EP3064617B1 - VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE - Google Patents

VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE Download PDF

Info

Publication number
EP3064617B1
EP3064617B1 EP15157457.1A EP15157457A EP3064617B1 EP 3064617 B1 EP3064617 B1 EP 3064617B1 EP 15157457 A EP15157457 A EP 15157457A EP 3064617 B1 EP3064617 B1 EP 3064617B1
Authority
EP
European Patent Office
Prior art keywords
anode
anodes
nickel
coated
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15157457.1A
Other languages
English (en)
French (fr)
Other versions
EP3064617A1 (de
Inventor
Klaus Wilbuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTV Metallveredlung GmbH and Co KG
Original Assignee
MTV Metallveredlung GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTV Metallveredlung GmbH and Co KG filed Critical MTV Metallveredlung GmbH and Co KG
Priority to EP15157457.1A priority Critical patent/EP3064617B1/de
Publication of EP3064617A1 publication Critical patent/EP3064617A1/de
Application granted granted Critical
Publication of EP3064617B1 publication Critical patent/EP3064617B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/008Current shielding devices
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • the invention relates to a method for the electrolytic nickel plating of large-area components.
  • a problem with the nickel plating of large-area components results from the practical handling. To be nickel-plated components in conventional nickel plating process about 25 different baths, resulting in an immense space requirement. The bathrooms must be comparatively large. Due to the fact that the nickel plating is absolutely free of pores and moreover a drying of the surface to be nickel-plated during the process must be avoided at all costs (water-free), a variety of device and process-related difficulties arise. In particular, the nickel plating of materials problematic in this respect or the inner coating of large-volume containers are associated with particularly great difficulties. Thus, due to the large depth of such containers associated with correspondingly large volumes and the usually different diameters at different depths, a uniform coating is associated with comparatively great problems. Thus, in particular a movement or emptying of such containers, which can easily have a weight of over 100 t, almost impossible.
  • the containers have a cylindrical and / or square receiving area and a sealing area with different diameters, resulting in special requirements for the formation of a nickel coating.
  • the interference fields occurring at the edges of the anodes lead to an undesirable heterogeneity of the electric field as a whole.
  • the deposition of homogeneous layers of the same thickness is therefore possible only to a very limited extent in these systems.
  • a plurality of spatially limited, relatively small electric fields are constructed, which are easier to handle and less prone to interference.
  • the formation of interference fields at the edges of the anodes is advantageously prevented by the inventive interposition of the shielding elements according to the invention.
  • the invention thus enables the deposition of a particularly homogeneous nickel layer, which has substantially the same layer thickness at each surface portion of the component to be coated.
  • Substantially the same layer thickness in the sense of the invention means a layer thickness which differs by less than ⁇ 2 ⁇ m, preferably by less than ⁇ 1 ⁇ m and particularly preferably by less than ⁇ 0.5 ⁇ m from the average layer thickness of the nickel coating.
  • the shielding elements are flat.
  • the shielding elements are advantageously comparatively light and yet form a comparatively large electrically shielded volume region.
  • the shielding elements can be designed in any desired planar form.
  • the shielding elements are in the form of plates, sheets, membranes, disks and the like. The preferred shape depends essentially on the strength of the electric field to be shielded. If an electric field with comparatively high field strength is to be shielded, shielding elements with a comparatively large thickness, ie plate-shaped or disk-shaped shielding elements, are preferred.
  • shielding elements with a comparatively small thickness, that is to say sheet-like or membrane-shaped shielding elements, are preferred.
  • the shielding elements are each preferably formed of circular plates or discs. Particularly preferred here is the design as a perforated disc.
  • a substantially annular volume region can be formed between two shielding elements, in which a preferably also ring-shaped anode is arranged. It has been found here that any fields present in the interior of the annular anode have no influence on the coating result.
  • the formation of the shielding element as a perforated disk thus leads to material savings without negatively influencing the shielding effect as a result.
  • the shielding elements are arranged interchangeably within the device. It is thereby possible to replace elements requiring repair or otherwise unusable in a simple manner. As a result, in particular the maintenance of the device is lowered in an advantageous manner overall. It also allows the adaptation of the device according to the invention to the respective requirements, in particular the field strengths to be set. Depending on requirements, shielding elements of different types can be interchanged here. As an example, the exchange of plate-shaped elements against membrane-shaped elements may be mentioned here. In this way, the device according to the invention can be adapted to a large number of possible nickel plating methods and thus has a comparatively broad range of applications.
  • shielding elements of different types for the shielding of different volume areas in parallel.
  • This is particularly advantageous in cases in which anodes or anode groups of different volume ranges are individually controlled and operated with different process parameters.
  • This can be advantageous, in particular, for the case in which some surface segments of the large-area component are to be coated deliberately and simultaneously with different layer thicknesses.
  • It may be provided to provide different field strengths in the individual volume areas.
  • the above-mentioned suitable shielding elements are combined with each other in terms of shape and material as a function of the respective field strength.
  • the shielding elements are formed of an electrically insulating material.
  • polymeric materials which are stable in the electrolyte used.
  • Particularly preferred are polypropylene (PP), polytetrafluoroethylene (PTFE), polyimides (PI) and polysulfone (PSU).
  • PP polypropylene
  • PTFE polytetrafluoroethylene
  • PI polyimides
  • PSU polysulfone
  • these materials are electrical insulators and on the other hand have excellent resistance to electrolytes typically used in nickel plating.
  • it can preferably be provided to use shielding elements made of different materials.
  • an electrolysis tank is provided on the device side.
  • attachment or conversion elements are provided to form an electrolysis tank.
  • the second variant is used here in particular the inner coating of large-volume containers.
  • the container to be coated is converted into an electrolysis container.
  • large immersion tank as provided for in the first variant omitted, since the Electrolysis container for receiving the electrolyte is essentially formed by the large-volume container to be coated itself.
