EP3008292B1 - Abgasturbolader mit einem radial-axial-turbinenrad - Google Patents

Abgasturbolader mit einem radial-axial-turbinenrad Download PDF

Info

Publication number
EP3008292B1
EP3008292B1 EP14719804.8A EP14719804A EP3008292B1 EP 3008292 B1 EP3008292 B1 EP 3008292B1 EP 14719804 A EP14719804 A EP 14719804A EP 3008292 B1 EP3008292 B1 EP 3008292B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
sub
turbine wheel
rear wall
gas turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14719804.8A
Other languages
English (en)
French (fr)
Other versions
EP3008292A1 (de
Inventor
Holger Fäth
Marc Hiller
Ivo Sandor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP3008292A1 publication Critical patent/EP3008292A1/de
Application granted granted Critical
Publication of EP3008292B1 publication Critical patent/EP3008292B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/22Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the invention relates to an exhaust gas turbocharger having a radial-axial turbine wheel.
  • An exhaust gas turbocharger which contains such a radial-axial turbine wheel.
  • the turbine housing has a guide element which forms at least part of the rear wall of an inclined or obliquely formed spiral.
  • WO 2005/119030 A1 an exhaust gas turbine with a turbine housing and arranged in the turbine housing turbine wheel, wherein the turbine wheel has a hub.
  • the turbine housing with a gas inlet-side housing part to the left of the turbine wheel and the gas outlet side housing part together with the hub of the turbine wheel forms a flow channel in which flow through hot exhaust gases during operation of the exhaust gas turbocharger.
  • a cooling channel for cooling the hub of the turbine wheel in the turbine housing is arranged opposite a rear wall of the hub of the turbine wheel facing away from the flow channel.
  • the FIG. 1 shows a sectional view of this known exhaust gas turbocharger.
  • the known exhaust gas turbocharger 1 has a turbine housing 10 with a spiral 16.
  • a radial-axial turbine wheel 12 is disposed on a shaft 30.
  • the shaft 30 is mounted in a bearing housing 20.
  • a guide element 24 is provided, which is a heat shield. This is designed such that it forms a rear wall 26 or a portion 28 of the rear wall of the spiral 16, wherein the part the rear wall or the rear wall is inclined at an inclination angle ⁇ in the direction of the bearing housing.
  • the guide element 24 may be pushed or plugged in an end region 32 on a shoulder 34 of the bearing housing.
  • the known exhaust-gas turbocharger has a tongue element 14, which is preferably pulled close to the leading edge 18 of the turbine wheel 12, so that the distance a between the tongue element 14 and the leading edge 18 of the turbine wheel 12 is small.
  • the heat shield 24 of the exhaust gas turbocharger described above is usually made of sheet metal. This has the disadvantage that the heat shield is additionally subject to deformation during installation due to pressure influences and during operation of the exhaust gas turbocharger due to thermal influences. These can adversely affect the flow of the turbine wheel and thus its thermodynamics. Furthermore, due to these deformations, an undesired collision of the heat shield with the turbine wheel may occur. Furthermore, thermomechanical disadvantages with respect to the functionality and the service life of the exhaust-gas turbocharger occur as a result of the aforementioned deformations.
  • the object of the invention is to provide an equipped with a radial-axial turbine exhaust gas turbocharger, in which the disadvantages mentioned above do not occur.
  • An exhaust gas turbocharger with the features specified in claim 1 includes a shaft having an axis of rotation, a arranged in a turbine housing and rotatably connected to the shaft radial-axial turbine wheel and a turbine housing adjacent bearing housing, which has a side facing the turbine housing side wall.
  • the radial-axial turbine wheel has a back wall with a corner disposed at the radially outer end of the rear wall, with an upper surface of the turbine wheel extending obliquely radially outwardly from the corner of the rear wall.
  • a partial region of the turbine housing facing side wall of the bearing housing forms a portion of the rear wall of the turbine housing.
  • the partial region of the bearing housing which forms a partial region of the rear wall of the turbine housing has two subsections, of which the first subsection extends obliquely to the axis of rotation of the shaft in the inflow direction of an exhaust gas stream guided into the turbine housing, and the second subsection extends in the radial direction to the axis of rotation of the shaft and parallel to the rear wall of the shaft Turbine wheel runs.
  • the two sections are connected to each other via an exhaust flow separation edge of the bearing housing, wherein the exhaust gas flow-off edge has a corner connected to the second section via a flank.
  • the first section and the flank includes a corner angle and between the second section and the flank a curved transition region is provided.
  • the top of the turbine wheel, from the corner of the exhaust gas flow-off edge in the inflow direction of the exhaust gas flow, at a distance and the flank is parallel to the top of the turbine wheel.
  • Such an exhaust gas turbocharger requires no heat shield, which could deform during assembly and operation of the exhaust gas turbocharger by pressure influences and thermal influences in an undesirable manner. This favors the flow of the turbine wheel and improves its thermodynamics. Furthermore, in an exhaust-gas turbocharger with the features according to the invention in its operation, no undesired collisions with the turbine wheel rotating at high speed can occur. This improves the functionality of the exhaust gas turbocharger and increases its service life. Further, in an exhaust gas turbocharger with the features according to the invention, the cavity between the rear wall of the turbine wheel and the adjacent portion of the side wall of the bearing housing, d. H. the Rabineraum be kept small, so that even in this area an occurrence of an undesirable flow with the exhaust stream can be at least greatly reduced.
  • FIG. 2 shows a sectional view of a portion of an exhaust gas turbocharger according to an embodiment of the invention.
  • This exhaust gas turbocharger has a turbine housing 10 with a spiral 16, which encloses an inflow region 17 for the exhaust gas flow.
  • a radial-axial turbine wheel 12 connected to the shaft in a rotationally fixed manner is arranged on a shaft 30.
  • the shaft 30 is mounted in a bearing housing 20 which is adjacent to the turbine housing 10.
  • the bearing housing 20 has a turbine housing 10 facing side wall.
  • the turbine wheel 12 has a rear wall 13 and an upper side OS.
  • a portion of the turbine housing facing side wall of the bearing housing forms a portion of the rear wall of the turbine housing.
  • the partial region of the bearing housing which forms a partial region of the rear wall of the turbine housing has two partial sections TA1 and TA2.
  • the first portion TA1 extends obliquely to the axis of rotation 30a of the shaft 30 in the inflow ZR of the guided into the turbine housing hot exhaust gas stream.
