an engine of the vehicle.
  • the gear wheel 21 has an internal thread with which it is screwed with an external thread of the pump shaft 10 against a shoulder of the pump shaft 10.
  • the anti-rotation device 22 has an angled section which engages positively in the gear wheel 21, whereby a loosening of the gear wheel 21 is prevented.
  • the pump unit off Figure 1 is used in a, for example, cup-shaped receiving housing 20, such as a housing pot ( Figure 2 ).
  • the receiving housing 20 has a circumferential wall 20d which forms the pump unit 1 Figure 1 surrounds the circumference.
  • the receiving housing 20 also has an end wall 20c, which is connected to the peripheral wall 20d, the main portion 5c of the spring 5 being supported on the end wall 20c, in particular on an, for example, annular projection 20a of the end wall 20c.
  • the pump unit off Figure 1 is held between the end wall 20c and an axial locking element 9, in particular an axial locking ring, which is arranged in an annular groove 20b of the peripheral housing 20, so that the spring 5 is tensioned.
  • a first space 23 pressure space
  • the space 23 is in turn connected to a fluid consumer, such as a lubricant consumer, in particular a gear, by means of a channel (not shown).
  • a second space 24 suction space is formed between the second seal 8 and a first seal 7, which is arranged in an annular groove arranged on the outer circumference of the first housing part 2 and which forms a sealing gap with the circumferential wall 20d, from which the fluid via the pump is funded in room 23.
  • the space 24 can be connected to a storage container for the fluid, for example by means of a channel.
  • the pressure in the space 23 increases with increasing speed, whereby the second housing part 3, in addition to the pretensioning force of the spring 5, clamps the third housing part 12 firmly between the first and second housing parts 2, 3.
  • the first, the second and the third housing part 2, 3, 12 are sealed off from one another.
  • the connection between the axial securing element 9 and the first housing part 2 is so strong that it can withstand the axial force on the axial securing element 9 caused by the pressure in the space 23, ie it cannot be released.
  • a housing cover can be fastened to the receiving housing 20 on which the first housing part 2 is axially supported.
  • spring 5 is in Figure 4 shown.
  • the pen out Figure 8 resembles the feather from Figure 4 .
  • the fastening element 5a of the spring 5 from the Figures 4 and 8th has two legs which are arranged in the recess 6a.
  • the spring 5 can be fastened to the positioning elements 6 by rotating about the axis of rotation of the rotor 4 by means of its fastening elements 5a.
  • the legs each have two guide surfaces 5g facing one another, which are arranged in relation to one another in such a way that the clear width formed between them increases towards the free end of the legs.
  • the thickness of the legs is smaller than the clear width between the groove flanks of the recess 6a of the positioning element 6.
  • the section of the reduced core diameter in the recess 6a ie the diameter of the positioning element 6 measured at the groove base, is positively framed between the two legs of the fastening element 5a .
  • the legs expand elastically slightly in that the sliding surfaces 5g facing one another slide on the section of reduced diameter of the recess 6a.
  • the legs then snap into place with the section of reduced diameter.
  • the legs can each have a concavely curved depression surface 5h.
  • the recess surfaces 5h can preferably lie flat on the section of reduced diameter when the fastening element 5a is completely arranged in the recess 6a.
  • the fastening element 5a has a projection which has a stop surface which can rest against the section of reduced diameter of the positioning element 6 when the fastening element 5a is arranged completely in the recess 6a.
  • the ones in the Figures 5 and 6 shown fastening elements 5a are similar.
  • the fastening element 5a is closed ring-shaped and has projections on its inner circumference 3 which enclose a diameter which is greater than the section of reduced diameter in the recess 6a and smaller than the outer diameter of the pin-shaped positioning element 6.
  • the fastening element 5a Figure 5 points to his three Abrags facets or bevels on which the embodiment is made Figure 6 does not have.
  • the fastening elements 5a are each pushed axially over a positioning element 6 until the three projections of the fastening element 5a snap into the recess 6a. It is also true here that the thickness of the fastening element 5a is smaller than the clear width between the groove flanks of the recess 6a.
  • Figure 7 shows a fastening element 5a which has a recess 5f towards the outside, ie pointing away from the axis of rotation.
  • the spring 5 off Figure 7 can be attached to the positioning elements 6 by rotating about the axis of rotation.
  • the two fastening elements 5a each have a single free end which, with respect to the arm 5b, is arranged further away than the recess 5f.
  • the free end in particular a sliding surface 5g of the free end pointing away from the axis of rotation, which slides during the fastening of the spring 5 to the positioning element 6, is more distant than the recess 5f with respect to the axis of rotation, in particular a recess surface 5h of the recess pointing away from the axis of rotation 5f, arranged.
  • this configuration has the effect that the free end is deflected by the positioning element 6 in that the sliding surface 5g slides on the positioning element 6 and the recess springs into the recess 6a. This results in a form-fitting connection.
  • the thickness of the fastening element 6 is the same as in the other embodiments from FIGS Figures 4 to 10 also smaller than the clear width between the groove flanks of the recess 6a.
  • Figure 9 shows an embodiment with a closed ring-shaped fastening element 5a.
  • the ring-shaped fastening element 5a forms a contour on its inner side of the ring with a first diameter section 5a 1 and a second diameter section 5a 2 , which are connected via a tapered section 5a 3 .
  • the first diameter section 5a 1 has an inner diameter that is greater than the outer diameter of the positioning element 6.
  • the second diameter section 5a 2 has an inside diameter which is smaller than the outside diameter of the positioning element 6 and larger than the diameter of the positioning element 6 in the recess 6a.
  • the clear dimension between the flanks of the tapered section 5a 3 is smaller, in particular only slightly smaller than the diameter of the positioning element 6a in the recess 6a.
  • the first Diameter section 5a 1 of the fastening element 5a pushed onto the positioning element 6.
  • the fastening element 5a with the second diameter section 5a 2 is pivoted into the recess 6a, whereby the tapering section at the section of reduced diameter in the recess 6a expands resiliently and contracts again when it has been moved past the section of reduced diameter .
  • the spring 5 off Figure 10 shows at least one fastening element 5a which is designed in the shape of a hook, a hook-shaped section extending around a receiving section 5a 4 by an amount greater than 180 °.
  • the receiving section 5a 4 is followed by a tapering section 5a 3 , the clearance of which is smaller than the diameter of the receiving section 5a 4 .
  • the diameter of the receiving section 5a 4 is larger than the diameter of the positioning element 6 in the recess 6a and smaller than the outer diameter of the positioning element 6.
  • the clear dimension between the flanks of the tapered section 5a 3 is smaller, in particular slightly smaller than the diameter of the positioning element 6 in the recess 6a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Description