  • the attachment and conversion elements represent collar, overflow areas, drainage holes or the like and are arranged as needed on the container to be coated.
  • the anodes and / or the anode groups is formed individually controllable.
  • individual means in particular that different anode or anode groups can be operated simultaneously but independently of one another.
  • the surface segments of the component to be coated on the process side can thereby be coated either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, then individual surface segments may preferably be coated with different layer thicknesses or different speeds.
  • Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness.
  • This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process.
  • the component In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources.
  • the aforementioned problems can be completely avoided by the invention.
  • the individual controllability of the anodes and / or the anode groups is realized by the assignment of a separate rectifier. The rectifier and the anodes and / or the anode groups are connected to each other for this purpose control technology.
  • the anodes and / or the anode groups are formed such that their spatial position and / or their orientation are variable.
  • the anodes and / or anode groups are movably received by the device for this purpose.
  • the anodes and / or anode groups are preferably designed to be pivotable.
  • the anodes and / or anode groups are both movably received by the device and designed to be pivotable. This allows the anodes and / or the anode groups spatially adapted to the geometry of the surface segment to be coated or whose positioning and alignment are matched to the material to be coated.
  • anodes and / or anode groups can produce high quality nickel layers with the advantages of the invention despite complex surface textures.
  • the anodes and / or anode groups are so movably received by the device that they are movable only within the electrically shielded volume space. This avoids that the anodes and / or anode groups are moved out of the electrically shielded area.
  • the shielding according to the invention and the associated formation of a homogeneous nickel coating is advantageously ensured even when the anodes are moved in an advantageous manner.
  • the anodes and / or the anode groups are received only linearly movable by the device.
  • a shielded volume space according to the invention is limited by at least two shielding elements. Inside the volume space, the anode is arranged.
  • the side of the volume space, which faces the surface segment to be coated in the intended use case according to the invention formed shielding element free.
  • this side is designed to be completely open, in order to ensure the necessary for the coating ion flow in the direction of the surface segment to be coated.
  • the anode is received by the device in the direction of the screening element-free, preferably the completely open side and in the opposite direction linearly movable. In this way it is ensured that the necessary for the formation of a homogeneous nickel layer electric field is always aligned in the direction of the surface segment to be coated, whereby the formation of interference fields is effectively prevented.
  • the anodes can be shaped as desired.
  • the decision is which anode is used, but according to the preferred process parameters, the surface finish of the component to be coated and the desired properties of the resulting nickel coating.
  • the use of rod-shaped anodes with a round or oval cross-section is particularly preferred.
  • the design of the anodes in plate form is particularly advantageous.
  • the arrangement of anodes of different geometry in the individual volume regions can be preferably provided with particular advantage.
  • Anode groups are preferably formed from at least two, preferably a plurality, anodes of the same type.
  • the method according to the invention advantageously makes it possible to coat the surface of large-area components particularly homogeneously by segment-wise nickel-plating.
  • layers can be produced here in which differences in the layer thickness can be almost completely avoided.
  • the effect is due among other things to an almost interference-free control of the deposition processes in the individual shielded areas.
  • an undesirable formation of interference fields which lead to a detrimental heterogeneity of the electric field as a whole can be advantageously avoided.
  • a plurality of comparatively small, spatially limited electric fields are constructed during the process, which are easier to handle and less susceptible to interference than the comparatively large electric fields provided for this purpose by the prior art.
  • the method according to the invention thus makes it possible to deposit a particularly homogeneous nickel layer which has substantially the same layer thickness at each surface section of the component to be coated.
  • the surface segments are pretreated prior to electrolysis.
  • Such pretreatment may in particular comprise the steps of heating, pickling, rinsing and / or decaping.
  • these current densities can be set in segments, which is advantageous in terms of the transport of the current required for this purpose.
  • the anodes and / or the anode groups are individually controlled for segmental coating of the surface of the component.
  • the individual surface segments of the component to be coated can preferably be coated independently of one another in this case either with the same deposition characteristics, in particular current density and field strength, or with different deposition characteristics. If the surface segments are coated with the same deposition characteristics, the result is a homogeneous nickel coating according to the invention with essentially the same layer thicknesses. On the other hand, if the surface segments are coated with different deposition characteristics, individual surface segments may preferably be coated with different layer thicknesses and / or different speeds.
  • Such a process management can be advantageous where different segments of the large-area component are exposed to different levels of stress and must be coated with a correspondingly greater layer thickness.
  • This possibility, opened up by the invention, of coating different surface segments with different layer thicknesses in one process step permits an extensive simplification of the nickel plating process.
  • the component In the prior art, the component must go through various baths for this purpose, which on the one hand represents a comparatively large logistical problem and on the other hand leads to inefficient use of resources.
  • the aforementioned problems can be completely avoided by the invention.
  • the component is coated with nickel.
  • nickel is deposited here from an aqueous nickel sulfamate solution.
  • the nickel sulfamate solution contains at least boric acid in addition to nickel sulfamate and water.
  • the nickel sulfamate concentration is preferably adjusted to a value between 60 and 100 g / l, preferably 80 g / l.
  • the boric acid concentration is preferably adjusted to a value between 20 and 50 g / l, preferably 30 g / l.
  • the pH of the electrolyte is preferably adjusted to a value between 3 and 4, preferably 3.2.
  • the electrolyte temperature is preferably set to a value between 35 and 45 C, preferably 40 ° C set.
  • the current density is preferably set to a value between 1 and 20 mA / cm 2 , preferably 15 and 18 mA / cm 2 .
