EP3001840A2 - Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu - Google Patents

Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu

Info

Publication number
EP3001840A2
EP3001840A2 EP14752808.7A EP14752808A EP3001840A2 EP 3001840 A2 EP3001840 A2 EP 3001840A2 EP 14752808 A EP14752808 A EP 14752808A EP 3001840 A2 EP3001840 A2 EP 3001840A2
Authority
EP
European Patent Office
Prior art keywords
fiber
fibers
thermally conductive
reinforced plastic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14752808.7A
Other languages
English (en)
French (fr)
Inventor
Björn DONNER
Annika Ernstberger
Martin Johannes
Christian Seidel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3001840A2 publication Critical patent/EP3001840A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/04Insulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • Thermally conductive, fiber-reinforced plastic for electric motor housings as well as methods of manufacture and use thereof
  • the invention relates to a thermally conductive, fiber-reinforced plastic for electric motor housing, in particular one with low weight, so in lightweight construction.
  • the housings of electric motors are currently realized as standard in metallic design.
  • Metallic materials have established themselves in this area because they have a favorable combination of structural and thermal conductivity properties.
  • Electric motor housings in the field of drives, vehicles, etc. currently consist mainly of metallic alloys, in particular light metals such as aluminum, cast alloys, and magnesium.
  • metallic alloys in particular light metals such as aluminum, cast alloys, and magnesium.
  • rib structures and / or liquid-controlled cooling jackets are used, which consist for example of metallic coils.
  • fiber-reinforced plastics FRPs some of which are used for the substitution of metal parts.
  • fiber-reinforced polymers are used for this, as are known, for example, from DE 10 2012 205530.4. If high demands are placed on cooling, as a rule no polymer fiber composites are used, but light metal alloys such as aluminum. This is particularly because fiber composites have a clear thermal conductivity along the fiber direction, but transversely to the fiber direction, the thermal conductivity of carbon fibers drops to values of up to 0.5 to 1 W / mK. These fiber composites can then be aluminum, which has a thermal conductivity of approx. 230 W / mK does not substitute, regardless of the thermal conductivity in the fiber direction.
  • the object of the present invention is therefore to provide a composite material starting from a fiber composite material for
  • the subject matter of the present invention is a thermally conductive, fiber-reinforced plastic comprising a bedding matrix with reinforcing fibers, wherein highly heat-conductive areas are provided, which are arranged at least partially transversely to the reinforcing fiber direction and which are provided with highly heat-conductive materials such as metal, metal alloys, thermally conductive fibers such as pitch.
  • highly heat-conductive materials such as metal, metal alloys, thermally conductive fibers such as pitch.
  • Alumina, boron nitride and / or Sililziumcarbid are enriched.
  • the present invention likewise provides a process for producing a fiber-reinforced composite material which is highly thermally conductive, wherein either layer stacks are alternately laminated from layers of fiber-reinforced plastic and thermally conductive material or pre-impregnated fiber composite semifinished products are alternately layered with the metal foils and the fiber-reinforced plastics or in the still uncured one Composite of bedding matrix and reinforcing fibers metal pins are introduced.
  • thermally conductive and fiber-reinforced plastic is combined with a lightweight heat exchanger such that a thermally conductive device with cavities is so connected to the thermally conductive and fiber-reinforced plastic, that connect the high heat conductive areas thermally conductive to the lightweight heat exchanger.
  • Cross-connections between the reinforcing fibers are provided in particular as highly heat-conductive regions. These can be present, for example, as metal pins, so-called “Z-pins” and introduced in the thickness direction in the example carbon fiber reinforced plastic material (CFRP).
  • CFRP carbon fiber reinforced plastic material
  • the material for the pins could also be high-thermal-conductivity fiber material, for example based on pitch / aluminum oxide, boron nitride, silicon carbide.
  • the FCK layers ie by the layers, which consist of a bedding matrix and reinforcing fibers
  • the high mechanical strength and low density ensures and realized by the metal pins, the improved thermal conductivity of the composite in the thickness direction, ie in the stacking direction of the layer stack ,
  • a thermally conductive fiber reinforced plastic for example, includes layers of fiber reinforced plastic (FRP) with, for example, a basis weight in the range of 50g / m 2 to 1000g / m 2, and metal pins which vary in diameter and arrangement of.
  • FRP fiber reinforced plastic
  • an expansion of the pin heads to increase the heat input surface Through the tallstatte a local strong improvement of the thermal conductivity in the thickness direction is achieved.
  • the fibers can be polyacrylonitrile as well as pitch based.