  • the second subsection TA2 extends in the radial direction R to the axis of rotation 30a of the shaft 30 and also parallel to the rear wall 13 of the turbine wheel 12.
  • the two subsections TA1 and TA2 are connected to one another via an exhaust gas flow separation edge 35 of the bearing housing 20. Between the rear wall 13 of the turbine wheel 12 and the second partial section TA2 extending parallel thereto, there is the Ra07raum 29th
  • a water core 36 is disposed, which is the exhaust gas flow edge 35 adjacent. This advantageously has the effect that, during operation of the exhaust-gas turbocharger, the region of the exhaust gas flow-off edge 35 is cooled by a water flow conducted through the water core 36.
  • the turbine housing facing side wall of the bearing housing in the region of the first section TA1 and the second section TA2 is coated with a protective layer.
  • This protective layer preferably consists of a high temperature, oxidation and corrosion resistant material, such as nickel. Because of this protective layer, said subsections TA1 and TA2 and in particular also the exhaust gas flow tearing edge 35 of the bearing housing connecting the two subsections are protected against the high temperatures occurring in these regions during operation of the exhaust gas turbocharger, so that the probability of deformation of these regions is reduced.
  • the provided on the bearing housing 20 Abgasströmungsabrisskante 35 is designed such that it withstands the high loads occurring during operation of the exhaust gas turbocharger and that occurring in the region of this Abgasströmungsabrisskante turbulence of the supplied hot exhaust gas flow are kept small, so that the hydrodynamic efficiency of the exhaust gas turbocharger can be increased. This will be explained below with reference to FIGS. 3 and 4 explained in more detail.
  • FIG. 3 shows a sketch to illustrate the flow of the turbine wheel of the exhaust gas turbocharger with the hot exhaust gas flow.
  • the hot exhaust gas stream enters the nozzle formed between the side wall of the bearing housing 20 and the turbine housing, not shown, and is supplied along the section TA1 to the turbine wheel 12 and its vanes. Thereby, the turbine wheel is rotated together with the shaft 30, wherein this rotation takes place about the rotation axis 30a.
  • the bearing housing 20 has an exhaust gas flow separation edge 35 between the first subsection TA1 and the second subsection TA2.
  • This exhaust gas flow edge 35 and the adjacent turbine wheel 12 are designed and arranged relative to one another in such a way that the turbulences of the exhaust gas flow which occur in the region of the exhaust gas flow separation edge 35 be kept small and that the Abgasströmungsabrisskante 35 withstand the loads occurring during operation of the exhaust gas turbocharger. Also contributing to this is the water core 36 positioned near the exhaust gas flow tearing edge 35, through which cooling water is passed during operation of the exhaust gas turbocharger which cools the region of the exhaust gas flow tearing edge 35.
  • the turbine wheel 12 at the radially upper end of its rear wall 13 has a corner E2, from which the top OS of the turbine wheel or the top of its blades obliquely, with respect to the axis of rotation 30a in the radial direction (R) to the outside , ie in the presentation of the FIG. 2 up, runs.
  • the corner E2 of the rear wall 13 of the turbine wheel 12 has a distance b in the radial direction from a radially arranged above corner E1 of the Abgasströmungsabrisskante 35 of the bearing housing 20 in the radial direction.
  • the upper side OS of the turbine wheel 12 has a distance c from the corner E1 of the exhaust gas flow separation edge 35 of the bearing housing in the inflow direction ZR of the exhaust gas flow.
  • the rear wall 13 of the turbine wheel 12 has a distance a from the second partial section TA2 running parallel thereto.
  • the first section TA1 of the bearing housing 20 also extends in the inflow ZR of the exhaust stream, has an angle ⁇ relative to the radial direction R and ends at the corner E1 of the exhaust flow separation edge 35 of the bearing housing.
  • corner E1 of the Abgasströmungsabrisskante 35 and the second portion TA2 is an outgoing of the corner E1 edge F which is connected to the second portion TA2 via a bent transition region U formed.
  • the flank F runs parallel to the top side OS of the turbine wheel 12.
  • the first section TA1 and the flank F At the corner E1 of the exhaust gas flow edge 35, a corner angle ⁇ is included.
  • the water core 36 through which cooling water flows during operation of the exhaust gas turbocharger, extends into the immediate vicinity of the Abgasströmungsabrisskante 35, so that it is cooled by the cooling water in operation and can not be destroyed by overheating.
  • the side wall of the bearing housing 20 facing the turbine housing 10 is provided with a protective layer in the region of the first part section TA1, the second part section TA2 and the flank F.
  • This protective layer is preferably made of a high temperature, oxidation and corrosion resistant material, such as nickel.
  • the distance b of the corner E1 of the Abgasströmungsabrisskante 35 from the corner E2 of the upper end portion of the rear wall 13 of the turbine wheel 12 in the radial direction is in a defined ratio to the measured in the radial direction R diameter DTR of the rear wall 13 of the turbine wheel 12. It is preferably: 0.005 ⁇ b / DTR ⁇ 0.025.
  • the distance a between the rear wall 13 of the turbine wheel 12 and the second portion TA2 is also in a defined ratio to the diameter measured in the radial direction DTR of the rear wall 13 of the turbine wheel 12. It also applies here preferably the following relationship: 0.005 ⁇ a / DTR ⁇ 0.025.
  • the invention provides after all an exhaust gas turbocharger, which is equipped with an axial-radial turbine wheel, in which the exhaust gas flow in the turbine housing without use of a separate guide element is guided through a nozzle to the turbine wheel.
  • a side wall of this nozzle is from a first Part of the section of the turbine housing facing side wall of the bearing housing formed, which extends in the inflow direction of the exhaust stream.
  • the other side wall of the nozzle is formed by a wall of the turbine housing.
  • the first section TA1 of the turbine housing facing side wall of the bearing housing is connected via an exhaust gas flow edge 35 with a second portion TA2, which runs parallel to the rear wall of the turbine wheel.
  • Such a design of the side facing the turbine housing side wall of the bearing housing creates the conditions that the Abgasströmungsabrisskante the bearing housing withstand the high loads occurring during operation of the exhaust gas turbocharger, so that the thermodynamic efficiency of the exhaust gas turbocharger can be increased. If, in addition to this embodiment of the turbine housing facing side wall of the bearing housing one or more of the features specified in the dependent claims used, then the functionality of the exhaust gas turbocharger is further increased during operation. Contributing in particular the shape of the bearing housing in the region of the Abgasstromabrißkante, the positioning of the water core, the use of a protective layer and the dimensioning of the distances a and b described above at.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Description

