EP3008269B1 - Abstandshalter für dreifachverglasungen - Google Patents

Abstandshalter für dreifachverglasungen Download PDF

Info

Publication number
EP3008269B1
EP3008269B1 EP14706625.2A EP14706625A EP3008269B1 EP 3008269 B1 EP3008269 B1 EP 3008269B1 EP 14706625 A EP14706625 A EP 14706625A EP 3008269 B1 EP3008269 B1 EP 3008269B1
Authority
EP
European Patent Office
Prior art keywords
pane
spacer
glazing
disc
contact surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14706625.2A
Other languages
English (en)
French (fr)
Other versions
EP3008269A1 (de
Inventor
Marc Maurer
Hans-Werner Kuster
Laure DUPUY-NAULET
Sebastien Hervieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to PL14706625T priority Critical patent/PL3008269T3/pl
Priority to EP14706625.2A priority patent/EP3008269B1/de
Publication of EP3008269A1 publication Critical patent/EP3008269A1/de
Application granted granted Critical
Publication of EP3008269B1 publication Critical patent/EP3008269B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66366Section members positioned at the edges of the glazing unit specially adapted for units comprising more than two panes or for attaching intermediate sheets
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66314Section members positioned at the edges of the glazing unit of tubular shape
    • E06B3/66319Section members positioned at the edges of the glazing unit of tubular shape of rubber, plastics or similar materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B2003/6638Section members positioned at the edges of the glazing unit with coatings