  • it is intended to nickel-plating various surface segments by means of different current densities.
  • Fig.1 shows an inventive arrangement of the anodes 1, 2, 3 and the flat shielding elements 4, 5, 6, 7 in a device according to the invention for the electrolytic nickel plating of a large-area component 8 in a sectional view.
  • the shielding elements 4, 5, 6, 7 are presently arranged such that they form the electrically mutually shielded volume regions 9, 10, 11 between them.
  • the anode 1 is arranged in the interior of the volume region 11 in the interior of the volume region 9, the anode 2 in the interior of the volume region 10 and the anodes 3, which together form the anode group 12.
  • the volume regions 9, 10, 11 are formed on their respective component side 13, 14, 15 shielding element. In the present case, they are designed to be completely open, so that unimpeded ion transport in the direction of the component 8 is ensured.
  • anode 1 is present rod-shaped and formed with a circular diameter.
  • the anode 2 arranged in the anode region 10 is in the present case plate-shaped.
  • the anode group 12 arranged in the volume region 11 is formed from a plurality of rod-shaped anodes 3 with a circular cross-section.
  • the anodes 1, 2 and the anode group 12 are formed individually controllable in the present case.
  • the arrangement of individually controllable anodes of different types in each of electrically electrically shielded volume regions 9, 10, 11 allows the coating of the respective surface segments 16, 17, 18 with different process parameters. In the present case, this can be used to nickel-coat the surface segments 16, 17, 18 in parallel operation with different layer thicknesses, different speeds and the like.
  • anodes 1, 2 and the anode group 12 are adapted by their respective shape design to the different geometry not shown here and the partially different material of the individual surface segments 16, 17, 18 in order to optimize the deposition of a homogeneous nickel layer within the respective segment ,
  • the anodes 1, 2 and the anode group 12 are presently received by the device linearly movable. They are in each case in the direction of the component-side side 13, 14, 15 of the respective volume space 9, 10, 11 movable. In this way, a further adaptation to the surface condition of the respective surface segment 16, 17, 18 is possible.
  • the anodes 1, 2 and the anode group 12 are also designed to be pivotable. Preferably, they are pivotable at an angle of up to 20 ° in relation to the respective mid-perpendicular.
  • the electrolysis tank (not shown) is filled here with an electrolyte for nickel plating of the component 8 to be coated.
  • the electrolyte completely fills the volume regions 9, 10, 11 and ensures permanent wetting of the surface segments 16, 17, 18 of the component 8 to be coated.
  • the electrolyte is formed from an aqueous nickel sulfamate solution.
  • the solution contains nickel sulfamate in a concentration of 80 g / l, boric acid in a concentration of 30 g / l.
  • the pH of the electrolyte is adjusted to a value of 3.2.
  • the electrolyte temperature is set to a value of 40 ° C.
  • a current density of 10 mA / cm 2 is set in the present case.
  • a current density of 15 mA / cm 2 is set.
  • a current density of 18 mA / cm 2 is set.
  • the shielding elements 4, 5, 6, 7 are in the present case designed as plates.
  • the plates consist entirely of the electrical insulator polytetrafluoroethylene. Furthermore, the material is resistant to the electrolyte used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur elektrolytischen Vernickelung großflächiger Bauteile.
  • Ein Problem bei der Vernickelung großflächiger Bauteile ergibt sich aus der praktischen Abwicklung. Zu vernickelnde Bauteile müssen bei herkömmlichen Vernickelungsverfahren etwa 25 verschiedene Bäder durchlaufen, woraus sich ein immenser Raumbedarf ergibt. Die Bäder müssen hierbei vergleichsweise groß sein. Aufgrund der Tatsache, dass die Vernickelung absolut porenfrei erfolgt und darüber hinaus eine Antrocknung der zu vernickelnden Oberfläche während des Verfahrens unbedingt vermieden werden muss (wasserbruchfrei), ergeben sich eine Vielzahl vorrichtungs- und verfahrensseitiger Schwierigkeiten. Insbesondere die Vernickelung von in dieser Hinsicht ohnehin problematischen Materialien oder die Innenbeschichtung großvolumiger Behälter sind mit besonders großen Schwierigkeiten verbunden. So ist aufgrund der mit entsprechend großen Volumina einhergehenden großen Tiefe solcher Behälter und den üblicherweise unterschiedlichen Durchmessern in verschiedenen Tiefen eine gleichmäßige Beschichtung mit vergleichsweise großen Problemen verbunden. So ist insbesondere eine Bewegung oder Entleerung solcher Behälter, welche ohne weiteres ein Gewicht von über 100 t haben können, nahezu unmöglich.
  • Ein entsprechender Anwendungsbereich, für eine Innenvernicklung großvolumiger Behälter fällt in den Bereich der der Transport- und Lagerbehälter für radioaktive Abfälle. Die Behälter weisen einen zylindrischen und/oder quadratischen Aufnahmebereich und einen Abdichtbereich mit unterschiedlichen Durchmessern auf, so dass sich für besondere Anforderungen bei der Ausbildung einer Nickelbeschichtung ergeben.
  • Zur Vermeidung der vorgenannten Probleme und der Bereitstellung einer porenfreien Vernicklung ist aus der DE 195 02 358 A1 ein Verfahren bekannt geworden, bei dem ein großflächiges Bauelement erwärmt, nach der Erwärmung gebeizt, gespült, dekapiert, im Rahmen einer Elektrolyse beschichtet und gespült wird. Ferner ist aus dieser Druckschrift eine Vorrichtung zur Durchführung des vorgenannten Verfahrens bekannt geworden, die An- bzw. Umbauelemente zur Bildung einer Wanne, ein Anodengefach aus mehreren, im Wesentlichen parallelen stangenförmigen Anoden, die nahe zu den zu beschichtenden Oberflächen positionierbar sind, und eine Verfahrvorrichtung für das Anodengefach aufweist.
  • Ferner ist es aus der US 2001/0054556 A1 bekannt, eine Platte zum Beispiel elektrolytisch zu vernickeln. Hierzu dient eine Vorrichtung mit einem Elektrolysebehälter, der perforierte Platten aufweist, die zwischen Anode und zu beschichtendem Bauteil angeordnet sind.
  • Obwohl sich die vorbeschriebenen Verfahren in der Praxis bewährt haben, besteht gleichwohl Verbesserungsbedarf hinsichtlich der Präzision und der Flexibilität des Verfahrens insgesamt. Es haben sich insbesondere Schwierigkeiten bei der Abscheidung einer homogenen Schichtstärke der Nickelschicht ergeben. Es hat sich ferner gezeigt, dass bestimmte Bereiche der zu beschichtenden Oberfläche größeren Belastungen widerstehen müssen als andere Bereiche. Es ist hierzu erforderlich, in diesen einander übergehenden Bereichen voneinander abweichende Schichtstärken abzuscheiden, wobei jede Fläche für sich nach Möglichkeit keine Schichtdifferenzen aufweisen darf. Bei den vorgenannten Schwierigkeiten stößt das aus dem Stand der Technik bekannte Verfahren an seine Grenzen.
  • Es ist daher die Aufgabe der Erfindung ein Verfahren bereitzustellen, welches die aus dem Stand der Technik bekannten Nachteile beseitigen.
  • Zur Lösung der Aufgabe wird ein Verfahren gemäß Anspruch 1 vorgeschlagen.