  • Die Erfindung betrifft eine Pumpe, insbesondere eine Verdrängerpumpe für eine Flüssigkeit, wie zum Beispiel Öl. Die Pumpe kann zum Beispiel als Flügelzellenpumpe oder Drehschieberpumpe ausgestaltet sein. Die Pumpe eignet sich insbesondere für den Einbau in einem Fahrzeug, wie zum Beispiel einem Kraftfahrzeug und/oder zur Versorgung eines Verbrauchers in einem Kraftfahrzeug. Der Verbraucher kann zum Beispiel ein Verbrennungsmotor, ein Getriebe, wie zum Beispiel ein Lenkgetriebe oder Automatikgetriebe sein. Die Erfindung betrifft die Gestaltung oder Befestigung einer Feder der Pumpe.
  • Aus der WO 2013/185751 A1 ist eine sogenannte Cartridgepumpe bekannt, die eine Pumpenbaugruppe aufweist, die im Wesentlichen aus einem Rotor, einem Hubring, einer Druckplatte, Pressstiften und einem Federelement besteht. Der Rotor ist zwischen der Druckplatte und der Seitenplatte drehbar aufgenommen und wird von dem Hubring, der ebenfalls zwischen der Druckplatte und der Seitenplatte angeordnet ist, umgeben. Mehrere Pressstifte, die in die Druckplatte axialfest eingepresst sind und die Seitenplatte und den Hubring durchdringen, sichern die Druckplatte, die Seitenplatte und den Hubring dreh- und axialfest zueinander. An der von dem Rotor wegweisenden Stirnseite der Druckplatte ist das Federelement an der Druckplatte befestigt. Die Pumpenbaugruppe kann in ein topfförmiges Gehäuse eingesetzt werden, wobei sich das Federelement an dem Boden des topfförmigen Gehäuses abstützt. Das Gehäuse wird durch einen Gehäusedeckel geschlossen, der die Pumpeneinheit in ihrer Einbauposition hält. Der Rotor weist eine Innenstruktur für eine Welle-Nabe-Verbindung mit einer Pumpenwelle auf.
  • Die US 3,207,077 offenbart eine Fluidpumpe, die einen zwischen einem Ring und zwei Druckplatten eingefassten Rotor aufweist, wobei der Ring und die Druckplatten mittels Stiften relativ zueinander positioniert sind. Auf jedem der Stifte sitzt eine Schraubenfeder, die sich einerseits an einer der Druckplatten und andererseits an einem Gehäusedeckel abstützt, wodurch die Druckplatte gegen den Ring gedrückt wird.
  • In der EP 2 754 896 A1 werden mehrere Möglichkeiten beschrieben, wie ein eine Pumpenkammer, in der sich ein Rotor befindet, verschließender Gehäusedeckel von einer Feder mit einer Federkraft gegen das die Pumpenkammer umgebende Gehäuseteil gedrückt werden kann. In einer Ausführung ist eine Blattfeder mit zwei Schrauben an der Stirnseite der Pumpe befestigt, wobei ein zwischen den Schrauben gelegener Hauptabschnitt der Feder gegen den Gehäusedeckel drückt. In einer anderen Ausführung sind mehrere Blattfedern vorgesehen, die jeweils mittels einer Schraube an der Stirnseite der Pumpe befestigt sind, wobei jede Blattfeder einen Abschnitt aufweist, der gegen den Gehäusedeckel drückt. In noch einer anderen Ausführungsform bildet der Gehäusedeckel selbst mehrere federnde Arme, deren freie Enden jeweils mit einer Schraube stirnseitig an dem Gehäuseteil befestigt sind. In noch einer anderen Ausführungsform sind an der Stirnseite der Pumpe mehrere an dem Gehäuseteil befestigte Schrauben vorgesehen, deren Schraubenschäfte jeweils von einer Schraubenfeder umgeben werden, die sich einerseits mittelbar am Schraubenkopf und andererseits an dem Gehäusedeckel abstützt.
  • Die DE 10 2013 209 877 A1 zeigt eine Pendelschieberpumpe, welche im Wesentlichen über eine Welle, einen Innenrotor, ein Pendel und einem Außenrotor, welcher von einem Gehäuse umgeben wird, verfügt. Der Außenrotor ist über ein Pendel mit dem Innenrotor verbunden, welcher seinerseits verdrehfest mit der Welle verbunden ist und durch diese angetrieben wird. Das den Außenrotor umgebende Gehäuse wird stirnseitig von einer, von der Welle durchstoßenen, Druckplatte verschlossen. Die Welle ist, auf der dem Außenrotor abgewandten Seite der Druckplatte, mittels eines Sicherungselements gesichert. Zwischen dem Sicherungselement und der Druckplatte befindet sich ein Federelement, welches die Druckplatte in axiale Richtung gegen das, den Außenrotor umgebende, Gehäuse drückt. Hierfür stützt sich das Federelement am Sicherungselement ab.
  • Der Erfindung liegt die Aufgabe zugrunde, eine kostengünstig herstellbare und platzsparende Pumpe anzugeben.
  • Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterentwicklungen ergeben sich aus den abhängigen Ansprüchen, der Beschreibung und den Figuren.
  • Die Erfindung geht von einer Pumpe, insbesondere Verdrängerpumpe, wie zum Beispiel Flügelzellen- oder Drehschieberpumpe aus. Die Pumpe umfasst ein Gehäuse, welches einen Pumpenraum einfasst. In dem Pumpenraum ist ein Rotor um eine Drehachse relativ zu dem Gehäuse drehbar angeordnet. Die Pumpe umfasst den Rotor und zumindest ein erstes Gehäuseteil, insbesondere einen ersten Gehäusedeckel, und ein zweites Gehäuseteil, insbesondere einen zweiten Gehäusedeckel, zwischen denen der Rotor um eine Drehachse relativ zu dem ersten und zweiten Gehäuseteil drehbar angeordnet ist. Der Rotor kann unmittelbar oder mittelbar Drehmoment übertragend mit einer Pumpenwelle verbunden sein oder verbindbar sein, wie zum Beispiel über eine Welle-Nabe-Verbindung. Wenn die Pumpenwelle relativ zu dem ersten und zweiten Gehäuseteil gedreht wird, dreht sich der Rotor mit. Der Rotor weist Ausnehmungen, insbesondere Führungen auf, in denen Förderelemente, wie zum Beispiel Flügel, Schieber oder Rollen, radial zur Drehachse bewegbar, insbesondere verschiebbar, aufgenommen sind. Die Förderelemente sind so von dem Rotor aufgenommen oder gelagert, dass sie sich mit dem Rotor um seine Drehachse mitdrehen.
  • Die Pumpenwelle kann sich durch das Gehäuse erstrecken und um die Drehachse drehbar an dem Gehäuse gelagert sein, wie zum Beispiel mit einem ersten Abschnitt an dem ersten Gehäuseteil und mit einem zweiten Abschnitt an dem zweiten Gehäuseteil. Zwischen dem ersten Abschnitt und dem zweiten Abschnitt der Pumpenwelle kann eine Außenstruktur für die Welle-Nabe-Verbindung gebildet sein. Der Rotor und die Pumpenwelle können mittels einer geradverzahnten Welle-Nabe-Verbindung verdrehfest verbunden sein. Die Welle-Nabe-Verbindung weist eine Innenverzahnung mit mehreren Zähnen und eine in die Innenverzahnung eingreifende Außenverzahnung mit mehreren Zähnen auf.
  • Zwischen dem ersten Gehäuseteil und dem zweiten Gehäuseteil kann ein drittes Gehäuseteil, insbesondere ein Hubring, angeordnet sein, welches den Rotor über seinen Umfang umgibt. Das ringförmig ausgestaltete dritte Gehäuseteil kann ein von dem ersten und zweiten Gehäuseteil separates Teil sein. Alternativ kann das dritte Gehäuseteil ein von dem ersten Gehäuseteil gebildeter Abschnitt des ersten Gehäuseteils sein oder ein von dem zweiten Gehäuseteil gebildeter Abschnitt des zweiten Gehäuseteils sein. Das erste Gehäuseteil oder das zweite Gehäuseteil oder beide können den Rotor und insbesondere seine Förderelemente, wie zum Beispiel ringförmig umgeben.
  • Das erste Gehäuseteil, das zweite Gehäuseteil und das dritte Gehäuseteil fassen ein und begrenzen eine Pumpenkammer, in der der Rotor und die Förderelemente angeordnet sind. Radial zwischen dem dritten Gehäuseteil und dem Rotor, der zwischen dem ersten und zweiten Gehäuseteil drehbar eingefasst ist, ist mindestens eine Förderkammer gebildet.
  • Zwischen benachbarten Förderelementen ist jeweils eine Förderzelle gebildet, die umfangsseitig von einer Innenumfangsfläche des dritten Gehäuseteils und entlang der Drehachse von dem ersten Gehäuseteil auf einer Seite und von dem zweiten Gehäuseteil auf der anderen Seite begrenzt wird und deren Volumen sich in Abhängigkeit von der Drehposition des Rotors um seine Drehachse verändert. Die Pumpe weist eine Vielzahl von Förderelementen und somit eine insbesondere gleiche Vielzahl von Förderzellen auf, die zwischen den Förderelementen gebildet sind.
  • Der Innenumfang des dritten Gehäuseteils weist eine Kontur auf, an welcher die Förderelemente bei einer Drehung des Rotors entlanggleiten. Die Kontur ist insbesondere so ausgebildet, dass sich die Volumina der aufgrund der Drehung des Rotors durch die Förderkammer bewegenden Förderzellen zunächst vergrößern und anschließend verkleinern. Bei einer vollständigen Umdrehung des Rotors werden die Förderelemente zumindest einmal von der Drehachse weg und zur Drehachse hin bewegt. Die Pumpe kann zum Beispiel doppelhubig, d. h. mit einer ersten Förderkammer und einer zweiten Förderkammer, ausgebildet sein, die von den Förderelementen bzw. den Förderzellen bei einer vollen Umdrehung jeweils einmal durchlaufen werden. Das heißt, dass die Förderelemente bei einer vollständigen Umdrehung abwechselnd zweimal von der Drehachse weg und zweimal zu der Drehachse hin bewegt werden. Während einer Drehung des Rotors findet zunächst eine Volumenvergrößerung einer Förderzelle und anschließend eine Volumenverkleinerung dieser Förderzelle statt.
  • Die Pumpe kann einen ersten Kanal aufweisen, der in den Bereich der Förderkammer mündet, in dem die Volumenvergrößerung stattfindet und einen zweiten Kanal aufweisen, der in den Bereich der Förderkammer mündet, in dem die Volumenverkleinerung dieser Förderzelle stattfindet. Durch die Volumenvergrößerung der Förderzelle wirkt der erste Kanal als Saugkanal. Durch die Volumenverkleinerung wirkt der zweite Kanal als Druckkanal. Eine mehrhubige Pumpe kann mehrere Saugkanäle und mehrere Druckkanäle aufweisen. Bei einer doppelhubigen Pumpe können zwei Druckkanäle und zwei Saugkanäle vorgesehen sein. Ein erster Saugkanal kann in die erste Förderkammer und ein zweiter Saugkanal kann in die zweite Förderkammer münden. Ein erster Druckkanal kann in die erste Förderkammer und ein zweiter Druckkanal kann in die zweite Förderkammer münden. Mit dem über die erste Förderkammer geförderten Fluid können zum Beispiel andere oder die gleichen Verbraucher versorgt werden als mit dem über die zweite Förderkammer geförderten Fluid. Bei der Versorgung unterschiedlicher Verbraucher können unterschiedliche Druckniveaus zwischen dem ersten Druckkanal und dem zweiten Druckkanal entstehen. Die Förderelemente und/oder der Rotor bilden mit dem ersten Gehäuseteil und dem zweiten Gehäuseteil jeweils einen Dichtspalt. Der mindestens eine Saugkanal kann mit einem Fluidvorratsbehälter, wie zum Beispiel einem Ölbehälter, verbunden sein, insbesondere in Fluidverbindung stehen. Der mindestens eine Druckkanal kann mit mindestens einem Fluidverbraucher verbunden sein, wie zum Beispiel mit einem Getriebe in Fluidverbindung stehen.