Definitions

  • the invention relates to a spacer for triple insulating glazings, a triple insulating glazing, a process for their preparation and their use.
  • the thermal conductivity of glass is about a factor of 2 to 3 lower than that of concrete or similar building materials.
  • slices are in most cases much thinner than comparable elements made of stone or concrete, buildings often lose the largest proportion of heat through the exterior glazing. This effect is particularly evident in skyscrapers with partial or complete glass facades.
  • the additional costs for heating and air conditioning systems make a not inconsiderable part of the maintenance costs of a building.
  • lower carbon dioxide emissions are required as part of stricter construction regulations.
  • An important solution for this is triple-glazing, which is indispensable in building construction, especially in the context of ever faster rising raw material prices and stricter environmental protection regulations. Triple insulating glazings therefore make up an increasing part of the outwardly facing glazings.
  • Triple insulating glazings typically contain three panes of glass or polymeric materials separated by two individual spacers. The two outer plates are connected via a respective seal with the adjacent spacers, while the middle disc is glued to the spacers.
  • very low tolerance requirements apply because the two spacers must be mounted in exactly the same height.
  • the installation of triple glazing compared to double glazing is much more complex because either additional system components for the installation of another disc must be provided or a time-consuming multiple pass of a classic system is necessary.
  • the thermal insulation capacity of triple insulating glass is significantly increased compared to single or double glazing. With special coatings, such as low-E coatings, this can be further increased and improved. So-called low-E coatings offer an effective way of shielding infrared radiation even before entering the living space while allowing natural light to pass through. Low-E coatings are heat-radiation reflective coatings that require a considerable amount of heat Part of the infrared radiation reflect, which leads in summer to a reduced warming of the living spaces.
  • the various low-E coatings are known, for example DE 10 2009 006 062 A1 . WO 2007/101964 A1 . EP 0 912 455 B1 . DE 199 27 683 C1 .
  • EP 0 852 280 A1 discloses a spacer for double insulating glazings.
  • the spacer comprises a metal foil on the bonding surface and a glass fiber content in the plastic of the base body.
  • Such spacers are also commonly used in triple insulating glazings, with a first spacer mounted between a first outer disk and the inner disk and a second spacer mounted between a second outer disk and the inner disk. The two spacers must be mounted congruent to ensure a visually appealing appearance.
  • a triple insulating glazing with a segment for receiving leads or lighting means is known.
  • the first pane and the second pane of the insulating glass are connected by a spacer, wherein in the space between these two panes, a third disc is arranged, which is connected via a further spacer with the first disc.
  • EP 2 584 135 A2 describes a triple insulating glazing comprising a first and a second glass sheet, which are separated by a spacer, wherein between these two disc, a plastic disc is arranged. The plastic disk is held by further spacers between the outer glass panes.
  • the spacers of the plastic disc are preferably made of the same material as the plastic disc itself. Since the spacers of the plastic disc are not connected to the spacer between the first and second disc, all three spacers must be positioned independently of each other.
  • EP 2 270 307 A2 describes a window sash with two outer discs, a middle disc, an edge termination profile and two receiving profiles.
  • the middle disc is inserted, so that in each case a receiving profile between one of the outer discs and the middle disc is located.
  • US 6,115,989 discloses a spacer according to the preamble of claim 1 and further a multi-pane insulating glazing in which a central pane is fixed by a spring profile in a U-shaped spacer.
  • Spring profile and spacers are formed in several parts, wherein the spring profile is inserted into the spacer.
  • the object of the present invention is to provide a spacer for triple glazing, which allows a simplified installation of the insulating glazing and can also be used in combination with low-E coatings on the middle pane, and to provide an economical method for mounting a triple glazing with inventive spacer.
  • the triple insulating glazing spacer comprises at least one polymeric base body having a first wafer contact surface and a second disk contact surface extending parallel thereto, a first glazing interior surface, a second glazing interior surface, and an outer surface.
  • a groove for receiving a disc is introduced, which runs parallel to the first disc contact surface and the second disc contact surface.
  • the groove extends between the first glazing interior surface and the second glazing interior surface and separates them from each other.
  • the spring is fixed to the groove facing away from the end of the connected polymeric body, wherein the spring and the polymeric body are integrally formed.
  • the spring is thus designed as a cantilevered spring element.
  • the one-piece design of the spring and the polymeric body is particularly advantageous because these two elements can be made directly in one step and mounted together. An undesirable slippage of the two elements relative to each other is thus not possible.
  • the invention provides a one-piece double spacer ("double spacer") to which all three panes of triple glazing can be fixed.
  • the two outer discs first disc and second disc
  • the middle disc third disc
  • the spring is used for simplified installation of the glazing, since the third (middle) disc can be inserted after attaching one of the outer discs (first or second disc) via the spring into the groove.
  • This manufacturing step can be done directly on an industrial plant, a preparation of individual components is not necessary.
  • the spacer according to the invention thus enables a much more cost-effective and yet accurate fitting of the triple glazing.
  • the Doppelspacers invention further slipping two Einzelspacer, as used in the prior art, impossible.
  • the spacer according to the invention has only two disc contact surfaces, the gas loss rate of the insulating glazing relative to a glazing with two individual spacers according to the prior art can be reduced by 50%. Furthermore, error rates due to entry of water across the disc contact surfaces can also be reduced. Furthermore, the fixation according to the invention of the third disc is effected by a groove and not, as known in the prior art, by an adhesive connection. Thus, the spacer according to the invention allows the production of a triple glazing with a low-E coating on the third disc, without biasing the third disc is necessary.
  • the heating of the pane caused by the low-E coating would promote a failure of the adhesive bond.
  • a biasing of the third disc would be necessary to compensate for occurring voltages.
  • the spacer according to the invention eliminates the biasing process, whereby a further cost reduction can be achieved.
  • the tension-free fixing in a groove according to the invention furthermore, the thickness and thus the weight of the third disk can advantageously be reduced.
  • the spring and the polymeric body are coextruded.
  • the spring and the base body despite one-piece design also consist of different materials. This has the advantage that a material composition with greater flexibility can be selected for the spring, while the base body consists of a comparatively stiffer material. As a result, both a high mechanical stability of the body is ensured and the insertion of the third disc is simplified by the improved flexibility of the spring.
  • the spring travel of the spring is within a space located between the spring and the underlying glazing interior surface.
  • the spring is elastically deformable in the direction of the glazing interior surface located below it. If the third disc is placed on the glazing interior surface with spring and displaced in the direction of the groove, the spring springs in the direction of the underlying glazing interior surface, so that the disc can be inserted via the spring in the groove. Once the third disc is engaged in the groove no force acts on the spring, which springs back into its original position. In its initial position, the spring forms a side edge of the groove and thus contributes to the fixation of the third disc in the groove.
  • the first disc contact surface and the second disc contact surface represent the sides of the spacer at which the installation of the spacer, the mounting of the outer discs (first disc and second disc) of a glazing is done.
  • the first disc contact surface and the second disc contact surface are parallel to each other.
  • the glazing interior surfaces are defined as the surfaces of the polymeric base body facing the interior of the glazing after installation of the spacer in insulating glazing.
  • the first glazing interior surface lies between the first and the third pane, while the second glazing interior surface is arranged between the third and the second pane.
  • the glazing interior surfaces need not be designed as continuous surfaces, but may also be interrupted, for example by a spring mounted thereon.
  • the outer surface of the polymeric base body is the glazing interior surfaces opposite side, away from the interior of the glazing in the direction of a outer insulating layer has.
  • the outer surface is preferably perpendicular to the disc contact surfaces.
  • the portions of the outer surface closest to the disk contact surfaces are inclined at an angle of preferably 30 ° to 60 ° to the outer surface in the direction of the disk contact surfaces. This angled geometry improves the stability of the polymer body and allows a better bonding of the spacer according to the invention with an insulating film.
  • a planar outer surface that behaves perpendicular to the disk contact surfaces in its entire course, however, has the advantage that the sealing surface between spacers and disc contact surfaces is maximized and easier shaping facilitates the production process.
  • the polymeric base body is designed as a hollow profile, on the one hand a weight reduction compared to a solid-shaped spacer is possible and on the other hand, the cavities for receiving other components, such as a desiccant, are available.
  • the polymeric base body comprises a first hollow chamber and a second hollow chamber, wherein the first hollow chamber is adjacent to the first glazing interior surface and the second hollow chamber is adjacent to the second glazing interior surface.
  • One or both hollow chambers may extend below the groove and form the bottom surface thereof.
  • the formation of two hollow chambers is advantageous over a single hollow chamber which extends over the entire polymeric body, since the partition wall between the two hollow chambers has a positive effect on the stability of the body. If the inter-pane spaces are sealed off from each other in a gas-tight manner, damage to one of the two hollow chambers furthermore only leads to a failure of one pane interspace, while the second pane interspace remains intact.
  • a spring is mounted only above one of the glazing interior surfaces, while the other glazing interior surface has no spring.
  • the side edges of the groove are formed on one side of the spring and on the other side of the other glazing interior surface. A fixation at three points is sufficient, so that the wall of the groove does not have to be continuous, but may also have interruptions. This is the case, for example, between the part of the side flank formed by the spring and the bottom surface of the groove, wherein a recess in the side flank is located below the spring.
  • the groove corresponds in width to at least the thickness of the disk to be used.
  • the groove is wider than the disc mounted therein, so that in addition an insert can be inserted into the groove, which prevents slipping of the disc and a consequent noise during opening and closing of the window.
  • the insert also compensates for the thermal expansion of the third disc when heated, so that regardless of the climatic conditions, a tension-free fixation is guaranteed.
  • the use of a liner is advantageous in terms of minimizing the variety of variants of the spacer.
  • a spacer can be used with different deposits.
  • the variation of the insert is much cheaper than the variation of the spacer in terms of production costs.
  • the spacer according to the invention is mounted without insert in the groove.
  • the side edge of the spring and the side flank of a glazing interior are directly against the pane and fix them in their position stress-free.
  • a thermal expansion of the disc inserted in the groove is particularly advantageously compensated by the high flexibility of the spring.
  • the first space between the panes and the second space between the panes are not sealed airtight from each other. This has the advantage that an air circulation can be generated, in particular if a pressure equalization system is integrated into the spacer.
  • the polymeric base body preferably has an overall width of 10 mm to 50 mm, particularly preferably 20 mm to 36 mm, along the glazing interior surfaces.
  • width of the glazing interior surfaces of the distance between the first and third disc or between the third and second disc is determined.
  • widths of the first glazing interior space and the second glazing interior space are equal.
  • asymmetric spacers are possible in which the two glazing interior surfaces have different widths.
  • the exact dimension of the glazing interior surfaces depends on the dimensions of the glazing and the desired space between the panes.
  • the polymeric base body preferably has a height of 5 mm to 15 mm, particularly preferably 5 mm to 10 mm, along the wafer contact surfaces.
  • the groove preferably has a depth of 1 mm to 15 mm, particularly preferably 2 mm to 4 mm. As a result, a stable fixation of the third disc can be achieved.
  • the wall thickness d of the polymeric base body is 0.5 mm to 15 mm, preferably 0.5 mm to 10 mm, particularly preferably 0.7 mm to 1 mm.
  • the spacer preferably comprises an insulating film on the outer surface of the polymeric base body.
  • the insulating film comprises at least one polymeric layer as well as a metallic layer or a ceramic layer.
  • the layer thickness of the polymeric layer is between 5 .mu.m and 80 .mu.m, while metallic layers and / or ceramic layers having a thickness of 10 nm to 200 nm are used. Within the layer thicknesses mentioned a particularly good tightness of the insulating film is achieved.
  • the insulating film contains at least two metallic layers and / or ceramic layers, which are arranged alternately with at least one polymeric layer.
  • the outer layers are preferably formed by the polymeric layer.
  • the alternating layers of the insulating film can be bonded or applied to one another in a variety of methods known in the art. Methods for the deposition of metallic or ceramic layers are well known to those skilled in the art.