  • carbon-based particles such as graphite, ground carbon fibers, ground carbon fibers based on polyacrylonitrile or pitch fibers and metallic particles, for example of aluminum, copper, silver, or ceramic thermally conductive particles such as metal oxide particles such as alumina (A1 2 0 3 ) or boron nitride ( BN), silicon carbide (SiC), silicon oxide (Si0 2 ) are introduced in order to further increase the thermal conductivity can.
  • thermosets such as thermosets, elastomers, thermoplastics, etc. ultimately, depending on the application, biopolymers can be used.
  • Fiber composite plastics based on carbon fibers are used with particular advantage because they exhibit a very high and therefore favorable stiffness or strength-to-weight ratio.
  • Carbon fiber reinforced plastics and glass fiber reinforced plastics are also suitable.
  • fibers such as ceramic fibers, glass fibers, steel fibers, basalt fibers, nylon fibers and / or aramid fibers or combinations of these fiber and / or composite materials are used.
  • a fiber-reinforced plastic which has higher specific mechanical stiffnesses and / or strengths in the fiber direction than the common metals, metal alloys and / or metallic materials such as steel, aluminum, magnesium, etc.
  • the material according to the invention is used to produce stators housings.
  • a stator housing an active motor rotor, which is round, with a motor stator, which also lays around the motor rotor, sheathed.
  • This structure for electric motors is integrated into a housing during installation and cooled.
  • the material according to the invention can be used advantageously as a housing material. It is proposed as a cooling technique to use a combination of thermally conductive and fiber-reinforced plastic with a lightweight heat exchanger.
  • the housing which is made of the thermally conductive fiber-reinforced plastic, still sheathed with another composite material.
  • the further composite material forms a cooling sleeve, are integrated in the cavities through which air, water or other heat exchange medium can be performed.
  • the lightweight heat exchanger is preferably also designed to optimize weight.
  • a liquid-flowed film heat exchanger can be used.
  • To produce two films are connected by deep drawing or hot pressing, leaving between the films a cavity, which is provided for improved flow guidance and for mechanical stabilization of the system with webs or punctiform spacers.
  • This is also known as "twin-sheet technology”.
  • thermoplastic deformation a corresponding radius for adaptation to the stator housing can be realized or the films are made of material, such as thermoplastic elastomers, and / or constructive, flexible, for example, as stretchable meandering.
  • tubes made of thermally conductive fiber-reinforced plastic are because of the reduced weight and the slight shape adaptation also for this application particularly interesting.
  • a layer on the circumference of the housing for example a stator housing, which initially distributes the heat locally dissipated via the Z pins and then permits a surface coupling into the liquid cooling system.
  • a simple embodiment is, for example, the over a thin aluminum sheet / foil, which is cohesively applied to the housing made of thermally conductive, fiber-reinforced plastic.
  • the process for producing the thermally conductive, fiber-reinforced plastic comprises several methods that can be used equally well as needed. Prepreg technology:
  • Pre-impregnated fiber composite semifinished products are alternately layered with the metal foils or the metal fabric and, in the case of the structured foil technique, possibly modified with additional particles for increasing the thermal conductivity in the z direction, for example as dry scattering.
  • Dry fiber layers are soaked by hand with resin and alternately covered with metal foils or metal mesh.
  • a particle-modified resin as described above can also be used.
  • the consolidation of the thermally conductive, fiber-reinforced plastic takes place in both production methods under intrinsic pressure within a vacuum bag at elevated temperature by means of the pressing process.
  • FIG. 1 shows a possible embodiment of a stator housing.
  • the figure shows a stator and a stator housing:

Abstract

Die Erfindung betrifft einen wärmeleitfähigen, faserverstärkten Kunststoff für Elektromotorengehäuse, insbesondere einen mit geringem Gewicht, also in Leichtbauweise. Durch die Erfindung wird erstmals ein Gehäuseaufbau für Elektromotoren mit Materialmodifikationen von faserverstärkten Kunststoffen wie carbonfaserverstärktem Kunststoff zur Steigerung der Wärmeleitfähigkeit in Dickenrichtung durch die Einbringung von höher wärmeleitfähigen Materialien, beispielsweise von Metallstiften, in Kombination mit der Gehäusekühlung über einen flüssigkeitsdurchströmten Kühlmantel. Dadurch wird eine neuartige Technologie für eine wärmeableitende Gehäuserealisierung in Faserverbundtechnik dargestellt.

