EP3061179A1 - Centrale électrique - Google Patents

Centrale électrique

Info

Publication number
EP3061179A1
EP3061179A1 EP14808931.1A EP14808931A EP3061179A1 EP 3061179 A1 EP3061179 A1 EP 3061179A1 EP 14808931 A EP14808931 A EP 14808931A EP 3061179 A1 EP3061179 A1 EP 3061179A1
Authority
EP
European Patent Office
Prior art keywords
voltage
internal
phase position
power generation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14808931.1A
Other languages
German (de)
English (en)
Inventor
Hans-Günter ECKEL
Magdalena GIERSCHNER
Hans-Joachim Knaak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3061179A1 publication Critical patent/EP3061179A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a power plant with an internal AC voltage network, a plurality of electrical power generation units, which are connected to the internal AC power network, and at least one high-voltage DC transmission device, which is connected to the internal AC power network, via a DC link to an external AC voltage network can be connected and allows energy transfer from the internal AC voltage network in the direction of the external AC voltage network.
  • Power plants of the type described are known as wind farms, in which the power generation units are formed by wind turbines, or as photovoltaic parks, in which the power generation units are formed by photovoltaic systems.
  • the high-voltage DC transmission equipment used in these power plants each have self-commutated rectifiers on the internal AC power network of the power plant.
  • the invention has for its object to provide a power plant, which can be realized more cost-effective than previous power plants.
  • the power generation units feed their power into the internal AC voltage network either via a power-electronic converter or via the stator of a doubly-fed asynchronous machine whose rotor is connected via a power electronics unit.
  • inverter is fed, feed into the internal AC power grid and the power generation units each have a synchronizer, which is suitable to regulate the generation of the output voltage of the respective energy generating unit or the feeding of the output current through the respective power generation unit such that the phase position of the output voltage or the phase position of the output current has a desired phase position predetermined by the respective energy generation unit with respect to a synchronization signal applied on the input side.
  • a significant advantage of the power plant according to the invention is the fact that in this the high-voltage DC transmission device on the part of the internal AC power network does not have to be self-guided, but can be net-guided.
  • the power plant according to the invention it is possible to use line-driven rectifiers instead of self-commutated rectifiers on the side of the internal AC voltage network, which can save considerable costs; because grid-controlled rectifiers are technically simpler and therefore less expensive to produce than self-commutated rectifiers.
  • the high-voltage direct-current transmission device on the connection side to the internal AC voltage network has at least one line-commutated one
  • the high-voltage DC transmission device on the connection side to the internal AC power network is preferably one mains-powered high-voltage direct current transmission device.
  • the high-voltage DC transmission device on the side of the internal AC voltage network is a mains-driven high-voltage DC transmission device and on the side of the external AC voltage network is a self-commutated high-voltage DC transmission device.
  • the high voltage DC transmission device on the connection side to the internal AC voltage network has at least one self-commutated rectifier, which is suitable to work as an inverter and to feed the internal power supply of the internal AC voltage network from the DC side of the high-voltage DC transmission device coming energy into the internal AC power grid. Due to the presence of a self-commutated rectifier, which can operate as an inverter, it is possible to carry out an energy transfer from the external AC voltage network in the direction of the internal AC voltage network if there is insufficient mains voltage there.
  • all power generation units of the power plant are subjected to the same synchronization signal.
  • At least one of the energy generation units In order to compensate reactive power present in the internal AC voltage network or to generate reactive power in the AC voltage network, it is possible for at least one of the energy generation units to specify or specify an individual desired phase position which deviates from the central desired phase position.
  • an individual desired phase position is predetermined for the at least one energy generation unit, which deviates from the central desired phase position by 90 ° or at least such that the energy generation unit feeds reactive power into the internal AC voltage network.
  • the power plant has a central device, which is connected to all power generation units and is configured such that it sets each power generation unit each a desired phase position.
  • the power generation units each have a radio receiver and the radio receivers of the power generation units each receive their synchronization signal by radio.
  • the synchronization signal may be, for example, the so-called GPS signal (GPS: Global Positioning System);
  • GPS Global Positioning System
  • the radio receivers are preferably GPS receivers.
  • the power plant may be, for example, a wind farm or a photovoltaic park, in which the power generation units are formed by wind turbines and / or photovoltaic systems.
  • the internal AC voltage network can be, for example, a polyphase network, in particular a three-phase network.
  • the invention also relates to a power generation unit for a power plant as described above.
  • a power generation unit it is provided according to the invention that it has a synchronizing device which is suitable for processing an input signal applied to the input side and the phase position of an output voltage generated by the power generation unit or the phase position of an output current fed into the internal AC power supply by the power generation unit, and Generation of the output voltage or the feeding of the output current to regulate such that the phase position of the output voltage or the phase position of the output current of the power generating unit predetermined target phase position corresponds.
  • the invention further relates to a method of operating a power plant equipped with an internal AC power network, a plurality of power generation units connected to the internal AC power network, and at least one high voltage DC power transmission device connected to the internal AC power network is.