  • the use of an insulating film with alternating layer sequence is particularly advantageous in terms of the tightness of the system. An error in one of the layers does not lead to a loss of function of the insulation film. By comparison, even a small defect in a single layer can lead to complete failure.
  • the application of several thin layers compared to a thick layer is advantageous, since the risk of internal adhesion problems increases with increasing layer thickness.
  • thicker layers have a higher conductivity, so that such a film is thermodynamically less suitable.
  • the polymeric layer preferably comprises polyethylene terephthalate, ethylene vinyl alcohol, polyvinylidene chloride, polyamides, polyethylene, polypropylene, silicones, acrylonitriles, polyacrylates, polymethyl acrylates and / or copolymers or mixtures thereof.
  • the metallic layer preferably contains iron, aluminum, silver, copper, gold, chromium and / or alloys or mixtures thereof.
  • the ceramic layer preferably contains silicon oxides and / or silicon nitrides.
  • the insulating film preferably has a gas permeation of less than 0.001 g / (m 2 h).
  • the composite of polymeric base body and insulating film preferably has a PSI value less than or equal to 0.05 W / mK, particularly preferably less than or equal to 0.035 W / mK.
  • the insulating film can be applied to the polymeric base body, for example by gluing. Alternatively, the insulating film can be coextruded with the base body.
  • the polymeric base body preferably contains a drying agent, preferably silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, zeolites and / or mixtures thereof.
  • the desiccant is preferably incorporated in the body. Particularly preferably, the desiccant is in the first and second hollow chamber of the body.
  • the first glazing interior surface and / or the second glazing interior surface have at least one opening.
  • a plurality of openings are attached to both glazing interior surfaces.
  • the total number of openings depends on the size of the glazing.
  • the openings connect the hollow chambers with the disc spaces, whereby a gas exchange between them is possible.
  • a recording of humidity is allowed by a desiccant located in the hollow chambers and thus prevents fogging of the discs.
  • the gas space below the spring is closed off by the space between the discs above the spring.
  • the openings should not be introduced into the glazing interior surface located below the spring but into a part of the glazing interior surface adjacent to the spring.
  • the openings are preferably designed as slots, particularly preferably as slots with a width of 0.2 mm and a length of 2 mm.
  • the slots ensure optimum air exchange without the possibility of desiccants penetrating from the hollow chambers into the interpane spaces.
  • the polymeric base preferably contains polyethylene (PE), polycarbonates (PC), polypropylene (PP), polystyrene, polybutadiene, polynitriles, polyesters, polyurethanes, Polymethyl methacrylates, polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), PET / PC, PBT / PC and / or copolymers or mixtures thereof, more preferably acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbon
  • the polymeric base body is glass fiber reinforced.
  • the thermal expansion coefficient of the body can be varied and adjusted.
  • the main body preferably has a glass fiber content of 20% to 50%, particularly preferably from 30% to 40%. The glass fiber content in the polymer base body simultaneously improves the strength and stability.
  • the material composition of the spring corresponds to the material composition of the polymeric main body.
  • the material composition of the spring differs from the material composition of the polymer body.
  • the selected materials can be tailored to the mechanical requirements of the components. Thus, a material composition of higher flexibility is preferred for the spring than for the polymeric base body.
  • the spring preferably contains polyethylene (PE), polycarbonates (PC), polystyrene, polybutadiene, polynitriles, polyesters, polyurethanes, polymethylmethacrylates, polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), acrylonitrile-butadiene-styrene (ABS), acrylic esters Styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene / polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), polypropylene (PP), PET / PC, PBT / PC, thermoplastic polyurethane (TPU), ethylene-propylene Dien
  • the invention further comprises an insulating glazing having at least a first pane, a second pane and a third pane and a circumferential spacer according to the invention comprising the panes.
  • the first disc is applied to the first disc contact surface of the spacer, while the second disc rests against the second disc contact surface.
  • the third disc is inserted into the groove of the spacer.
  • the spacers are preferably linked together by corner connectors.
  • corner connectors may for example be designed as a plastic molded part with seal, in which two provided with a fermentation section spacers collide.
  • the most varied geometries of insulating glazing are possible, for example rectangular, trapezoidal and rounded shapes.
  • the spacer according to the invention can be bent, for example, in the heated state.
  • the panes of the insulating glazing are connected to the spacer via a gasket. Between the first disc and the first disc contact surface and / or the second disc and the second disc contact surface, a seal is attached thereto.
  • the seal preferably comprises a polymer or silane-modified polymer, particularly preferably organic polysulfides, silicones, room-temperature-crosslinking silicone rubber, high-temperature-crosslinking silicone rubber, peroxidically crosslinked silicone rubber and / or addition-crosslinked silicone rubber, polyurethanes, butyl rubber and / or polyacrylates.
  • an outer insulation is circumferentially filled.
  • a plastic sealing compound is used as external insulation.
  • the outer insulation preferably comprises polymers or silane-modified polymers, particularly preferably organic polysulfides, silicones, RTV silicone rubber, high-temperature cure (HTV) silicone rubber, peroxide-crosslinked silicone rubber and / or addition-crosslinked silicone rubber, polyurethanes, butyl rubber and / or polyacrylates.
  • the first pane, the second pane and / or the third pane of the insulating glass preferably contain glass and / or polymers, particularly preferably quartz glass, borosilicate glass, soda-lime glass, polymethyl methacrylate and / or mixtures thereof.
  • the first disc and the second disc have a thickness of 2 mm to 50 mm, preferably 3 mm to 16 mm, both discs can also have different thicknesses.
  • the third disc has a thickness of 1 mm to 4 mm, preferably 1 mm to 3 mm, and particularly preferably 1.5 mm to 3 mm.
  • the spacer according to the invention allows by the stress-free fixation an advantageous reduction of the thickness of the third disc with the same stability of the glazing.
  • the thickness of the third disc is less than the thicknesses of the first and second discs.
  • the thickness of the first disc is 3 mm
  • the thickness of the second disc is 4 mm
  • the thickness of the third disc is 2 mm.
  • the insulating glazing is filled with a protective gas, preferably with a noble gas, preferably argon or krypton, which reduce the heat transfer value in the insulating glazing gap.
  • a protective gas preferably with a noble gas, preferably argon or krypton, which reduce the heat transfer value in the insulating glazing gap.
  • the third pane of the insulating glass preferably has a low-E coating.
  • the third pane of the insulating glass is preferably not biased.
  • the insulating glazing comprises more than three panes.
  • the spacer may include a plurality of grooves that can accommodate more discs.
  • several disks could be formed as a laminated glass pane.
  • the order of assembly of the first disc and the second disc depends on the position of the spring and should be such that the spring after process step a) is still accessible. If the spring is located above the first glazing interior surface, the second pane is first attached to the second pane contact surface. If the spring is positioned above the second glazing cavity surface, in step a) the first wafer must be mounted on the first wafer contact surface. Should the spacer include springs over both interior glazing surfaces, the order of assembly does not matter.
  • the method according to the invention is particularly advantageous in terms of increased efficiency and cost reduction.
  • a plurality of spacers or a plurality of individual components of a spacer are required for mounting a triple glazing.
  • the precise adjustment of these components is time-consuming and can not be done on a classic double-glazing system.
  • no biasing of the third disc is necessary even when using low-E or other functional coatings on the third disc according to the inventive method, since the spacer according to the invention fixes the disc stress-free in its scope.
  • the third disc can be inserted directly into a classic double-glazing installation known to the person skilled in the art in the spacer. A manual pre-assembly of the components, the costly installation of additional system components or a loss of time in a multi-pass a plant can thus be avoided.
  • the spacer according to the invention therefore makes it possible to considerably simplify the production of triple glazing.
  • the disc gaps between the first disc and the third disc and between the second disc and the third disc are filled with a protective gas before pressing the disc assembly.
  • the invention further includes the use of a spacer according to the invention in multiple glazings, preferably in insulating glazings, particularly preferably in triple insulating glazings.
  • FIG. 1 shows a cross section of the spacer (I) according to the invention.
  • the glass-fiber-reinforced polymer base body (1) comprises a first wheel contact surface (2.1), a second wheel contact surface (2.2) running parallel thereto, a first glazing interior surface (3.1), a second glazing interior surface (3.2) and an outer surface (4). Between the outer surface (4) and the first glazing interior surface (3.1) there is a first hollow chamber (5.1), while a second hollow chamber (5.2) is arranged between the outer surface and the second glazing interior surface (3.2). Between the first glazing interior surface (3.1) and the second glazing interior surface (3.2) runs a groove (6) which is arranged parallel to the first wheel contact surface (2.1) and the second wheel contact surface (2.2).
  • the first glazing interior surface (3.1) there is a spring (18) whose spring travel lies within a free space (19) between the spring (18) and the first glazing interior surface (3.1).
  • the two side flanks (7) of the groove are formed on the one hand by the spring (18) and on the other hand by the second glazing interior surface.
  • the outer surface (4) of the spacer (I) is perpendicular to the disc contact surfaces (2.1, 2.2).
  • the polymeric base body (1) and the spring (18) contain styrene-acrylonitrile (SAN) with about 35% by weight glass fiber.
  • the polymeric body (1) and spring (18) may also contain polypropylene (PP) with about 40% glass fiber.
  • the glazing interior surfaces (3.1, 3.2) have at regular intervals openings (8), the hollow chambers (5.1, 5.2) with the above Connecting glazing interior surfaces (3.1, 3.2) lying airspace.
  • the spacer (I) has a height of 8.5 mm and a total width of 34 mm.
  • the groove (6) has a depth of 3 mm, while the first glazing interior surface (3.1) is 16 mm wide and the second glazing interior surface (3.2) is 16 mm wide.
  • the total width of the spacer (I) is obtained as the sum of the widths of the glazing interior surfaces (3.1, 3.2) and the thickness of the third disc (15) with insert (9) to be inserted into the groove (6).
  • the polymeric base body (1) contains polypropylene (PP) with about 40% by weight of glass fiber, while the spring (18) comprises thermoplastic polyurethane without glass fiber.
  • the spring (18) and the polymeric base body (1) are coextruded. The rest of the structure of the spacer corresponds to the already for FIG. 1 described.
  • FIG. 2 shows a cross section of the insulating glazing according to the invention with a spacer (I) according to FIG. 1 ,
  • the first disc (13) of the triple insulating glazing is connected via a seal (10) to the first disc contact surface (2.1) of the spacer (I), while the second disc (14) via a seal (10) with the second disc contact surface (2.2) connected is.
  • the seal (10) is made of butyl rubber.
  • a third disc (15) via a liner (9) is inserted in the groove (6) of the spacer.
  • the insert (9) surrounds the edge of the third disc (15) and fits flush into the groove (6).
  • the insert (9) consists of ethylene-propylene-diene rubber.
  • the insert (9) fixes the third disc (15) stress-free and compensates for thermal expansion of the disc. Furthermore, the insert (9) prevents noise by slipping of the third disc (15).
  • the space between the first disk (13) and the third disk (15) is defined as the first disk space (17.1) and the space between the third disk (15) and second disk (14) as the second disk space (17.2).
  • the first glazing interior surface (3.1) of the spacer (I) lies in the first space between the panes (17.1), while the second glazing interior space (3.2) is arranged in the second pane space (17.2).
  • the disc spaces (17.1, 17.2) with the respective underlying hollow chamber (5.1, 5.2) are connected.
  • a desiccant (11) which consists of molecular sieve.
  • the desiccant (11) the humidity from the space between the panes (17.1, 17.2) withdraws.
  • an insulating film (12) is applied, which reduces the heat transfer through the polymeric body (1) in the disc spaces (17).
  • the insulating film (12) can be attached, for example with a polyurethane hot melt adhesive on the polymeric body (1).
  • the insulating film (12) comprises four polymeric layers of polyethylene terephthalate having a thickness of 12 microns and three metallic layers of aluminum with a thickness of 50 nm.
  • the metallic layers and the polymeric layers are each mounted alternately, wherein the two outer layers of polymeric Layers are formed.
  • the first disc (13) and the second disc (14) protrude beyond the spacer (I), so that a peripheral edge region is created, which is filled with an outer insulation (16).
  • This outer insulation (16) is formed by an organic polysulfide.
  • the first disc (13) and the second disc (14) are made of soda-lime glass having a thickness of 3 mm, while the third disc (15) is made of soda-lime glass having a thickness of 2 mm.
  • FIG. 3 shows a flowchart of a possible embodiment of the method according to the invention.
  • a rectangular spacer profile is formed from four individual spacers (I), with the corners of the spacer (I) sealed. This sealing takes place by welding, for example ultrasonic welding, or alternatively by the use of corner connectors.
  • a seal (10) is attached on the first disc contact surface (2.1) and the second disc contact surface (2.2) of the spacer (I) then a seal (10) is attached.
  • the first disc (13) is attached to the first disc contact surface (2.1) and the third disc (15) is then inserted via the spring (18) in the groove (6).
  • an insert (9) may be attached to the edges of the third disc (15).
  • the second disc (14) is then attached to the second disc contact surface (2.2) of the spacer (I) and the disc assembly is crimped together.
  • a protective gas can be introduced into the interpane spaces (17.1, 17.2) before pressing.