  • Durch die erfindungsgemäße Ausgestaltung ist es vorteilhafterweise möglich, die Oberfläche großflächiger Bauteile durch segmentweises vernickeln besonders homogen zu beschichten. Insbesondere können hiermit Schichten hergestellt werden, bei denen Differenzen in der Schichtstärke nahezu vollständig vermieden werden können. Es hat sich herausgestellt, dass es durch die erfindungsgemäße Anordnung von Abschirmelementen zwischen den für die Beschichtung erforderlichen Anoden oder Anodengruppen und dem zu beschichtenden Oberflächensegment zur Ausbildung von besonders homogenen elektrischen Feldern kommt. Dies ermöglicht im Gegensatz zu den aus dem Stand der Technik bekannten Ansätzen eine nahezu störungsfreie Steuerung der Abscheidungsprozesse in den einzelnen abgeschirmten Bereichen. In abschirmungsfreien Systemen, wie es sich im Stand der Technik etabliert hat, ist die Aufrechterhaltung eines sich über die gesamte Oberfläche des zu beschichtenden Bauteils erstreckenden homogenen elektrischen Feldes nahezu unmöglich. Insbesondere die an den Rändern der Anoden auftretenden Störfelder führen zu einer unerwünschten Heterogenität des elektrischen Feldes insgesamt. Die Abscheidung homogener Schichten gleicher Schichtstärke ist in diesen Systemen daher nur sehr eingeschränkt möglich. Bei der erfindungsgemäßen Vorrichtung werden in Abkehr vom Stand der Technik eine Mehrzahl räumlich begrenzter, vergleichsweise kleiner elektrischer Felder aufgebaut, die leichter zu handhaben und weniger anfällig für Störungen sind. Darüber hinaus wird die Ausbildung von Störfeldern an den Rändern der Anoden durch die erfindungsgemäße Zwischenordnung der erfindungsgemäßen Abschirmelemente vorteilhafterweise unterbunden. Die Erfindung ermöglicht somit die Abscheidung einer besonders homogenen Nickelschicht, die an jedem Oberflächenabschnitt des zu beschichtenden Bauteils im Wesentlichen die gleiche Schichtstärke aufweist. Im Wesentlichen die gleiche Schichtstärke bedeutet im Sinne der Erfindung eine Schichtstärke, die um weniger als ±2 µm, vorzugsweise um weniger als ±1 µm und besonders bevorzugt um weniger als ±0,5 µm von der mittleren Schichtstärke der Nickelbeschichtung abweicht.
  • Erfindungsgemäß sind die Abschirmelemente flächig ausgebildet. Hierdurch sind die Abschirmelemente vorteilhafterweise vergleichsweise leicht und bilden dennoch einen vergleichsweise großen elektrisch abgeschirmten Volumenbereich aus. Die Abschirmelemente können hierzu in beliebiger flächiger Form ausgestaltet sein. Bevorzugt sind die Abschirmelemente in Form von Platten, Blättern, Membranen, Scheiben und Ähnlichem ausgebildet. Die bevorzugte Form richtet sich im Wesentlichen nach der Stärke des abzuschirmenden elektrischen Feldes. Soll ein elektrisches Feld mit vergleichsweise hoher Feldstärke abgeschirmt werden, sind Abschirmelemente mit vergleichsweise großer Dicke, also platten- oder scheibenförmige Abschirmelemente bevorzugt. Soll hingegen ein elektrisches Feld mit vergleichsweise geringer Feldstärke abgeschirmt werden, sind Abschirmelemente mit vergleichsweise geringer Dicke, also blatt- oder membranförmige Abschirmelemente bevorzugt. Im besonderen Fall der Innenbeschichtung zylinderförmiger großvolumiger Behälter sind die Abschirmelemente jeweils vorzugsweise kreisförmiger Platten oder Scheiben ausgebildet. Besonders bevorzugt ist hierbei die Ausgestaltung als Lochscheibe. Hierbei kann zwischen zwei Abschirmelementen ein im Wesentlichen ringförmiger Volumenbereich ausgebildet werden, in welchem eine vorzugsweise ebenfalls ringförmig ausgebildete Anode angeordnet ist. Es hat sich hierbei herausgestellt, dass etwaige im Inneren der ringförmigen Anode vorliegende Felder keinerlei Einfluss auf das Beschichtungsergebnis haben. Vorteilhafterweise führt die Ausbildung des Abschirmelements als Lochscheibe damit zu Materialeinsparungen, ohne die Abschirmwirkung im Ergebnis negativ zu beeinflussen.
  • Gemäß einem bevorzugten Merkmal der Erfindung sind die Abschirmelemente austauschbar innerhalb der Vorrichtung angeordnet. Es ist hierdurch möglich, reparaturbedürftige oder anderweitig unbrauchbare Elemente in einfacher Weise zu ersetzen. Hierdurch wird insbesondere der Wartungsaufwand der Vorrichtung in vorteilhafter Weise insgesamt gesenkt. Es ermöglicht ferner die Anpassung der erfindungsgemäßen Vorrichtung an die jeweiligen Anforderungen, insbesondere der einzustellenden Feldstärken. Hier können je nach Bedarf Abschirmelemente unterschiedlichen Typs gegeneinander ausgetauscht werden. Als Beispiel sei hier der Austausch von plattenförmigen Elementen gegen membranförmige Elemente genannt. Auf diese Weise ist die erfindungsgemäße Vorrichtung an eine Vielzahl möglicher Vernickelungsverfahren anpassbar und weist damit ein vergleichsweise breites Anwendungsspektrum auf. Besonders bevorzugt kann es vorgesehen sein, Abschirmelemente unterschiedlichen Typs für die Abschirmung unterschiedlicher Volumenbereiche parallel zu verwenden. Dies ist insbesondere in solchen Fällen von Vorteil, in denen Anoden oder Anodengruppen unterschiedlicher Volumenbereiche individuell angesteuert werden und mit unterschiedlichen Verfahrensparametern betrieben werden. Dies kann insbesondere für den Fall vorteilhaft sein, in welchem manche Oberflächensegmente des großflächigen Bauteils bewusst und zeitgleich mit unterschiedlichen Schichtstärken beschichtet werden sollen. Hierbei kann es vorgesehen sein, in den einzelnen Volumenbereichen unterschiedliche Feldstärken vorzusehen. Zur Abschirmung der unterschiedlichen Feldstärken ist es bevorzugt vorgesehen, in Abhängigkeit der jeweiligen Feldstärke hinsichtlich Form und Material hierfür vorstehend genannte geeignete Abschirmelemente miteinander zu kombinieren.
  • Gemäß einem bevorzugten Merkmal der Erfindung sind die Abschirmelemente aus einem elektrisch isolierenden Material ausgebildet. Bevorzugt sind hierbei insbesondere polymere Materialien, die im verwendeten Elektrolyten stabil sind. Besonders bevorzugt sind hierbei Polypropylen (PP), Polytetrafluorethylen (PTFE), Polyimide (PI) und Polysulfon (PSU). Diese Werkstoffe sind einerseits elektrische Isolatoren und weisen andererseits eine exzellente Beständigkeit gegenüber bei der Vernickelung typischerweise verwendeten Elektrolyten auf. Je nach Einstellung der Verfahrensparameter kann es vorzugsweise vorgesehen sein, Abschirmelemente aus unterschiedlichen Materialien zu verwenden.
  • Erfindungsgemäß ist vorrichtungsseitig ein Elektrolysebehälter vorgesehen. Alternativ sind An- bzw. Umbauelemente zur Bildung eines Elektrolysebehälters vorgesehen. Die zweite Variante dient hierbei insbesondere der Innenbeschichtung von großvolumigen Behältern. Durch die erfindungsgemäßen An- bzw. Umbauelemente wird der zu beschichtende Behälter zu einem Elektrolysebehälter umgebildet. Durch diese Maßnahme können große Tauchbehälter, wie sie nach der ersten Variante vorgesehen sind, entfallen, da der Elektrolysebehälter zur Aufnahme des Elektrolyten im Wesentlichen durch den zu beschichtenden großvolumigen Behälter selbst gebildet wird. Die An- und Umbauelemente stellen Kragen, Überlaufbereiche, Entwässerungsbohrungen oder dergleichen dar und werden bedarfsweise an den zu beschichtenden Behälter angeordnet.