  • Die Pumpe weist mindestens ein Positionierelement auf, welches das zweite Gehäuseteil bezüglich seiner Winkelposition um die Drehachse relativ zu dem ersten Gehäuseteil positioniert. Das mindestens eine Positionierelement kann von dem ersten Gehäuseteil gebildet sein, insbesondere einstückig oder monolithisch gebildet sein. Alternativ kann das mindestens eine Positionierelement als ein von dem ersten Gehäuseteil separates Teil gebildet sein, welches in dem ersten Gehäuseteil verankert ist. Zum Beispiel kann das Positionierelement in das erste Gehäuseteil eingeschraubt oder eingepresst, d. h. formschlüssig oder/und kraftschlüssig, verankert sein. Alternativ oder zusätzlich kann das mindestens eine Positionierelement in dem ersten Gehäuseteil stoffschlüssig verankert, wie zum Beispiel verklebt, verlötet oder verschweißt sein. Das erste Gehäuseteil kann je Positionierelement eine Bohrung aufweisen, in der ein Ende des Positionierelements eingefügt und dadurch in dem ersten Gehäuseteil verankert ist.
  • Das mindestens eine Positionierelement kann insbesondere stiftförmig oder zylindrisch sein. Zum Beispiel kann das dem verankerten Ende gegenüberliegende Ende des Positionierelements den gleichen Außendurchmesser wie das verankerte Ende aufweisen.
  • Das zweite Gehäuseteil und insbesondere auch das dritte Gehäuseteil sind um die Drehachse verdrehgesichert an dem mindestens einen Positionierelement gelagert. Das mindestens eine Positionierelement kann sich durch eine je Positionierelement vorgesehene Ausnehmung des zweiten Gehäuseteils, wie zum Beispiel durch eine Bohrung oder Durchgangsbohrung, erstrecken. Das mindestens eine Positionierelement kann sich zum Beispiel durch eine Ausnehmung des dritten Gehäuseteils erstrecken, die z. B. als Bohrung, Langloch oder dergleichen ausgebildet sein kann.
  • Insbesondere ragt das mindestens eine Positionierelement mit seinem Ende, das dem im ersten Gehäuseteil verankerten Ende gegenüberliegt, aus dem zweiten Gehäuseteil, insbesondere von der Stirnseite des zweiten Gehäuseteils, welche der Stirnseite gegenüberliegt, die zu dem Rotor weist, oder welche zu einer Stirnwand eines Aufnahmegehäuses weist.
  • Die Pumpe umfasst eine Feder, wie zum Beispiel eine Tellerfeder. Das zweite Gehäuseteil ist zwischen der Feder und dem Rotor angeordnet. Die Feder stützt sich an dem zweiten Gehäuseteil und zum Beispiel an einem Aufnahmegehäuse, insbesondere einer Stirnwand des Aufnahmegehäuses ab. Das Aufnahmegehäuse kann zum Beispiel topfförmig sein. Das Aufnahmegehäuse kann eine sich um die Drehachse des Rotors erstreckende Umfangswand und eine stirnseitig der Umfangswand angeordnete Stirnwand aufweisen, wobei das zweite Gehäuseteil über seinen Umfang von der Umfangswand umgeben ist und die Feder, wie zum Beispiel ein Hauptabschnitt der Feder, sich an der Stirnwand abstützt. Die Feder trachtet, dass zweite Gehäuseteil von der Stirnwand des Aufhahmegehäuses wegzudrücken.
  • Die Feder ist an dem mindestens einen Positionierelement befestigt. Die Feder kann zum Beispiel mit dem Positionierelement formschlüssig, insbesondere verschnappt, oder kraftschlüssig, verbunden sein, so dass die Feder an dem mindestens einen Positionierelement gehalten wird und sich an dem zweiten Gehäuseteil abstützt oder abstützen kann. Bevorzugt ist, dass die Feder um die Drehachse verdrehgesichert, insbesondere form- oder/und kraftschlüssig, an dem mindestens einen Positionierelement befestigt ist. Außerdem kann die Feder an dem zweiten Gehäuseteil, wie zum Beispiel formschlüssig, befestigt sein. Die Feder weist einen Hauptabschnitt auf, der entlang der Drehachse zu dem ersten Gehäuseteil hin und von dem ersten Gehäuseteil wegfedern kann. Im entspannten Zustand der Feder besteht ein Federspalt zwischen dem zweiten Gehäuseteil und dem Hauptabschnitt der Feder, so dass der Hauptabschnitt der Feder unter gleichzeitigem Spannen der Feder zu dem zweiten Gehäuseteil hinbewegt werden kann. Die Feder weist Abstützabschnitte auf, welche mit dem Hauptabschnitt verbunden sind, wobei zwischen dem zweiten Gehäuseteil und dem Hauptabschnitt der Federspalt besteht. Die Abstützabschnitte stützen sich zum Beispiel flächig an dem zweiten Gehäuseteil ab. Der Hauptabschnitt ist insbesondere dafür vorgesehen, sich an der Stirnwand des Aufnahmegehäuses, insbesondere an einem z. B. ringförmigen Vorsprung der Stirnwand, z. B. flächig abzustützen.
  • Zumindest ein Teil des Hauptabschnitts kann zwischen der Drehachse und dem mindestens einen Abstützabschnitt angeordnet sein. Dadurch wird bewirkt, dass der Hauptabschnitt näher zur Drehachse hin versetzt ist als der mindestens eine Abstützabschnitt. Zum Beispiel kann der Hauptabschnitt ringförmig sein, wobei mehrere Abstützabschnitte von dem Hauptabschnitt abragen, insbesondere je einer pro Positionierelement. Der Hauptabschnitt ist in Bezug auf den mindestens einen Abstützabschnitt entlang der Drehachse versetzt angeordnet. Hierdurch kann sich die Feder einerseits an dem zweiten Gehäuseteil abstützen und anderseits zu dem zweiten Gehäuseteil hinfedern.
  • Der Hauptabschnitt der Feder kann eine Ausnehmung, insbesondere einen z.B. kreisrunden Durchbruch aufweisen, durch welche sich die Pumpenwelle und/oder eine die Pumpenwellenlagerung bildende Struktur des zweiten Gehäuseteils erstreckt. Die die Pumpenwellenlagerung bildende Struktur kann eine an dem zweiten Gehäuseteil angeformte Ringstruktur sein, die von dem zweiten Gehäuseteil zu der Stirnwand des Aufnahmegehäuses hin abragt. Dadurch kann eine große Auflagefläche für die Pumpenwelle gebildet und die Dicke des zweiten Gehäuseteils im Übrigen gering bleiben.
  • Die Feder kann mindestens ein Befestigungselement aufweisen oder bilden, insbesondere am oder im Bereich eines der Abstützabschnitte. Zum Beispiel kann das mindestens eine Befestigungselement als Abstützabschnitt dienen oder je Abstützabschnitt ein Befestigungselement vorgesehen sein. Mittels des Befestigungselements kann die Feder an dem mindestens einen Positionierelement oder dem zweiten Gehäuseteil befestigbar oder befestigt sein. Das Befestigungselement, welches zum Beispiel für eine formschlüssige Verbindung mit dem Befestigungselement ausgestaltet ist, kann mit dem mindestens einen Positionierelement verschnappt sein.
  • Das mindestens eine Positionierelement kann eine Ausnehmung, wie zum Beispiel eine Ringnut über seinen Umfang aufweisen, in welche das mindestens eine Befestigungselement der Feder eingreift. Eine derartige Ringnut kann als Einstich ausgebildet sein. Zum Beispiel kann das mindestens eine Befestigungselement sicherungsscheibenförmig oder seegerringförmig ausgestaltet sein, ähnlich wie Sicherungsscheiben für Wellen nach DIN 6799 oder Sicherungsringe für Wellen nach DIN 471, insbesondere mit dem Unterschied, dass sie von der Feder gebildet werden, nämlich an den Abstützabschnitten angeformt sein können.
  • In alternativen Ausführungsformen kann das Sicherungselement, insbesondere die zum Beispiel nach DIN 6799 ausgestaltete Sicherungsscheibe oder der nach DIN 471 ausgestaltete Seegerring tatsächlich eine Scheibe oder ein Ring sein, d. h. nicht an der Feder angeformt sein und zum Beispiel nur dazu dienen, dass das zweite Gehäuseteil axial nicht von dem Positionierelement abziehbar ist. In dieser Ausführungsform kann die Feder an dem zweiten Gehäuseteil oder dem Sicherungselement befestigt oder zwischen dem Sicherungselement und dem zweiten Gehäuseteil eingefasst sein, wobei das Befestigungselement der Feder auf das Positionierelement aufgesteckt sein kann. In alternativen Ausführungsformen kann das Positionierelement zum Beispiel mit einem Kopf ausgestaltet sein, wobei das zweite Gehäuseteil zwischen dem ersten Gehäuseteil und dem Kopf eingefasst ist, so dass verhindert wird, dass das zweite Gehäuseteil von dem ersten Gehäuseteil bzw. von dem Positionierelement abgezogen werden kann. In diesen Ausführungsformen kann die Feder an dem zweiten Gehäuseteil oder an dem Kopf befestigt oder zwischen dem Kopf und dem zweiten Gehäuseteil eingefasst sein, wobei das Befestigungselement der Feder auf das Positionierelement aufgesteckt sein kann.
  • In weiteren Ausführungsformen kann die Ausnehmung eine sich über den Umfang des zylindrischen oder stiftförmigen Positionierelements erstreckende Ringnut sein, welche eine entlang der Längsachse des Positionierelements erstreckte Breite aufweist, die so bemessen ist, dass das Befestigungselement der Feder mit einem Spiel entlang der Längsachse in der Ringnut aufgenommen ist. Hierdurch kann sichergestellt werden, dass sich die Abstützabschnitte oder der Befestigungsabschnitt der Feder an dem zweiten Gehäuseteil und nicht an einer Nutflanke der Ringnut abstützt.
  • Die Pumpe kann eine Pumpenwelle aufweisen, welche verdrehfest mit dem Rotor verbunden und um die Drehachse drehbar ist. Die Pumpenwelle kann zumindest in dem ersten Gehäuseteil drehbar gelagert sein. Zusätzlich kann die Pumpenwelle in dem zweiten Gehäuseteil drehbar gelagert sein, insbesondere in einer sackförmigen Ausnehmung oder in einer durchgehenden Ausnehmung, insbesondere Bohrung, durch das zweite Gehäuseteil. Die sackförmige Ausnehmung hat den Vorteil, dass die Pumpenkammer zu der von der Pumpenkammer wegweisenden Stirnseite des zweiten Gehäuseteils abgedichtet ist. Die durchgehende Ausnehmung hat den Vorteil, dass sie einfacher zu fertigen ist und eine höhere Stabilität gewährleistet. Das oder die Lager können Gleit- oder Wälzlager sein.