Description

  • Die Erfindung betrifft einen Abstandshalter für Dreifachisolierverglasungen, eine Dreifachisolierverglasung, ein Verfahren zu deren Herstellung und deren Verwendung.
  • Die Wärmeleitfähigkeit von Glas ist etwa um den Faktor 2 bis 3 niedriger als die von Beton oder ähnlichen Baustoffen. Da Scheiben in den meisten Fällen jedoch deutlich dünner als vergleichbare Elemente aus Stein oder Beton ausgelegt sind, verlieren Gebäude dennoch häufig den größten Wärmeanteil über die Außenverglasung. Besonders deutlich wird dieser Effekt bei Hochhäusern mit teilweisen oder kompletten Glasfassaden. Die notwendigen Mehrkosten für Heizung und Klimaanlagen machen einen nicht zu unterschätzender Teil der Unterhaltungskosten eines Gebäudes aus. Zudem werden im Zuge strengerer Bauvorschriften niedrigere Kohlendioxid Emissionen gefordert. Ein wichtiger Lösungsansatz hierfür sind Dreifachisolierverglasungen, die vor allem im Zuge immer schneller steigender Rohstoffpreise und strengeren Umweltschutzauflagen nicht mehr aus dem Gebäudebau wegzudenken sind. Dreifachisolierverglasungen machen daher einen zunehmend größeren Teil der nach außen gerichteten Verglasungen aus.
  • Dreifachisolierverglasungen enthalten in der Regel drei Scheiben aus Glas oder polymeren Materialien, die über zwei einzelne Abstandshalter (Spacer) voneinander getrennt sind. Die beiden Außenscheiben sind dabei über jeweils eine Dichtung mit den benachbarten Abstandshaltern verbunden, während die mittlere Scheibe mit den Abstandshaltern verklebt ist. Bei Montage einer derartigen Dreifachverglasung gelten sehr geringe Toleranzvorgaben, da die beiden Abstandshalter in exakt der gleichen Höhe angebracht werden müssen. Somit ist die Montage von Dreifachverglasungen im Vergleich zu Doppelverglasungen wesentlich aufwändiger, da entweder zusätzliche Anlagenkomponenten für die Montage einer weiteren Scheibe bereitgestellt werden müssen oder ein zeitaufwändiger Mehrfachdurchlauf einer klassischen Anlage notwendig ist.
  • Das Wärmedämmvermögen von Dreifachisolierglas ist im Vergleich zu Einfach- oder Doppelverglasungen deutlich erhöht. Mit speziellen Beschichtungen, wie Low-E-Beschichtungen, kann dies noch weiter gesteigert und verbessert werden. Sogenannte Low-E-Beschichtungen bieten eine effektive Möglichkeit Infrarotstrahlung bereits vor Eintritt in den Wohnraum abzuschirmen und gleichzeitig Tageslicht hindurchzulassen. Low-E-Beschichtungen sind Wärmestrahlung reflektierende Beschichtungen, die einen erheblichen Teil der Infrarotstrahlung reflektieren, was im Sommer zu einer verringerten Erwärmung der Wohnräume führt. Die verschiedensten Low-E-Beschichtungen sind beispielsweise bekannt aus DE 10 2009 006 062 A1 , WO 2007/101964 A1 , EP 0 912 455 B1 , DE 199 27 683 C1 , EP 1 218 307 B1 und EP 1 917 222 B1 . Derartige Low-E-Beschichtungen können nicht auf der mittleren Scheibe einer Dreifachverglasung nach dem Stand der Technik aufgebracht werden, da die Beschichtung bei Sonneneinstrahlung eine Erwärmung der Scheibe bedingt, die zu einem Versagen der Klebeverbindung zwischen mittlerer Scheibe und Abstandshaltern führt. Ferner erzeugt eine Verklebung der mittleren Scheibe mit Funktionsbeschichtung zusätzliche Spannungen. Zur Kompensation dieser Spannungen muss die mittlere Scheibe nach dem Stand der Technik vorgespannt werden.
  • EP 0 852 280 A1 offenbart einen Abstandshalter für Doppelisolierverglasungen. Der Abstandshalter umfasst eine Metall-Folie an der Verklebungsfläche und einen Glasfaseranteil im Kunststoff des Grundkörpers. Derartige Abstandshalter kommen häufig auch in Dreifachisolierverglasungen zum Einsatz, wobei ein erster Abstandshalter zwischen einer ersten äußeren Scheibe und der inneren Scheibe und ein zweiter Abstandshalter zwischen einer zweiten äußeren Scheibe und der inneren Scheibe montiert ist. Die beiden Abstandshalter müssen dabei deckungsgleich angebracht sein um ein optisch ansprechendes Erscheinungsbild zu gewährleisten.
  • Aus WO 2012 095 266 A1 ist eine Dreifachisolierverglasung mit einem Segment zur Aufnahme von Leitungen oder Beleuchtungsmitteln bekannt. Die erste Scheibe und die zweite Scheibe der Isolierverglasung sind über einen Abstandshalter verbunden, wobei in dem Zwischenraum dieser beiden Scheiben eine dritte Scheibe angeordnet ist, die über einen weiteren Abstandshalter mit der ersten Scheibe verbunden ist.
  • EP 2 584 135 A2 beschreibt eine Dreifachisolierverglasung umfassend eine erste und eine zweite Glasscheibe, die durch einen Abstandshalter getrennt sind, wobei zwischen diesen beiden Scheibe eine Kunststoffscheibe angeordnet ist. Die Kunststoffscheibe wird dabei durch weitere Abstandshalter zwischen den äußeren Glasscheiben gehalten. Die Abstandshalter der Kunststoffscheibe sind bevorzugt aus dem gleichen Material wie die Kunststoffscheibe selbst gefertigt. Da die Abstandshalter der Kunststoffscheibe nicht mit dem Abstandshalter zwischen erster und zweiter Scheibe verbunden sind, müssen alle drei Abstandshalter unabhängig voneinander positioniert werden.
  • Auch die aus WO 2012 095 266 A1 und EP 2 584 135 A2 bekannten Abstandshaltersysteme sind aufwändig in der Montage und erfordern eine sehr toleranzgenaue Montage der einzelnen Komponenten.
  • EP 2 270 307 A2 beschreibt einen Fensterflügel mit zwei äußeren Scheiben, einer mittleren Scheibe, einem Randabschlussprofil und zwei Aufnahmeprofilen. In eine Nut des Randabschlussprofils ist die mittlere Scheibe eingesetzt, so dass sich jeweils ein Aufnahmeprofil zwischen einer der äußeren Scheiben und der mittleren Scheibe befindet.
  • US 6,115,989 offenbart einen Abstandhalter nach dem Oberbegriff des Anspruchs 1 und weiter eine Mehrscheibenisolierverglasung, bei der eine mittlere Scheibe über ein Federprofil in einem U-förmigen Abstandshalter fixiert ist. Federprofil und Abstandshalter sind dabei mehrteilig ausgeformt, wobei das Federprofil in den Abstandshalter eingesetzt ist.
  • Aufgabe der vorliegenden Erfindung ist es, einen Abstandshalter für Dreifachverglasungen bereitzustellen, der eine vereinfachte Montage der Isolierverglasung ermöglicht und auch in Kombination mit Low-E-Beschichtungen auf der mittleren Scheibe einsetzbar ist, sowie ein wirtschaftliches Verfahren zur Montage einer Dreifachverglasung mit erfindungsgemäßem Abstandshalter bereitzustellen.
  • Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch einen Abstandshalter für Dreifachisolierverlasungen, ein Verfahren zu deren Montage und deren Verwendung nach den unabhängigen Ansprüchen 1, 15 und 17 gelöst. Bevorzugte Ausführungen der Erfindung gehen aus den Unteransprüchen hervor.
  • Der erfindungsgemäße Abstandshalter für Dreifachisolierverglasung umfasst mindestens einen polymeren Grundkörper, der eine erste Scheibenkontaktfläche und eine parallel dazu verlaufende zweite Scheibenkontaktfläche, eine erste Verglasungsinnenraumfläche, eine zweite Verglasungsinnenraumfläche und eine Außenfläche aufweist. In den polymeren Grundkörper ist eine Nut zur Aufnahme einer Scheibe eingebracht, die parallel zur ersten Scheibenkontaktfläche und zweiten Scheibenkontaktfläche verläuft. Die Nut verläuft zwischen der ersten Verglasungsinnenraumfläche und der zweiten Verglasungsinnenraumfläche und trennt diese voneinander. Oberhalb der ersten Verglasungsinnenraumfläche und/oder der zweiten Verglasungsinnenraumfläche befindet sich mindestens eine Feder, wobei mindestens eine Seitenflanke der Nut die mindestens eine Feder umfasst. Die Feder ist an dem der Nut abgewandten Ende fest mit dem polymeren Grundkörper verbunden, wobei die Feder und der polymere Grundkörper einstückig ausgeformt sind. Die Feder ist somit als einseitig eingespanntes Federelement ausgeführt. Die einteilige Ausführung der Feder und des polymeren Grundkörpers ist besonders vorteilhaft, da diese beiden Elemente direkt in einem Schritt gefertigt und gemeinsam montiert werden können. Ein unerwünschtes Verrutschen der beiden Elemente relativ zueinander ist damit nicht möglich.
  • Somit wird durch die Erfindung ein einteiliger doppelter Abstandshalter ("Doppelspacer") zur Verfügung gestellt, an dem alle drei Scheiben einer Dreifachverglasung fixiert werden können. Dabei sind die beiden äußeren Scheiben (erste Scheibe und zweite Scheibe) an den Scheibenkontaktflächen angebracht, während die mittlere Scheibe (dritte Scheibe) in die Nut eingesetzt ist. Die Feder dient der vereinfachten Montage der Verglasung, da die dritte (mittlere) Scheibe nach Anbringen einer der Außenscheiben (erste oder zweite Scheibe) über die Feder in die Nut eingeschoben werden kann. Dieser Fertigungsschritt kann direkt an einer industriellen Anlage erfolgen, eine Vorbereitung einzelner Komponenten ist nicht notwendig. Der erfindungsgemäße Abstandshalter ermöglicht dadurch eine wesentlich kostengünstigere und dennoch passgenaue Montage der Dreifachverglasung. Bei Einsatz des erfindungsgemäßen Doppelspacers ist ferner ein Verrutschen zweier Einzelspacer, wie sie nach dem Stand der Technik verwendet werden, unmöglich. Somit entfällt die zeitaufwändige Justierung einzelner Abstandshalter, die nach dem Stand der Technik unvermeidlich ist um deren deckungsgleiche Montage zu gewährleisten. Da der erfindungsgemäße Abstandshalter nur über zwei Scheibenkontaktflächen verfügt kann die Gasverlustrate der Isolierverglasung gegenüber einer Verglasung mit zwei einzelnen Abstandshaltern nach dem Stand der Technik um 50 % reduziert werden. Ferner können Fehlerraten durch Eintritt von Wasser über die Scheibenkontaktflächen ebenfalls gesenkt werden. Des Weiteren erfolgt die erfindungsgemäße Fixierung der dritten Scheibe durch eine Nut und nicht, wie nach dem Stand der Technik bekannt, durch eine Klebeverbindung. Somit ermöglicht der erfindungsgemäße Abstandshalter die Herstellung einer Dreifachverglasung mit einer Low-E-Beschichtung auf der dritten Scheibe, ohne dass ein Vorspannen der dritten Scheibe notwendig ist. Bei einer Klebeverbindung würde die durch die Low-E-Beschichtung bedingte Erwärmung der Scheibe ein Versagen der Klebeverbindung begünstigen. Ferner wäre ein Vorspannen der dritten Scheibe nötig um auftretende Spannungen zu kompensieren. Bei Verwendung des erfindungsgemäßen Abstandshalters entfällt jedoch der Vorspannprozess, wodurch eine weitere Kostenreduzierung erreicht werden kann. Durch die erfindungsgemäße spannungsfreie Fixierung in einer Nut kann ferner die Dicke und somit das Gewicht der dritten Scheibe vorteilhaft reduziert werden.
  • In einer bevorzugten Ausführungsform sind die Feder und der polymere Grundkörper coextrudiert. Dabei können die Feder und der Grundkörper trotz einteiliger Ausführung auch aus verschiedenen Materialien bestehen. Dies hat den Vorteil, dass für die Feder eine Materialkomposition mit höherer Flexibilität gewählt werden kann, während der Grundkörper aus einem im Vergleich steiferen Material besteht. Dadurch wird sowohl eine hohe mechanische Stabilität des Grundkörpers gewährleistet als auch das Einschieben der dritten Scheibe durch die verbesserte Flexibilität der Feder vereinfacht.
  • Der Federweg der Feder liegt innerhalb eines Freiraums, der sich zwischen der Feder und der darunter befindlichen Verglasungsinnenraumfläche befindet. Die Feder ist dabei in Richtung der unter ihr befindlichen Verglasungsinnenraumfläche elastisch verformbar. Wird die dritte Scheibe auf die Verglasungsinnenraumfläche mit Feder aufgesetzt und in Richtung der Nut verschoben, so federt die Feder in Richtung der darunterliegenden Verglasungsinnenraumfläche ein, so dass die Scheibe über die Feder in die Nut eingeschoben werden kann. Sobald die dritte Scheibe in die Nut eingerastet ist wirkt keine Kraft mehr auf die Feder, wodurch diese wieder zurück in ihre Ausgangsposition federt. In ihrer Ausgangsposition bildet die Feder eine Seitenflanke der Nut und trägt damit zur Fixierung der dritten Scheibe in der Nut bei.
  • Die erste Scheibenkontaktfläche und die zweite Scheibenkontaktfläche stellen die Seiten des Abstandshalters dar, an denen beim Einbau des Abstandshalters die Montage der äußeren Scheiben (erste Scheibe und zweite Scheibe) einer Isolierverglasung erfolgt. Die erste Scheibenkontaktfläche und die zweite Scheibenkontaktfläche verlaufen parallel zueinander.
  • Die Verglasungsinnenraumflächen sind als die Flächen des polymeren Grundkörpers definiert, die nach Einbau des Abstandshalters in einer Isolierverglasung in Richtung des Innenraums der Verglasung weisen. Die erste Verglasungsinnenraumfläche liegt dabei zwischen der ersten und der dritten Scheibe, während die zweite Verglasungsinnenraumfläche zwischen der dritten und der zweiten Scheibe angeordnet ist. Die Verglasungsinnenraumflächen müssen nicht als durchgehende Flächen ausgestaltet sein, sondern können auch unterbrochen sein, beispielsweise durch eine auf ihnen angebrachte Feder.
  • Die Außenfläche des polymeren Grundkörpers ist die den Verglasungsinnenraumflächen gegenüberliegende Seite, die vom Innenraum der Isolierverglasung weg in Richtung einer äußeren Isolierschicht weist. Die Außenfläche verläuft bevorzugt senkrecht zu den Scheibenkontaktflächen. In einer möglichen Ausführungsform sind die den Scheibenkontaktflächen nächstliegenden Abschnitte der Außenfläche in einem Winkel von bevorzugt 30° bis 60° zur Außenfläche in Richtung der Scheibenkontaktflächen geneigt. Diese abgewinkelte Geometrie verbessert die Stabilität des polymeren Grundkörpers und ermöglicht eine bessere Verklebung des erfindungsgemäßen Abstandshalters mit einer Isolationsfolie. Eine planare Außenfläche, die sich in ihrem gesamten Verlauf senkrecht zu den Scheibenkontaktflächen verhält, hat hingegen den Vorteil, dass die Dichtfläche zwischen Abstandshalter und Scheibenkontaktflächen maximiert wird und eine einfachere Formgebung den Produktionsprozess erleichtert.