  • a method of operating a power plant equipped with an internal AC power network, a plurality of power generation units connected to the internal AC power network, and at least one high voltage DC power transmission device connected to the internal AC power network is.
  • a synchronization signal is fed into the energy generating units and that the energy generating units in each case feed the synchronization signal present on the input side.
  • Figure 1 shows an embodiment of an inventive
  • Figure 3 shows an embodiment of an inventive
  • FIG. 4 shows an embodiment of a power plant according to the invention, in which a central device is provided which sets the power generation units each an individual desired phase position and in which a high-voltage DC transmission device on the part of the internal AC power network both a mains-powered rectifier and a self-commutated rectifier.
  • a central device is provided which sets the power generation units each an individual desired phase position and in which a high-voltage DC transmission device on the part of the internal AC power network both a mains-powered rectifier and a self-commutated rectifier.
  • the internal AC voltage network 20 is also connected to a high-voltage DC transmission device 40, which connects the internal AC voltage network 20 to an external AC voltage network 50 and enables energy transfer from the internal AC voltage network 20 in the direction of the external AC voltage network 50.
  • the high-voltage direct-current transmission device 40 is a line-commutated transmission device on the side of the internal alternating-voltage network 20 and for this purpose has a line-commutated rectifier 41, which is arranged electrically between the internal alternating voltage network 20 and a direct current transmission line 42.
  • the power generation units 30 and 31 are each because it is equipped with a synchronizing device 60, which is suitable for regulating the generation of the output voltage of the respective energy generating unit or the feeding of the output current through the respective energy generating unit such that the phase position of the output voltage or the phase position of the output current corresponds to a desired phase position specified for the respective energy generating unit ,
  • the desired phase position refers to a synchronization signal S present on the input side, which is fed into the synchronization devices 60 of the energy generation units 30 and 31, respectively.
  • the transmission of the synchronization signal S to the synchronizers 60 takes place via radio.
  • the feeding of the electrical power through the energy generating units 30 and 31 into the internal AC voltage network 20 is effected either via a power electronic converter or via the stator of a doubly fed asynchronous machine whose rotor is fed by a power electronic converter.
  • a power electronic converter or via the stator of a doubly fed asynchronous machine whose rotor is fed by a power electronic converter.
  • the latter components that is to say the power electronic converters or the stators of double-fed asynchronous machines, are not explicitly illustrated in FIG.
  • the power plant 10 according to FIG. 1 can be operated, for example, as follows:
  • GPS Global Positioning System
  • the synchronizing devices 60 evaluate the synchronization signal S and regulate the output voltage or the output current of their respective power generation unit in such a way that the phase position of the output voltage or the phase position of the output current coincides with a desired phase position given individually to the power generation unit with respect to the synchronization signal S present on the input side ,
  • the synchronization by means of the synchronization signal S thus makes it possible for the energy generation units, without being directly connected to each other, to show a coordinated behavior with regard to the feeding of their energy into the internal AC voltage network 20.
  • FIG. 2 shows a further exemplary embodiment of a power plant in which the energy generation units 30 and 31 are synchronized by means of a synchronization signal S in order to ensure adequate stabilization of the internal AC voltage network 20 for grid-controlled operation of the grid-commutated rectifier 41.
  • the power plant 10 according to FIG. 2 has the internal one AC line 20 facing terminal side of the high-voltage DC transmission device 40 in addition a self-commutated rectifier 46, which is suitable to work as an inverter and fed from the DC transmission line 42 coming energy in the AC voltage network 20.
  • the self-commutated rectifier 46 can thus serve to cover the intrinsic demand of the internal AC voltage network 20 via an energy transfer from the external AC voltage network 50 in the direction of the internal AC voltage network 20, for example, if the power generation units 30 or 31 do not themselves have sufficient power in the internal AC voltage network 20 feed.
  • FIG. 3 shows an exemplary embodiment of a power plant 10, in which a central device 100 is present, which is connected to each power generation unit 30 and 31 individually, whether wired or via radio.
  • a central device 100 is present, which is connected to each power generation unit 30 and 31 individually, whether wired or via radio.
  • the central device 100 has the task of each energy generating unit 30 or 31 or each synchronizer 60 of the power generation units 30 and 31 each to specify an individual phase ⁇ .
  • the synchronizing devices 60 thus receive in addition to the synchronization signal S also their individually predetermined desired phase position ⁇ , so that it is possible for them to regulate the output voltage or the output current in such a way that they have the predetermined desired phase position ⁇ with respect to the synchronization signal S present on the input side.
  • the transmission of the synchronization signal S takes place as a GPS signal via radio and the transmission of the individually predetermined target value.
  • a wired transmission can be dispensed radio receiving equipment for receiving a GPS signal, for example.
  • FIG. 4 shows an exemplary embodiment of a power plant, in which the high-voltage DC transmission device 40 on the side of the internal AC voltage network 20 in addition to the grid-controlled rectifier 41 also has a self-commutated rectifier 46, which is suitable to work as an inverter and to supply the internal demand of the internal AC voltage network 20 from the DC side of the rectifier 46 or from the DC transmission line 42 energy to be fed into the internal AC voltage network 20, as has already been explained in detail in connection with Figure 2 above. The relevant explanations therefore apply accordingly. While the invention has been further illustrated and described in detail by way of preferred embodiments, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Inverter Devices (AREA)

