EP3064041B1 - Schnittstelle mit verbessertem sendezweig - Google Patents

Schnittstelle mit verbessertem sendezweig Download PDF

Info

Publication number
EP3064041B1
EP3064041B1 EP14783603.5A EP14783603A EP3064041B1 EP 3064041 B1 EP3064041 B1 EP 3064041B1 EP 14783603 A EP14783603 A EP 14783603A EP 3064041 B1 EP3064041 B1 EP 3064041B1
Authority
EP
European Patent Office
Prior art keywords
optocoupler
bus
branch
interface according
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14783603.5A
Other languages
English (en)
French (fr)
Other versions
EP3064041A1 (de
Inventor
Frank Lochmann
Markus SCHERTLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic GmbH and Co KG
Original Assignee
Tridonic GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic GmbH and Co KG filed Critical Tridonic GmbH and Co KG
Publication of EP3064041A1 publication Critical patent/EP3064041A1/de
Application granted granted Critical
Publication of EP3064041B1 publication Critical patent/EP3064041B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B44/00Circuit arrangements for operating electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback

Definitions

  • the present invention relates to an interface for bidirectional communication with an electronic operating device for at least one light source and a ballast with such an interface.
  • pamphlets show WO 2011/135098 A1 , WO 2013/153510 A1 and DE 101 13 367 C1 further examples for BUS interfaces.
  • Appropriate optocouplers U2, U1 are provided in the known circuit both for receiving DALI signals and for sending DALI signals, each forming part of a branch for sending or receiving. Both branches are fed from the common current source Q2, Q3, R3, R4. The circuit also has an energy store that 1 is shown as capacitor C2.
  • the well-known interface is designed for communication according to the DALI standard, in which a predetermined DC voltage is applied to the lines when the bus is inactive. This predetermined DC voltage is reduced only in the case of a signal transmission, while the constant DC voltage is applied when no signals are transmitted.
  • the capacitor C2 is charged by the DC voltage present on the bus. This makes sense here because when a signal is transmitted according to the DALI standard, the voltage present on the bus drops to (logical) zero or to the voltage that is defined for the low-level voltage. This can in Return channel (transmission branch) of the circuit can be recognized immediately.
  • Back channel refers to the channel away from the interface, other than the channel for the interface's transmit operation.
  • the “send branch” is the signal path of the interface used for sending signals.
  • DALI signals signals are to be received by the interface according to a protocol in which the voltage is zero (or very low compared to the DALI standard) when the bus is idle, it turns out that the known interface is not suitable for this is.
  • a protocol in which the voltage is zero (or very low compared to the DALI standard) when the bus is idle it turns out that the known interface is not suitable for this is.
  • An example of such a standard is the so-called DSI standard.
  • the reason for this is that, in contrast to the DALI standard, according to the DSI standard there is no voltage or low voltage when the bus is inactive (the "low level", i.e. the low value for the transmission of a first logical state, e.g. 0 , is specified to ⁇ 6.5 volts).
  • the voltage on the bus is only increased when a DSI signal is transmitted.
  • a DSI signal arrives at the connection for the control gear, i.e. on the secondary side, of the known interface, the voltage rises suddenly from the value for the first logic state, e.g. ⁇ 6.5 volts, to a predetermined DC voltage, e.g 10 - 15 volts (high level, i.e. the voltage value that is interpreted as the second logical value, eg 1). It is now necessary that the incoming signal is detected immediately to ensure reliable detection of the DSI signal. With DSI, transmission is Manchester-coded, ie a data bit is transmitted by changing from low level to high level (logical 0) or by changing from high level to low level (logical 1).
  • the capacitor C2 from the known circuit has a disruptive effect here, however, since the falling edge (logical 1) or the first bit of the DSI signal cannot be reliably recognized by the known interface.
  • capacitor C2 is partially charged as a result of the 2 mA input current source. If the bus voltage drops below 6.5 volts, capacitor C2 continues to be charged. As a result, current also flows in the optocoupler U2 of the receiving branch, so that the first logical state (e.g. 1) at the optocoupler output of optocoupler U2 cannot be recognized immediately after the voltage falls below 6.5 volts. The capacitor C2 is still partially charged even after falling below the low level and bridges the zener diode Z1 in the non- or partially charged state, which otherwise immediately interrupts the current flow in the optocoupler U2 if the zener voltage (low level) is fallen below.
  • the first logical state e.g. 1
  • the resistor can be connected between the energy store and the optocoupler.
  • the energy store and the resistor can be dimensioned in such a way that a discharge current flows during the transmission period of a digital bit, during which a connectable bus is short-circuited.
  • the edge duration of a digital bit that short-circuits a connectable bus can be less than 25 mS, preferably less than 15 ⁇ S.
  • the energy store can be charged from the current source without a charging current control element or via a charging current control transistor.
  • FIG. 2 shows a circuit arrangement.
  • a field effect transistor (FET, JFET) J1 and a resistor R7 form a current source J1, R7, which provides a charging current of a predetermined level to an energy store, which is referred to as capacitor C1 in the following by way of example.
  • FET field effect transistor
  • JFET field effect transistor
  • the current split is such that the charging current for the capacitor is less than the current through the optocoupler, preferably in a range from 30% to 70% of the optocoupler current.
  • the charging current for capacitor C1 is now picked up at the input of optocoupler Q3 of the receiving branch (see measuring point I between diode D6 and optocoupler Q3). So the capacitor is part of a path that is connected in parallel with a path that includes the primary side of the receive optocoupler Q3.
  • a falling edge of a DSI signal ie in particular the first bit of the DSI command (start bit, logical 1, coded with a falling edge)
  • start bit logical 1, coded with a falling edge
  • the capacitor C1 is not first discharged after the high level has been applied, it can be detected directly when the voltage drops to the low level.
  • a common power source can be used in the circuit according to the invention for the reverse channel and forward channel (receive/transmit branch).
  • the interface can also be used for signal reception according to the DALI standard. It is essential that the arrangement according to the invention enables incoming signals to be detected very quickly, even if the idle state of the bus voltage is close to 0 volts or 0 volts.
  • the circuit arrangement shown is designed in such a way that it counteracts the negative influence of a current source by using a large-sized capacitor (with a capacity of e.g. 1-6 ⁇ F), which is reduced from the current source with the FET J1 and the resistor R7 to approx .5 volts or more is charged.
  • a large-sized capacitor with a capacity of e.g. 1-6 ⁇ F
  • the drain-source capacitance of the FET J1 which, however, can be reduced by suitably dimensioning the capacitance at the gate.
  • FIG. 2 shows a schematic representation of the interface with a first primary-side control connection and a second primary-side control connection.