  • Die Pumpenwelle weist eine Struktur, insbesondere eine Außenverzahnung, für eine Welle-Nabe-Verbindung mit dem Rotor auf. Der Durchmesser der Struktur kann größer als der Innendurchmesser des ersten Gehäuseteils und/oder des zweiten Gehäuseteils oder der Lager sein. Die Struktur ist somit zwischen dem ersten Gehäuseteil und dem zweiten Gehäuseteil entlang der Drehachse eingefasst. Dadurch wird bewirkt, dass die Welle nicht aus der fertig montierten Pumpenbaugruppe herausgezogen werden kann.
  • Insbesondere das erste Gehäuseteil, das zweite Gehäuseteil, das dritte Gehäuseteil, der Rotor, die Förderelemente, die Positionierelemente, die Feder und die Pumpenwelle bilden im Wesentlichen eine Pumpenbaugruppe, die als Einheit handhabbar ist. Dadurch, dass die Feder an dem mindestens einen Positionierelement befestigt wird, kann ein Auseinanderfallen der Baugruppe vermieden wird. Die Befestigungsabschnitte der Feder oder die von der Feder separaten Sicherungselemente bewirken eine axiale Wellensicherung, so dass die Pumpenbaugruppe nicht auseinanderfällt.
  • Durch die einfache Handhabung der Pumpenbaugruppe kann diese in das Aufnahmegehäuse, das zum Beispiel von einem Getriebegehäuse für ein Kraftfahrzeug gebildet sein kann, aufgenommen werden bzw. in das Aufnahmegehäuse eingesetzt werden, zum Beispiel über eine der Stirnwand gegenüberliegende Öffnung des Aufnahmegehäuses.
  • Ein Herausfallen der Pumpe bzw. der Pumpenbaugruppe aus dem Aufnahmegehäuse wird zum Beispiel durch einen Deckel oder ein Axialsicherungselement verhindert, wobei die beim Einsetzen gespannte Feder die Pumpenbaugruppe, insbesondere das erste Gehäuseteil gegen das Axialsicherungselement drückt, wobei das Axialsicherungselement verhindert, dass sich die Feder entspannt. Das Axialsicherungselement kann zum Beispiel ringförmig sein und in einer Ringnut, die am vorzugsweise zylindrischen Innenumfang des Aufnahmegehäuses gebildet wird, eingesetzt sein. Das Axialsicherungselement kann von einem Deckel gebildet sein, der die Öffnung zumindest teilweise oder vollständig verschließt.
  • In weiteren Ausführungsformen kann zwischen dem zweiten Gehäuseteil und dem Aufnahmegehäuse, insbesondere der Umfangswand, eine Dichtung angeordnet sein, welche einen ersten Raum, der zwischen der Stirnwand und dem zweiten Gehäuseteil gebildet ist, in Bezug auf einen zweiten Raum, der zwischen der Umfangswand und dem ersten und/oder dritten Gehäuseteil gebildet ist, abdichten. Beispielsweise kann der erste Raum mittels des ersten Kanals mit der Pumpenkammer, in welcher der Rotor angeordnet ist, verbunden sein. Zum Beispiel kann der zweite Raum mittels des zweiten Kanals mit der Pumpenkammer verbunden sein. Insbesondere kann der erste Raum saugseitig und der zweite Raum druckseitig oder der zweite Raum saugseitig und der erste Raum druckseitig angeordnet sein. Dementsprechend kann der Druckraum zwischen der Stirnwand und dem zweiten Gehäuseteil gebildet sein, wobei der Saugraum zwischen der Umfangswand und dem ersten/und oder dritten Gehäuseteil gebildet sein kann. Der Saugraum kann mit dem mindestens einen Saugkanal mit der mindestens einen Förderkammer verbunden sein. Der Druckraum kann mit dem mindestens einen Druckkanal mit der mindestens einen Förderkammer verbunden sein.
  • Zwischen dem ersten Gehäuseteil und dem Aufnahmegehäuse, insbesondere der Umfangswand kann eine zusätzliche Dichtung angeordnet sein, wobei der zweite Raum zwischen der ersten und zweiten Dichtung angeordnet ist. Die zweite Dichtung kann die Abdichtung des zweiten Raums nach außen oder zur Öffnung des Aufnahmegehäuses hin bewirken.
  • Wenn der erste Raum saugseitig der Pumpenkammer angeordnet ist und der zweite Raum druckseitig, wird das Axialsicherungselement während des Pumpbetriebs nur gering mit einer Axialkraft belastet. Allerdings ist dann die Federkraft zumindest so stark zu wählen, dass Teile der Pumpenbaugruppe zumindest so stark entlang der Drehachse zusammengedrückt werden, dass der Pumpenraum hinreichend abgedichtet ist.
  • Wenn der erste Raum druckseitig und der zweite Raum saugseitig angeordnet ist, wirkt das zweite Gehäuseteil wie ein Kolben, der bei Druckerhöhung die Kraft entlang der Drehachse auf das Axialsicherungselement erhöht und somit auch die Teile der Pumpenbaugruppe dichtend aneinander drückt und zwar mit einer steigenden Kraft bei steigendem Förderdruck.
  • Die Feder kann aus Metall, wie zum Beispiel Federstahl, gebildet sein. Alternativ oder zusätzlich kann die Feder einen Kunststoff, wie zum Beispiel einen Elastomer- oder Polymerwerkstoff, aufweisen. Die Feder kann zum Beispiel aus einem Elastomer- oder Polymerwerkstoff gebildet sein oder aus einer mit dem Kunststoff teilweise oder vollständig beschichteten, wie zum Beispiel umspritzten, Metallfeder gebildet sein. Dies hat den Vorteil, dass die Feder auch als Dichtung eine Doppelfunktion erfüllen kann. Zum Beispiel kann die Stirnwand eine Abragung oder einen Dichtsitz aufweisen, an der sich die Feder dichtend abstützt, insbesondere mit der aus dem Kunststoff gebildeten Oberfläche der Feder. Das zweite Gehäuseteil kann einen Dichtsitz aufweisen, an dem sich die Feder, insbesondere mit der aus dem Kunststoff gebildeten Oberfläche dichtend abstützt.
  • Die als Dichtung ausgebildete Feder kann z.B. einen ersten Teil des Druckraums, in den der erste Auslasskanal mündet, gegenüber einem zweiten Teil des Druckraums, in den der zweite Auslasskanal mündet, abdichten. Hierdurch kann eine Pumpe mit zwei Druckniveaus bereitgestellt werden.
  • Die als Dichtung ausgebildete Feder kann z.B. den Druckraum, in den der erste und ggf. der zweite Auslasskanal münden, gegenüber dem Saugraum, in den der erste und ggf. der zweite Einlasskanal münden, abdichten.
  • Die Erfindung wurde anhand mehrerer Beispiele und Ausführungen beschrieben. Besonders bevorzugte Ausführungen der Erfindung werden anhand von Figuren beschrieben. Es zeigen:
  • Figur 1
    eine Pumpenbaugruppe,
    Figur 2
    die Pumpenbaugruppe aus Figur 1 eingesetzt in ein Aufnahmegehäuse,
    Figur 3
    eine perspektivische Ansicht der Pumpenbaugruppe aus Figur 1,
    Figur 4
    die Feder der Pumpenbaugruppe aus Figur 3,
    Figur 5
    eine alternative Ausführung einer Feder,
    Figur 6
    eine alternative Ausführung einer Feder,
    Figur 7
    eine alternative Ausführung einer Feder,
    Figur 8
    eine alternative Ausführung einer Feder,
    Figur 9
    eine alternative Ausführung einer Feder und
    Figur 10
    eine alternative Ausführung einer Feder,
    Figur 11
    eine Querschnittsansicht durch die Pumpenbaugruppe aus den Figuren 1 bis 3.
  • Die Figur 1 zeigt eine Pumpenbaugruppe, die in ein Aufnahmegehäuse 20, wie in Figur 2 dargestellt, eingesetzt werden kann. Die Pumpenbaugruppe umfasst eine zum Beispiel als Tellerfeder ausgestaltete Feder 5, die in den Figuren 4 bis 10 in verschiedenen Ausführungsformen gezeigt wird.
  • Die Pumpe oder die Pumpenbaugruppe aus Figur 1 weist einen Rotor 4 auf, der über eine Welle-Nabe-Verbindung 30 mit einer Pumpenwelle 10 der Pumpe 1 verdrehfest verbunden ist. Der Rotor 4 weist als Führung dienende, insbesondere schlitzförmige Ausnehmungen auf. Jeder Ausnehmung ist ein Förderelement 13, insbesondere ein Flügel, zugeordnet. Der Flügel 13 ist in seiner Ausnehmung radial oder von der Drehachse des Rotors 4 weg und zur Drehachse des Rotors 4 hin verschiebbar, insbesondere mit einem einzigen translatorischen Freiheitsgrad geführt, hin und her verschiebbar, wie am besten aus Figur 11 erkennbar ist. Die Flügel 13 werden mit dem Rotor 4 mitgedreht. Die Pumpe 1 weist ein ringförmiges Gehäuseteil 12 auf, welches zur besseren Identifizierung als drittes Gehäuseteil 12 bezeichnet werden kann. Das dritte Gehäuseteil 12 kann als Hubring ausgestaltet sein. Das dritte Gehäuseteil 12 ist zwischen einem ersten Gehäuseteil 2 und einem zweiten Gehäuseteil 3 eingefasst und verdrehfest in Bezug auf das erste und zweite Gehäuseteil 2, 3. Der sich ringförmig um die Pumpenwelle 10 erstreckende Raum, der von dem Innenumfang des dritten Gehäuseteils 12 umgeben und axial von dem zweiten und dritten Gehäuseteil 2, 3 begrenzt wird, kann auch als Pumpenkammer 26 bezeichnet werden. Der Rotor 4 und die Flügel 13 sind in der Pumpenkammer 26 angeordnet.
  • Wie am bestens aus Figur 11 ersichtlich ist, ist radial zwischen dem Rotor 4 und dem dritten Gehäuseteil 12 mindestens eine Förderkammer 27, 28 gebildet. Die hier gezeigte Ausführung umfasst zwei Förderkammern, nämlich eine erste Förderkammer 27 und eine zweite Förderkammer 28.
  • Zwischen benachbarten Flügeln 13 ist jeweils eine Förderzelle 29 gebildet, deren Volumen sich in Abhängigkeit von der Drehposition des Rotors 4 um seine Drehachse verändert. Da die Pumpe mehrere Flügel 13 aufweist, weist sie auch entsprechend mehrere Förderzellen 29 auf. In jeder der Förderkammern 27, 28 befinden sich mehrere Förderzellen.
  • Die Flügel 13 und der Rotor 4 bilden mit dem ersten Gehäuseteil 2 einen ersten Dichtspalt und mit dem zweiten Gehäuseteil 3 einen zweiten Dichtspalt.
  • Das dritte Gehäuseteil 12, insbesondere der Hubring, oder/und die Flügel 13 können magnetisiert sein, so dass die Flügel 13 aufgrund Magnetkraft an der Innenumfangsfläche des dritten Gehäuseteils 12 anliegen, insbesondere auch, wenn sich der Rotor 4 nicht dreht. Dies erlaubt einen frühzeitigen Druckaufbau beim Start oder Kaltstart, d.h. wenn sich die Pumpenwelle 10 zu drehen beginnt. Alternativ oder zusätzlich können die Flügel 13 aufgrund der Fliehkraft bei der Drehung des Rotors 4 nach außen, d. h. von der Drehachse des Rotors 4 weg gegen die Innenumfangsfläche des dritten Gehäuseteils 12 gedrückt werden. Die Flügel 13 bzw. jeder der Flügel 13 bildet mit der Innenumfangsfläche des dritten Gehäuseteils 12 einen dritten Dichtspalt.