  • Die Erfindung betrifft einen Abgasturbolader, welcher ein Radial-Axial-Turbinenrad aufweist.
  • Aus der DE 10 2009 056 632 A1 ist ein Abgasturbolader bekannt, welcher ein derartiges Radial-Axial-Turbinenrad enthält. Bei diesem bekannten Abgasturbolader weist das Turbinengehäuse ein Leitelement auf, welches wenigstens einen Teil der Rückwand einer geneigten oder schräg ausgebildeten Spirale bildet.
  • Weiterhin offenbart das Dokument WO 2005/119030 A1 eine Abgasturbine mit einem Turbinengehäuse und ein im Turbinengehäuse angeordnetes Turbinenrad, wobei das Turbinenrad eine Nabe aufweist. Das Turbinengehäuse mit einem gaseintrittsseitigen Gehäuseteil zur Linken des Turbinenrades und dem gasaustrittsseitigen Gehäuseteil bildet zusammen mit der Nabe des Turbinenrades einen Strömungskanal, in welchem im Betrieb des Abgasturboladers heisse Abgase durchströmen. Dabei ist ein Kühlkanal zur Kühlung der Nabe des Turbinenrades im Turbinengehäuse gegenüber einer dem Strömungskanal abgewandten Rückseite der Nabe des Turbinenrades angeordnet.
  • Die Figur 1 zeigt eine Schnittansicht dieses bekannten Abgasturboladers. In dieser Schnittansicht sind die Zuströmrichtung und die Abströmrichtung des Abgases mit einem Pfeil schematisch und stark vereinfacht dargestellt. Der bekannte Abgasturbolader 1 weist ein Turbinengehäuse 10 mit einer Spirale 16 auf. Innerhalb des Turbinengehäuses 10 ist auf einer Welle 30 ein Radial-Axial-Turbinenrad 12 angeordnet. Die Welle 30 ist in einem Lagergehäuse 20 gelagert. Des Weiteren ist ein Leitelement 24 vorgesehen, bei dem es sich um ein Hitzeschild handelt. Dieses ist derart ausgeführt, dass es eine Rückwand 26 oder einen Teilbereich 28 der Rückwand der Spirale 16 bildet, wobei der Teil der Rückwand oder die Rückwand unter einem Neigungswinkel β in Richtung des Lagergehäuses geneigt ist. Der Bereich des Leitelementes 24, der als Rückwand 26 oder als Teil der Rückwand der Spirale 16 bzw. des Turbinengehäuses 10 ausgebildet ist, bildet mit der Spirale 16 bzw. dem Turbinengehäuse 10 einen im Wesentlichen nahtlosen Übergang, so dass die Strömungsführung des Abgases so wenig wie möglich beeinträchtigt wird. Das Leitelement 24 kann in einem Endbereich 32 an einem Absatz 34 des Lagergehäuses aufgeschoben oder aufgesteckt sein. Des Weiteren weist der bekannte Abgasturbolader ein Zungenelement 14 auf, welches vorzugsweise nahe an die Eintrittskante 18 des Turbinenrades 12 gezogen ist, so dass der Abstand a zwischen dem Zungenelement 14 und der Eintrittskante 18 des Turbinenrades 12 klein ist. Durch die Verwendung des beschriebenen Leitelementes 24 als strömungsführendes Bauteil des Turbinengehäuses kann der axiale Bauraum des Turbinengehäuses kompakt ausgeführt werden. Durch den kleinen Abstand von dem Zungenelement 14 zu der Eintrittskante 18 des Turbinenrades 10 und der vorzugsweise parallelen oder im Wesentlichen parallelen Anordnung von Zungenwinkel und Radeintrittskante ist der Wirkungsgrad des Abgasturboladers erhöht.
  • Das Hitzeschild 24 des vorstehend beschriebenen Abgasturboladers besteht in der Regel aus Blech. Dies hat den Nachteil, dass das Hitzeschild während der Montage durch Druckeinflüsse und im Betrieb des Abgasturboladers zusätzlich durch thermische Einflüsse Verformungen unterliegt. Diese können die Anströmung des Turbinenrades und damit dessen Thermodynamik negativ beeinflussen. Des Weiteren kann es aufgrund dieser Verformungen zu einer unerwünschten Kollision des Hitzeschildes mit dem Turbinenrad kommen. Ferner kommt es aufgrund der genannten Verformungen zu thermomechanischen Nachteilen in Bezug auf die Funktionalität und die Lebensdauer des Abgasturboladers. Fertigungsbedingt entsteht an der dem Turbinenradrücken nächstgelegenen Stelle des Hitzeschildes ein Eckenradius, der die Anströmung des Turbinenrades und damit die Thermodynamik des Abgasturboladers negativ beeinflusst, da die Abgasströmung nicht sauber ablöst bzw. abreißt. Des Weiteren kommt es in der Praxis zu einer unerwünschten Durchströmung des Hohlraumes zwischen dem Rücken des Turbinenrades und dem Hitzeschild, welche ebenfalls mit Verlusten verbunden ist. Ferner muss aufgrund der genannten, im Betrieb auftretenden temperaturbedingten Verformungen des Hitzeschildes ein vergleichsweise großer Radrückenraum vorgesehen sein. Auch dies führt im Betrieb zu einer starken und ungünstigen Durchströmung mit heißem Abgas.
  • Die Aufgabe der Erfindung besteht darin, einen mit einem Radial-Axial-Turbinenrad ausgestatteten Abgasturbolader anzugeben, bei dem die vorstehend angegebenen Nachteile nicht auftreten.
  • Diese Aufgabe wird durch einen Abgasturbolader mit den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.
  • Ein Abgasturbolader mit den im Anspruch 1 angegebenen Merkmalen enthält eine eine Drehachse aufweisende Welle, ein in einem Turbinengehäuse angeordnetes und mit der Welle drehfest verbundenes Radial-Axial-Turbinenrad und ein dem Turbinengehäuse benachbartes Lagergehäuse, welches eine dem Turbinengehäuse zugewandte Seitenwand aufweist. Das Radial-Axial-Turbinenrad weist eine Rückwand, mit einer an dem in Radialrichtung äußeren Ende der Rückwand angeordneten Ecke auf, wobei eine Oberseite des Turbinenrades ausgehend von der Ecke der Rückwand schräg in Radialrichtung nach außen verläuft. Dabei bildet ein Teilbereich der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses einen Teilbereich der Rückwand des Turbinengehäuses. Der einen Teilbereich der Rückwand des Turbinengehäuses bildende Teilbereich des Lagergehäuses weist zwei Teilabschnitte auf, von denen der erste Teilabschnitt schräg zur Drehachse der Welle in Zuströmrichtung eines in das Turbinengehäuse geleiteten Abgasstromes verläuft und der zweite Teilabschnitt in Radialrichtung zur Drehachse der Welle und parallel zur Rückwand des Turbinenrades verläuft. Die beiden Teilabschnitte sind über eine Abgasströmungsabrisskante des Lagergehäuses miteinander verbunden, wobei die Abgasströmungsabrisskante eine Ecke aufweist, die mit dem zweiten Teilabschnitt über eine Flanke verbunden ist. Dabei schließt der erste Teilabschnitt und die Flanke einen Eckwinkel ein und zwischen dem zweiten Teilabschnitt und der Flanke ist ein gebogener Übergangsbereich vorgesehen. Des Weiteren weist die Oberseite des Turbinenrades, von der Ecke der Abgasströmungsabrisskante in Zuströmrichtung des Abgasstromes, einen Abstand auf und die Flanke verläuft parallel zur Oberseite des Turbinenrades.