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung ist wenigstens ein Teil der Anoden und/oder der Anodengruppen individuell ansteuerbar ausgebildet. Individuell bedeutet im Sinne der Erfindung insbesondere, dass verschiedenen Anoden oder Anodengruppen zeitgleich, aber unabhängig voneinander betrieben werden können. Vorzugsweise lassen sich die Oberflächensegmente des zu beschichtenden Bauteils verfahrensseitig hierdurch entweder mit gleichen Abscheidecharakteristika, wie insbesondere Stromdichte und Feldstärke oder mit unterschiedlichen Abscheidecharakteristika beschichten. Werden die Oberflächensegmente mit gleichen Abscheidecharakteristika beschichtet, so resultiert hieraus eine erfindungsgemäß homogene Nickelbeschichtung mit im Wesentlichen gleichen Schichtstärken. Werden die Oberflächensegmente hingegen mit unterschiedlichen Abscheidecharakteristika beschichtet, so können einzelne Oberflächensegmente vorzugsweise mit unterschiedlichen Schichtstärken oder unterschiedlichen Geschwindigkeiten beschichtet werden. Eine solche Verfahrensführung kann dort von Vorteil sein, wo unterschiedliche Segmente des großflächigen Bauteils unterschiedlich starken Belastungen ausgesetzt sind und mit entsprechend größerer Schichtstärke beschichtet werden müssen. Diese, durch die Erfindung eröffnete Möglichkeit der Beschichtung unterschiedlicher Oberflächensegmente mit unterschiedlichen Schichtstärken in einem Verfahrensschritt erlaubt eine weitgehende Vereinfachung des Vernickelungsverfahrens. Im Stand der Technik muss das Bauteil hierfür verschiedene Bäder durchlaufen, was einerseits ein vergleichsweise großes logistisches Problem darstellt und andererseits zu einer ineffizienten Nutzung von Ressourcen führt. Vorgenannte Probleme können durch die Erfindung vollumfänglich vermieden werden. Vorzugsweise ist die individuelle Ansteuerbarkeit der Anoden und/oder der Anodengruppen durch die Zuordnung jeweils eines separaten Gleichrichters realisiert. Die Gleichrichter und die Anoden und/oder die Anodengruppen sind zu diesem Zweck steuerungstechnisch miteinander verbunden.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung sind die Anoden und/oder die Anodengruppen derart ausgebildet, dass ihre räumliche Position und/oder ihre Ausrichtung variierbar sind. Vorzugsweise sind die Anoden und/oder Anodengruppen hierzu verfahrbar von der Vorrichtung aufgenommen. Ferner sind die Anoden und/oder Anodengruppen vorzugsweise verschwenkbar ausgebildet. Besonders bevorzugt sind die Anoden und/oder Anodengruppen sowohl verfahrbar von der Vorrichtung aufgenommen als auch verschwenkbar ausgebildet. Hierdurch können die Anoden und/oder die Anodengruppen räumlich an die Geometrie des zu beschichtenden Oberflächensegments angepasst werden oder deren Positionierung und Ausrichtung auf das zu beschichtende Material abgestimmt werden. In der Praxis müssen häufig Oberflächen mit komplexen Oberflächenbeschaffenheiten beschichtet werden, wodurch sich oftmals suboptimale Beschichtungsergebnisse ergeben können. Durch die räumlich flexible Ausgestaltung der Anoden und/oder Anodengruppen lassen trotz komplexer Oberflächenbeschaffenheiten hochqualitative Nickelschichten mit den erfindungsgemäßen Vorteilen herstellen. Vorzugsweise sind die Anoden und/oder Anodengruppen derart verfahrbar von der Vorrichtung aufgenommen, dass sie ausschließlich innerhalb des elektrisch abgeschirmten Volumenraumes verfahrbar sind. Hierdurch wird vermieden, dass die Anoden und/oder Anodengruppen aus dem elektrisch abgeschirmten Bereich heraus verfahren werden. Hierdurch wird die erfindungsgemäße Abschirmung und die damit verbundene Ausbildung einer homogenen Nickelbeschichtung auch bei einer Verfahrung der Anoden in vorteilhafter Weise in vollem Umfang gewährleistet. Weiter bevorzugt sind die Anoden und/oder die Anodengruppen lediglich linear verfahrbar von der Vorrichtung aufgenommen. In diesem Szenario ist ein abgeschirmter Volumenraum erfindungsgemäß von wenigstens zwei Abschirmelementen begrenzt. Im Inneren des Volumenraumes ist die Anode angeordnet. Die Seite des Volumenraumes, welche im bestimmungsgemäßen Verwendungsfall dem zu beschichtenden Oberflächensegment zugewandt ist erfindungsgemäß abschirmelementfrei ausgebildet. Vorzugsweise ist diese Seite vollständig offen ausgestaltet, um den für die Beschichtung notwendigen Ionenfluss in Richtung des zu beschichtenden Oberflächensegments zu gewährleisten. Die Anode ist in diesem Fall in Richtung der abschirmelementfreien, vorzugsweise der vollständig offenen Seite und in die Gegenrichtung linear verfahrbar von der Vorrichtung aufgenommen. Auf diesem Wege wird gewährleistet, dass das für die Ausbildung einer homogenen Nickelschicht notwendige elektrische Feld stets in Richtung des zu beschichtenden Oberflächensegments ausgerichtet ist, wodurch die Ausbildung von Störfeldern wirkungsvoll unterbunden wird.
  • Erfindungsgemäß können die Anoden beliebig geformt sein. Vorzugsweise richtet sich die Entscheidung welche Anode Verwendung findet, jedoch nach den bevorzugten Verfahrensparametern, der Oberflächenbeschaffenheit des zu beschichtenden Bauteils und nach den gewünschten Eigenschaften der resultierenden Nickelbeschichtung. Hinsichtlich der Innenbeschichtung großvolumiger zylinderförmiger und/oder quadratischer Behälter aus z.B. Sphäroguss (GJS-400-15 gemäß EN 1563), welcher besonders schwierig zu beschichten ist, ist insbesondere der Einsatz von stangenförmigen Anoden mit rundem oder ovalem Querschnitt bevorzugt. Für den Fall, dass großflächige Bauteile mit ebener Oberfläche beschichtet werden sollen, ist die Ausgestaltung der Anoden in Plattenform von besonderem Vorteil. In den Fällen, in denen ein Bauteil Oberflächensegmente unterschiedlicher Oberflächenbeschaffenheit und/oder Materialien aufweist, kann die Anordnung von Anoden unterschiedlicher Geometrie in den einzelnen Volumenbereichen bevorzugterweise mit besonderem Vorteil vorgesehen sein. Neben der Anordnung einzelner Anoden in den Volumenräumen kann es erfindungsgemäß ebenfalls vorgesehen sein, Anodengruppen in den Anodenräumen anzuordnen. Anodengruppen sind vorzugsweise aus wenigstens zwei, bevorzugt einer Mehrzahl, Anoden des gleichen Typs gebildet. Hierdurch können vergleichsweise starke elektrische Felder und eine hohe Stromdichte erzeugt werden, was insbesondere bei einer Beschichtung mit hoher Schichtstärke von Vorteil ist. Vorteilhafterweise wird hierdurch die Verfahrensdauer verringert, was verfahrensseitig zu einer Verbesserung der Wirtschaftlichkeit führt.
  • Durch die erfindungsgemäße Verfahrensführung ist es vorteilhafterweise möglich, die Oberfläche großflächiger Bauteile durch segmentweises vernickeln besonders homogen zu beschichten. Insbesondere können hiermit Schichten hergestellt werden, bei denen Differenzen in der Schichtstärke nahezu vollständig vermieden werden können. Erfindungsgemäß ist der Effekt unter Anderem auf eine nahezu störungsfreie Steuerung der Abscheidungsprozesse in den einzelnen abgeschirmten Bereichen zurückzuführen. Insbesondere kann eine unerwünschte Ausbildung von Störfeldern, welche zu einer schädlichen Heterogenität des elektrischen Feldes insgesamt führen vorteilhafterweise vermieden werden. Erfindungsgemäß werden während des Verfahrens eine Mehrzahl vergleichsweise kleiner, räumlich begrenzter elektrischer Felder aufgebaut, die leichter zu handhaben und weniger anfällig für Störungen sind, als die aus dem Stand der Technik hierfür vorgesehenen vergleichsweise großen elektrischen Felder. Das erfindungsgemäße Verfahren ermöglicht somit die Abscheidung einer besonders homogenen Nickelschicht, die an jedem Oberflächenabschnitt des zu beschichtenden Bauteils im Wesentlichen die gleiche Schichtstärke aufweist.
  • (Hieran schließen sich unverändert die ursprünglich eingereichten Beschreibungsseiten 8 bis 11 der Anmeldung an)
  • Gemäß einer bevorzugten Ausführungsform der Erfindung werden die Oberflächensegmente vor der Elektrolyse vorbehandelt. Eine solche Vorbehandlung kann insbesondere die Verfahrensschritte des Erwärmens, des Beizens, des Spülens und/oder des Dekapierens umfassen. Bei einer solchen Vorbehandlung ist es mitunter notwendig, vergleichsweise große Stromdichten an die vorzubehandelnde Oberfläche anzulegen. Durch die erfindungsgemäße Ausgestaltung können diese Stromdichten segmentweise eingestellt werden, was hinsichtlich des Transports des hierfür benötigten Stroms von Vorteil ist.