Abstract

L'invention concerne, entre autres, à une centrale électrique (10) comportant un réseau de tension alternative interne (20), une pluralité d'unités de production d'énergie électriques (30, 31) qui sont raccordées au réseau de tension alternative interne (20), et au moins un dispositif de transmission de courant continu à haute tension (40) qui est raccordé au réseau de tension alternative interne (20), qui peut être raccordé par le biais d'une liaison à courant continu à un réseau de tension alternative externe (50) et qui permet une transmission d'énergie du réseau de tension alternative interne (20) en direction du réseau de tension alternative externe (50). Selon l'invention, les unités de production d'énergie (30, 31) alimentent en énergie soit le réseau de tension alternative interne (20) par le biais d'un convertisseur électronique de puissance soit le réseau de tension alternative interne (20) par le biais du stator d'une machine asynchrone à double alimentation dont le rotor est alimenté par un convertisseur électronique de puissance, et les unités de production d'énergie (30, 31) comportent chacune un dispositif de synchronisation (60) qui est adapté pour réguler la génération de tension de sortie de l'unité de production d'énergie (30, 31) respective ou l'alimentation en courant de sortie par le biais de l'unité de production d'énergie (30, 31) respective de telle sorte que la position de phase de la tension de sortie ou la position de phase du courant de sortie comporte une position de phase de consigne (Δφ), prescrite à l'unité de production d'énergie (30, 31) respective, par rapport à un signal de synchronisation (S) appliqué à l'entrée.
EP14808931.1A 2013-12-20 2014-12-02 Centrale électrique Withdrawn EP3061179A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226987.0A DE102013226987A1 (de) 2013-12-20 2013-12-20 Kraftwerksanlage
PCT/EP2014/076204 WO2015090936A1 (fr) 2013-12-20 2014-12-02 Centrale électrique