  • Ein derartiger Abgasturbolader benötigt kein Hitzeschild, das sich während der Montage und im Betrieb des Abgasturboladers durch Druckeinflüsse und thermische Einflüsse in unerwünschter Weise verformen könnte. Dies begünstigt die Anströmung des Turbinenrades und verbessert dessen Thermodynamik. Ferner können bei einem Abgasturbolader mit den erfindungsgemäßen Merkmalen in dessen Betrieb keine unerwünschten Kollisionen mit dem sich mit hoher Geschwindigkeit drehenden Turbinenrad auftreten. Dies verbessert die Funktionalität des Abgasturboladers und erhöht dessen Lebensdauer. Ferner kann bei einem Abgasturbolader mit den erfindungsgemäßen Merkmalen der Hohlraum zwischen der Rückwand des Turbinenrades und dem benachbarten Teilabschnitt der Seitenwand des Lagergehäuses, d. h. der Radrückenraum, klein gehalten werden, so dass auch in diesem Bereich ein Auftreten einer unerwünschten Durchströmung mit dem Abgasstrom zumindest stark reduziert werden kann.
  • Weitere vorteilhafte Eigenschaften der Erfindung ergeben sich aus deren nachfolgender beispielhafter Erläuterung anhand der Figuren 2 - 4. Es zeigt
  • Figur 2
    eine Schnittansicht eines Teils eines Abgasturboladers gemäß einem Ausführungsbeispiel für die Erfindung,
    Figur 3
    eine Skizze zur Veranschaulichung der Anströmung des Turbinenrades mit dem Abgasstrom und
    Figur 4
    eine vergrößerte Darstellung des Detail Z von Figur 3.
  • Die Figur 2 zeigt eine Schnittansicht eines Teils eines Abgasturboladers gemäß einem Ausführungsbeispiel für die Erfindung. Dieser Abgasturbolader weist ein Turbinengehäuse 10 mit einer Spirale 16 auf, welche einen Zuströmbereich 17 für den Abgasstrom umschließt. Innerhalb des Turbinengehäuses 10 ist auf einer Welle 30 ein mit der Welle drehfest verbundenes Radial-Axial-Turbinenrad 12 angeordnet. Die Welle 30 ist in einem Lagergehäuse 20 gelagert, welches dem Turbinengehäuse 10 benachbart ist. Das Lagergehäuse 20 weist eine dem Turbinengehäuse 10 zugewandte Seitenwand auf. Das Turbinenrad 12 hat eine Rückwand 13 und eine Oberseite OS.
  • Ein Teilbereich der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses bildet einen Teilbereich der Rückwand des Turbinengehäuses. Der einen Teilbereich der Rückwand des Turbinengehäuses bildende Teilbereich des Lagergehäuses weist zwei Teilabschnitte TA1 und TA2 auf. Der erste Teilabschnitt TA1 verläuft schräg zur Drehachse 30a der Welle 30 in Zuströmrichtung ZR des in das Turbinengehäuse geleiteten heißen Abgasstromes . Der zweite Teilabschnitt TA2 verläuft in Radialrichtung R zur Drehachse 30a der Welle 30 und auch parallel zur Rückwand 13 des Turbinenrades 12. Die beiden Teilabschnitte TA1 und TA2 sind über eine Abgasströmungsabrisskante 35 des Lagergehäuses 20 miteinander verbunden. Zwischen der Rückwand 13 des Turbinenrades 12 und dem parallel dazu verlaufenden zweiten Teilabschnitt TA2 befindet sich der Radrückenraum 29.
  • Innerhalb des Lagergehäuses 20 ist ein Wasserkern 36 angeordnet, welcher der Abgasströmungsabrisskante 35 benachbart ist. Dies bewirkt in vorteilhafter Weise, dass im Betrieb des Abgasturboladers der Bereich der Abgasströmungsabrisskante 35 durch einen durch den Wasserkern 36 geleiteten Wasserstrom gekühlt wird.
  • Des Weiteren ist die dem Turbinengehäuse zugewandte Seitenwand des Lagergehäuses im Bereich des ersten Teilabschnittes TA1 und des zweiten Teilabschnittes TA2 mit einer Schutzschicht überzogen. Diese Schutzschicht besteht bevorzugt aus einem hochtemperatur-, oxidations- und korrosionsbeständigen Material, beispielsweise Nickel. Aufgrund dieser Schutzschicht sind die genannten Teilabschnitte TA1 und TA2 und insbesondere auch die die beiden Teilabschnitte verbindende Abgasströmungsabrisskante 35 des Lagergehäuses gegen die im Betrieb des Abgasturboladers in diesen Bereichen auftretenden hohen Temperaturen geschützt, so dass die Wahrscheinlichkeit einer Deformation dieser Bereiche reduziert ist.
  • Des Weiteren sind in der Figur 2 die Axialrichtung A der Drehachse 30a der Welle 30 und die Radialrichtung R der Drehachse 30a der Welle 30 veranschaulicht.
  • Die am Lagergehäuse 20 vorgesehene Abgasströmungsabrisskante 35 ist derart ausgebildet, dass sie den im Betrieb des Abgasturboladers auftretenden hohen Belastungen standhält und dass die im Bereich dieser Abgasströmungsabrisskante auftretenden Verwirbelungen des zugeführten heißen Abgasstromes klein gehalten werden, so dass der hydrodynamische Wirkungsgrad des Abgasturboladers gesteigert werden kann. Dies wird nachfolgend anhand der Figuren 3 und 4 näher erläutert.
  • Die Figur 3 zeigt eine Skizze zur Veranschaulichung der Anströmung des Turbinenrades des Abgasturboladers mit dem heißen Abgasstrom. Bei dem dargestellten Ausführungsbeispiel tritt der heiße Abgasstrom in die zwischen der Seitenwand des Lagergehäuses 20 und dem nicht gezeichneten Turbinengehäuse gebildete Düse ein und wird entlang des Teilabschnitts TA1 dem Turbinenrad 12 bzw. dessen Leitschaufeln zugeführt. Dadurch wird das Turbinenrad zusammen mit der Welle 30 in Drehung versetzt, wobei diese Drehung um die Drehachse 30a erfolgt. Das Lagergehäuse 20 weist zwischen dem ersten Teilabschnitt TA1 und dem zweiten Teilabschnitt TA2 eine Abgasströmungsabrisskante 35 auf.