  • Gemäß einem bevorzugten Merkmal der Erfindung werden die Anoden und/oder die Anodengruppen zur segmentweisen Beschichtung der Oberfläche des Bauteils individuell angesteuert. Vorzugsweise lassen sich die einzelnen Oberflächensegmente des zu beschichtenden Bauteils in einem Verfahrensschritt unabhängig voneinander hierbei entweder mit gleichen Abscheidecharakteristika, wie insbesondere Stromdichte und Feldstärke oder mit unterschiedlichen Abscheidecharakteristika beschichten. Werden die Oberflächensegmente mit gleichen Abscheidecharakteristika beschichtet, so resultiert hieraus eine erfindungsgemäß homogene Nickelbeschichtung mit im Wesentlichen gleichen Schichtstärken. Werden die Oberflächensegmente hingegen mit unterschiedlichen Abscheidecharakteristika beschichtete, so können einzelne Oberflächensegmente vorzugsweise mit unterschiedlichen Schichtstärken und/oder unterschiedlichen Geschwindigkeiten beschichtet werden. Eine solche Verfahrensführung kann dort von Vorteil sein, wo unterschiedliche Segmente des großflächigen Bauteils unterschiedlich starken Belastungen ausgesetzt sind und mit entsprechend größerer Schichtstärke beschichtet werden müssen. Diese, durch die Erfindung eröffnete Möglichkeit der Beschichtung unterschiedlicher Oberflächensegmente mit unterschiedlichen Schichtstärken in einem Verfahrensschritt erlaubt eine weitgehende Vereinfachung des Vernickelungsverfahrens. Im Stand der Technik muss das Bauteil hierfür verschiedene Bäder durchlaufen, was einerseits ein vergleichsweise großes logistisches Problem darstellt und andererseits zu einer ineffizienten Nutzung von Ressourcen führt. Vorgenannte Probleme können durch die Erfindung vollumfänglich vermieden werden.
  • Erfindungsgemäß wird das Bauteil mit Nickel beschichtet. Bevorzugt wird Nickel hierbei aus einer wässrigen Nickelsulfamatlösung abgeschieden. Die Nickelsulfamatlösung enthält neben Nickelsulfamat und Wasser wenigstens noch Borsäure. Die Nickelsulfamatkonzentration wird vorzugsweise auf einen Wert zwischen 60 und 100 g/l, bevorzugt 80 g/l eingestellt. Die Borsäurekonzentration wird vorzugsweise auf einen Wert zwischen 20 und 50 g/l, bevorzugt 30 g/l eingestellt.. Der pH-Wert des Elektrolyten wird vorzugsweise auf einen Wert zwischen 3 und 4, vorzugsweise 3,2 eingestellt. Die Elektrolyttemperatur wird vorzugsweise auf einen Wert zwischen 35 und 45 C, vorzugsweise 40°C eingestellt. Die Stromdichte wird vorzugsweise auf einen Wert zwischen 1 und 20 mA/cm2, bevorzugt 15 und 18 mA/cm2 eingestellt. Vorzugsweise ist es hierbei vorgesehen verschiedene Oberflächensegmente mittels unterschiedlicher Stromdichten zu vernickeln.
  • Nachfolgend wird die Erfindung anhand eines für den Fachmann nicht beschränkend zu verstehenden Ausführungsbeispiels näher erläutert. Dabei zeigt
  • Fig.1
    eine erfindungsgemäße Anordnung der Anoden und der Abschirmelemente in schematischer Schnittdarstellung;
  • Fig.1 zeigt eine erfindungsgemäße Anordnung der Anoden 1, 2, 3 und der flächigen Abschirmelemente 4, 5, 6, 7 in einer erfindungsgemäßen Vorrichtung zur elektrolytischen Vernickelung eines großflächigen Bauteils 8 in Schnittdarstellung.
  • Die Abschirmelemente 4, 5, 6, 7 sind vorliegend derart angeordnet, dass sie die elektrisch voneinander abgeschirmten Volumenbereiche 9, 10, 11 zwischen sich ausbilden. Die Anode 1 ist hierbei im Inneren des Volumenbereichs 9, die Anode 2 im Inneren des Volumenbereichs 10 und die Anoden 3, die zusammen die Anodengruppe 12 bilden, im Inneren des Volumenbereichs 11 angeordnet.
  • Die Volumenbereiche 9, 10, 11 sind auf ihrer jeweiligen bauteilseitigen Seite 13, 14, 15 abschirmelementfrei ausgebildet. Sie sind vorliegend vollständig offen ausgestaltet, so dass ein ungehinderter Ionentransport in Richtung des Bauteils 8 gewährleistet ist.
  • Die im Volumenbereich 9 angeordnete Anode 1 ist vorliegend stabförmig und mit kreisförmigem Durchmesser ausgebildet. Die im Anodenbereich 10 angeordnete Anode 2 ist vorliegend plattenförmig ausgebildet. Die im Volumenbereich 11 angeordnete Anodengruppe 12 ist aus einer Mehrzahl stabförmiger Anoden 3 mit kreisförmigem Querschnitt gebildet. Die Anoden 1, 2 und die Anodengruppe 12 sind vorliegend individuell ansteuerbar ausgebildet. Die Anordnung von individuell ansteuerbaren Anoden unterschiedlichen Typs in den jeweils von einander elektrisch abgeschirmten Volumenbereichen 9, 10, 11 erlaubt die Beschichtung der jeweiligen Oberflächensegmente 16, 17, 18 mit unterschiedlichen Verfahrensparametern. Dies kann vorliegend dazu genutzt werden, die Oberflächensegmente 16, 17, 18 im Parallelbetrieb mit unterschiedlicher Schichtstärke, unterschiedlicher Geschwindigkeit und Ähnlichem zu vernickeln. Ferner sind die Anoden 1, 2 und die Anodengruppe 12 durch ihre jeweilige Formausgestaltung an die vorliegend nicht gezeigte unterschiedliche Geometrie und an das teilweise unterschiedliche Material der einzelnen Oberflächensegmente 16, 17, 18 angepasst, um innerhalb des jeweiligen Segments die Abscheidung einer homogenen Nickelschicht zu optimieren.
  • Die Anoden 1, 2 sowie die Anodengruppe 12 sind vorliegend von der Vorrichtung linear verfahrbar aufgenommen. Sie sind hierbei jeweils in Richtung der bauteilseitigen Seite 13, 14, 15 des jeweiligen Volumenraumes 9, 10, 11 verfahrbar. Auf diesem Wege ist eine weitere Anpassung an die Oberflächenbeschaffenheit des jeweiligen Oberflächensegments 16, 17, 18 möglich. Im Sinne einer noch weiteren Anpassung sind die Anoden 1, 2 sowie die Anodengruppe 12 darüber hinaus verschwenkbar ausgebildet. Vorzugsweise sind sie mit einem Winkel von bis zu 20 ° in Relation zu der jeweiligen Mittelsenkrechten verschwenkbar.
  • Der Elektrolysebehälter (nicht gezeigt) ist vorliegend mit einem Elektrolyten zur Vernickelung des zu beschichtenden Bauteils 8 befüllt. Der Elektrolyt füllt hierbei die Volumenbereiche 9, 10, 11 vollständig aus und sorgt für eine ständige Benetzung der zu beschichtenden Oberflächensegmente 16, 17, 18 des Bauteils 8. Der Elektrolyt ist vorliegend aus einer wässrigen Nickelsulfamatlösung gebildet. Die Lösung enthält hierbei Nickelsulfamat in einer Konzentration von 80 g/l, Borsäure in einer Konzentration von 30 g/l. Verfahrensseitig wird der pH-Wert des Elektrolyten auf einen Wert von 3,2 eingestellt. Die Elektrolyttemperatur wird auf einen Wert von 40 °C eingestellt. Im Volumenbereich 9 wird vorliegend eine Stromdichte von 10 mA/cm2 eingestellt. Im Volumenbereich 10 wird eine Stromdichte von 15 mA/cm2 eingestellt Im Volumenbereich 11 wird eine Stromdichte 18 mA/cm2 eingestellt. Durch die Wahl der vorgenannten Parameter werden die Oberflächensegmente 16, 17, 18 mit verschiedenen Schichtstärken vernickelt, wobei Oberflächensegment 16 mit einer vergleichsweise geringen Schichtstärke im µm-Bereich und Oberflächensegment 18 mit einer vergleichsweise hohen Schichtstärke im mm - Bereich vernickelt werden. Oberflächensegment 17 wird im Vergleich hierzu mit einer mittleren Schichtstärke vernickelt.
  • Die Abschirmelemente 4, 5, 6, 7 sind vorliegend als Platten ausgebildet. Die Platten bestehen vollständig aus dem elektrischen Isolator Polytetrafluorethylen. Ferner ist das Material gegenüber dem verwendeten Elektrolyten beständig.
  • Bezugszeichen liste
  • 1
    Anode
    2
    Anode
    3
    Anode
    4
    Abschirmelement
    5
    Abschirmelement
    6
    Abschirmelement
    7
    Abschirmelement
    8
    Bauteil
    9
    elektrisch abgeschirmter Volumenbereich
    10
    elektrisch abgeschirmter Volumenbereich
    11
    elektrisch abgeschirmter Volumenbereich
    12
    Anodengruppe
    13
    bauteilseitige Seite des Volumenbereichs 9
    14
    bauteilseitige Seite des Volumenbereichs 10
    15
    bauteilseitige Seite des Volumenbereichs 11
    16
    Oberflächensegment
    17
    Oberflächensegment
    18
    Oberflächensegment