Publications (1)

Publication Number Publication Date
EP3061179A1 true EP3061179A1 (fr) 2016-08-31

Family

ID=52014060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14808931.1A Withdrawn EP3061179A1 (fr) 2013-12-20 2014-12-02 Centrale électrique

Country Status (7)

Country Link
US (1) US20170005479A1 (fr)
EP (1) EP3061179A1 (fr)
JP (1) JP6370386B2 (fr)
KR (1) KR101918145B1 (fr)
CN (1) CN105830328B (fr)
DE (1) DE102013226987A1 (fr)
WO (1) WO2015090936A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10585712B2 (en) 2017-05-31 2020-03-10 International Business Machines Corporation Optimizing a workflow of a storlet architecture
JP6772118B2 (ja) 2017-08-24 2020-10-21 三菱重工業株式会社 分散電源システムの制御装置、分散電源システム、分散電源システムの制御方法、及び分散電源システムの制御プログラム
CN107769263B (zh) * 2017-10-19 2019-07-09 华中科技大学 基于锁相环同步控制的vsc黑启动装置及黑启动方法
DE102017011235A1 (de) * 2017-12-06 2019-06-06 Senvion Gmbh Windpark mit autarker Phasenwinkelregelung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025496A1 (en) * 2002-08-07 2004-02-12 Frank Patterson System and method for synchronizing electrical generators
WO2012163979A2 (fr) * 2011-05-30 2012-12-06 Danmarks Tekniske Universitet Évaluation de systèmes électriques
WO2013115908A1 (fr) * 2012-01-31 2013-08-08 Schweitzer Engineering Laboratories, Inc. Systèmes et procédés de protection contre une panne totale de courant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265398B2 (ja) * 1992-01-30 2002-03-11 株式会社日立製作所 直流送電装置の制御装置
JPH09191567A (ja) * 1996-01-10 1997-07-22 Toshiba Corp 自励式交直変換器の制御装置
JPH10201105A (ja) * 1997-01-14 1998-07-31 Nissin Electric Co Ltd 太陽光発電装置
SE521290C2 (sv) * 1997-03-24 2003-10-21 Abb Ab Anläggning för överföring av elektrisk effekt mellan ett växelspänningsnät och en likspänningssida
JP2005116835A (ja) * 2003-10-08 2005-04-28 Kyocera Corp 太陽電池モジュール及びこれを用いた太陽光発電システム
GB2449427B (en) * 2007-05-19 2012-09-26 Converteam Technology Ltd Control methods for the synchronisation and phase shift of the pulse width modulation (PWM) strategy of power converters
DE102007044601A1 (de) * 2007-09-19 2009-04-09 Repower Systems Ag Windpark mit Spannungsregelung der Windenergieanlagen und Betriebsverfahren
DE102009059284A1 (de) * 2009-12-22 2011-06-30 2-B Energy B.V. Windkraftanlage
CN102142688B (zh) * 2010-01-29 2015-07-08 西门子公司 电能并网系统以及电能传输系统和方法
DK2556585T3 (da) * 2010-04-08 2014-05-05 Alstom Technology Ltd Hybrid højspændingsjævnstrømskonverter
US8405251B2 (en) * 2010-04-20 2013-03-26 General Electric Company Method and apparatus for reduction of harmonics in a power supply
US8121739B2 (en) * 2010-12-29 2012-02-21 Vestas Wind Systems A/S Reactive power management for wind power plant internal grid
JP6076692B2 (ja) * 2012-10-26 2017-02-08 株式会社東芝 インバータ装置及びインバータシステム
US9209679B2 (en) * 2013-12-18 2015-12-08 Abb Technology Ag Method and apparatus for transferring power between AC and DC power systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025496A1 (en) * 2002-08-07 2004-02-12 Frank Patterson System and method for synchronizing electrical generators
WO2012163979A2 (fr) * 2011-05-30 2012-12-06 Danmarks Tekniske Universitet Évaluation de systèmes électriques
WO2013115908A1 (fr) * 2012-01-31 2013-08-08 Schweitzer Engineering Laboratories, Inc. Systèmes et procédés de protection contre une panne totale de courant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2015090936A1 *