  • Bevorzugt ist der polymere Grundkörper als Hohlprofil ausgestaltet, wobei einerseits eine Gewichtsreduktion im Vergleich zu einem massiv ausgeformten Abstandshalter möglich ist und andererseits die Hohlräume zur Aufnahme von weiteren Komponenten, wie beispielsweise eines Trockenmittels, zur Verfügung stehen. In einer bevorzugten Ausführungsform umfasst der polymere Grundkörper eine erste Hohlkammer und eine zweite Hohlkammer, wobei die erste Hohlkammer an die erste Verglasungsinnenraumfläche angrenzt und die zweite Hohlkammer an die zweite Verglasungsinnenraumfläche angrenzt. Eine oder beide Hohlkammern können sich unterhalb der Nut erstrecken und deren Bodenfläche bilden. Die Ausbildung zweier Hohlkammern ist vorteilhaft gegenüber einer einzelnen Hohlkammer, die sich über den gesamten polymeren Grundkörper erstreckt, da die Trennwand zwischen den beiden Hohlkammern sich positiv auf die Stabilität des Grundkörpers auswirkt. Sofern die Scheibenzwischenräume gasdicht voneinander abgeschlossen sind führt eine Beschädigung einer der beiden Hohlkammern des Weiteren nur zu einem Versagen eines Scheibenzwischenraums, während der zweite Scheibenzwischenraum unversehrt bleibt.
  • In einer bevorzugten Ausführungsform ist nur oberhalb einer der Verglasungsinnenraumflächen eine Feder angebracht, während die andere Verglasungsinnenraumfläche über keine Feder verfügt. Die Seitenflanken der Nut werden dabei auf der einen Seite von der Feder und auf der anderen Seite von der anderen Verglasungsinnenraumfläche gebildet. Eine Fixierung an drei Punkten ist dabei ausreichend, so dass die Wandung der Nut nicht durchgängig sein muss, sondern auch Unterbrechungen aufweisen kann. Dies ist beispielsweise zwischen dem von der Feder gebildeten Teil der Seitenflanke und der Bodenfläche der Nut der Fall, wobei sich unterhalb der Feder eine Aussparung in der Seitenflanke befindet.
  • Die Nut entspricht in ihrer Breite mindestens der Dicke der einzusetzenden Scheibe.
  • Bevorzugt ist die Nut breiter als die darin montierte Scheibe, so dass zusätzlich eine Einlage in die Nut eingesetzt werden kann, die ein Verrutschen der Scheibe und eine dadurch bedingte Geräuschentwicklung beim Öffnen und Schließen des Fensters verhindert. Die Einlage kompensiert des Weiteren die thermische Ausdehnung der dritten Scheibe bei Erwärmung, so dass unabhängig von den klimatischen Bedingungen eine spannungsfreie Fixierung gewährleistet ist. Ferner ist die Verwendung einer Einlage vorteilhaft in Bezug auf die Minimierung der Variantenvielfalt des Abstandshalters. Um die Variantenvielfalt möglichst gering zu halten und trotzdem eine variable Dicke der mittleren Scheibe zu ermöglichen kann ein Abstandshalter mit verschiedenen Einlagen eingesetzt werden. Die Variation der Einlage ist dabei bezüglich der Produktionskosten wesentlich günstiger als die Variation des Abstandshalters. Alternativ wäre auch denkbar die Einlage direkt an den polymeren Grundkörper anzuformen, beispielsweise indem beide Bauteile gemeinsam in einem Zweikomponentenspritzgussverfahren gefertigt werden.
  • In einer anderen bevorzugten Ausführungsform wird der erfindungsgemäße Abstandshalter ohne Einlage in der Nut montiert. In diesem Fall liegen die Seitenflanke der Feder und die Seitenflanke eines Verglasungsinnenraums direkt an der Scheibe an und fixieren diese spannungsfrei in ihrer Position. Eine Wärmeausdehnung der in der Nut eingesetzten Scheibe wird dabei besonders vorteilhaft durch die hohe Flexibilität der Feder kompensiert. In dieser Ausführungsform sind der erste Scheibenzwischenraum und der zweite Scheibenzwischenraum nicht luftdicht voneinander abgeschlossen. Dies hat den Vorteil, dass eine Luftzirkulation erzeugt werden kann, insbesondere wenn ein Druckausgleichssystem in den Abstandshalter integriert wird.
  • Der polymere Grundkörper weist bevorzugt entlang der Verglasungsinnenraumflächen eine Gesamtbreite von 10 mm bis 50 mm, besonders bevorzugt von 20 mm bis 36 mm, auf. Durch die Wahl der Breite der Verglasungsinnenraumflächen wird der Abstand zwischen erster und dritter Scheibe bzw. zwischen dritter und zweiter Scheibe bestimmt. Bevorzugt sind die Breiten der ersten Verglasungsinnenraumfläche und der zweiten Verglasungsinnenraumfläche gleich. Alternativ sind auch asymmetrische Abstandshalter möglich, bei denen die beiden Verglasungsinnenraumflächen unterschiedliche Breiten haben. Das genaue Abmaß der Verglasungsinnenraumflächen richtet sich nach den Dimensionen der Isolierverglasung und den gewünschten Scheibenzwischenraumgrößen.
  • Der polymere Grundkörper weist bevorzugt entlang der Scheibenkontaktflächen eine Höhe von 5 mm bis 15 mm, besonders bevorzugt von 5 mm bis 10 mm, auf.
  • Die Nut weist bevorzugt eine Tiefe von 1 mm bis 15 mm, besonders bevorzugt von 2 mm bis 4 mm auf. Dadurch kann eine stabile Fixierung der dritten Scheibe erreicht werden.
  • Die Wandstärke d des polymeren Grundkörpers beträgt 0,5 mm bis 15 mm, bevorzugt 0,5 mm bis 10 mm, besonders bevorzugt 0,7 mm bis 1 mm.
  • Der Abstandshalter umfasst bevorzugt eine Isolationsfolie auf der Außenfläche des polymeren Grundkörpers. Die Isolationsfolie umfasst mindestens eine polymere Schicht sowie eine metallische Schicht oder eine keramische Schicht. Dabei beträgt die Schichtdicke der polymeren Schicht zwischen 5 µm und 80 µm, während metallische Schichten und/oder keramische Schichten mit einer Dicke von 10 nm bis 200 nm eingesetzt werden. Innerhalb der genannten Schichtdicken wird eine besonders gute Dichtigkeit der Isolationsfolie erreicht.
  • Besonders bevorzugt enthält die Isolationsfolie mindestens zwei metallische Schichten und/oder keramische Schichten, die alternierend mit mindestens einer polymeren Schicht angeordnet sind. Bevorzugt werden die außen liegenden Schichten dabei von der polymeren Schicht gebildet. Die alternierenden Schichten der Isolationsfolie können auf die verschiedensten nach dem Stand der Technik bekannten Methoden verbunden bzw. aufeinander aufgetragen werden. Methoden zur Abscheidung metallischer oder keramischer Schichten sind dem Fachmann hinlänglich bekannt. Die Verwendung einer Isolationsfolie mit alternierender Schichtenabfolge ist besonders vorteilhaft im Hinblick auf die Dichtigkeit des Systems. Ein Fehler in einer der Schichten führt dabei nicht zu einem Funktionsverlust der Isolationsfolie. Im Vergleich dazu kann bei einer Einzelschicht bereits ein kleiner Defekt zu einem vollständigen Versagen führen. Des Weiteren ist die Auftragung mehrerer dünner Schichten im Vergleich zu einer dicken Schicht vorteilhaft, da mit steigender Schichtdicke die Gefahr interner Haftungsprobleme ansteigt. Ferner verfügen dickere Schichten über eine höhere Leitfähigkeit, so dass eine derartige Folie thermodynamisch weniger geeignet ist.
  • Die polymere Schicht umfasst bevorzugt Polyethylenterephthalat, Ethylenvinylalkohol, Polyvinylidenchlorid, Polyamide, Polyethylen, Polypropylen, Silikone, Acrylonitrile, Polyacrylate, Polymethylacrylate und/oder Copolymere oder Gemische davon. Die metallische Schicht enthält bevorzugt Eisen, Aluminium, Silber, Kupfer, Gold, Chrom und/oder Legierungen oder Gemische davon. Die keramische Schicht enthält bevorzugt Siliziumoxide und/oder Siliziumnitride.
  • Die Isolationsfolie weist bevorzugt eine Gaspermeation kleiner als 0,001 g/(m2 h) auf.
  • Der Verbund aus polymerem Grundkörper und Isolationsfolie weist bevorzugt einen PSI Wert kleiner(gleich) als 0,05 W/mK, besonders bevorzugt kleiner(gleich) als 0,035 W/mK auf. Die Isolationsfolie kann auf dem polymeren Grundkörper aufgebracht werden, beispielsweise geklebt werden. Alternativ kann die Isolationsfolie mit dem Grundkörper zusammen coextrudiert werden.
  • Der polymere Grundkörper enthält bevorzugt ein Trockenmittel, bevorzugt Kieselgele, Molekularsiebe, CaCl2, Na2SO4, Aktivkohle, Silikate, Bentonite, Zeolithe und/oder Gemische davon. Das Trockenmittel ist bevorzugt in den Grundkörper eingearbeitet. Besonders bevorzugt befindet sich das Trockenmittel in der ersten und zweiten Hohlkammer des Grundkörpers.
  • In einer bevorzugten Ausführungsform weisen die erste Verglasungsinnenraumfläche und/oder die zweite Verglasungsinnenraumfläche mindestens eine Öffnung auf. Bevorzugt sind mehrere Öffnungen an beiden Verglasungsinnenraumflächen angebracht. Die Gesamtzahl der Öffnungen hängt dabei von der Größe der Isolierverglasung ab. Die Öffnungen verbinden die Hohlkammern mit den Scheibenzwischenräumen, wodurch ein Gasaustausch zwischen diesen möglich wird. Dadurch wird eine Aufnahme von Luftfeuchtigkeit durch ein in den Hohlkammern befindliches Trockenmittel erlaubt und somit ein Beschlagen der Scheiben verhindert. Sofern eine Einlage in die Nut eingesetzt wird ist der Gasraum unterhalb der Feder vom oberhalb der Feder befindlichen Scheibenzwischenraum abgeschlossen. In einer derartigen Ausführungsform sollten die Öffnungen somit nicht in die unterhalb der Feder befindliche Verglasungsinnenraumfläche eingebracht werden, sondern in einen neben der Feder angeordneten Teil der Verglasungsinnenraumfläche. Die Öffnungen sind bevorzugt als Schlitze ausgeführt, besonders bevorzugt als Schlitze mit einer Breite von 0,2 mm und einer Länge von 2 mm. Die Schlitze gewährleisten einen optimalen Luftaustausch ohne dass Trockenmittel aus den Hohlkammern in die Scheibenzwischenräume eindringen kann.
  • Der polymere Grundkörper enthält bevorzugt Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon, besonders bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polypropylen (PP), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon.
  • Bevorzugt ist der polymere Grundkörper glasfaserverstärkt. Durch die Wahl des Glasfaseranteils im Grundkörper kann der Wärmeausdehnungskoeffizient des Grundkörpers variiert und angepasst werden. Durch Anpassung des Wärmeausdehnungskoeffizienten des polymeren Grundkörpers und der Isolationsfolie lassen sich temperaturbedingte Spannungen zwischen den unterschiedlichen Materialien und ein Abplatzen der Isolationsfolie vermeiden. Der Grundkörper weist bevorzugt einen Glasfaseranteil von 20 % bis 50 %, besonders bevorzugt von 30 % bis 40 % auf. Der Glasfaseranteil im polymeren Grundkörper verbessert gleichzeitig die Festigkeit und Stabilität.
  • In einer möglichen Ausführungsform entspricht die Materialzusammensetzung der Feder der Materialzusammensetzung des polymeren Grundkörpers.
  • In einer anderen bevorzugten Ausführungsform unterscheidet sich die Materialzusammensetzung der Feder von der Materialzusammensetzung des polymeren Grundkörpers. Dabei können die gewählten Materialien gezielt auf die mechanischen Anforderungen der Bauteile abgestimmt werden. So wird für die Feder bevorzugt eine Materialzusammensetzung höherer Flexibilität gewählt als für den polymeren Grundkörper. Die Feder enthält bevorzugt Polyethylen (PE), Polycarbonate (PC), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polypropylen (PP), PET/PC, PBT/PC, thermoplastisches Polyurethan (TPU), Ethylen-Propylen-Dien-Kautschuk (EPDM) und/oder Copolymere oder Gemische davon, besonders bevorzugt thermoplastisches Polyurethan (TPU), Ethylen-Propylen-Dien-Kautschuk (EPDM) und/oder Copolymere oder Gemische davon. Bei unterschiedlichen Materialzusammensetzungen des polymeren Grundkörpers und der Feder enthält die Feder bevorzugt keine Glasfasern, wodurch die Flexibilität der Feder im Vergleich zum Grundkörper weiter erhöht wird.
  • Bei einer unterschiedlichen Materialzusammensetzung der Feder und des polymeren Grundkörpers werden diese bevorzugt gemeinsam coextrudiert.
  • Die Erfindung umfasst des Weiteren eine Isolierverglasung mit mindestens einer ersten Scheibe, einer zweiten Scheibe und einer dritten Scheibe und einem umlaufenden die Scheiben umfassenden erfindungsgemäßen Abstandshalter. Die erste Scheibe liegt dabei an der ersten Scheibenkontaktfläche des Abstandshalters an, während die zweite Scheibe an der zweiten Scheibenkontaktfläche anliegt. Die dritte Scheibe ist in die Nut des Abstandshalters eingesetzt.
  • An den Ecken der Isolierverglasung sind die Abstandshalter bevorzugt über Eckverbinder miteinander verknüpft. Derartige Eckverbinder können beispielsweise als Kunststoffformteil mit Dichtung ausgeführt sein, in dem zwei mit einem Gärungsschnitt versehene Abstandshalter zusammenstoßen. Grundsätzlich sind verschiedenste Geometrien der Isolierverglasung möglich, beispielsweise rechteckige, trapezförmige und abgerundete Formen. Zur Herstellung runder Geometrien kann der erfindungsgemäße Abstandshalter beispielsweise im erwärmten Zustand gebogen werden.
  • Die Scheiben der Isolierverglasung sind mit dem Abstandshalter über eine Dichtung verbunden. Zwischen der ersten Scheibe und der ersten Scheibenkontaktfläche und/oder der zweiten Scheibe und der zweiten Scheibenkontaktfläche ist dazu eine Dichtung angebracht. Die Dichtung umfasst bevorzugt ein Polymer oder silanmodifiziertes Polymer, besonders bevorzugt organische Polysulfide, Silikone, raumtemperaturvernetzenden Silikonkautschuk, hochtemperaturvernetzenden Silikonkautschuk, peroxidischvernetzten Silikonkautschuk und/oder additions-vernetzten-Silikonkautschuk, Polyurethane, Butylkautschuk und/oder Polyacrylate.