Description

Beschreibung
Wärmeleitfähiger, faserverstärkter Kunststoff für Elektromotorengehäuse sowie Verfahren zur Herstellung und Verwendung dazu
Die Erfindung betrifft einen wärmeleitfähigen, faserverstärkten Kunststoff für Elektromotorengehäuse, insbesondere einen mit geringem Gewicht, also in Leichtbauweise.
Die Gehäuse von Elektromotoren werden aktuell standardmäßig in metallischer Ausführung realisiert. Metallische Werkstoffe haben sich in diesem Bereich etabliert, da sie eine günstige Eigenschaftskombination aus strukturmechanischen und Wärme- leiteigenschaften aufweisen.
Elektromotorengehäuse im Bereich Antriebe, Fahrzeuge etc. bestehen aktuell hauptsächlich aus metallischen Legierungen, insbesondere Leichtmetallen wie Aluminium, Gusslegierungen, und Magnesium. Für die Kühlung werden dabei oft Rippenstrukturen und/oder flüssigkeitsgeführte Kühlmäntel eingesetzt, die beispielsweise aus metallischen Rohrschlangen bestehen.
Daneben gibt es faserverstärkte Kunststoffe FVKs, die teil- weise zur Substitution von Metallteilen eingesetzt werden. Beispielsweise werden dazu faserverstärkte Polymere eingesetzt, wie sie beispielsweise aus der DE 10 2012 205530.4 bekannt sind. Werden hohe Anforderungen an die Entwärmung gestellt, werden in der Regel keine polymeren Faserverbunde eingesetzt, sondern Leichtmetalllegierungen wie Aluminium. Dies insbesondere deshalb, weil Faserverbunde zwar entlang der Faserrichtung eine deutliche Wärmeleitfähigkeit haben, allerdings quer zur Faserrichtung sinkt die Wärmeleitfähigkeit bei Kohlefasern auf Werte bis zu 0,5 bis 1 W/mK. Diese Faserverbundkunststoffe können dann Aluminium, das eine Wärmeleitfähigkeit von ca. 230 W/mK hat, unabhängig von der Wärmeleitfähigkeit in Faserrichtung nicht substituieren.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Ver- bundmaterial ausgehend von einem Faserverbundwerkstoff zur
Verfügung zu stellen, das Leichtmetalllegierungen im Elektro- motorengehäusebau substituieren kann, weil es eine ausreichende Wärmeleitfähigkeit, insbesondere auch quer zur Faserverstärkung, hat.
Diese Aufgabe wird durch den Gegenstand der vorliegenden Erfindung, wie er in der Beschreibung, der Figur und den Ansprüchen offenbart ist, gelöst. Dementsprechend ist Gegenstand der vorliegenden Erfindung ein wärmeleitfähiger, faserverstärkter Kunststoff, eine bettende Matrix mit Verstärkungsfasern umfassend, wobei hochwärmeleit- fähige Bereiche vorgesehen sind, die zumindest teilweise quer zur Verstärkungsfaserrichtung angeordnet sind und die mit hochwärmeleitfähigen Materialien wie Metall, Metalllegierungen, wärmeleitfähigen Fasern wie Pech-, Aluminiumoxid-, Bornitrid- und/oder Sililziumcarbid angereichert sind.
Ebenso ist Gegenstand der vorliegenden Erfindung ein Verfah- ren zur Herstellung eines gut wärmeleitfähigen faserverstärkten Verbundmaterials, wobei entweder Schichtstapel wechselweise aus Schichten von Faserverstärktem Kunststoff und wärmeleitfähigem Material laminiert oder vorimprägnierte Faserverbundhalbzeuge abwechselnd mit den Metallfolien und den fa- serverstärkten Kunststoffen geschichtet oder in den noch unausgehärteten Verbund von bettender Matrix und Verstärkungsfasern Metallstifte eingebracht werden.
Der Begriff "hochwärmeleitfähig" wird vorliegend in Relation zur Wärmeleitfähigkeit von faserverstärkten Kunststoffen, nicht in Relation zu typischen wärmeleitfähigen Materialien wie Metall gesehen. Nach einer vorteilhaften Ausführungsform wird der wärmeleit- fähige und faserverstärkte Kunststoff mit einem Leichtbauwärmetauscher kombiniert derart, dass eine wärmeleitfähige Vorrichtung mit Hohlräumen so mit dem wärmeleitfähigen und fa- serverstärkten Kunststoff verbunden wird, dass die hochwärme- leitfähigen Bereiche wärmeleitend an den Leichtbauwärmetauscher anschließen.