  • Diese Abgasströmungsabrisskante 35 und das dieser benachbarte Turbinenrad 12 sind derart ausgebildet und relativ zueinander derart angeordnet, dass die im Bereich der Abgasströmungsabrisskante 35 auftretenden Verwirbelungen des Abgasstromes klein gehalten werden und dass die Abgasströmungsabrisskante 35 den im Betrieb des Abgasturboladers auftretenden Belastungen standhält. Dazu trägt auch der in der Nähe der Abgasströmungsabrisskante 35 positionierte Wasserkern 36 bei, durch welchen im Betrieb des Abgasturboladers Kühlwasser geleitet wird, das den Bereich der Abgasströmungsabrisskante 35 kühlt.
  • Der in der Figur 3 hervorgehobene Teilbereich Z, innerhalb dessen die Abgasströmungsabrisskante 35 und die dieser benachbarten Bestandteile des Turbinenrades 12 enthalten sind, sind in der Figur 4 in vergrößertem Maßstab dargestellt.
  • Aus der Figur 4 ist ersichtlich, dass das Turbinenrad 12 am in Radialrichtung oberen Ende seiner Rückwand 13 eine Ecke E2 aufweist, von welcher aus die Oberseite OS des Turbinenrades bzw. die Oberseite von dessen Schaufeln schräg, in Bezug auf die Drehachse 30a in Radialrichtung (R) nach außen, also in der Darstellung der Figur 2 nach oben, verläuft. Die Ecke E2 der Rückwand 13 des Turbinenrades 12 weist von einer in Radialrichtung darüber angeordneten Ecke E1 der Abgasströmungsabrisskante 35 des Lagergehäuses 20 in Radialrichtung einen Abstand b auf. Die Oberseite OS des Turbinenrades 12 weist von der Ecke E1 der Abgasströmungsabrisskante 35 des Lagergehäuses in Zuströmrichtung ZR des Abgasstromes einen Abstand c auf. Die Rückwand 13 des Turbinenrades 12 weist von dem parallel zu dieser verlaufenden zweiten Teilabschnitt TA2 einen Abstand a auf. Der erste Teilabschnitt TA1 des Lagergehäuses 20 verläuft ebenfalls in Zuströmrichtung ZR des Abgasstromes, weist relativ zur Radialrichtung R einen Winkel β auf und endet an der Ecke E1 der Abgasströmungsabrisskante 35 des Lagergehäuses.
  • Zwischen der Ecke E1 der Abgasströmungsabrisskante 35 und dem zweiten Teilabschnitt TA2 ist eine von der Ecke E1 ausgehende Flanke F vorgesehen, welche mit dem zweiten Teilabschnitt TA2 über einen gebogen ausgebildeten Übergangsbereich U verbunden ist. Die Flanke F verläuft parallel zur Oberseite OS des Turbinenrades 12. Der erste Teilabschnitt TA1 und die Flanke F schließen an der Ecke E1 der Abgasströmungsabrisskante 35 einen Eckwinkel α ein.
  • Der Wasserkern 36, durch welchen im Betrieb des Abgasturboladers Kühlwasser fließt, reicht bis in die unmittelbare Nähe der Abgasströmungsabrisskante 35, so dass diese im Betrieb durch das Kühlwasser gekühlt wird und nicht durch eine Überhitzung zerstört werden kann.
  • Um eine Überhitzung der Abgasströmungsabrisskante 35 zu verhindern, ist des Weiteren die dem Turbinengehäuse 10 zugewandte Seitenwand des Lagergehäuses 20 im Bereich des ersten Teilabschnittes TA1, des zweiten Teilabschnittes TA2 und der Flanke F mit einer Schutzschicht versehen. Diese Schutzschicht besteht vorzugsweise aus einem hochtemperatur-, oxidations- und korrosionsbeständigen Material, beispielsweise Nickel.
  • Der Abstand b der Ecke E1 der Abgasströmungsabrisskante 35 von der Ecke E2 des oberen Endbereiches der Rückwand 13 des Turbinenrades 12 in Radialrichtung steht in einem definierten Verhältnis zum in Radialrichtung R gemessenen Durchmesser DTR der Rückwand 13 des Turbinenrades 12. Es gilt vorzugsweise: 0,005 b / DTR 0,025.
    Figure imgb0001
  • Der Abstand a zwischen der Rückwand 13 des Turbinenrades 12 und dem zweiten Teilabschnitt TA2 steht ebenfalls in einem definierten Verhältnis zum in Radialrichtung gemessenen Durchmesser DTR der Rückwand 13 des Turbinenrades 12. Es gilt auch hier vorzugsweise folgende Beziehung: 0,005 a / DTR 0,025.
    Figure imgb0002
  • Die Erfindung stellt nach alledem einen Abgasturbolader bereit, welcher mit einem Axial-Radial-Turbinenrad ausgestattet ist, bei welchem die Abgasströmung im Turbinengehäuse ohne Verwendung eines gesonderten Leitelementes durch eine Düse zum Turbinenrad geführt wird. Eine Seitenwand dieser Düse wird von einem ersten Teilabschnitt der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses gebildet, welcher in Zuströmrichtung des Abgasstromes verläuft. Die andere Seitenwand der Düse wird von einer Wand des Turbinengehäuses gebildet. Der erste Teilabschnitt TA1 der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses ist über eine Abgasströmungsabrisskante 35 mit einem zweiten Teilabschnitt TA2 verbunden, welcher parallel zur Rückwand des Turbinenrades verläuft.
  • Eine derartige Ausbildung der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses schafft die Voraussetzungen dafür, dass die Abgasströmungsabrisskante des Lagergehäuses den im Betrieb des Abgasturboladers auftretenden hohen Belastungen standhält, so dass der thermodynamische Wirkungsgrad des Abgasturboladers gesteigert werden kann. Werden zusätzlich zu dieser Ausgestaltung der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses eine oder mehrere der in den abhängigen Ansprüchen angegebenen Merkmale eingesetzt, dann wird die Funktionalität des Abgasturboladers im Betrieb weiter erhöht. Dazu tragen insbesondere die Formgebung des Lagergehäuses im Bereich der Abgasströmungsabrisskante, die Positionierung des Wasserkernes, die Verwendung einer Schutzschicht und die Dimensionierung der oben beschriebenen Abstände a und b bei.
  • Untersuchungen haben gezeigt, dass die Funktionalität eines Abgasturboladers gemäß der Erfindung im Betrieb auch beim Vorliegen von hohen Abgaseintrittstemperaturen gegeben ist, die größer sind als 1050°C.