  • a DALI control device SDALI on the one hand and a mains button (not shown) on the other hand are coupled to the primary-side control input.
  • a resistor R1 is arranged in series with the first primary-side control connection.
  • a rectifier which includes four diodes D1 to D4, is coupled between the resistor R1 and the second primary-side control connection.
  • a switch X1 is coupled between a first and a second rectifier output connection, in particular its working electrode-reference electrode path.
  • a current source which includes two bipolar transistors Q1, Q2 and two ohmic resistors R2, R3, is also coupled to the rectifier output connection.
  • a first optocoupler Q3 is coupled to the output of the current source and is coupled in series with a zener diode D9.
  • a series circuit comprising a diode D6, the current source J1, R7 consisting of FET J1 and resistor R7, and a capacitor C1 is coupled in parallel with the zener diode D9.
  • a second optocoupler Q5 is supplied via the current source R7, J1.
  • the optocoupler Q3 in the reception branch can transfer signals via an output of the interface with a first and a second output connection, while the second optocoupler Q5 in the transmission branch is provided via a signal input with a first and a second signal connection for sending signals.
  • optocoupler Q5 is connected to the control electrode of switch X1, with a diode D13 and resistor R9 connected in series along this path.
  • a parallel connection of a capacitor C3 and a resistor R11 is coupled in parallel with the control electrode of the switch X1 and act as a noise filter.
  • Another bipolar transistor Q4 is coupled between the capacitor C3 and the resistor R11, the base of which is coupled to the higher-potential side of the resistor R11.
  • Capacitor C1 By using the current source J1, R7 to charge the capacitor C1 (this is essentially the same as Capacitor C2 of the known circuit) is then given full functionality even when transmitting signals according to the DSI standard, since charging of the capacitor C1 no longer takes place with a falling edge, but also according to the DALI standard.
  • the capacitor C1 is consequently always charged, which means that the zener diode D9 does not have to be bypassed by a non-charged or partially charged state with a falling edge.
  • the capacitor C1 After switching on the mains voltage and thus applying a direct voltage at a predetermined level according to the DALI standard (DALI On ), the capacitor C1 is charged to approx. 5.5 volts or more in around 400 milliseconds, so that after 600 milliseconds (this corresponds to the DALI standard) a response to a DALI signal can be sent from the time it is switched on.
  • the charging current is limited to 100 ⁇ A, for example, by the current source consisting of FET J1 and resistor R7. However, this value can also be higher or lower depending on the components used.
  • the optocoupler Q5 is always driven with a defined current, with the current through FET J1 being selected in such a way that in the event of a DSI signal being transmitted, it has an influence on the bit time, i.e. the time in which a bit is sent from the transmitter to the Receiver can be sent is small.
  • the circuits shown can be modified as follows. For example, if the control voltage for FET X1, i.e. the voltage at C1, is to be increased, an optocoupler Q5 with a control current of approx. 1 milliamps instead of eg 5 milliamps (mA) can be used. This can be, for example, an optocoupler of the type TLP621 or TLP624 from Toshiba.
  • the optocoupler current By reducing the optocoupler current to 1 milliamp, more current (e.g. 600 microamps) can be allowed to charge capacitor C1, allowing the voltage across C1 to reach its setpoint more quickly, and thus an even higher value at the time of transmit after 600 milliseconds Has.
  • the diodes D6 and D13 can be replaced by Schottky diodes, whereby the control voltage at the gate of the switch X1 can be increased by about 0.5 volts if necessary. This then makes it possible to use a smaller-sized FET X1.
  • the invention relates in particular to the improvement in terms of the signal shape and the signal repetition for digital bits to be transmitted in the transmission branch.
  • edges shown can be reduced edge sides (thus steeper edges) achieve. For example, edges with a duration of less than 25 ms, preferably even less than 15 ms, can be achieved.
  • these periods of time refer to the period of time until the edge of a transmission bit has pulled the bus potential to the lower potential, or the trailing edge of a transmission bit in turn allows the bus potential to rise from the low potential to the quiescent potential.
  • An optocoupler labeled 'DALIin' is shown on the right-hand side.
  • U90 left side of the optocoupler in figures
  • incoming signals are fed from the bus by means of a current source (the Darlington circuit Q90, Q95), which are then then transmitted by the optocoupler in an electrically isolated manner.
  • Q90, Q95 the Darlington circuit
  • further evaluation then follows by a control circuit in the operating device for lamps and the activation of the lamps according to the information received via the bus.
  • the digital signals to be transmitted by the control circuit of the operating device for lamps are applied to the primary side of the further (transmission-side) optocoupler DALIout, U91, and transmitted to the secondary side in an electrically isolated manner.
  • the secondary side then has a circuit that can selectively short-circuit the bus.
  • the portion of the circuit between the secondary side of the optocoupler U91 and the bus is powered by the bus voltage and the regulated current source Q90, Q95.
  • the current source Q90, Q95 fed from the bus voltage charges an electrical energy store, in the example shown the capacitor C94.
  • this charging occurs without a current regulator between the current source Q90, Q95 and the capacitor C94.
  • the transistor linear regulator shown above in the exemplary embodiments can also be present here.
  • the energy storage capacitor C94 and the ohmic resistor R100, which defines the discharge current, are tuned in such a way that the energy storage capacitor C94 is not yet fully discharged during the transmission period, i.e. during the short-circuiting of the bus voltage, and is therefore safe for the entire duration of the transmission bit (short-circuiting of the bus ) a constant discharge current flows through resistor R100 and the secondary side of optocoupler U91.
  • a switch Q96 is now provided in the receive branch which includes the receive optocoupler U90.
  • This switch Q96 can be, for example, a transistor, such as a bipolar transistor, in particular, as shown in the present example, a PNP bipolar transistor.
  • the transistor Q96 is connected at its base to a zener diode Z95.
  • the switch (transistor) Q96 When the voltage across the zener diode Z95 has reached the zener voltage (e.g. in 5.7V), the switch (transistor) Q96 is turned on (switched on) and thus allows current to flow on the primary side of the receiving-side optocoupler U90. As already described in connection with the previous exemplary embodiments, this current flow is fed by the current source R90, R91, Q90, Q95.
  • an energy storage element in particular a capacitor C95, is also connected in the path upstream of the Zener diode Z95. More specifically, this capacitor C95 is connected between the junction of the base of transistor Q95 below the cathode of diode Z95 and the junction of the emitter of transistor Q96 and the cathode of receive optocoupler U90. This capacitor C95 now causes a short delay in turning on transistor Q96 when there is sufficient voltage on the bus side.
  • the circuit block FB in figure 5 contains a two-stage circuit for adapting the edge steepness when transmitting, i.e. when driving transistor Q92, by means of which the bus lines can be selectively short-circuited.