Claims (4)

  1. Verfahren zur elektrolytischen Vernickelung eines großflächigen Bauteils mittels einer Vorrichtung zur elektrolytischen Vernickelung eines großflächigen Bauteils (8), aufweisend einen Elektrolysebehälter und voneinander beabstandete Anoden (1, 2) und/oder Anodengruppen (12), wobei flächige Abschirmelemente (5, 6, 7) zwischen einzelnen Anoden (1, 2) und/oder Anodengruppen (12) angeordnet sind, wobei zur segmentweisen Beschichtung des großflächigen Bauteils (8) wenigstens zwei der besagten Abschirmelemente (5, 6, 7) einen abgeschirmten Volumenbereich (9, 10, 11) ausbilden, wobei die wenigstens zwei Abschirmelemente (5, 6, 7) einander gegenüberliegend angeordnet sind und die Anode (1, 2) oder die Anodengruppe (12) im Inneren des Volumenbereiches (9, 10, 11) positioniert ist, wobei der Volumenbereich (9, 10, 11) bauteilseitig abschirmelementfrei ausgebildet ist, wobei die Oberfläche des Bauteils mittels der Anoden und eines nickelhaltigen Elektrolyten mit Nickel beschichtet wird, wobei die Oberfläche segmentweise beschichtet wird, wobei jedes Oberflächensegment (16, 17, 18) räumlich einer Anode (1, 2) oder einer Anodengruppe (12) zugeordnet wird, und wobei die Anode (1, 2) oder die Anodengruppe (12) des jeweiligen Oberflächensegments (16, 17, 18) elektrisch von Anoden (1, 2) oder Anodengruppen (12) der übrigen Oberflächensegmente (16, 17, 18) abgeschirmt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Anoden (1, 2) zur segmentweisen Beschichtung individuell angesteuert werden.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Anoden (1, 2), welche unterschiedlichen Oberflächensegmenten (16, 17, 18) zugeordnet sind, wenigstens teilweise simultan betrieben werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen den Oberflächensegmenten (16, 17, 18) und der jeweiligen Anode (1, 2) wenigstens teilweise unterschiedliche Stromdichten eingestellt werden.
EP15157457.1A 2015-03-03 2015-03-03 VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE Active EP3064617B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15157457.1A EP3064617B1 (de) 2015-03-03 2015-03-03 VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15157457.1A EP3064617B1 (de) 2015-03-03 2015-03-03 VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP17200536.5 Division-Into 2017-11-08