Claims (11)

  1. Abgasturbolader, welcher eine eine Drehachse (30a) aufweisende Welle (30), ein in einem Turbinengehäuse (10) angeordnetes und mit der Welle (30) drehfest verbundenes Radial-Axial-Turbinenrad (12) und ein dem Turbinengehäuse benachbartes Lagergehäuse (20) aufweist, welches eine dem Turbinengehäuse zugewandte Seitenwand enthält, dadurch gekennzeichnet, dass
    - das Radial-Axial-Turbinenrad (12) eine Rückwand (13) mit einer an dem in Radialrichtung äußeren Ende der Rückwand (13) angeordneten Ecke (E2) aufweist, wobei eine Oberseite (OS) des Turbinenrades ausgehend von der Ecke (E2) der Rückwand (13)schräg in Radialrichtung nach außen verläuft,
    - ein Teilbereich der dem Turbinengehäuse zugewandten Seitenwand des Lagergehäuses (20) einen Teilbereich der Rückwand des Turbinengehäuses (10) bildet,
    - der einen Teilbereich der Rückwand des Turbinengehäuse bildende Teilbereich des Lagergehäuses zwei Teilabschnitte (TA1, TA2) aufweist, von denen
    - der erste Teilabschnitt (TA1) schräg zur Drehachse (30a) der Welle (30) in Zuströmrichtung (ZR) eines in das Turbinengehäuse geleiteten Abgasstromes verläuft,
    - der zweite Teilabschnitt (TA2) in Radialrichtung (R) zur Drehachse (30a) der Welle (30) und parallel zur Rückwand (13) des Turbinenrades (12) verläuft und
    - die beiden Teilabschnitte (TA1, TA2) über eine Abgasströmungsabrisskante (35) des Lagergehäuses (20) miteinander verbunden sind,
    - wobei die Abgasströmungsabrisskante (35) eine Ecke (E1) aufweist, die mit dem zweiten Teilabschnitt (TA2) über eine Flanke (F) verbunden ist, wobei der erste Teilabschnitt (TA1) und die Flanke (F) einen Eckwinkel (α) einschließen und zwischen dem zweiten Teilabschnitt (TA2) und der Flanke (F) ein gebogener Übergangsbereich (U) vorgesehen ist,
    - wobei die Oberseite (OS) des Turbinenrades (12) von der Ecke (E1) der Abgasströmungsabrisskante (35) in Zuströmrichtung (ZR) des Abgasstromes einen Abstand (c) aufweist und die Flanke (F) parallel zur Oberseite (OS) des Turbinenrades (12) verläuft.
  2. Abgasturbolader nach Anspruch 1, dadurch gekennzeichnet, dass der erste Teilabschnitt (TA1) an der Ecke (E1) endet.
  3. Abgasturbolader nach Anspruch 2, dadurch gekennzeichnet, dass der erste Teilabschnitt (TA1) geradlinig ausgeführt ist.
  4. Abgasturbolader nach Anspruch 2, dadurch gekennzeichnet, dass der erste Teilabschnitt (TA1) gebogen ausgeführt ist.
  5. Abgasturbolader nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rückwand (13) des Turbinenrades (12) in ihrem oberen Endbereich eine Ecke (E2) aufweist, die von der Ecke (E1) der Abgasströmungsabrisskante (35) in Radialrichtung (R) einen ersten Abstand (b) aufweist.
  6. Abgasturbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rückwand (13) des Turbinenrades (12) vom zweiten Teilabschnitt (TA2) einen dritten Abstand (a) aufweist.
  7. Abgasturbolader nach Anspruch 6, dadurch gekennzeichnet, dass das Verhältnis des dritten Abstandes (a) zum Durchmesser (DTR) der Rückwand (13) des Turbinenrades (12) im Bereich zwischen 0,005 und 0,025 liegt.
  8. Abgasturbolader nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das Verhältnis des zweiten Abstandes (b) zum Durchmesser (DTR) der Rückwand (13) des Turbinenrades (12) im Bereich zwischen 0,005 und 0,025 liegt.
  9. Abgasturbolader nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Lagergehäuse (20) einen Wasserkern (36) aufweist, der der Abgasströmungsabrisskante (35) benachbart angeordnet ist.
  10. Abgasturbolader nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass die dem Turbinengehäuse (10) zugewandte Seitenwand des Lagergehäuses (20) im Bereich des ersten Teilabschnittes (TA1), des zweiten Teilabschnittes (TA2) und der Flanke (F) mit einer Schutzschicht versehen ist.
  11. Abgasturbolader nach Anspruch 10, dadurch gekennzeichnet, dass die Schutzschicht aus einem hochtemperatur-, oxidations- und korrosionsbeständigen Material besteht.
EP14719804.8A 2013-06-13 2014-04-29 Abgasturbolader mit einem radial-axial-turbinenrad Active EP3008292B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013210990.3A DE102013210990A1 (de) 2013-06-13 2013-06-13 Abgasturbolader mit einem Radial-Axial-Turbinenrad
PCT/EP2014/058753 WO2014198453A1 (de) 2013-06-13 2014-04-29 Abgasturbolader mit einem radial-axial-turbinenrad