  • Die Innenumfangsfläche des dritten Gehäuseteils 12 weist eine Kontur auf, die bewirkt, dass die Flügel 13 bei einer vollen Umdrehung des Rotors 4 zumindest einmal ausfahren (Volumenvergrößerung der Förderzelle 29) und einmal einfahren (Volumenverkleinerung der Förderzelle 29). Die in dem Beispiel gezeigte Pumpe 1 ist doppelhubig, d. h. mit zwei Förderkammern 27, 28, wobei die Flügel 13 je Förderkammer 27, 28 einmal ausfahren und einmal einfahren, wenn sie mittels Drehung des Rotors 4 durch die Förderkammer 27, 28 bewegt werden. Somit wird bewirkt, dass die Flügel 13 bei einer vollen Umdrehung des Rotors 4 ausfahren, einfahren, ausfahren und wieder einfahren, oder anders ausgedrückt, zweimal ausfahren und zweimal einfahren. Zwischen benachbarten Flügeln 13 ist jeweils eine Förderzelle 29 gebildet, deren Volumen sich durch das Ausfahren und Einfahren der diese Förderzelle 29 begrenzenden Flügel 13 vergrößert bzw. verkleinert, nämlich in Abhängigkeit von der Kontur der Innenumfangsfläche des dritten Gehäuseteils 12.
  • Wie am besten aus Figur 3 ersichtlich ist, weist die Pumpe 1 eine Öffnung oder einen Kanal 3b auf, der in den Bereich der Förderkammer 27, 28 mündet, in dem sich während der Drehung des Rotors 4 das Volumen der Förderzellen 29 verkleinert. Dadurch wird bewirkt, dass in den Förderzellen befindliches Fluid, wie zum Beispiel Öl, durch den Kanal 3b, der hier als Auslass dient, verdrängt werden.
  • Die Pumpe 1 weist eine Öffnung bzw. einen Kanal 2b auf, der in den Bereich der Förderkammer 27, 28 mündet, in dem sich während der Drehung des Rotors 4 das Volumen der Förderzellen 29 vergrößert. Dadurch wird bewirkt, dass Fluid durch den Kanal 2b in die sich vergrößernde Förderzelle 29 gefördert oder gesaugt wird. Da die Pumpe 1 in diesem Beispiel zweihubig ist, weist sie zwei Einlasskanäle 2b und zwei Auslasskanäle 3b auf, wobei der erste Einlasskanal 2b und der erste Auslasskanal 3b in die erste Förderkammer 27 und der zweite Einlasskanal 2b und der zweite Auslasskanal 3b in die zweite Förderkammer münden. Eine umgekehrte Konfiguration der Einlass- und Auslasskanäle 2b, 3b ist ebenfalls denkbar. D. h., dass der Kanal 2b der Auslasskanal und der Kanal 3b der Einlasskanal sein kann.
  • Bei Drehung des Rotors 4 wird Fluid, insbesondere Flüssigkeit durch den Kanal 2b in die sich vergrößerten Förderzellen 29 angesaugt und bis in den Bereich transportiert, in den der Kanal 3b mündet, wobei das Fluid aus den sich dann verkleinernden Förderzellen 29 über den Kanal 3b ausgegeben wird.
  • Die Pumpe 1 umfasst mindestens ein Positionierelement 6, in dem gezeigten Beispiel zwei Positionierelemente 6. Die Positionierelemente 6 sind Stifte bzw. stiftförmig. Das Positionierelement 6 ist fest in dem ersten Gehäuseteil 2 verankert. Das erste Gehäuseteil 2 weist eine Sackbohrung 2a auf, in die das stiftförmige Positionierelement 6 mit einem ersten Ende eingepresst ist.
  • Das stiftförmige Positionierelement 6 positioniert das zweite Gehäuseteil 3 und das dritte Gehäuseteil 12 bzgl. ihrer Winkelpositionen um die Drehachse relativ zu dem ersten Gehäuseteil 2. Das zweite Gehäuseteil 3 und das dritte Gehäuseteil 12 weisen Ausnehmungen, Durchbrüche, Bohrungen oder Langlöcher, vorzugsweise mit radialer Erstreckung, auf, durch die sich das Positionierelement 6 erstreckt. In dem gezeigten Beispiel weist das dritte Gehäuseteil 12 hierfür eine Ausnehmung auf. Das zweite Gehäuseteil 3 weist eine Durchgangsbohrung auf, durch die sich das Positionierelement 6 erstreckt. Das Positionierelement 6 ragt mit seinem stiftförmigen zweiten Ende über die Stirnseite, die von der Pumpenkammer 26 wegweist. Dieser überstehende Abschnitt des Positionierelements 6 weist eine Ausnehmung, wie zum Beispiel eine Ringnut 6a, oder zumindest einen Teil davon auf, die sich über den Umfang des Positionierelements 6 erstreckt. In der Ausnehmung 6a ist ein Sicherungselement oder Befestigungselement 5a angeordnet, das insbesondere kraft- und/oder formschlüssig an dem Positionierelement 6 bzw. in der Ringnut 6a befestigt ist. Das Befestigungselement 5a verhindert ein axiales Auseinanderfallen des ersten Gehäuseteils 2, des zweiten Gehäuseteils 3 und des dritten Gehäuseteils 12, oder in anderen Worten ein Abziehen des zweiten und dritten Gehäuseteils 3, 12 von dem Positionierelement.
  • Die Feder 5 kann zum Beispiel als Tellerfeder, als Sternscheibe oder mit Geometrien einer Sternscheibe ausgestaltet sein. Die Feder weist einen Hauptabschnitt 5c auf, der über einen Arm mit dem Befestigungselement 5a verbunden ist. In dem gezeigten Beispiel weist die (Teller-)Feder 5 zwei Befestigungselemente 5a auf, die jeweils über einen Arm 5b mit dem Hauptabschnitt 5c verbunden sind. Das Befestigungselement 5a verhindert zum einen, dass sich die Gehäuseteile 2, 3, 12 voneinander lösen, und ermöglicht anderseits eine Befestigung der Feder 5 an der Pumpeneinheit bzw. an dem Positionierelement 6. Der Hauptabschnitt 5c der Feder 5 ist entlang der Drehachse des Rotors 4 oder der Pumpenwelle 10 versetzt zu dem Befestigungselement 5a bzw. zu einem Abstützabschnitt 5d angeordnet. Der Befestigungsabschnitt 5a und/oder der zum zweiten Gehäuseteil 3 weisende Abstützabschnitt 5d liegen an dem zweiten Gehäuseteil 3 an oder stützen sich daran ab. Der Befestigungsabschnitt und/oder der Abstützabschnitt 5d liegen möglichst flächig an mindestens einer entsprechend gebildeten, vorzugsweise ebenen Fläche des zweiten Gehäuseteils 3 an. Der Hauptabschnitt 5c hingegen ist mit einem Spalt oder Federspalt von dem zweiten Gehäuseteil 3 beabstandet. Der Hauptabschnitt 5c kann somit zu dem zweiten Gehäuseteil 3 hin federn, wodurch die Feder 5 gespannt wird, und von dem zweiten Gehäuseteil 3 wegfedern, wodurch die Feder entspannt wird. Der Hauptabschnitt kann bevorzugt möglichst flächig an mindestens einer von einem im Wesentlichen ringförmigen Absatz der Stirnwand 20c gebildeten Fläche oder ebenen Fläche anliegen. Insbesondere ist bevorzugt, dass die Feder 5 - bei Berücksichtigung der Steifigkeit/Spannungen bzw. des Federdiagramms (Kraft-Weg-Kennlinie) der Feder 5 - möglichst flächig an dem zweiten Gehäuseteil 3 und dem Aufnahmegehäuse, insbesondere an der Stirnwand oder der mindestens einen Fläche des im Wesentlichen ringförmigen Absatzes anliegt.
  • Der Hauptabschnitt 5c der Feder 5 weist einen insbesondere kreisrunden Durchbruch 5e auf, durch den sich ein Abschnitt des zweiten Gehäuseteils 3 erstreckt. Hierdurch kann eine kompakte Bauweise erzielt werden.
  • Die Feder 5 kann eine Feder aus Metall umfassen oder sein, die optional mit einem Kunststoffmaterial, insbesondere einem Elastomer oder einem Material dessen Hauptbestandteil ein Elastomer ist, zumindest teilweise oder vollständig beschichtet, umspritzt oder mit angespritzten Geometrien versehen sein kann. Durch die Beschichtung, Umspritzung oder angespritzten Geometrien kann die Feder 5 eine Zusatzfunktion als Dichtung übernehmen.
  • Die Pumpenwelle 10 ist an dem ersten und zweiten Gehäuseteil 2, 3 drehbar gelagert, insbesondere mittels jeweils eines Gleitlagers.
  • Zwischen dem Abschnitt der Pumpenwelle 10, der in dem zweiten Gehäuseteil 3 drehbar gelagert ist, und dem Abschnitt der Pumpenwelle 10, der in dem ersten Gehäuseteil 2 drehbar gelagert ist, ist eine Außenstruktur, wie zum Beispiel eine Außenverzahnung an der Pumpenwelle 10 gebildet, die mit einer entsprechenden Innenstruktur, insbesondere Innenverzahnung des Rotors 4 in einem formschlüssigen Eingriff ist, um eine Welle-Nabe-Verbindung 30 zu bewirken. Der Außendurchmesser der Außenstruktur der Pumpenwelle 10 ist größer als der Durchmesser des Abschnitts der Pumpenwelle 10, der in dem ersten Gehäuseteil 2 und/oder in dem zweiten Gehäuseteil 3 gelagert ist. Die Pumpenwelle 10 ist axialfest zwischen den ersten und zweiten Gehäuseteilen 2, 3 angeordnet, d.h. dass eine Verschiebung der Pumpenwelle 10 entlang der Drehachse in beide Richtungen im Wesentlichen nicht möglich ist. Hierfür ist der Innendurchmesser der Abschnitte des ersten Gehäuseteils 2 und des zweiten Gehäuseteils 3, welche die Pumpenwelle 10 lagern, kleiner als der Außendurchmesser der Außenstruktur der Pumpenwelle 10.
  • Das erste Gehäuseteil 2 weist an seiner von dem Pumpenraum wegweisenden Stirnseite eine ringförmige Tasche auf, in der eine Wellendichtung 11 angeordnet ist. Die Wellendichtung 11 ist drehfest an dem ersten Gehäuseteil 2 befestigt und bildet mit der Pumpenwelle 10 einen Dichtspalt. Die Wellendichtung 11 dichtet den Pumpenraum nach außen hin ab.
  • Das Ende der Pumpenwelle 10, welches dem Ende, welches im Bereich der Feder 5 angeordnet ist, gegenüberliegt, weist eine Außenstruktur für eine Welle-Nabe-Verbindung mit einem Zahnrad 21, insbesondere einem Kettenrad auf. Das Zahnrad 21 sitzt verdrehfest auf der Pumpenwelle 10. Das Zahnrad 21 kann durch eine Kette angetrieben werden, die wiederum von zum Beispiel einer Kurbelwelle oder einer anderen Welle, die mit zum Beispiel einem Motor des Fahrzeugs verbunden sein kann, angetrieben wird. Das Zahnrad 21 weist für dessen Befestigung an der Pumpenwelle 10 ein Innengewinde auf, mit dem es mit einem Außengewinde der Pumpenwelle 10 gegen einen Absatz der Pumpenwelle 10 geschraubt ist. Eine verdrehgesichert auf der Welle 10 sitzende Verdrehsicherung 22 sichert das Zahnrad 21 gegen unbeabsichtigtes Lösen. Die Verdrehsicherung 22 weist einen abgewinkelten Abschnitt auf, der formschlüssig in das Zahnrad 21 eingreift, wodurch ein Lösen des Zahnrads 21 verhindert wird.
  • Die Pumpeneinheit aus Figur 1 wird in ein zum Beispiel topfförmiges Aufnahmegehäuse 20, wie zum Beispiel einem Gehäusetopf eingesetzt (Figur 2). Das Aufnahmegehäuse 20 weist eine Umfangswand 20d auf, welche die Pumpeneinheit 1 aus Figur 1 umfangsseitig umgibt. Ferner weist das Aufnahmegehäuse 20 eine Stirnwand 20c auf, welche mit der Umfangswand 20d verbunden ist, wobei sich die Feder 5 mit ihrem Hauptabschnitt 5c an der Stirnwand 20c, insbesondere an einer zum Beispiel ringförmigen Abragung 20a der Stirnwand 20c abstützt.