Landscapes

  • Dc Digital Transmission (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Schnittstelle für eine bidirektionale Kommunikation mit einem elektronischen Betriebsgerät für mindestens ein Leuchtmittel und ein Vorschaltgerät mit einer solchen Schnittstelle.
  • Aus der DE 10 2009 016 904 B4 ist eine Schnittstelle für DALI-Steuersignale bekannt, die einen Sende- und einen Empfangskanal aufweist, welche beide mit einer gemeinsamen Stromquelle betrieben werden können. Die Schaltung nach dem Stand der Technik ist in Fig. 1 gezeigt.
  • Darüber hinaus zeigen die Druckschriften WO 2011/135098 A1 , WO 2013/153510 A1 und DE 101 13 367 C1 weitere Beispiele für BUS-Schnittstellen.
  • Sowohl für den Empfang von DALI-Signalen als auch für das Senden von DALI-Signalen sind in der bekannten Schaltung entsprechende Optokoppler U2, U1 vorgesehen, die jeweils Teils eines Zweigs zum Senden bzw. Empfangen bilden. Beide Zweige werden von der gemeinsamen Stromquelle Q2, Q3, R3, R4 gespeist. Die Schaltung weist weiter einen Energiespeicher auf, der in Fig. 1 als Kondensator C2 dargestellt ist.
  • Die bekannte Schnittstelle ist für eine Kommunikation nach DALI-Standard entworfen, bei dem bei einem inaktiven Bus eine vorgegebene Gleichspannung auf den Leitungen anliegt. Diese vorgegebene Gleichspannung wird jeweils nur im Fall einer Signalübermittlung herabgesetzt, während die konstante Gleichspannung wiederum anliegt, wenn keine Signale übermittelt werden.
  • Durch die an dem Bus anliegende Gleichspannung wird nach dem Stand der Technik der Kondensator C2 geladen. Dies ist hier sinnvoll, da, wenn eine Signalübermittlung nach DALI-Standard stattfindet, eben die auf dem Bus anliegende Spannung auf (logisch) Null bzw. auf die Spannung abfällt, die für die Low-Level-Spannung definiert ist. Dies kann im Rückkanal (Sendezweig) der Schaltung unmittelbar erkannt werden.
  • "Rückkanal" bezieht sich auf den Kanal weg von der Schnittstelle, als den Kanal für den Sendebetrieb der Schnittstelle. Der "Sendezweig" ist entsprechend der zum Senden von Signalen verwendete Signalpfad der Schnittstelle.
  • Sollen jedoch statt DALI-Signalen Signale gemäss einem Protokoll von der Schnittstelle empfangen werden, bei denen im Ruhezustand des Bus die Spannung Null (oder sehr gering ist im Vergleich zum DALI-Standard) ist so stellt sich heraus, dass die bekannte Schnittstelle dafür nicht geeignet ist. Ein Beispiel für einen solchen Standard ist der sog. DSI-Standard.
  • Grund hierfür ist, dass, im Gegensatz zu dem DALI-Standard, nach DSI-Standard bei einem inaktiven Bus keine Spannung bzw. eine geringe Spannung anliegt (der "Low Level", also der niedrige Wert zur Übertragung eines ersten logischen Zustands, z.B. 0, ist auf < 6,5 Volt spezifiziert). Erst bei Übertragung eines DSI-Signals wird die Spannung auf dem Bus angehoben.
  • Trifft folglich ein DSI-Signal an dem Anschluss für das Betriebsgerät, also sekundärseitig, der bekannten Schnittstelle ein, so steigt die Spannung sprunghaft von dem Wert, für den ersten logischen Zustand, z.B. < 6,5 Volt, auf eine vorgegebene Gleichspannung an, z.B. 10 - 15 Volt (High-Level, also der Spannungswert, der als zweiter logischer Wert interpretiert wird, z.B. 1). Es ist nun notwendig, dass das eingehende Signal sofort erkannt wird, um eine zuverlässige Erkennung des DSI-Signals zu gewährleisten. Bei DSI erfolgt die Übertragung manchesterkodiert, d.h. ein Daten-Bit wird durch einen Wechsel vom Low-Level zum High-Level (logisch 0) bzw. einen Wechsel vom High-Level zum Low-Level (logisch 1) übertragen.
  • Der Kondensator C2 aus der bekannten Schaltung wirkt hierbei jedoch störend, da die abfallende Flanke (logisch 1) bzw. das erste Bit des DSI-Signals durch die bekannte Schnittstelle nicht zuverlässig erkannt werden kann.
  • Dies liegt daran, dass der Kondensator C2 nach Annehmen des High-Levels (für ca. 833 µs), infolge der 2 mA Eingangsstromquelle teilgeladen ist. Bei einem Absinken der Busspannung auf unter 6,5 Volt wird der Kondensator C2 weiter geladen. Dies hat zur Folge, dass auch im Optokoppler U2 des Empfangszweigs Strom fließt, und damit nicht sofort nach Unterschreiten von 6,5 Volt der erste logische Zustand (z.B. 1) am Optokoppler-Ausgang von Optokoppler U2 erkannt werden kann. Der Kondensator C2 ist nämlich selbst nach Unterschreitung des Low-Levels immer noch teilgeladen und überbrückt in nicht- oder teilgeladenem Zustand die Zenerdiode Z1, die den Stromfluss im Optokoppler U2 bei unterschreiten der Zenerspannung (Low Level) ansonsten sofort unterbricht.
  • Es ist daher Aufgabe der Erfindung, eine Schnittstelle bereit zu stellen, die im Sendebetrieb hinsichtlich der Flankensteilheit digitaler Signale verbessert ist.
  • Die Erfindung löst dieses Problem durch das Bereitstellen einer Schnittstelle, wie sie mit Anspruch 1 beansprucht ist. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Eine digitale Bus-Schnittstelle für ein Betriebsgerät für ein Leuchtmittel wiest auf:
    • einen Sende- und einen Empfangszweig, wobei der Empfangszweig eine Stromquelle aufweist, die von einem im Ruhezustand Spannung führenden Bus aus speisbar ist, wobei die Stromquelle wenigstens den Sendezweig mit Energie versorgt und der Sendezweig einen Optokoppler aufweist, wobei in dem Empfangszweig ein elektrischer Energiespeicher, bspw. ein oder mehrere Kondensatoren, vorgesehen ist, der durch die Stromquelle aufgeladen wird, und der sich über wenigstens einen Widerstand in Serie zu der Sekundärseite des Optokopplers des Sendezweigs entlädt.
  • Der Widerstand kann zischen dem Energiespeicher und dem Optokoppler geschaltet sein.
  • Der Energiespeicher und der Widerstand können derart dimensioniert sein, dass während der Sendezeitdauer eines digitalen Bits, während der ein anschliessbarer Bus kurzgeschlossen ist, ein Entladestrom fliesst.
  • Die Flankenzeitdauer eines digitalen Bits, das einen anschliessbaren Bus kurzschliesst, kann weniger als 25mS, vorzugsweise weniger als 15µS betragen.
  • Der Energiespeicher kann ohne Ladestrom-Regelelement oder über einen Ladestrom-Regeltransistor ausgehend von der Stromquelle geladen werden.
  • Wesentliche Aspekte der Erfindung werden nunmehr mit Blick auf die Zeichnungen beschrieben.
  • Dabei zeigen:
  • Fig. 1
    eine Schnittstelle nach dem Stand der Technik.
    Fig. 2
    eine schematische Darstellung einer Schaltungsanordnung.
    Fig. 3
    eine weitere schematische Darstellung einer Schaltungsanordnung.
    Fig. 4
    eine weiter schematische Darstellung einer Schaltungsanordnung.
    Fig. 5
    eine erfindungsgemässe Ausführungsform.
  • Fig. 2 zeigt eine Schaltungsanordnung. Hierin bilden insbesondere ein Feldeffekttransistor (FET, JFET) J1 und ein Widerstand R7 eine Stromquelle J1, R7, welche einen Ladestrom vorgegebener Höhe an einem Energiespeicher, der im Folgenden beispielhaft als Kondensator C1 bezeichnet ist, zur Verfügung stellt.
  • Dadurch wird einerseits sichergestellt, dass der Optokoppler Q5 letztlich von einem konstanten Strom (Eingangsstrom minus Ladestrom) durchflossen wird. Andererseits wird die Wirkung eines nichtlinearen Bauteils, insbesondere einer Zenerdiode D9, nicht durch den Kondensator C1 überbrückt. Im Folgenden wird daher stellvertretend für das nichtlineare Bauteil der Begriff "Zenerdiode" verwendet. Vorzugsweise ist die Aufteilung des Stromes so gewählt, dass der Ladestromstrom für den Kondensator geringer ist als der Strom durch den Optokoppler, vorzugsweise in einem Bereich von 30% bis 70% des Optokoppler-Stroms.
  • Der Ladestrom für Kondensator C1 wird nun am Eingang des Optokopplers Q3 des Empfangszweigs abgegriffen (siehe Messpunkt I zwischen Diode D6 und Optokoppler Q3). Der Kondensator ist also Teil eines Pfads, der parallel zu einem Pfad geschaltet ist, der die Primärseite des Empfangs-Optokopplers Q3 aufweist.
  • Durch Einsatz der beschriebenen Stromquelle J1, R7 ist sichergestellt, dass eine abfallende Flanke eines DSI-Signals, also insbesondere das erste Bit des DSI-Befehls (Start-Bit, logisch 1, kodiert mit abfallender Flanke), schnell und zuverlässig erkannt wird. Dadurch, dass der Kondensator C1 nach Anliegen des High-Levels nicht erst entladen wird, ist direkt zu detektieren, wenn die Spannung auf den Low-Level abfällt. Dennoch kann auch in der erfindungsgemäßen Schaltung für den Rückkanal und Vorwärtskanal (Empfangs-/Sendezweig) eine gemeinsame Stromquelle genutzt werden.
  • Die Schnittstelle ist neben der Verwendung für den Signalempfang nach DSI-Standard ebenfalls für den Signalempfang nach DALI-Standard einsetzbar. Wesentlich ist, dass die erfindungsgemäße Anordnung insbesondere das sehr schnelle Detektieren eintreffender Signale ermöglicht, auch wenn der Ruhezustand der Busspannung nahe 0 Volt oder 0 Volt ist.
  • Die in Fig. 2 gezeigte Schaltungsanordnung, ist so ausgestaltet, dass sie dem negativen Einfluss einer Stromquelle durch die Verwendung eines groß dimensionierten Kondensators (mit einer Kapazität von z.B. 1-6 µF) entgegenwirkt, der von der Stromquelle mit dem FET J1 und dem Widerstand R7 auf ca. 5,5 Volt oder mehr geladen wird. Dabei ist lediglich ein parasitärer Einfluss der Drain-Source-Kapazität des FETs J1 vorhanden, die sich jedoch durch eine geeignete Dimensionierung der am Gate liegenden Kapazität verringern lässt.
  • Fig. 2 zeigt dabei in schematischer Darstellung die Schnittstelle mit einem ersten primärseitigen Steueranschluss und einem zweiten primärseitigen Steueranschluss. Mit dem primärseitigen Steuereingang ist einerseits ein DALI-Steuergerät SDALI, andererseits ein Netztaster (nicht gezeigt) gekoppelt.
  • Vorliegend ist seriell zum ersten primärseitigen Steueranschluss ein Widerstand R1 angeordnet. Zwischen dem Widerstand R1 und dem zweiten primärseitigen Steueranschluss ist ein Gleichrichter gekoppelt, der vier Dioden D1 bis D4 umfasst.
  • Zwischen einen ersten und einen zweiten Gleichrichterausgangsanschluss ist ein Schalter X1 gekoppelt, insbesondere dessen Strecke Arbeitselektrode - Bezugselektrode. Mit dem Gleichrichterausgangsanschluss ist überdies eine Stromquelle gekoppelt, die zwei BipolarTransistoren Q1, Q2 sowie zwei ohmsche Widerstände R2, R3 umfasst. Mit dem Ausgang der Stromquelle ist ein erster Optokoppler Q3 gekoppelt, der in Serie zu einer Zenerdiode D9 gekoppelt ist. Parallel zu der Zenerdiode D9 ist eine Serienschaltung aus einer Diode D6, der Stromquelle J1, R7 bestehend aus FET J1 und Widerstand R7, und eine Kapazität C1 gekoppelt. Über die Stromquelle R7, J1 wird ein zweiter Optokoppler Q5 versorgt.