Als hochwärmeleitfähige Bereiche sind insbesondere Querver- bindungen zwischen den Verstärkungsfasern vorgesehen. Diese können beispielsweise als Metallstifte, so genannte "Z-Pins" vorliegen und in Dickenrichtung in das beispielsweise carbonfaserverstärkte Kunststoffmaterial (CFK) eingebracht werden. So wird beispielsweise vorgeschlagen, für ein Motorengehäuse eine stoffliche Kombination von CFK und Metallen, insbesondere Kupfer/Aluminium, in der Weise durchzuführen, dass Metall - stifte in Dickenrichtung in das CFK eingebracht werden. Alternativ könnte als Material für die Pins auch hochwärmeleit- fähiges Fasermaterial, beispielsweise auf der Basis von Pech- / Aluminiumoxid, Bornitrid, Siliziumcarbid, eingesetzt werden .
Dabei wird durch die FCK-Schichten, also durch die Schichten, die aus einer bettenden Matrix und Verstärkungsfasern bestehen, die hohe mechanische Belastbarkeit bei gleichzeitig geringer Dichte gewährleistet und durch die Metallstifte die verbesserte Wärmeleitfähigkeit des Verbundes in Dickenrichtung, also in Stapelrichtung des Schichtstapels, realisiert.
Ein wärmeleitfähiger Faserverstärkter Kunststoff umfasst beispielsweise Schichten aus faserverstärktem Kunststoff (FVK) mit beispielsweise einem Flächengewicht im Bereich von 50g/m2 bis 1000g/m2 und Metallstiften, deren Durchmesser und Anord- nung variieren.
Vorteilhaft ist beispielsweise eine Aufweitung der Stiftköpfe zur Vergrößerung der Wärmeeinkopplungsfläche . Durch die Me- tallstifte wird eine lokale starke Verbesserung der Wärmeleitfähigkeit in Dickenrichtung erzielt.
Zusätzlich zur Variation der Metallstifte sind auch Varianten der Verstärkungsfasern denkbar. So können die Fasern sowohl polyacrylnitril - als auch pechbasiert sein. Zusätzlich hierzu können kohlenstoffbasierte Partikel, wie Graphit, gemahlene Kohlenstofffasern, gemahlene Kohlenstofffasern auf Basis von Polyacrylnitril- oder Pechfasern sowie metallische Partikel, beispielsweise aus Aluminium, Kupfer, Silber, oder keramische wärmeleitfähige Partikel wie Metalloxidpartikel wie Aluminiumoxid (A1203) oder Bornitrid (BN) , Siliziumkarbid (SiC) , Siliziumoxid (Si02) eingebracht werden, um die Wärmeleitfähigkeit weiter steigern zu können.
Als bettende Matrix werden Polymere eingesetzt wie Duromere, Elastomere, Thermoplaste etc. letztendlich können je nach Anwendung auch Biopolymere eingesetzt werden. Als besonders vorteilhaft werden Faserverbundkunststoffe auf Basis von Kohlenstofffasern eingesetzt, denn diese zeigen einen ausgesprochen hohes und damit günstiges Steifigkeit- bzw. Festigkeits- zu Gewichts-Verhältnis. Auch Kohlefaserverstärkte Kunststoffe und Glasfaserverstärkte Kunststoffe sind ge- eignet. Daneben kommen Fasern wie Keramikfasern, Glasfasern, Stahlfasern, Basaltfasern, Nylonfasern und/oder Aramidfasern oder Kombinationen dieser Faser- und/oder Verbund-Materialien auszuführen . Besonders bevorzugt ist die Ausführungsform der Erfindung bei der ein faserverstärkter Kunststoff eingesetzt wird, der in Faserrichtung höhere spezifische mechanische Steifigkeiten und/oder Festigkeiten aufweist als die gängigen Metalle, Metalllegierungen und/oder metallischen Werkstoffe wie Stahl, Aluminium, Magnesium, etc. Durch diese gezielte Nutzung der anisotropen mechanischen Eigenschaften des faserverstärkten Kunststoffes kann die Masse der tragenden Elemente eines Ge- häuses deutlich reduziert werden, wodurch deutlich gesteigerte Leistungsgewichte der Motoren erreicht werden können.
Insbesondere kann auch zwischen Langfaser und Kurzfaserver- Stärkung gewählt werden, was die Anpassung des jeweiligen Kunststoffes auf spezielle Bedürfnisse weiter verbessert. Beispielsweise dient das erfindungsgemäße Material zur Herstellung von Statorengehäusen. Bei einem Statorengehäuse wird ein aktiver Motorrotor, der rund ist, mit einem Motorstator, der sich ebenfalls rund um den Motorrotor legt, ummantelt.