  • Im Randbereich zwischen der Außenfläche des erfindungsgemäßen Abstandshalters und den äußeren Kanten der Scheiben ist umlaufend eine äußere Isolierung eingefüllt. Als äußere Isolierung wird beispielsweise eine plastische Abdichtmasse verwendet. Bevorzugt enthält die äußere Isolierung Polymere oder silanmodifizierte Polymere, besonders bevorzugt organische Polysulfide, Silikone, raumtemperturvernetzenden (RTV) Silikonkautschuk, hochtemperturvernetzenden (HTV) Silikonkautschuk, peroxidischvernetzten Silikonkautschuk und/oder additionsvernetzten Silikonkautschuk, Polyurethane, Buthylkautschuk und/oder Polyacrylate.
  • Die erste Scheibe, die zweite Scheibe und/oder die dritte Scheibe der Isolierverglasung enthalten bevorzugt Glas und/oder Polymere, besonders bevorzugt Quarzglas, Borosilikatglas, Kalk-Natron-Glas, Polymethylmethacrylat und/oder Gemische davon.
  • Die erste Scheibe und die zweite Scheibe verfügen über eine Dicke von 2 mm bis 50 mm, bevorzugt 3 mm bis 16 mm, wobei beide Scheiben auch unterschiedliche Dicken haben können. Die dritte Scheibe hat eine Dicke von 1 mm bis 4 mm, bevorzugt von 1 mm bis 3 mm und besonders bevorzugt von 1,5 mm bis 3 mm. Der erfindungsgemäße Abstandshalter ermöglicht durch die spannungsfreie Fixierung eine vorteilhafte Reduzierung der Dicke der dritten Scheibe bei gleichbleibender Stabilität der Verglasung. Bevorzugt ist die Dicke der dritten Scheibe geringer als die Dicken der ersten und zweiten Scheibe. In einer möglichen Ausführungsform beträgt die Dicke der ersten Scheibe 3 mm, die Dicke der zweiten Scheibe 4 mm und die Dicke der dritten Scheibe 2 mm. Eine solche asymmetrische Kombination der Scheibendicken führt zu einer erheblichen Verbesserung der akustischen Dämpfung.
  • Die Isolierverglasung ist mit einem Schutzgas, bevorzugt mit einem Edelgas, vorzugsweise Argon oder Krypton befüllt, die den Wärmeübergangswert im Isolierverglasungszwischenraum reduzieren.
  • Die dritte Scheibe der Isolierverglasung weist bevorzugt eine Low-E-Beschichtung auf.
  • Die dritte Scheibe der Isolierverglasung ist bevorzugt nicht vorgespannt.
  • In einer weiteren Ausführungsform umfasst die Isolierverglasung mehr als drei Scheiben. Dabei kann der Abstandshalter mehrere Nuten enthalten, die weitere Scheiben aufnehmen können. Alternativ könnten auch mehrere Scheiben als Verbundglasscheibe ausgebildet sein.
  • Die Erfindung umfasst ferner ein Verfahren zur Herstellung einer erfindungsgemäßen Isolierverglasung umfassend die Schritte:
    1. a) Anbringen einer ersten Scheibe auf der ersten Scheibenkontaktfläche eines Abstandshalters oder einer zweiten Scheibe auf der zweiten Scheibenkontaktfläche des Abstandshalters,
    2. b) Einschieben einer dritten Scheibe über die Feder in die Nut des Abstandshalters,
    3. c) Anbringen einer ersten Scheibe auf der ersten Scheibenkontaktfläche des Abstandshalters oder einer zweiten Scheibe auf der zweiten Scheibenkontaktfläche des Abstandshalters und
    4. d) Verpressen der Anordnung mindestens umfassend die erste Scheibe, die zweite Scheibe, die dritte Scheibe und den Abstandshalter.
  • Die Reihenfolge der Montage der ersten Scheibe und der zweiten Scheibe hängt dabei von der Position der Feder ab und sollte so erfolgen, dass die Feder nach Verfahrensschritt a) noch zugänglich ist. Befindet sich die Feder oberhalb der ersten Verglasungsinnenraumfläche, so wird zunächst die zweite Scheibe an der zweiten Scheibenkontaktfläche angebracht. Sofern die Feder oberhalb der zweiten Verglasungsinnenraumfläche positioniert ist muss in Schritt a) die erste Scheibe auf der ersten Scheibenkontaktfläche montiert werden. Sollte der Abstandshalter Federn über beiden Verglasungsinnenraumflächen umfassen spielt die Reihenfolge der Montage keine Rolle.
  • Das erfindungsgemäße Verfahren ist besonders vorteilhaft im Hinblick auf eine gesteigerte Effizienz und eine Kostensenkung. Nach dem Stand der Technik werden zur Montage einer Dreifachverglasung mehrere Abstandshalter oder mehrere einzelne Bauteile eines Abstandshalters benötigt. Die passgenaue Justierung dieser Bauteile ist zeitaufwändig und kann nicht auf einer klassischen Doppelverglasungsanlage erfolgen. Ferner ist auch bei Verwendung von Low-E- oder anderen Funktionsbeschichtungen auf der dritten Scheibe nach dem erfindungsgemäßen Verfahren kein Vorspannen der dritten Scheibe notwendig, da der erfindungsgemäße Abstandshalter die Scheibe spannungsfrei in ihrem Umfang fixiert. Darüber hinausgehend kann die dritte Scheibe direkt in einer klassischen dem Fachmann bekannten Doppelverglasungsanlage in den Abstandshalter eingeschoben werden. Eine manuelle Vormontage der Bauteile, die kostspielige Installation zusätzlicher Anlagenkomponenten oder auch ein Zeitverlust bei Mehrfachdurchlauf einer Anlage können somit vermieden werden. Durch den erfindungsgemäßen Abstandshalter kann die Herstellung einer Dreifachverglasung demnach erheblich vereinfacht werden.
  • Bevorzugt werden die Scheibenzwischenräume zwischen erster Scheibe und dritter Scheibe sowie zwischen zweiter Scheibe und dritter Scheibe vor dem Verpressen der Scheibenanordnung mit einem Schutzgas gefüllt.
  • Die Erfindung umfasst des Weiteren die Verwendung eines erfindungsgemäßen Abstandshalters in Mehrfachverglasungen, bevorzugt in Isolierverglasungen, besonders bevorzugt in Dreifachisolierverglasungen.
  • Im Folgenden wird die Erfindung anhand von Zeichnungen näher erläutert. Die Zeichnungen sind rein schematische Darstellungen und nicht maßstabsgetreu. Sie schränken die Erfindung in keiner Weise ein. Es zeigen:
    • Figur 1 eine mögliche Ausführungsform des erfindungsgemäßen Abstandshalters,
    • Figur 2 einen Querschnitt der erfindungsgemäßen Isolierverglasung und
    • Figur 3 ein Flussdiagramm einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens.
  • Figur 1 zeigt einen Querschnitt des erfindungsgemäßen Abstandshalters (I). Der glasfaserverstärkte polymere Grundkörper (1) umfasst eine erste Scheibenkontaktfläche (2.1), eine parallel dazu verlaufende zweite Scheibenkontaktfläche (2.2), eine erste Verglasungsinnenraumfläche (3.1), eine zweite Verglasungsinnenraumfläche (3.2) und eine Außenfläche (4). Zwischen der Außenfläche (4) und der ersten Verglasungsinnenraumfläche (3.1) befindet sich eine erste Hohlkammer (5.1), während eine zweite Hohlkammer (5.2) zwischen der Außenfläche und der zweiten Verglasungsinnenraumfläche (3.2) angeordnet ist. Zwischen der ersten Verglasungsinnenraumfläche (3.1) und der zweiten Verglasungsinnenraumfläche (3.2) verläuft eine Nut (6), die parallel zur ersten Scheibenkontaktfläche (2.1) und zweiten Scheibenkontaktfläche (2.2) angeordnet ist. Oberhalb der der ersten Verglasungsinnenraumfläche (3.1) befindet sich eine Feder (18), deren Federweg innerhalb eines Freiraums (19) zwischen der Feder (18) und der ersten Verglasungsinnenraumfläche (3.1) liegt. Die beiden Seitenflanken (7) der Nut werden einerseits von der Feder (18) und andererseits von der zweiten Verglasungsinnenraumfläche gebildet. Die Bodenfläche der Nut (6) grenzt an die erste Hohlkammer (5.1) sowie die zweite Hohlkammer (5.2). Die Außenfläche (4) des Abstandshalters (I) verläuft senkrecht zu den Scheibenkontaktflächen (2.1, 2.2). Der polymere Grundkörper (1) und die Feder (18) enthalten Styrol-Acryl-Nitryl (SAN) mit etwa 35 Gew. % Glasfaser. Alternativ können der polymere Grundkörper (1) und die Feder (18) auch Polypropylen (PP) mit etwa 40 % Glasfaser enthalten. Die Verglasungsinnenraumflächen (3.1, 3.2) weisen in regelmäßigen Abständen Öffnungen (8) auf, die die Hohlkammern (5.1, 5.2) mit dem oberhalb der Verglasungsinnenraumflächen (3.1, 3.2) liegenden Luftraum verbinden. Der Abstandshalter (I) hat eine Höhe von 8,5 mm und eine Gesamtbreite von 34 mm. Die Nut (6) besitzt eine Tiefe von 3 mm, während die erste Verglasungsinnenraumfläche (3.1) 16 mm und die zweite Verglasungsinnenraumfläche (3.2) 16 mm breit ist. Die Gesamtbreite des Abstandshalters (I) ergibt sich dabei als Summe der Breiten der Verglasungsinnenraumflächen (3.1, 3.2) und der Dicke der in die Nut (6) einzusetzenden dritten Scheibe (15) mit Einlage (9).
  • In einer weiteren bevorzugten Ausführungsform von Figur 1 enthält der polymere Grundkörper (1) Polypropylen (PP) mit etwa 40 Gew.-% Glasfaser, während die Feder (18) thermoplastisches Polyurethan ohne Glasfaser umfasst. Die Feder (18) und der polymere Grundkörper (1) sind dabei coextrudiert. Der übrige Aufbau des Abstandshalters entspricht dem bereits für Figur 1 beschriebenen.
  • Figur 2 zeigt einen Querschnitt der erfindungsgemäßen Isolierverglasung mit einem Abstandshalter (I) gemäß Figur 1. Die erste Scheibe (13) der Dreifachisolierverglasung ist dabei über eine Dichtung (10) mit der ersten Scheibenkontaktfläche (2.1) des Abstandshalters (I) verbunden, während die zweite Scheibe (14) über eine Dichtung (10) mit der zweiten Scheibenkontaktfläche (2.2) verbunden ist. Die Dichtung (10) besteht aus Butylkautschuk. In die Nut (6) des Abstandshalters ist eine dritte Scheibe (15) über eine Einlage (9) eingesetzt. Die Einlage (9) umschließt die Kante der dritten Scheibe (15) und passt sich bündig in die Nut (6) ein. Die Einlage (9) besteht aus Ethylen-Propylen-Dien-Kautschuk. Die Einlage (9) fixiert die dritte Scheibe (15) spannungsfrei und kompensiert eine Wärmeausdehnung der Scheibe. Des Weiteren verhindert die Einlage (9) eine Geräuschentwicklung durch Verrutschen der dritten Scheibe (15). Der Zwischenraum zwischen erster Scheibe (13) und dritter Scheibe (15) ist dabei als der erste Scheibenzwischenraum (17.1) und der Raum zwischen dritter Scheibe (15) und zweiter Scheibe (14) als der zweite Scheibenzwischenraum (17.2) definiert. Die erste Verglasungsinnenraumfläche (3.1) des Abstandshalters (I) liegt dabei im ersten Scheibenzwischenraum (17.1), während die zweite Verglasungsinnenraumfläche (3.2) im zweiten Scheibenzwischenraum (17.2) angeordnet ist. Über die Öffnungen (8) in den Verglasungsinnenraumflächen (3.1, 3.2) sind die Scheibenzwischenräume (17.1, 17.2) mit der jeweils darunter liegenden Hohlkammer (5.1, 5.2) verbunden. In den Hohlkammern befindet sich ein Trockenmittel (11), das aus Molekularsieb besteht. Durch die Öffnungen (8) findet ein Gasaustausch zwischen den Hohlkammern (5.1, 5.2) und den Scheibenzwischenräumen (17.1, 17.2) statt, wobei das Trockenmittel (11) die Luftfeuchtigkeit aus den Scheibenzwischenräumen (17.1, 17.2) entzieht. Auf der Außenfläche (4) des Abstandshalters (I) ist eine Isolationsfolie (12) aufgebracht, die den Wärmeübergang durch den polymeren Grundkörper (1) in die Scheibenzwischenräume (17) vermindert. Die Isolationsfolie (12) kann beispielsweise mit einem Polyurethan-Schmelzklebstoff auf dem polymeren Grundkörper (1) befestigt werden. Die Isolationsfolie (12) umfasst vier polymere Schichten aus Polyethylenterephthalat mit einer Dicke von 12 µm und drei metallische Schichten aus Aluminium mit einer Dicke von 50 nm. Die metallischen Schichten und die polymeren Schichten sind dabei jeweils alternierend angebracht, wobei die beiden äußeren Lagen von polymeren Schichten gebildet werden. Die erste Scheibe (13) und die zweite Scheibe (14) ragen über den Abstandshalter (I) hinaus, so dass ein umlaufender Randbereich entsteht, der mit einer äußeren Isolierung (16) verfüllt ist. Diese äußere Isolierung (16) wird von einem organischen Polysulfid gebildet. Die erste Scheibe (13) und die zweite Scheibe (14) bestehen aus Kalk-Natron-Glas mit einer Dicke von 3 mm, während die dritte Scheibe (15) von Kalk-Natron-Glas mit einer Dicke von 2 mm gebildet wird.
  • Figur 3 zeigt ein Flussdiagramm einer möglichen Ausführungsform des erfindungsgemäßen Verfahrens. Zunächst wird aus vier einzelnen Abstandshaltern (I) ein rechteckiges Abstandshalterprofil geformt, wobei die Ecken des Abstandshalters (I) versiegelt werden. Dieses Versiegeln erfolgt durch Verschweißen, beispielsweise Ultraschallverschweißen, oder alternativ durch die Verwendung von Eckverbindern. Auf der ersten Scheibenkontaktfläche (2.1) und der zweiten Scheibenkontaktfläche (2.2) des Abstandshalters (I) wird daraufhin eine Dichtung (10) angebracht. Die erste Scheibe (13) wird an der ersten Scheibenkontaktfläche (2.1) angebracht und die dritte Scheibe (15) wird danach über die Feder (18) in die Nut (6) eingeschoben. Optional kann vor der Montage der dritten Scheibe (15) eine Einlage (9) an den Kanten der dritten Scheibe (15) angebracht werden. Die zweite Scheibe (14) wird daraufhin an der zweiten Scheibenkontaktfläche (2.2) des Abstandshalters (I) angebracht und die Scheibenanordnung wird miteinander verpresst. Optional kann vor dem Verpressen ein Schutzgas in die Scheibenzwischenräume (17.1, 17.2) eingebracht werden. Eine Vormontage der dritten Scheibe oder ein mehrfaches Durchlaufen der Anlage ist nicht notwendig, da das erfindungsgemäße Verfahren eine Montage der dritten Scheibe (15) direkt in einer klassischen industriellen Doppelverglasungsanlage ermöglicht. Eine derartige Vereinfachung des Produktionsprozesses führt ferner zu einer enormen Kostenersparnis.
  • Bezugszeichenliste
  • I
    Abstandshalter
    1
    polymerer Grundkörper
    2
    Scheibenkontaktflächen
    2.1
    erste Scheibenkontaktfläche
    2.2
    zweite Scheibenkontaktfläche
    3
    Verglasungsinnenraumflächen
    3.1
    erste Verglasungsinnenraumfläche
    3.2
    zweite Verglasungsinnenraumfläche
    4
    Außenfläche
    5
    Kammern
    5.1
    erste Kammer
    5.2
    zweite Kammer
    6
    Nut
    7
    Seitenflanken
    8
    Öffnungen
    9
    Einlage
    10
    Dichtung
    11
    Trockenmittel
    12
    Isolationsfolie
    13
    erste Scheibe
    14
    zweite Scheibe
    15
    dritte Scheibe
    16
    äußere Isolierschicht
    17
    Scheibenzwischenräume
    17.1
    erster Scheibenzwischenraum
    17.2
    zweiter Scheibenzwischenraum
    18
    Feder
    19
    Freiraum