  • Der Optokoppler Q3 im Empfangszweig kann über einen Ausgang der Schnittstelle mit einem ersten und einem zweiten Ausgangsanschluss Signale übergeben, während der zweite Optokoppler Q5 im Sendezweig über einen Signaleingang mit einem ersten und einem zweiten Signalanschluss zum Senden von Signalen vorgesehen ist.
  • Der Ausgang des Optokopplers Q5 ist mit der Steuerelektrode des Schalters X1 verbunden, wobei auf dieser Strecke eine Diode D13 und ein Widerstand R9 in Serie geschaltet sind. Parallel zur Steuerelektrode des Schalters X1 ist eine Parallelschaltung eines Kondensators C3 und eines Widerstands R11 gekoppelt, die als Störfilter wirken. Zwischen dem Kondensator C3 und dem Widerstands R11 ist ein weiterer Bipolar-Transistor Q4 gekoppelt, dessen Basis mit der potentialhöheren Seite des Widerstands R11 gekoppelt ist.
  • Durch Verwendung der Stromquelle J1, R7 zum Laden des Kondensators C1 (dieser entspricht im Wesentlichen dem Kondensator C2 der bekannten Schaltung) ist dann die volle Funktionalität auch bei der Übertragung von Signalen nach dem DSI-Standard gegeben, da ein Laden des Kondensators C1 bei abfallender Flanke nicht mehr erfolgt, aber auch nach DALI-Standard. Der Kondensator C1 ist folglich immer geladen, wodurch eine Überbrückung der Zenerdiode D9 durch einen nicht- oder teilgeladenen Zustand bei abfallender Flanke entfällt.
  • Nach einem Einschalten der Netzspannung und damit einem Anliegen einer Gleichspannung auf einem vorbestimmten Level/Niveau nach DALI-Standard (DALIEin) wird der Kondensator C1 in rund 400 Millisekunden auf ca. 5,5 Volt oder mehr geladen, so dass sicher nach 600 Millisekunden (dies entspricht dem DALI-Standard) ab dem Einschaltzeitpunkt eine Antwort auf ein DALI-Signal gesendet werden kann.
  • Der Ladestrom wird dabei von der Stromquelle bestehend aus FET J1 und Widerstand R7 auf beispielsweise 100 µA begrenzt. Dieser Wert kann jedoch abhängig von den verwendeten Komponenten auch höher oder niedriger sein.
  • Hierdurch wird der Optokoppler Q5 immer mit einem definierten Strom angesteuert, wobei der Strom durch FET J1 so gewählt ist, dass im Falle einer Übertragung eines DSI-Signals ein Einfluss auf die Bit-Zeit, d.h. die Zeit, in der ein Bit vom Sender zum Empfänger gesendet werden kann, klein ist.
  • Die gezeigten Schaltungen können wie folgt abgewandelt werden. Soll beispielsweise die Ansteuerspannung für den FET X1, also die Spannung an C1, erhöht werden, so kann ein Optokoppler Q5 mit einem Ansteuerstrom von ca. 1 Milliampere anstatt von z.B. 5 Milliampere (mA) verwendet werden. Dies kann z.B. ein Optokoppler vom Typ TLP621 oder TLP624 der Firma Toshiba sein.
  • Durch die Verringerung des Optokoppler-Stroms auf 1 Milliampere kann mehr Strom (z.B. 600 Mikroampere) zum Laden der Kapazität C1 zugelassen werden, wodurch die Spannung an C1 schneller ihren Sollwert erreicht und damit zum Zeitpunkt des Sendens nach 600 Millisekunden auch einen noch höheren Wert erreicht hat. Weiter können die Dioden D6 und D13 durch Schottky-Dioden ersetzt werden, wodurch die Steuerspannung am Gate des Schalters X1, wenn notwendig, um ca. 0,5 Volt angehoben werden kann. Dies ermöglicht dann eine Verwendung eines kleiner dimensionierten FETs X1.
  • Bezugnehmend auf Figuren 4 und 5 soll nunmehr eine Schaltung in zwei Varianten erläutert werden.
  • Die Erfindung bezieht sich insbesondere auf die Verbesserung hinsichtlich der Signalform und der Signalrepetition bei auszusendenden digitalen Bits im Sendezweig.
  • Durch die in Fig. 4 und Fig. 5 dargestellte Schaltungen lassen sich verringerte Flankenseiten (somit steilere Flanken) erzielen. Beispielsweise können Flanken mit einer zeitlichen Dauer von weniger als 25ms, bevorzugt sogar weniger als 15ms erzielt werden. Diese Zeitdauern beziehen sich also für den Fall, dass ein im Ruhezustand potentialführender Bus verwendet wird (beispielsweise der DALI-Bus) auf die Zeitdauer bis die Flanke eines Sendebits das Buspotential auf das niedrigere Potential gezogen hat, bzw. die hintere Flanke eines Sendebits wiederum das Buspotential von dem niedrigen Potential auf das Ruhepotential ansteigen lässt.
  • In Figuren 4 und 5 sind jeweils auf der linken Seite die beiden Klemmen zum Anschluss von zwei Busleitungen dargestellt, bspw. für einen DALI-Bus.
  • Auf der rechten Seite ist jeweils ein mit 'DALIin' bezeichneter Optokoppler dargestellt. Auf dessen Primärseite U90 (linke Seite des Optokopplers in Figuren) werden mittels einer Stromquelle (die Darlington-Schaltung Q90, Q95) von dem Bus eingehende Signale gespeist, die also dann von dem Optokoppler potentialgetrennt übertragen werden. Auf der Sekundärseite des Optokopplers DALIin folgt dann die weitere Auswertung durch eine Steuerschaltung im Betriebsgerät für Leuchtmittel und die Ansteuerung der Leuchtmittel entsprechend der über den Bus empfangenen Information.