  • Die Pumpeneinheit aus Figur 1 wird zwischen der Stirnwand 20c und einem Axialsicherungselement 9, insbesondere einem Axialsicherungsring, der in einer Ringnut 20b des Umfangsgehäuses 20 angeordnet ist, so gehalten, dass die Feder 5 gespannt ist.
  • Zwischen der Stirnwand 20c und einer zweiten Dichtung 8, die in einer am Außenumfang des zweiten Gehäuseteils 3 angeordneten Ringnut angeordnet ist und die mit der Umfangswand 20d einen Dichtspalt bildet, ist ein erster Raum 23 (Druckraum) gebildet, in den das von der Pumpe geförderte Fluid (Flüssigkeit) gefördert wird. Der Raum 23 ist wiederum mittels eines Kanals (nicht gezeigt) mit einem Fluidverbraucher, wie zum Beispiel mit einem Schmiermittelverbraucher, insbesondere einem Getriebe, verbunden. Zwischen der zweiten Dichtung 8 und einer ersten Dichtung 7, die in einer am Außenumfang des ersten Gehäuseteils 2 angeordneten Ringnut angeordnet ist und die mit der Umfangswand 20d einen Dichtspalt bildet, ist ein zweiter Raum 24 (Saugraum) gebildet, aus dem Fluid über die Pumpe in den Raum 23 gefördert wird. Der Raum 24 kann zum Beispiel mittels eines Kanals mit einem Vorratsbehälter für das Fluid verbunden sein. Bei der Förderung des Fluids wird mit steigender Drehzahl der Druck in dem Raum 23 erhöht, wodurch das zweite Gehäuseteil 3 zusätzlich zu der Vorspannkraft der Feder 5 das dritte Gehäuseteil 12 fest zwischen dem ersten und zweiten Gehäuseteil 2, 3 einklemmt. Dadurch werden das erste, das zweite und das dritte Gehäuseteil 2, 3, 12 zueinander abgedichtet. Die Verbindung zwischen dem Axialsicherungselement 9 und dem ersten Gehäuseteil 2 ist so stark ausgebildet, dass sie der Axialkraft auf das Axialsicherungselement 9, die durch den Druck im Raum 23 bewirkt wird, widerstehen kann, d. h. nicht gelöst wird. Alternativ zu dem als Federring gebildeten Axialsicherungselement 9 kann ein Gehäusedeckel an dem Aufnahmegehäuse 20 befestigt werden, an dem sich das erste Gehäuseteil 2 axial abstützt. Die in Figur 3 verwendete Feder 5 wird in Figur 4 dargestellt. Die Feder aus Figur 8 ähnelt der Feder aus Figur 4.
  • Das Befestigungselement 5a der Feder 5 aus den Figuren 4 und 8 weist zwei Schenkel auf, die in der Ausnehmung 6a angeordnet werden. In diesen Ausführungsformen kann die Feder 5 durch Drehen um die Drehachse des Rotors 4 mittels ihrer Befestigungselemente 5a an den Positionierelementen 6 befestigt werden. Die Schenkel weisen jeweils zwei zueinander weisende Geleitflächen 5g auf, die so zu zueinander angeordnet sind, dass die zwischen ihnen gebildete lichte Weite sich zum freien Ende der Schenkel hin vergrößert. Die Dicke der Schenkel ist kleiner als die lichte Breite zwischen den Nutflanken der Ausnehmung 6a des Positionierelements 6. Der Abschnitt des verringerten Kerndurchmessers in der Ausnehmung 6a, d. h. der am Nutgrund gemessene Durchmesser des Positionierelements 6, wird zwischen den zwei Schenkeln des Befestigungselements 5a formschlüssig eingefasst. Während des Befestigens der Feder 5 an den Positionierelementen 6 weiten sich die Schenkel elastisch leicht auf, indem die zueinander weisenden Gleitflächen 5g an dem Abschnitt verringerten Durchmessers der Ausnehmung 6a abgleiten. Insbesondere verrasten die Schenkel anschließend mit dem Abschnitt verringerten Durchmessers. Unterstützend können die Schenkel jeweils eine konkav gekrümmte Vertiefungsfläche 5h aufweisen. Die Vertiefungsflächen 5h können an dem Abschnitt verringerten Durchmessers bevorzugt flächig anliegen, wenn das Befestigungselement 5a in der Ausnehmung 6a vollständig angeordnet ist. Dies bewirkt eine formschlüssige Sicherung gegen ein Verdrehen der Feder 5 entgegen der Drehrichtung, in die die Feder 5 zum Befestigen an den Positionierelementen 6 gedreht wurde. Zwischen den Schenkeln weist das Befestigungselement 5a eine Abragung auf, welche eine Anschlagfläche aufweist, die an dem Abschnitt verringerten Durchmessers des Positionierelements 6 anliegen kann, wenn das Befestigungselement 5a vollständig in der Ausnehmung 6a angeordnet ist.
  • Die in den Figuren 5 und 6 dargestellten Befestigungselemente 5a sind sich ähnlich. Das Befestigungselement 5a ist geschlossen ringförmig und weist an seinem Innenumfang 3 Abragungen auf, die einen Durchmesser einfassen, der größer als der Abschnitt verringerten Durchmessers in der Ausnehmung 6a und kleiner als der Außendurchmesser des stiftförmigen Positionierelements 6 ist. Das Befestigungselement 5a aus Figur 5 weist an seinen drei Abragungen Facetten oder Abschrägungen auf, welche die Ausführungsform aus Figur 6 nicht aufweist. Zum Befestigen der Feder 5 werden die Befestigungselemente 5a über jeweils ein Positionierelement 6 axial geschoben, bis die drei Abragungen des Befestigungselements 5a in die Ausnehmung 6a einrasten. Auch hier gilt, dass die Dicke des Befestigungselements 5a kleiner als die lichte Breite zwischen den Nutflanken der Ausnehmung 6a ist.
  • Figur 7 zeigt ein Befestigungselement 5a, welches nach außen hin, d. h. von der Drehachse wegweisend, eine Vertiefung 5f aufweist. Die Feder 5 aus Figur 7 kann mittels Drehen um die Drehachse an den Positionierelementen 6 befestigt werden. Die beiden Befestigungselemente 5a weisen jeweils ein einziges freies Ende auf, welches bezogen auf den Arm 5b entfernter als die Vertiefung 5f angeordnet ist. Das freie Ende, insbesondere eine von der Drehachse wegweisende Gleitfläche 5g des freien Endes, die während des Befestigens der Feder 5 an dem Positionierelement 6 abgleitet, ist bezogen auf die Drehachse entfernter als die Vertiefung 5f, insbesondere eine von der Drehachse wegweisende Vertiefungsfläche 5h der Vertiefung 5f, angeordnet. Beim Befestigen bewirkt diese Ausgestaltung, dass das freie Ende von dem Positionierelement 6 ausgelenkt wird, indem die Gleitfläche 5g an dem Positionierelement 6 abgleitet, und die Vertiefung in die Ausnehmung 6a federt. Hierdurch ergibt sich eine formschlüssige Verbindung. Die Dicke des Befestigungselements 6 ist wie bei den anderen Ausführungsformen aus den Figuren 4 bis 10 auch kleiner als die lichte Breite zwischen den Nutflanken der Ausnehmung 6a.
  • Figur 9 zeigt eine Ausführungsform mit einem geschlossen ringförmigen Befestigungselement 5a. Das ringförmige Befestigungselement 5a bildet an seiner Ringinnenseite eine Kontur mit einem ersten Durchmesserabschnitt 5a1 und einem zweiten Durchmesserabschnitt 5a2, die über einen Verjüngungsabschnitt 5a3 verbunden sind. Der erste Durchmesserabschnitt 5a1 weist einen Innendurchmesser auf, der größer als der Außendurchmesser des Positionierelements 6 ist. Der zweite Durchmesserabschnitt 5a2 weist einen Innendurchmesser auf, der kleiner als der Außendurchmesser des Positionierelements 6 und größer als der Durchmesser des Positionierelements 6 in der Ausnehmung 6a ist. Das lichte Maß zwischen den Flanken des Verjüngungsabschnitts 5a3 ist kleiner, insbesondere nur etwas kleiner als der Durchmesser des Positionierelements 6a in der Ausnehmung 6a. Zum Befestigen der Feder 5 an dem mindestens einen Positionierelement 6 wird der erste Durchmesserabschnitt 5a1 des Befestigungselements 5a auf das Positionierelement 6 gesteckt. Durch Drehen der Feder 5 wird das Befestigungselement 5a mit dem zweiten Durchmesserabschnitt 5a2 in die Ausnehmung 6a verschwenkt, wobei sich dadurch der Verjüngungsabschnitt am Abschnitt verringerten Durchmessers in der Ausnehmung 6a federnd aufweitet und sich wieder zusammenzieht, wenn er an dem Abschnitt veringerten Durchmessers vorbeibewegt wurde.
  • Die Feder 5 aus Figur 10 zeigt mindestens ein Befestigungselement 5a, welches hakenförmig ausgestaltet ist, wobei sich ein hakenförmiger Abschnitt um ein Maß größer als 180° um einen Aufnahmeabschnitt 5a4 erstreckt. An dem Aufnahmeabschnitt 5a4 schließt sich ein Verjüngungsabschnitt 5a3 an, dessen lichter Abstand kleiner als der Durchmesser des Aufnahmeabschnitts 5a4 ist. Der Durchmesser des Aufnahmeabschnitts 5a4 ist größer als der Durchmesser des Positionierelements 6 in der Ausnehmung 6a und kleiner als der Außendurchmesser des Positionierelements 6. Das lichte Maß zwischen den Flanken des Verjüngungsabschnitts 5a3 ist kleiner, insbesondere etwas kleiner als der Durchmesser des Positionierelements 6 in der Ausnehmung 6a. Durch Drehen der Feder 5 wird zunächst der Verjüngungsabschnitt 5a3 an dem Abschnitt verringerten Durchmessers in der Ausnehmung 6a vorbeigeschwenkt oder -bewegt, wodurch sich der Verjüngungsabschnitt 5a3 elastisch etwas aufweitet und wieder zusammenzieht.
  • Bezugszeichenliste
  • 1
    Pumpe
    2
    erstes Gehäuseteil
    2a
    Ausnehmung, wie z.B. Sackbohrung
    2b
    Öffnung, wie z.B. Auslass oder Einlass
    3
    zweites Gehäuseteil
    3a
    Ausnehmung, wie z.B. Durchgangsbohrung
    3b
    Öffnung, wie z.B. Einlass oder Auslass
    4
    Rotor
    5
    Feder
    5a
    Befestigungselement
    5a1
    erster Durchmesserabschnitt
    5a2
    zweiter Durchmesserabschnitt
    5a3
    Verjüngungsabschnitt
    5a4
    Aufnahmeabschnitt
    5b
    Arm
    5c
    Hauptabschnitt
    5d
    Abstützabschnitt
    5e
    Öffnung
    5f
    Vertiefung
    5g
    Gleitfläche
    5h
    Vertiefungsfläche
    6
    Positionierelement / Stift
    6a
    Ausnehmung, wie z.B. Ringnut
    7
    erste Dichtung / Dichtring
    8
    zweite Dichtung / Dichtring
    9
    Axialsicherungselement
    10
    Pumpenwelle
    11
    Wellendichtung
    12
    drittes Gehäuseteil / Hubring
    12a
    Ausnehmung
    13
    Flügel
    20
    Aufnahmegehäuse, wie z.B. Gehäusetopf
    20a
    Abragung
    20b
    Ausnehmung, wie z.B. Ringnut
    20c
    Stirnwand
    20d
    Umfangswand
    20e
    Öffnung
    21
    Zahnrad, wie z.B. Kettenrad
    22
    Verdrehsicherung
    23
    erster Raum / Druckraum
    24
    zweiter Raum / Saugraum
    25
    Federspalt
    26
    Pumpenraum
    27
    erste Förderkammer
    28
    zweite Förderkammer
    29
    Förderzelle
    30
    Welle-Nabe Verbindung