Publications (2)

Publication Number Publication Date
EP3008292A1 EP3008292A1 (de) 2016-04-20
EP3008292B1 true EP3008292B1 (de) 2018-08-01

Family

ID=50588726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14719804.8A Active EP3008292B1 (de) 2013-06-13 2014-04-29 Abgasturbolader mit einem radial-axial-turbinenrad

Country Status (7)

Country Link
US (1) US10190415B2 (de)
EP (1) EP3008292B1 (de)
KR (1) KR101823744B1 (de)
CN (1) CN105264177B (de)
BR (1) BR112015029901B8 (de)
DE (1) DE102013210990A1 (de)
WO (1) WO2014198453A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201322206D0 (en) * 2013-12-16 2014-01-29 Cummins Ltd Turbine housing
DE102014223306A1 (de) * 2014-11-14 2016-05-19 Bosch Mahle Turbo Systems Gmbh & Co. Kg Abgasturbolader
US10436069B2 (en) * 2017-01-30 2019-10-08 Garrett Transportation I Inc. Sheet metal turbine housing with biaxial volute configuration
DE102017205457A1 (de) * 2017-03-30 2018-10-04 Continental Automotive Gmbh Turbolader für eine Brennkraftmaschine sowie Turbinengehäuse
DE102018102697A1 (de) * 2018-02-07 2019-08-08 Man Energy Solutions Se Verschalung eines Turboladers und Turbolader
DE102021211009A1 (de) 2021-09-30 2023-03-30 Vitesco Technologies GmbH Lagergehäuse eines Abgasturboladers mit Hitzeschild, Abgasturbinenbaugruppe und Abgasturbolader

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1057137B (de) * 1958-03-07 1959-05-14 Maschf Augsburg Nuernberg Ag Schaufelspaltdichtung bei Kreiselradmaschinen mit deckband- oder deckenscheibenlosenLaufraedern
ES195737Y (es) * 1970-05-02 1975-07-16 A. G. Kuhnle Kopp & Kausch Un dispositivo turbocompresor accionado por gases de escapepara uso en relacion con motores de combustion interna.
DE2829150A1 (de) * 1978-07-03 1980-01-24 Barmag Barmer Maschf Abgasturbolader
JPS56141022A (en) * 1980-04-07 1981-11-04 Toyota Motor Corp Fixing mechanism for hermetically fitting of composing member in turbocharger
JPS58178828A (ja) 1982-04-15 1983-10-19 Toyota Motor Corp タ−ボチヤ−ジヤ
JPS5949323A (ja) * 1982-09-10 1984-03-21 Toyota Central Res & Dev Lab Inc タ−ボ機械
US5025629A (en) * 1989-03-20 1991-06-25 Woollenweber William E High pressure ratio turbocharger
US5605045A (en) * 1995-09-18 1997-02-25 Turbodyne Systems, Inc. Turbocharging system with integral assisting electric motor and cooling system therefor
JP3294491B2 (ja) * 1995-12-20 2002-06-24 株式会社日立製作所 内燃機関の過給機
DE19615237C2 (de) * 1996-04-18 1999-10-28 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE19618160C2 (de) * 1996-05-07 1999-10-21 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
US5857332A (en) * 1996-12-20 1999-01-12 Turbodyne Systems, Inc. Bearing systems for motor-assisted turbochargers for internal combustion engines
DE10011419C2 (de) * 2000-03-09 2002-01-17 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE10040122A1 (de) * 2000-08-17 2002-02-28 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE10050161A1 (de) * 2000-10-11 2002-04-18 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines Abgasturboladers
JP2004514840A (ja) * 2000-11-30 2004-05-20 ハネウェル・ギャレット・ソシエテ・アノニム 摺動ピストンを具備する可変形状ターボチャージャー
GB0121864D0 (en) * 2001-09-10 2001-10-31 Leavesley Malcolm G Turbocharger apparatus
US6739845B2 (en) * 2002-05-30 2004-05-25 William E. Woollenweber Compact turbocharger
DE50308692D1 (de) * 2002-05-06 2008-01-10 Abb Turbo Systems Ag Befestigungsvorrichtung für ein laufrad auf einer welle
DE10256418A1 (de) 2002-12-02 2004-06-09 Abb Turbo Systems Ag Abgasturbinengehäuse
DE50312707D1 (de) 2003-03-19 2010-06-24 Abb Turbo Systems Ag Abgasturbinengehäuse
US6874998B2 (en) * 2003-04-04 2005-04-05 Borgwagner Inc. Turbocharger with reduced coking
DE502004006994D1 (de) * 2003-11-20 2008-06-12 Borgwarner Inc Hitzebeständige Superlegierung und ihre Verwendung
US7108488B2 (en) * 2004-03-26 2006-09-19 Honeywell International, Inc. Turbocharger with hydrodynamic foil bearings
WO2005119030A1 (de) 2004-06-04 2005-12-15 Abb Turbo Systems Ag Turbinennabenkühlung für abgasturbine
DE102005010921A1 (de) * 2004-07-15 2006-02-09 Siemens Ag Abgasturbolader
DE102004052695A1 (de) * 2004-10-29 2007-05-10 Siemens Ag Abgasturbolader
JP4605380B2 (ja) * 2005-08-08 2011-01-05 株式会社Ihi 電動過給機
EP1811135A1 (de) * 2006-01-23 2007-07-25 ABB Turbo Systems AG Verstellbare Leitvorrichtung
US20070199977A1 (en) * 2006-02-28 2007-08-30 Michael Pollard Turbocharger turbine and shaft assembly
WO2007148390A1 (ja) * 2006-06-21 2007-12-27 Ihi Corporation 回転機械の軸受構造、回転機械、軸受構造の製造方法、並びに回転機械の製造方法
EP1878879A1 (de) 2006-07-14 2008-01-16 Abb Research Ltd. Turbolader mit katalytischer Beschichtung
EP1895106A1 (de) * 2006-08-28 2008-03-05 ABB Turbo Systems AG Abdichtung verstellbarer Leitschaufeln
US20080104956A1 (en) 2006-10-31 2008-05-08 Caterpillar Inc. Turbocharger having inclined volutes
KR100937901B1 (ko) * 2008-04-21 2010-01-21 한국과학기술연구원 무급유 터보차저 어셈블리
EP2420660B1 (de) * 2009-03-27 2015-03-04 Toyota Jidosha Kabushiki Kaisha Lagereinheit für einen turbolader
DE102009053102B4 (de) * 2009-11-13 2013-03-28 Continental Automotive Gmbh Turbolader mit einer Axiallageranordnung für eine Welle des Turboladers
DE102009056632A1 (de) 2009-12-02 2011-06-09 Continental Automotive Gmbh Turbolader
US9677419B2 (en) * 2010-04-27 2017-06-13 Borgwarner Inc. Exhaust-gas turbocharger
US8784036B2 (en) * 2010-07-01 2014-07-22 William E. Woollenweber Air-cooled turbocharger with optional internal pressure relief valve
DE102011003424A1 (de) * 2011-02-01 2012-08-02 Continental Automotive Gmbh Turbine eines Abgasturboladers und Abgasturbolader mit einer derartigen Turbine für ein Kraftfahrzeug
GB201105726D0 (en) * 2011-04-04 2011-05-18 Cummins Ltd A turbine
JP5872675B2 (ja) * 2011-04-13 2016-03-01 ボーグワーナー インコーポレーテッド 排気ガスターボチャージャ
US8915708B2 (en) * 2011-06-24 2014-12-23 Caterpillar Inc. Turbocharger with air buffer seal
CN103827463B (zh) * 2011-10-20 2018-05-11 博格华纳公司 涡轮增压器以及用于该涡轮增压器的部件
JP5762641B2 (ja) * 2012-09-06 2015-08-12 三菱重工業株式会社 斜流タービン