  • Auf der Primärseite des weiteren (sendeseitigen) Optokopplers DALIout, U91, werden die von der Steuerschaltung des Betriebsgeräts für Leuchtmittel auszusendenden digitalen Signale angelegt und potentialgetrennt auf die Sekundärseite übertragen. Die Sekundärseite weist dann eine Schaltung auf, die selektiv den Bus kurzschliessen kann.
  • Grundsätzlich erfolgt die Energieversorgung für den Bereich der Schaltung zwischen der Sekundärseite des Optokopplers U91 und dem Bus über die Busspannung und die geregelte Stromquelle Q90, Q95.
  • Ein Problem tritt indessen dadurch auf, dass beim Senden eines digitalen Signals die vordere Flanke des digitalen Bits die Busspannung selektiv kurzschließt und somit auf ein niedriges Potential zieht. Dies wiederum bedeutet, dass somit die zuvor noch vorliegende Energieversorgung zum Speisen der Stromquelle Q90, Q95 entfällt. Die Energieversorgung kann also nur noch aus beispielsweise Kapazitäten in der Schnittstellenschaltung selbst erfolgen, was eine unkontrollierte Energieversorgung darstellt, was somit zu Problemen bei der genauen Einstellung des Flankenverlaufs führt, aber auch zu Rückkopplungseffekten, die wiederum zu Schwingungen (ringing) führen können. Um diese Rückkkopplungseffekte hinsichtlich ihrer störenden Auswirkung gering zu halten, müssen daher filternde Bauteile in der Schnittstellenschaltung aufgenommen werden, die wiederum das zeitliche Antwortverhalten verlangsamen. Nach alledem führt dies letztendlich zu einer Einschränkung hinsichtlich der einstellbaren Flankenverläufe und Bit-Repetitionsraten.
  • Gemäß der Erfindung wie in Figuren 4 und 5 dargestellt ist daher vorgesehen, dass die aus Busspannung gespeiste Stromquelle Q90, Q95 einen elektrischen Energiespeicher, im dargestellten Beispiel den Kondensator C94 lädt. Vorzugsweise erfolgt dieses Laden ohne zwischen der Stromquelle Q90, Q95 und den Kondensator C94 vorliegenden Stromregler. Indessen kann der in den zuvor in den Ausführungsbeispielen dargestellte Transistor-Linearregler auch hier vorliegen.
  • Von Bedeutung ist weiterhin, dass das Entladen des Kondensators C94 kontrolliert über einen Ohmschen Widerstand R100 erfolgt, der bspw. zwischen den Energiespeicher und den Optokoppler geschaltet ist.
  • Dieses kontrollierte Entladen mittels eines konstanten Entladestroms wird also dann stattfinden, wenn die Stromquelle Q90, Q95 nicht nur ordnungsgemäß arbeiten kann, also bei Wegfall der Busspannung selektives Kurzschließen im zeitlichen Bereich des Sendebits. Der Kondensator C94 wird mit einem kontrollierten Strom über den Widerstand R100 entladen.
  • Der Energiespeicher-Kondensator C94 und der den Entladestrom definierende Ohmsche Widerstand R100 sind dabei derart abgestimmt, dass der Energiespeicherkondensator C94 während der Sendezeitdauer, also während dem Kurzschließen der Busspannung noch nicht vollständig entladen ist und somit sicher während der gesamten Zeitdauer des Sendebits (Kurzschließen des Busses) ein konstanter Entladestrom durch den Widerstand R100 und die Sekundärseite des Optokopplers U91 fliesst.
  • Unter Bezugnahme auf Figur 5 soll nunmehr ein Ausführungsbeispiels der vorliegenden Erfindung erläutert werden.
  • Gemäß dem Ausführungsbeispiel von Figur 5 ist im Empfangszweig, der den Empfangs-Optokoppler U90 aufweist, nunmehr ein Schalter Q96 vorgesehen. Dieser Schalter Q96 kann beispielsweise ein Transistor, wie beispielsweise ein Bipolartransistor, insbesondere, wie im vorliegenden Beispiel gezeigt, ein PNP-Bipolartransistor sein.
  • Der Transistor Q96 ist an seiner Basis mit einer Z-Diode Z95 verschaltet.
  • Wenn die Spannung über der Z-Diode Z95 die Zenerspannung erreicht hat (beispielsweise in 5,7V), wird der Schalter (Transistor) Q96 leitend geschaltet (durchgeschaltet) und ermöglicht somit einen Stromfluss auf der Primärseite des empfangsseitigen Optokopplers U90. Dieser Stromfluss wird wie bereits im Zusammenhang mit den vorhergehenden Ausführungsbeispielen geschildert, gespeist durch die Stromquelle R90, R91, Q90, Q95.
  • Wie in Figur 5 ersichtlich ist weiterhin in dem Pfad vor der Z-Diode Z95 ein Energiespeicherelement, insbesondere ein Kondensator C95 geschaltet. Genauergesagt ist dieser Kondensator C95 zwischen dem Verbindungspunkt der Basis des Transistors Q95 unter der Kathode der Diode Z95 sowie dem Verbindungspunkt des Emitters des Transistors Q96 und der Kathode des Empfangs-Optokopplers U90 geschaltet. Dieser Kondensator C95 bewirkt nunmehr eine kurze Verzögerung des Durschaltens des Transistors Q96, wenn von Seiten des Busses eine ausreichende Spannung anliegt.
  • Mittels dieses Schalters (Transistors) Q95 kann nunmehr eine besonders vorteilhafte Schnittstellenschaltung ermöglicht werden, bei der eingangsseitig (linke Seite "Bus" in Figur 5) sowohl digital Signale gemäß dem DALI, bzw. dem DSI Standart aber auch Tastersignale angelegt werden können, bei denen manuell eine Versorgungsspannung kurzgeschlossen wird.
  • Der Schaltungsblock FB in Figur 5 enthält eine zweistufige Schaltung zur Anpassung der Flankensteilheiten beim Senden, also beim Ansteuern des Transistors Q92, mittels dem die Busleitungen selektiv kurgeschlossen werden können.