Claims (17)

  1. Abstandshalter (I) für Dreifachisolierverglasungen mindestens umfassend einen polymeren Grundkörper (1) umfassend eine erste Scheibenkontaktfläche (2.1) und eine parallel dazu verlaufende zweite Scheibenkontaktfläche (2.2), eine erste Verglasungsinnenraumfläche (3.1), eine zweite Verglasungsinnenraumfläche (3.2) und eine Außenfläche (4),
    wobei
    - eine Nut (6), zur Aufnahme einer Scheibe parallel zur ersten Scheibenkontaktfläche (2.1) und zweiten Scheibenkontaktfläche (2.2) zwischen der ersten Verglasungsinnenraumfläche (3.1) und der zweiten Verglasungsinnenraumfläche (3.2) verläuft,
    - sich mindestens eine Feder (18) oberhalb der ersten Verglasungsinnenraumfläche (3.1) und/oder zweiten Verglasungsinnenraumfläche (3.2) befindet,
    - mindestens eine Seitenflanke (7) der Nut (6) die Feder (18) umfasst, dadurch gekennzeichnet, dass
    - die Feder (18) und der polymere Grundkörper (1) einstückig ausgeformt sind.
  2. Abstandshalter (I) für Dreifachisolierverglasungen nach Anspruch 1, wobei die Feder (18) und der polymere Grundkörper (1) coextrudiert sind.
  3. Abstandshalter (I) für Dreifachisolierverglasungen nach Anspruch 1 oder 2, wobei der Federweg der Feder (18) innerhalb eines Freiraums (19) zwischen der Feder (18) und der ersten Verglasungsinnenraumfläche (3.1) oder zweiten Verglasungsinnenraumfläche (3.2) liegt.
  4. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 3, wobei der polymere Grundkörper (1) mindestens eine Hohlkammer (5), bevorzugt mindestens eine erste Hohlkammer (5.1), die an die erste Verglasungsinnenraumfläche (3.1) angrenzt, und eine zweite Hohlkammer (5.2), die an die zweite Verglasungsinnenraumfläche (3.2) angrenzt, enthält.
  5. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 4, wobei eine Isolationsfolie (12) auf der Außenfläche (4) des polymeren Grundkörpers (1) aufgebracht ist, die mindestens eine polymere Schicht sowie eine metallische Schicht oder eine keramische Schicht, bevorzugt mindestens zwei metallische Schichten und/oder keramische Schichten, die alternierend mit mindestens einer polymeren Schicht (2b) angeordnet sind, umfasst.
  6. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 5, wobei der polymere Grundkörper (1) ein Trockenmittel (11), bevorzugt Kieselgele, Molekularsiebe, CaCl2, Na2SO4, Aktivkohle, Silikate, Bentonite, Zeolithe und/oder Gemische davon enthält.
  7. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 6, wobei die erste Verglasungsinnenraumfläche (3.1) und/oder die zweite Verglasungsinnenraumfläche (3.2) mindestens eine, bevorzugt mehrere Öffnungen (8) aufweisen, die die Hohlkammer (5) mit den Scheibenzwischenräumen (17.1, 17.2) verbinden.
  8. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 7, wobei der polymere Grundkörper (1) Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), PET/PC, PBT/PC und/oder Copolymere oder Gemische davon enthält.
  9. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 8, wobei die Materialzusammensetzung der Feder (18) der Materialzusammensetzung des polymeren Grundkörpers (1) entspricht.
  10. Abstandshalter (I) für Dreifachisolierverglasungen nach einem der Ansprüche 1 bis 8, wobei die Feder (18) Polyethylen (PE), Polycarbonate (PC), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol/Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polypropylen (PP), PET/PC, PBT/PC, thermoplastisches Polyurethan (TPU), Ethylen-Propylen-Dien-Kautschuk (EPDM) und/oder Copolymere oder Gemische davon, bevorzugt thermoplastisches Polyurethan (TPU), Ethylen-Propylen-Dien-Kautschuk (EPDM) und/oder Copolymere oder Gemische davon enthält.
  11. Isolierverglasung mindestens umfassend eine erste Scheibe (13), eine zweite Scheibe (14) und eine dritte Scheibe (15) und einen die Scheiben umfassenden umlaufenden Abstandshalter (I) nach einem der Ansprüche 1 bis 10,
    wobei
    - die erste Scheibe (13) an der ersten Scheibenkontaktfläche (2.1) anliegt,
    - die zweite Scheibe (14) an der zweiten Scheibenkontaktfläche (2.2) anliegt und
    - die dritte Scheibe (15) in die Nut (6) des Abstandshalters (I) eingesetzt ist.
  12. Isolierverglasung nach Anspruch 11, wobei die dritte Scheibe (15) über eine Einlage (9) in die Nut (6) eingesetzt ist und die Einlage (9) bevorzugt ein Elastomer, besonders bevorzugt Ethylen-Propylen-Dien-Kautschuk, umfasst.
  13. Isolierverglasung nach einem der Ansprüche 11 bis 12, wobei zwischen der ersten Scheibe (13) und der ersten Scheibenkontaktfläche (2.1) und/oder der zweiten Scheibe (14) und der zweiten Scheibenkontaktfläche (2.2) eine Dichtung (10) angebracht ist und die Dichtung (10) bevorzugt ein Polymer oder silanmodifiziertes Polymer, besonders bevorzugt organische Polysulfide, Silikone, raumtemperaturvernetzenden Silikonkautschuk, hochtemperaturvernetzenden Silikonkautschuk, peroxidischvernetzten Silikonkautschuk und/oder additionsvernetzten-Silikonkautschuk, Polyurethane, Butylkautschuk und/oder Polyacrylate, umfasst.
  14. Isolierverglasung nach einem der Ansprüche 11 bis 13, wobei die erste Scheibe (13), die zweite Scheibe (14) und/oder die dritte Scheibe (15) bevorzugt Glas und/oder Polymere, bevorzugt Quarzglas, Borosilikatglas, Kalk-Natron-Glas, Polymethylmethacrylat und/oder Gemische davon, enthalten.
  15. Verfahren zur Herstellung einer Isolierverglasung nach einem der Ansprüche 11 bis 14, wobei zumindest
    a) die erste Scheibe (13) auf der ersten Scheibenkontaktfläche (2.1) des Abstandshalters (I) oder die zweite Scheibe (14) auf der zweiten Scheibenkontaktfläche (14) des Abstandshalters (I) angebracht wird,
    b) die dritte Scheibe (15) über die Feder (18) in die Nut (6) des Abstandshalters (I) eingeschoben wird,
    c) die erste Scheibe (13) auf der ersten Scheibenkontaktfläche (2.1) des Abstandshalters (I) oder die zweite Scheibe (14) auf der zweiten Scheibenkontaktfläche (2.2) des Abstandshalters (I) angebracht wird und
    d) die Anordnung mindestens umfassend die erste Scheibe (13), die zweite Scheibe (14), die dritte Scheibe (15) und den Abstandshalter (I), miteinander verpresst wird.
  16. Verfahren nach Anspruch 15, wobei die Scheibenzwischenräume (17.1, 17.2) zwischen erster Scheibe (13) und dritter Scheibe (15) sowie zwischen zweiter Scheibe (14) und dritter Scheibe (15) mit einem Schutzgas gefüllt werden.
  17. Verwendung eines Abstandshalters (I) nach einem der Ansprüche 1 bis 10 in Dreifachisolierverglasungen.
EP14706625.2A 2013-06-14 2014-02-26 Abstandshalter für dreifachverglasungen Not-in-force EP3008269B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL14706625T PL3008269T3 (pl) 2013-06-14 2014-02-26 Element dystansowy dla oszkleń potrójnych
EP14706625.2A EP3008269B1 (de) 2013-06-14 2014-02-26 Abstandshalter für dreifachverglasungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13172003 2013-06-14
EP14706625.2A EP3008269B1 (de) 2013-06-14 2014-02-26 Abstandshalter für dreifachverglasungen
PCT/EP2014/053714 WO2014198429A1 (de) 2013-06-14 2014-02-26 Abstandshalter für dreifachverglasungen