Also Published As

Publication number Publication date
EP3008292A1 (de) 2016-04-20
CN105264177B (zh) 2017-12-15
BR112015029901B8 (pt) 2023-04-18
BR112015029901A2 (pt) 2017-07-25
KR101823744B1 (ko) 2018-01-30
BR112015029901B1 (pt) 2022-01-11
CN105264177A (zh) 2016-01-20
WO2014198453A1 (de) 2014-12-18
US10190415B2 (en) 2019-01-29
DE102013210990A1 (de) 2014-12-18
KR20160016970A (ko) 2016-02-15
US20160186568A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
EP3008292B1 (de) Abgasturbolader mit einem radial-axial-turbinenrad
EP2522831B1 (de) Fluggasturbinentriebwerk mit Ölkühler in der Triebwerksverkleidung
EP3059433B1 (de) Gasturbinentriebwerk mit ölkühler in der triebwerksverkleidung
EP2796668B1 (de) Gehäuseabschnitt einer Turbomaschinenverdichter- oder Turbomaschinenturbinenstufe
DE60319606T2 (de) Abblassystem für die Statorstufe eines Verdichters
EP1471211B1 (de) Dichtung zwischen Leitschaufeln und Rotor einer Hochdruckturbine
EP2179143B1 (de) Spaltkühlung zwischen brennkammerwand und turbinenwand einer gasturbinenanlage
EP1898054B1 (de) Gasturbine
EP3070270B1 (de) Leitschaufel für eine strömungsmaschine mit einer dichtungsvorrichtung, leitrad sowie strömungsmaschine
EP0902164A1 (de) Plattformkühlung für Gasturbinen
EP1505254B1 (de) Gasturbine und zugehöriges Kühlverfahren
DE60017396T2 (de) Vorrichtung zur reduzierung der kühlung für einen turbineneinlasskanal
DE102011055473B4 (de) Strömungspfad für ein Dampfturbinenaußengehäuse und Strömungsbarrierevorrichtung
DE102010038073A1 (de) Turbinen und Turbinenschaufelwinglets
EP2478186B1 (de) Rotor einer Turbomaschine
WO2002090724A1 (de) Mantelring
DE102008052401A1 (de) Strömungsarbeitsmaschine mit Laufspalteinzug
DE102011087831A1 (de) Gebläseanordnung
EP1653049B1 (de) Leitschaufelring einer Strömungsmaschine und zugehöriges Modifikationsverfahren
EP2846000B1 (de) Turbinenleitrad einer Gasturbine
DE102016102732A1 (de) Mixed-Flow-Turbinenrad eines Abgasturboladers sowie Abgasturbine mit einem solchen Turbinenrad
EP2611992B1 (de) Gehäuseseitige struktur einer turbomaschine
EP3561228A1 (de) Schaufel, schaufelsegment und baugruppe für eine turbomaschine und turbomaschine
EP2526263B1 (de) Gehäusesystem für eine axialströmungsmaschine
DE102009052314A1 (de) Dichtanordnung für eine Gasturbine und eine derartige Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170214

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1024538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014009040

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180801

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181101

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014009040

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009040

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1024538

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140429

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014009040

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502014009040

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180801

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230427 AND 20230503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240430

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 11