Also Published As

Publication number Publication date
JP6370386B2 (ja) 2018-08-08
CN105830328A (zh) 2016-08-03
KR101918145B1 (ko) 2019-02-08
DE102013226987A1 (de) 2015-06-25
US20170005479A1 (en) 2017-01-05
WO2015090936A1 (fr) 2015-06-25
JP2017501672A (ja) 2017-01-12
CN105830328B (zh) 2019-11-15
KR20160087888A (ko) 2016-07-22

Similar Documents

Publication Publication Date Title
EP2198497B1 (fr) Installations de production d'energie eolienne avec regulation des defauts du reseau, et procede d'exploitation correspondant
DE102015109724A1 (de) System und Verfahren zum Schützen eines Leistungswandlers während eines unerwünschten Spannungsereignisses
EP3039764B1 (fr) Installation permettant le transfert d'une puissance électrique
WO2014033073A1 (fr) Parc éolien à réseau de tension continue
EP2245717A2 (fr) Éolienne comportant un générateur asynchrone à alimentation double et un système de régulation du convertisseur
EP2463980B1 (fr) Fonctionnement d'un générateur d'énergie dans un réseau d'alimentation en énergie
EP3066735A1 (fr) Procédé permettant de faire fonctionner une éolienne
EP2580835B1 (fr) Procédé d'alimentation d'un réseau de tension alternative triphasée en énergie électrique
WO2012089675A2 (fr) Parc éolien et procédé permettant d'exploiter un parc éolien
WO2015090936A1 (fr) Centrale électrique
EP2696464B1 (fr) Centrale photovoltaïque
DE102008046606A1 (de) Photovoltaikanlage
EP3688860B1 (fr) Procédé pour alimenter en énergie des composants d'éolienne, dispositif d'alimentation en énergie et éolienne comprenant ce dispositif
WO2012104333A1 (fr) Procédé de fourniture de courant réactif au moyen d'un convertisseur et ensemble convertisseur et installation d'alimentation en énergie
EP3084948B1 (fr) Dispositif et installation pour le transfert de puissance électrique au moyen d'un redresseur de réserve
EP3453096A1 (fr) Procédé de compensation de courants à fournir d'un parc éolien
WO2012048743A1 (fr) Dispositif de transport du courant pour une éolienne
EP2911260A1 (fr) Dispositif d'injection d'énergie électrique éolienne dans un réseau électrique
EP3311481B1 (fr) Procédé de commande d'un convertisseur de source de tension, convertisseur de source de tension, et installation de transfert d'énergie électrique
EP3984124A1 (fr) Convertisseur à double usage
EP3046204A1 (fr) Éolienne
EP3616290A1 (fr) Procédé de détection d'une construction de réseau en îlot
EP3232052B1 (fr) Éolienne
EP3148036A1 (fr) Systeme destine a stocker une energie electrique
EP2911286A1 (fr) Dispositif d'injection d'énergie électrique éolienne dans un réseau électrique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200508

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H02M0007493000

Ipc: H02J0003360000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 3/40 20060101ALI20230223BHEP

Ipc: H02J 3/36 20060101AFI20230223BHEP

INTG Intention to grant announced

Effective date: 20230315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230726