Claims (11)

  1. Digitale Bus-Schnittstelle für ein Betriebsgerät für
    ein Leuchtmittel, wobei:
    - die Schnittstelle einen Sende- und einen Empfangszweig aufweist,
    - der Empfangszweig eine Stromquelle (R90, R91, Q90, Q95) aufweist, die von einem im Ruhezustand Spannung führenden Bus aus speisbar ist,
    - die Stromquelle (R90, R91, Q90, Q95) wenigstens den Sendezweig mit Energie versorgt und der Sendezweig einen Optokoppler (U91) aufweist,
    - der Empfangszweig einen weiteren Optokoppler (U90) aufweist,
    - in dem Empfangszweig ein Transistor (Q96) vorgesehen ist, der derart in Serie zu der Primärseite des Optokopplers (U90) des Empfangszweigs angeordnet ist, dass der Transistor (Q96) selektiv leitend geschaltet wird und somit ausgehend von der Stromquelle (R90, R91, Q90, Q95) einen Stromfluss auf der Primärseite des Optokopplers (U90) des Empfangszweigs ermöglicht, solange die Spannung am Eingang des Empfangszweigs einen definierten Schwellenwert überschreitet, dadurch gekennzeichnet dass
    - zwischen einem Verbindungspunkt eines Emitters des Transistors (Q96) und einer Kathode des Optokopplers (U90) ein Kondensator (C95) geschaltet ist.
  2. Schnittstelle nach Anspruch 1,
    wobei der Transistor (Q96) die Primärseite des Optokopplers (U90) des Empfangszweigs selektiv leitend schaltet, wenn die Spannung an einem nichtlinearen Element, insbesondere einer Z-Diode (Z95), einen definierten Wert überschreitet.
  3. Schnittstelle nach einem der vorhergehenden Ansprüche,
    bei der in dem Empfangszweig ein elektrischer Energiespeicher (C94) vorgesehen ist, der durch die Serienschaltung von Stromquelle (R90, R91, Q90, Q95) und Transistor (Q96) aufgeladen wird, und der sich über einen Widerstand (R100) in Serie zu der Sekundärseite des Optokopplers (U91) des Sendezweigs entlädt.
  4. Schnittstelle nach Anspruch 3,
    wobei sich der in dem Empfangszweig vorgesehene elektrische Energiespeicher (C94) über den Widerstand (R100) in Serie zu der Sekundärseite des Optokopplers (U91) des Sendezweigs bei Wegfall der Busspannung durch selektives Kurzschließen eines anschliessbaren Busses im zeitlichen Bereich eines Sendebits entlädt.
  5. Schnittstelle nach Anspruch 3 oder 4,
    wobei der Widerstand (R100) zwischen dem Energiespeicher (C94) und dem Optokoppler (U91) geschaltet ist.
  6. Schnittstelle nach einem der Ansprüche 3 bis 5,
    wobei der Energiespeicher (C94) und der Widerstand (R100) derart dimensioniert sind, dass während der Sendezeitdauer eines digitalen Bits, während der der anschliessbare Bus kurzgeschlossen ist, ein Entladestrom fliesst.
  7. Schnittstelle nach Anspruch 6,
    wobei die Flankenzeitdauer des digitalen Bits, das den anschliessbaren Bus kurzschliesst, weniger als 25ms, vorzugsweise weniger als 15µs beträgt.
  8. Schnittstelle nach einem der Ansprüche 3 bis 7,
    bei der der Energiespeicher (C94) ohne Ladestrom-Regelelement oder über einen Ladestrom-Regeltransistor ausgehend von der Stromquelle geladen wird.
  9. Vorschaltgerät für Leuchtmittel, insbesondere Gasentladungslampe, LEDs oder OLEDs, mit einer Schnittstelle nach einem der vorgehenden Ansprüche.
  10. Leuchte, aufweisend ein Leuchtmittel, insbesondere Gasentladungslampe, LEDs oder OLEDs, sowie ein Vorschaltgerät nach Anspruch 9.
  11. Gebäudetechnik-Bussystem, aufweisend einen Bus
    und wenigstens einen Busteilnehmer mit einer Schnittstelle nach einem der Ansprüche 1 bis 7.
EP14783603.5A 2013-10-28 2014-10-09 Schnittstelle mit verbessertem sendezweig Active EP3064041B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013221848.6A DE102013221848A1 (de) 2013-10-28 2013-10-28 Schnittstelle mit verbessertem Sendezweig
PCT/EP2014/071674 WO2015062837A1 (de) 2013-10-28 2014-10-09 Schnittstelle mit verbessertem sendezweig