Publications (2)

Publication Number Publication Date
EP3008269A1 EP3008269A1 (de) 2016-04-20
EP3008269B1 true EP3008269B1 (de) 2017-05-03

Family

ID=48625872

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14706625.2A Not-in-force EP3008269B1 (de) 2013-06-14 2014-02-26 Abstandshalter für dreifachverglasungen

Country Status (4)

Country Link
EP (1) EP3008269B1 (de)
CN (1) CN105308253B (de)
PL (1) PL3008269T3 (de)
WO (1) WO2014198429A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3080377B1 (de) 2013-12-12 2023-09-27 Saint-Gobain Glass France Isolierverglasung mit verbesserter abdichtung
WO2015086459A1 (de) 2013-12-12 2015-06-18 Saint-Gobain Glass France Abstandshalter für isolierverglasungen mit extrudiertem dichtprofil
USD778461S1 (en) 2014-02-26 2017-02-07 Saint-Gobain Glass France Spacer bar for insulating glass panes
US10344525B2 (en) 2014-06-27 2019-07-09 Saint-Gobain Glass France Insulated glazing with spacer, related methods and uses
EP3161238A1 (de) 2014-06-27 2017-05-03 Saint-Gobain Glass France Isolierverglasung mit abstandhalter und verfahren zur herstellung
US10508486B2 (en) 2015-03-02 2019-12-17 Saint Gobain Glass France Glass-fiber-reinforced spacer for insulating glazing unit
WO2016170079A1 (de) 2015-04-22 2016-10-27 Saint-Gobain Glass France Verfahren und vorrichtung zur herstellung einer dreifachisolierverglasung
EP3093423A1 (de) 2015-05-11 2016-11-16 Saint-Gobain Glass France Abstandshalter für isolierverglasungen
USD777345S1 (en) 2015-05-21 2017-01-24 Saint-Gobain Glass France Spacer bar
EP3284891A1 (de) 2016-08-19 2018-02-21 Saint-Gobain Glass France Abstandshalter für isolierverglasungen mit profilierten seitenwangen
FR3057900A1 (fr) * 2016-10-26 2018-04-27 Saint-Gobain Glass France Vitrage multiple comprenant au moins une feuille de verre mince revetue d'un empilement a faible emissivite

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3143541A1 (de) * 1981-11-03 1983-05-19 LSG-Lärmschutz-Gesellscchaft mbH, 4600 Dortmund "mehrscheibenfenster"
US5553440A (en) * 1994-10-20 1996-09-10 Ppg Industries, Inc. Multi-sheet glazing unit and method of making same
EP0765988A1 (de) * 1995-09-26 1997-04-02 General Electric Company Fenstersystem
US6231999B1 (en) 1996-06-21 2001-05-15 Cardinal Ig Company Heat temperable transparent coated glass article
DK0852280T4 (da) 1996-12-20 2009-10-05 Saint Gobain Afstandsholder til flerlags-termoruder
US6115989A (en) * 1998-01-30 2000-09-12 Ppg Industries Ohio, Inc. Multi-sheet glazing unit and method of making same
DE19927683C1 (de) 1999-06-17 2001-01-25 Sekurit Saint Gobain Deutsch Sonnen- und Wärmestrahlen reflektierende Verbundglasscheibe
FR2799005B1 (fr) 1999-09-23 2003-01-17 Saint Gobain Vitrage Vitrage muni d'un empilement de couches minces agissant sur le rayonnement solaire
DE102005039707B4 (de) 2005-08-23 2009-12-03 Saint-Gobain Glass Deutschland Gmbh Thermisch hoch belastbares Low-E-Schichtsystem für transparente Substrate, insbesondere für Glasscheiben
FR2898123B1 (fr) 2006-03-06 2008-12-05 Saint Gobain Substrat muni d'un empilement a proprietes thermiques
DE102009006062A1 (de) 2009-01-24 2010-07-29 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Infrarotstrahlung abschirmendes, für sichtbares Licht transparentes Laminat mit einem für Infrarotstrahlung durchlässigen optischen Fenster, Verfahren zu seiner Herstellung und seiner Verwendung
EP2417319B1 (de) * 2009-04-07 2018-07-04 LISEC Austria GmbH Ein verfahren zur herstellung einer mehrfachglasscheibe
DE102009027297A1 (de) 2009-06-29 2010-12-30 Geze Gmbh Flügel einer Tür, eines Fensters oder dergleichen sowie Verfahren zur Herstellung des Flügels
DE102009057156A1 (de) * 2009-12-05 2011-06-09 Seele Holding Gmbh & Co. Kg Isolierglasscheibe
KR200464384Y1 (ko) * 2010-06-28 2012-12-28 김용섭 삼중 복층유리용 스페이서 어셈블리
US9228389B2 (en) * 2010-12-17 2016-01-05 Guardian Ig, Llc Triple pane window spacer, window assembly and methods for manufacturing same
EP2663724B1 (de) 2011-01-15 2016-08-17 seele group GmbH & Co. KG Abstandshalter für isolierglasscheiben
EP2584135A3 (de) 2011-10-17 2017-01-04 VKR Holding A/S Isolerglas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105308253A (zh) 2016-02-03
WO2014198429A1 (de) 2014-12-18
PL3008269T3 (pl) 2017-10-31
CN105308253B (zh) 2017-11-03
EP3008269A1 (de) 2016-04-20

Similar Documents

Publication Publication Date Title
EP3008269B1 (de) Abstandshalter für dreifachverglasungen
WO2014198431A1 (de) Abstandshalter für dreifachisolierverglasungen
EP3230544B1 (de) Isolierverglasung
EP3230546B1 (de) Abstandshalter für isolierverglasungen
EP3230545A1 (de) Abstandshalter für isolierverglasungen
WO2015086459A1 (de) Abstandshalter für isolierverglasungen mit extrudiertem dichtprofil
WO2015197491A1 (de) Isolierverglasung mit abstandhalter und verfahren zur herstellung
EP3080377B1 (de) Isolierverglasung mit verbesserter abdichtung
EP3781773B1 (de) Abstandhalter mit verstärkungselementen
WO2018050357A1 (de) Abstandshalter für isolierverglasungen, verfahren zur herstellung des abstandshalters und mehrfachisolierverglasung
EP3529445A1 (de) Isolierverglasung, insbesondere eine dreifachisolierverglasung, und verfahren zur herstellung einer isolierverglasung
EP3161237B1 (de) Isolierverglasung mit abstandhalter und verfahren zur herstellung einer solchen sowie deren verwendung als gebäudeverglasung
WO2016150712A1 (de) Fensterrahmen zum verbau einer isolierglaseinheit mit verbindungselement
WO2018137924A1 (de) Isolierverglasung mit erhöhter durchbruchhemmung und einem adapterelement
DE202016008421U1 (de) Abstandshalter für Isolierverglasungen
EP3284891A1 (de) Abstandshalter für isolierverglasungen mit profilierten seitenwangen
WO2019174914A1 (de) Adapterplatte für eine isolierverglasung
EP3093423A1 (de) Abstandshalter für isolierverglasungen
EP3464774B1 (de) Isolierverglasung mit erhöhter durchbruchhemmung
EP3464771B1 (de) Isolierverglasung mit erhöhter durchbruchhemmung und u-förmigem aufnahmeprofil
EP3999709B1 (de) Abstandhalter für isolierglaseinheiten
EP3274539A1 (de) Abstandhalter mit montageprofil für isolierglaseinheiten
WO2019174913A1 (de) Abstandhalter für isolierverglasungen
DE202019106021U1 (de) Abstandshalter mit Öffnungen für Isolierverglasungen
WO2019120788A1 (de) Abstandhalter mit nut für isolierverglasungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 890199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003648

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170503

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003648

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190212

Year of fee payment: 6

Ref country code: PL

Payment date: 20190114

Year of fee payment: 6

Ref country code: GB

Payment date: 20190220

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 890199

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140226

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170503

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014003648

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200226