Claims (15)

  1. Pumpe (1), umfassend:
    - einen Rotor (4),
    - ein erstes Gehäuseteil (2) und ein zweites Gehäuseteil (3), zwischen denen der Rotor (4) um eine Drehachse und relativ zu dem ersten und zweiten Gehäuseteil (2, 3) drehbar angeordnet ist,
    - mindestens ein Positionierelement (6), welches das zweite Gehäuseteil (3) bezüglich seiner Winkelposition um die Drehachse relativ zu dem ersten Gehäuseteil (2) positioniert, und
    - eine an dem mindestens einen Positionierelement (6) befestigte Feder (5), wobei das zweite Gehäuseteil (3) zwischen der Feder (5) und dem Rotor (4) angeordnet ist,
    dadurch gekennzeichnet, dass
    - die Feder (5) einen Hauptabschnitt (5c) und mit dem Hauptabschnitt (5c) verbundene Abstützabschnitte (5d) aufweist, wobei zwischen dem zweiten Gehäuseteil (3) und dem Hauptabschnitt (5c) ein Federspalt (25) besteht und sich die Abstützabschnitte (5d) an dem zweiten Gehäuseteil (3) abstützen.
  2. Pumpe (1) nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Feder (5) um die Drehachse verdrehgesichert, insbesondere formschlüssig befestigt ist.
  3. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Positionierelement (6) von dem ersten Gehäuseteil (2) gebildet ist oder als ein von dem ersten Gehäuseteil (2) separates Teil in dem ersten Gehäuseteil (2) verankert ist.
  4. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem ersten Gehäuseteil (2) und dem zweiten Gehäuseteil (3) ein drittes Gehäuseteil (12) angeordnet ist, welches den Rotor (4) über seinen Umfang umgibt, wobei das dritte Gehäuseteil (12):
    - ein von dem ersten und zweiten Gehäuseteil (2, 3) separates Teil ist oder
    - ein von dem ersten Gehäuseteil (2) gebildeter Abschnitt des ersten Gehäuseteils (2) ist oder
    - ein von dem zweiten Gehäuseteil (3) gebildeter Abschnitt des zweiten Gehäuseteils (3) ist.
  5. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hauptabschnitt (5c) entlang der Drehachse zu dem ersten Gehäuseteil (2) hin und von dem ersten Gehäuseteil (2) wegfedern kann.
  6. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil des Hauptabschnitts (5c) zwischen der Drehachse und dem mindestens einen Abstützabschnitt (5d) angeordnet ist.
  7. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feder (5) mindestens ein Befestigungselement (5a) aufweist oder bildet, mittels dessen die Feder (5) an dem mindestens einen Positionierelement (6) befestigt ist.
  8. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine Positionierelement (6) eine Ausnehmung (6a) aufweist, in welche das mindestens eine Befestigungselement (5a) der Feder (5) eingreift.
  9. Pumpe (1) nach Anspruch 8, dadurch gekennzeichnet, dass die Ausnehmung (6a) eine sich über den Umfang des zylindrischen oder stiftförmigen Positionierelements (6) erstreckende Ringnut ist, welche eine entlang der Längsachse des Positionierelements (6) erstreckte Breite aufweist, die so bemessen ist, dass das Befestigungselement (5a) der Feder (5) mit einem Spiel entlang der Längsachse in der Ringnut aufgenommen ist.
  10. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpe (1) eine Pumpenwelle (10) aufweist, welche verdrehfest mit dem Rotor (4) verbunden und um die Drehachse drehbar ist, wobei die Pumpenwelle (10) drehbar in dem ersten Gehäuseteil (2) und in dem zweiten Gehäuseteil (3) gelagert ist.
  11. Pumpe (1) nach Anspruch 10, dadurch gekennzeichnet, dass die Feder (5) eine Ausnehmung (5e) aufweist, durch welche sich die Pumpenwelle (10) oder die die Pumpenwellenlagerung bildende Struktur des zweiten Gehäuseteils (3) erstreckt.
  12. Pumpe (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Aufnahmegehäuse (20), welches eine sich um die Drehachse erstreckende Umfangswand (20d) und eine stirnseitig der Umfangswand (20d) angeordnete Stirnwand (20c) aufweist, wobei das zweite Gehäuseteil (3) über seinen Umfang von der Umfangswand (20d) umgeben ist und die Feder (5), wie zum Beispiel der Hauptabschnitt (5c) der Feder (5), sich an der Stirnwand (20c), insbesondere an einer von der Stirnwand (20c) gebildeten ringförmigen Abragung (20a) abstützt.
  13. Pumpe (1) nach Anspruch 12, gekennzeichnet durch ein am Aufnahmegehäuse (20) befestigtes Axialsicherungselement (9), wobei die gespannte Feder (5) die Pumpenbaugruppe, welche zumindest das erste Gehäuseteil (2), das zweite Gehäuseteil (3), den Rotor (4) und die Pumpenwelle (10) umfasst, insbesondere das erste Gehäuseteil (2) der Pumpenbaugruppe gegen das Axialsicherungselement (9) drückt, wobei das Axialsicherungselement (9) verhindert, dass sich die Feder (5) entspannt.
  14. Pumpe (1) nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass zwischen dem zweiten Gehäuseteil (3) und dem Aufnahmegehäuse (20) eine Dichtung (8) angeordnet ist, welche einen ersten Raum (23), der zwischen der Stirnwand (20c) und dem zweiten Gehäuseteil (3) gebildet ist, in Bezug auf einen zweiten Raum (24), der zwischen der Umfangswand (20d) und dem dritten Gehäuseteil (12) gebildet ist, abdichtet, wobei zum Beispiel der erste Raum (23) mittels eines Kanals (3b) mit einer Pumpenkammer (26), in welcher der Rotor (4) angeordnet ist, verbunden ist und der zweite Raum (24) mittels eines Kanals (2b) mit der Pumpenkammer (26) verbunden ist und/oder der erste Raum (23) saugseitig und der zweite Raum (24) druckseitig oder der zweite Raum (24) saugseitig und der erste Raum (23) druckseitig angeordnet sind.
  15. Pumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Feder (5) einen Elastomer- oder Polymerwerkstoff aufweist, wie zum Beispiel aus einem Elastomer- oder Polymerwerkstoff gebildet ist oder aus einer mit dem Elastomer- oder Polymerwerkstoff teilweise oder vollständig beschichteten oder umspritzten Metallfeder gebildet ist.
EP16164901.7A 2015-04-17 2016-04-12 Pumpe mit axialer druckfeder Active EP3081744B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015105928.2A DE102015105928B4 (de) 2015-04-17 2015-04-17 Pumpe