Publications (2)

Publication Number Publication Date
EP3064041A1 EP3064041A1 (de) 2016-09-07
EP3064041B1 true EP3064041B1 (de) 2022-11-30

Family

ID=51690380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14783603.5A Active EP3064041B1 (de) 2013-10-28 2014-10-09 Schnittstelle mit verbessertem sendezweig

Country Status (5)

Country Link
US (1) US9585233B2 (de)
EP (1) EP3064041B1 (de)
CN (1) CN105532075B (de)
DE (1) DE102013221848A1 (de)
WO (1) WO2015062837A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820355A (zh) * 2017-12-01 2018-03-20 赛尔富电子有限公司 一种带有自举功能的dali接口电路
WO2019144373A1 (en) 2018-01-26 2019-08-01 Tridonic Gmbh & Co Kg Dali circuit, controlling method and equipment
EP3861834B1 (de) * 2018-10-02 2022-05-04 Signify Holding B.V. Digital adressierbare beleuchtungsschnittstelle, dali, aktivierte kommunikationsvorrichtung zum übertragen von nachrichten über einen kommunikationsbus sowie ein entsprechendes verfahren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113367C1 (de) * 2001-03-20 2003-01-02 Vossloh Schwabe Elektronik Interfaceschaltung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146357A (en) * 1990-05-04 1992-09-08 Buffton Corporation Data communications system that prevents undesired coupling between data stations
US7764479B2 (en) * 2007-04-18 2010-07-27 Lutron Electronics Co., Inc. Communication circuit for a digital electronic dimming ballast
DE102009016904B4 (de) 2009-04-08 2012-03-01 Osram Ag Schnittstelle zum Ansteuern eines elektronischen Vorschaltgeräts
CN102939797B (zh) * 2010-04-30 2014-10-29 赤多尼科两合股份有限公司 耐压型接口电路
EP2837096B1 (de) * 2012-04-12 2016-01-13 Koninklijke Philips N.V. Schnittstelle einer digitalen kommunikationsschaltung für leitungspaar mit individuell einstellbaren übergangsflanken
US9439270B2 (en) * 2012-10-17 2016-09-06 Koninklijke Philips N.V. Digital communication receiver interface circuit for line-pair with duty cycle imbalance compensation
EP2770637B1 (de) * 2013-02-22 2015-08-19 Siemens Aktiengesellschaft Optokoppleranordnung und Ein- und/oder Ausgabebaugruppe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113367C1 (de) * 2001-03-20 2003-01-02 Vossloh Schwabe Elektronik Interfaceschaltung

Also Published As

Publication number Publication date
EP3064041A1 (de) 2016-09-07
US20160234918A1 (en) 2016-08-11
CN105532075A (zh) 2016-04-27
CN105532075B (zh) 2018-09-25
WO2015062837A1 (de) 2015-05-07
DE102013221848A1 (de) 2015-04-30
US9585233B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
DE102010039141B4 (de) Halbleiterschaltung
DE102014111335B3 (de) Überwachung eines Schalters
EP2564671B1 (de) Spannungsfeste schnittstellenschaltung
DE102014219882A1 (de) Stromversorgungseinrichtung
EP0393233B1 (de) Signalübertragungssystem
DE3889019T2 (de) Ansteuerschaltung.
EP3064041B1 (de) Schnittstelle mit verbessertem sendezweig
DE102019203338A1 (de) Ringing-Entstörschaltung
EP0219074A2 (de) Zweidraht-Schalter mit einem Leistungstransistor
DE3930896A1 (de) Verpolschutzschaltung
DE102010053500A1 (de) Photovoltaikgenerator mit Schutzschaltungsanlage für Photovoltaikmodule
EP2842400B1 (de) Schnittstelle mit sende- und empfangszweig
DE4330114B4 (de) Schaltungsanordnung zum Steuern einer Mehrzahl von Verbrauchern, insbesondere Vorschaltgerät von Lampen
DE102013107088A1 (de) Schaltungsanordnung zum Schutz von mindestens einem Bauteil eines Zweidrahtstromkreises
AT14231U1 (de) Schnittstelle mit verbessertem Sendezweig
DE2130916B2 (de) Übertragungsschaltung für digitale Signale
EP2296440B1 (de) Verfahren und Schaltungsanordnung zur Ausfallerkennung von Leuchtdioden
DE3730503A1 (de) Gleichstrom-steuerschaltung
DE102007009520B4 (de) Schnittstelle für Digitalsignale und Netzspannungssignale, mit schaltbarer Konstantstromquelle
DE102008043424A1 (de) Motoransteuerungsspannungsversorgungsschaltung mit einem EMV-Filter und einem Verpolschutz
DE102012206906A1 (de) Schnittstelle mit Sende- und Empfangszweig
DE1169508B (de) Schaltungsanordnung zur Erzeugung leistungsstarker Impulse an einer Belastung
EP2852058A1 (de) Vorrichtung zum Aktivieren eines elektronischen Gerätes, insbesondere eines Steuergerätes in einem Fahrzeug
DE102009039579A1 (de) Gleichspannungswandler-Anordnung für ein Kraftfahrzeug
DE1206015B (de) Schaltungsanordnung zur Erzeugung einer Impulsfolge mit unterschiedlichen, gegebenenfalls variablen Impulsabstaenden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160426

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 47/20 20200101ALI20211108BHEP

Ipc: H05B 33/08 20200101ALI20211108BHEP

Ipc: H05B 47/18 20200101AFI20211108BHEP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014016450

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0037020000

Ipc: H05B0047180000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 47/20 20200101ALI20220601BHEP

Ipc: H05B 47/18 20200101AFI20220601BHEP

INTG Intention to grant announced

Effective date: 20220629

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1535708

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221215

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014016450

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014016450

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 10

Ref country code: DE

Payment date: 20231027

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231009