Publications (2)

Publication Number Publication Date
EP3064617A1 EP3064617A1 (de) 2016-09-07
EP3064617B1 true EP3064617B1 (de) 2018-08-15

Family

ID=52627050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15157457.1A Active EP3064617B1 (de) 2015-03-03 2015-03-03 VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE

Country Status (1)

Country Link
EP (1) EP3064617B1 (de)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19502358B4 (de) 1995-01-26 2009-09-10 Mtv Metallveredlung Gmbh & Co. Kg Verfahren für die Vernickelung großflächiger Bauelemente
JPH1096097A (ja) * 1996-09-24 1998-04-14 Hitachi Cable Ltd 電気めっき装置
DE19717489B4 (de) * 1997-04-25 2008-04-10 Sms Demag Ag Anordnung zur elektrogalvanischen Metallbeschichtung eines Bandes
JP3379755B2 (ja) * 2000-05-24 2003-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 金属めっき装置
US7390382B2 (en) * 2003-07-01 2008-06-24 Semitool, Inc. Reactors having multiple electrodes and/or enclosed reciprocating paddles, and associated methods
JP2005163152A (ja) * 2003-12-05 2005-06-23 Renesas Technology Corp 電気メッキ方法及び半導体装置の製造方法
US8623193B1 (en) * 2004-06-16 2014-01-07 Novellus Systems, Inc. Method of electroplating using a high resistance ionic current source

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3064617A1 (de) 2016-09-07

Similar Documents

Publication Publication Date Title
DE2728084A1 (de) Verfahren zum herstellen einer nahtlosen zylindrischen schablone sowie unter anwendung des verfahrens hergestellte siebdruckschablone
DE1546930B2 (de) Vorrichtung zum elektrophoretischen ueberziehen von gegenstaenden mit einem organischen filmbildner
EP3064617B1 (de) VERFAHREN ZUR VERNICKELUNG GROßFLÄCHIGER BAUTEILE
WO2003038158A2 (de) Galvanisiereinrichtung und galvanisiersystem zum beschichten von bereits leitfähig ausgebildeten strukturen
DE69923956T2 (de) Anodenstruktur zur Herstellung von Metallfolien
DE112014004565T5 (de) Trommelelektrode, Verfahren zur Herstellung einer Trommelelektrode, Plattierungseinrichtung, Verfahren zur Herstellung eines aus Harz ausgebildeten Körpers und Verfahren zur Herstellung eines porösen Metallkörpers
EP1660701B1 (de) Stromversorgungseinrichtung in einer vorrichtung zur elektrochemischen behandlung
DE10238284B4 (de) Verfahren zum Herstellen einer schaumförmigen Metallstruktur, Metallschaum sowie Anordnung aus einem Trägersubstrat und einem Metallschaum
DE102014223779B4 (de) Wärmeübertragerelement, Verfahren zur Herstellung und Wärmeübertrager
DE1771953B2 (de) Vorrichtung zur elektrobeschichtung von hohlkoerpern
DE10007435A1 (de) Verfahren zum Galvanisieren eines mit einem elektrisch leitenden Polymer beschichteten Werkstücks
DE4419982C1 (de) Halte- und Kontaktiervorrichtung zum galvanischen Beschichten von Bauteilen
DE2212099B2 (de) Vorrichtung zur rueckgewinnung von metall aus einer ionen dieses metalls enthaltenden fluessigkeit
DE1621079C3 (de) Dreidimensionales durchbrochenes Metallgefüge und Verfahren zu seiner Herstellung
DE19722983C2 (de) Verfahren zur elektrochemischen Behandlung von stabförmigem Behandlungsgut und Vorrichtung zur Durchführung des Verfahrens
DE102006044673B3 (de) Kontaktiereinheit für die galvanische Abscheidung, Galvanisiervorrichtung und Galvanisiersystem
DE4430652A1 (de) Galvanisches Verfahren zum galvanischen oder chemischen Behandeln, insbesondere zum kontinuierlichen Aufbringen metallischer Schichten auf einen Körper
EP3064615B1 (de) Verfahren zur elektrolytischen Beschichtung komplexer Bauteile
DE574316C (de) Verfahren zur gleichzeitigen Herstellung verschieden starker Metallniederschlaege auf galvanischem Wege
DE2757686C2 (de)
DE202015006892U1 (de) Anodenkorb zur Aufnahme von löslichem Anodenmaterial in einer Galvanisieranlage
DE202008006707U1 (de) Vorrichtung zum Glavanisieren von Werkstücken
DE2452401A1 (de) Verfahren zur beeinflussung der dicke galvanisch abgeschiedener metallniederschlaege
WO2004074554A1 (de) Vorrichtung sowie verfahren zur herstellung von bewehrungs-schichten auf zylinderlaufflächen von verbrennungsmotoren u.dgl.
DE1771527B2 (de) Vorrichtung zur galvanischen Abscheidung eines metallischen Films von gleichförmiger Dicke auf einer ebenen Oberfläche

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 17/00 20060101AFI20180316BHEP

Ipc: C25D 17/12 20060101ALI20180316BHEP

Ipc: C25D 3/12 20060101ALN20180316BHEP

Ipc: C25D 5/16 20060101ALI20180316BHEP

Ipc: C25D 5/02 20060101ALI20180316BHEP

INTG Intention to grant announced

Effective date: 20180420

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 17/12 20060101ALI20180406BHEP

Ipc: C25D 3/12 20060101ALN20180406BHEP

Ipc: C25D 5/16 20060101ALI20180406BHEP

Ipc: C25D 5/02 20060101ALI20180406BHEP

Ipc: C25D 17/00 20060101AFI20180406BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1029876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015005405

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015005405

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190303

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015005405

Country of ref document: DE

Owner name: GNS GESELLSCHAFT FUER NUKLEAR-SERVICE MBH, DE

Free format text: FORMER OWNER: MTV METALLVEREDLUNG GMBH & CO. KG, 42699 SOLINGEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015005405

Country of ref document: DE

Representative=s name: RAUSCH WANISCHECK-BERGMANN BRINKMANN PARTNERSC, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015005405

Country of ref document: DE

Owner name: MTV NT GMBH, DE

Free format text: FORMER OWNER: MTV METALLVEREDLUNG GMBH & CO. KG, 42699 SOLINGEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015005405

Country of ref document: DE

Representative=s name: BRINKMANN & PARTNER PATENTANWAELTE PARTNERSCHA, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181215

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1029876

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015005405

Country of ref document: DE

Owner name: GNS GESELLSCHAFT FUER NUKLEAR-SERVICE MBH, DE

Free format text: FORMER OWNER: MTV NT GMBH, 42699 SOLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230508

Year of fee payment: 9