Publications (2)

Publication Number Publication Date
EP3081744A1 EP3081744A1 (de) 2016-10-19
EP3081744B1 true EP3081744B1 (de) 2021-08-11

Family

ID=55754135

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16164901.7A Active EP3081744B1 (de) 2015-04-17 2016-04-12 Pumpe mit axialer druckfeder

Country Status (4)

Country Link
US (1) US10087929B2 (de)
EP (1) EP3081744B1 (de)
CN (1) CN106050646B (de)
DE (1) DE102015105928B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126416A1 (de) 2021-10-12 2023-04-13 Schwäbische Hüttenwerke Automotive GmbH Axialsicherung einer Pumpe

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204098B4 (de) * 2016-03-11 2019-09-12 Magna Powertrain Bad Homburg GmbH Flügelzellenpumpe
DE102016109335B4 (de) * 2016-05-20 2020-09-03 Robert Bosch Gmbh Verdrängerpumpe und getriebe für ein kraftfahrzeug
DE102016211913A1 (de) 2016-06-30 2018-01-18 Schwäbische Hüttenwerke Automotive GmbH Flügelzellenpumpe mit druckbeaufschlagbarem Unterflügelbereich
JP7021866B2 (ja) * 2017-05-11 2022-02-17 Kyb株式会社 カートリッジ式ベーンポンプ及びこれを備えるポンプ装置
DE102018208068A1 (de) * 2018-05-23 2019-11-28 Robert Bosch Gmbh Anschlussbaugruppe mit Speisepumpe und elastischem Element
DE102018133679A1 (de) 2018-12-28 2020-07-02 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit axialer Kompensation, Auslassdichtung für eine Pumpe sowie vormontierte Pumpeneinheit
DE102018133681A1 (de) * 2018-12-28 2020-07-02 Schwäbische Hüttenwerke Automotive GmbH Rotationspumpe mit axialer Kompensation, Auslassdichtung für eine Pumpe sowie vormontierte Pumpeneinheit
JP2020169577A (ja) * 2019-04-01 2020-10-15 Kyb株式会社 ベーンポンプ
DE102019215933A1 (de) * 2019-07-26 2021-01-28 Hanon Systems Efp Deutschland Gmbh Flügelzellenpumpe
DE102020116731A1 (de) * 2020-06-25 2021-12-30 Schwäbische Hüttenwerke Automotive GmbH Pumpe mit befestigter Dichtung
DE102020122867A1 (de) * 2020-09-01 2022-03-03 Schwäbische Hüttenwerke Automotive GmbH Pumpen-Motor-Einheit mit integrativem Gehäusedeckel
DE102022122261A1 (de) 2022-09-02 2024-03-07 BigRep GmbH Zahnradpumpenwellenanordnung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3207077A (en) 1963-05-27 1965-09-21 Gen Motors Corp Pump
DE2423773C2 (de) * 1974-05-16 1985-01-10 Daimler-Benz Ag, 7000 Stuttgart Flügelzellenmaschine, insbesondere -pumpe
JPS6126638Y2 (de) * 1980-12-27 1986-08-09
JPH08210400A (ja) * 1995-02-06 1996-08-20 Nitsupatsu Seimitsu Kogyo Kk ディスクブレーキにおけるディスクとブラケットの連結構造
DE20302535U1 (de) * 2003-02-17 2003-06-18 Trw Fahrwerksyst Gmbh & Co Hydraulikpumpe für ein Servolenksystem
CN201202640Y (zh) * 2008-05-09 2009-03-04 长治液压有限公司 叶片式转向泵主轴传动机构
DE112009002350A5 (de) * 2008-10-22 2011-06-30 ixetic Bad Homburg GmbH, 61352 Pumpe, insbesondere Flügelzellenpumpe
CN104541058B (zh) 2012-06-12 2016-08-24 麦格纳动力系巴德霍姆堡有限责任公司
DE102013200410B4 (de) 2013-01-14 2017-12-07 Schwäbische Hüttenwerke Automotive GmbH Gaspumpe mit Druckentlastung zur Reduzierung des Anfahrdrehmoments
DE102013209877A1 (de) * 2013-05-28 2014-12-04 Mahle International Gmbh Pendelschieberpumpe
CN103671037A (zh) * 2014-01-07 2014-03-26 广西玉林市威科汽车空压机有限公司 汽车空压机的阀板组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021126416A1 (de) 2021-10-12 2023-04-13 Schwäbische Hüttenwerke Automotive GmbH Axialsicherung einer Pumpe
US11815102B2 (en) 2021-10-12 2023-11-14 Schwäbische Hüttenwerke Automotive GmbH Axial securing of a pump

Also Published As

Publication number Publication date
CN106050646B (zh) 2019-12-06
DE102015105928B4 (de) 2018-05-17
EP3081744A1 (de) 2016-10-19
US20160305427A1 (en) 2016-10-20
DE102015105928A1 (de) 2016-10-20
CN106050646A (zh) 2016-10-26
US10087929B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
EP3081744B1 (de) Pumpe mit axialer druckfeder
EP3081741B1 (de) Pumpe mit axialer druckfeder und dichtung
DE102006055808B4 (de) Ölschöpfanordnung zur Ölversorgung von zueinander drehenden Maschinenbauteilen
DE112013002905B4 (de) Pumpe
DE102015017078B4 (de) Pumpe
DE102007039282A1 (de) Hydraulisch dichter Nockenwellenversteller
EP1433954B1 (de) Axialkolbenmaschine
DE19951390A1 (de) Vorrichtung zur hydraulischen Drehwinkelverstellung einer Welle relativ zu einem Antriebsrad
EP1319831B1 (de) Kraftstoffhochdruckpumpe mit integrierter Sperrflügel-Vorförderpumpe
DE102012203383B3 (de) Filteranordnung eines Steuerventils für einen Nockenwellenversteller
DE102015214623A1 (de) Nockenwellenverstellvorrichtung
DE4008522C2 (de)
DE10356908B4 (de) Nockenwellenverstelleinrichtung für Verbrennungskraftmaschinen von Fahrzeugen, vorzugsweise Kraftfahrzeugen
EP0475109B1 (de) Innenzahnradpumpe für Hydraulikflüssigkeit
DE3421374C1 (de) Lagereinheit mit integrierter Pumpe
DE102012217394A1 (de) Nockenwellenversteller
EP3848620B1 (de) Ventilanordnung, insbesondere rückschlagventil mit eingepresstem kugelhalter
EP1568855B1 (de) Nockenwellenverstelleinrichtung für Brennkraftmaschinen von Kraftfahrzeugen
WO2006122515A1 (de) Pumpe mit freilauf-rutschkupplung
DE102015017074A1 (de) Innenzahnradpumpe
DE102015005366B4 (de) Wellenanordnung, Lageranordnung mit einer Wellenanordnung sowie Verfahren zum Montieren einer Lageranordnung
DE112022002136T5 (de) Pumpvorrichtung
DE102016225315A1 (de) Hydrostatische Flügelzellenpumpe
EP0398020A2 (de) Innenzahnradpumpe
DE102013203244A1 (de) Nockenwellenversteller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170411

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20181009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502016013576

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01C0021100000

Ipc: F01C0019000000

RIC1 Information provided on ipc code assigned before grant

Ipc: F01C 21/10 20060101ALI20200805BHEP

Ipc: F04C 2/344 20060101ALI20200805BHEP

Ipc: F01C 19/00 20060101AFI20200805BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200918

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210309

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016013576

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419576

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHWAEBISCHE HUETTENWERKE AUTOMOTIVE GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016013576

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1419576

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220412

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 8

Ref country code: DE

Payment date: 20230420

Year of fee payment: 8

Ref country code: BG

Payment date: 20230420

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811