Dieser Aufbau für Elektromotoren wird beim Verbau in ein Gehäuse integriert und gekühlt. Hier kann beispielsweise das Material gemäß der Erfindung als Gehäusematerial vorteilhaft eingesetzt werden. Dabei wird als Kühltechnik vorgeschlagen, eine Kombination des wärmeleitfähigen und faserverstärkten Kunststoffes mit einem Leichtbauwärmetauscher einzusetzen.
Dabei wird das Gehäuse, das aus dem wärmeleitfähigen Faser- verstärkten Kunststoff ist, noch mit einem weiteren Verbundmaterial ummantelt. Das weitere Verbundmaterial bildet eine Kühlmanschette, in der Hohlräume integriert sind, durch die Luft, Wasser oder ein sonstiges Wärmetauschermedium geführt werden kann.
Um das Leichtbaupotential eines Gehäuses aus wärmeleitfähigem Faserverstärktem Kunststoff besonders gut nutzen zu können, wird bevorzugt der Leichtbauwärmetauscher auch gewichtsoptimiert ausgeführt .
Beispielsweise kann ein flüssigkeitsdurchströmter Folienwärmetauscher eingesetzt werden. Zur Herstellung werden zwei Folien über Tiefziehen oder Heißverpressen verbunden, wobei zwischen den Folien ein Hohlraum bleibt, der zur verbesserten Strömungsführung und zur mechanischen Stabilisierung des Systems mit Stegen oder punktförmigen Abstandshaltern versehen ist. Dies wird auch als "Twin-Sheet-Technologie" bezeichnet. Durch thermoplastische Umformung kann ein entsprechender Radius zur Anpassung an das Statorengehäuse realisiert werden oder die Folien werden stofflich, beispielsweise als thermoplastische Elastomere, und/oder konstruktiv, beispielsweise als dehnbare Mäanderelemente flexibel ausgeführt.
Neben der klassischen Ausführung von flüssigkeitsdurchström- ten Wärmetauscherrohren und/oder Kühlschlangen aus Metall wie beispielsweise aus Kupfer, Aluminium, und ähnlichem, die ent- sprechend in Umfangsrichtung oder senkrecht dazu mäanderför- mig gebogen werden, sind Rohre aus wärmeleitfähigem Faserverstärktem Kunststoff wegen des reduzierten Gewichts und der leichten Formanpassung auch für diese Anwendung besonders interessant .
Für beide Flüssigkeitskühlsysteme ist es vorteilhaft auf dem Gehäuseumfang, beispielsweise eines Statorengehäuses, eine Schicht aufzubringen, die die über die Z-Pins lokal abgeleitete Wärme zunächst flächig verteilt und dann eine flächige Einkopplung in das Flüssigkeitskühlsystem erlaubt. Eine einfache Ausführung ist beispielsweise die über ein dünnes Aluminiumblech /-folie, welche Stoffschlüssig auf das Gehäuse aus wärmeleitfähigem, faserverstärktem Kunststoff aufgebracht wird .
Das Verfahren zur Herstellung des wärmeleitfähigen, faserverstärkten Kunststoffes umfasst mehrere Methoden, die je nach Bedarf gleichgut verwendbar sind. Prepreg-Technologie :
Vorimprägnierte Faserverbundhalbzeuge werden abwechselnd mit den Metallfolien bzw. dem Metallgewebe geschichtet und im Falle der strukturierten Folientechnik evtl. mit zusätzlichen Partikeln für die Steigerung der Wärmeleitfähigkeit in z- Richtung, beispielsweise als Trockenstreuung eingebracht, modifiziert . Handlaminieren :
Trockene Faserlagen werden per Hand mit Harz getränkt und abwechselnd mit Metallfolien bzw. Metallgeweben belegt. Zur Steigerung der Dicken-Leitfähigkeit kann auch ein, wie oben beschriebenes partikelmodifiziertes, Harz eingesetzt werden.
Stifteinbringung :
Die Einbringung der Stifte erfolgt in den noch unausgehär- teten Verbund, indem passende Löcher unter Verwendung eines speziellen Stanzwerkzeuges in den Schichtaufbau eingebracht werden. Manuell werden anschließend die passenden Metallstifte eingebracht . Aushärtung:
Die Konsolidierung des wärmeleitfähigen, faserverstärkten Kunststoffs erfolgt bei beiden Herstellungsmethoden unter intrinsischem Druck innerhalb eines Vakuumsacks bei erhöhter Temperatur mit Hilfe des Pressverfahrens.
Im Folgenden wird die Erfindung noch anhand einer Figur, die ein mögliches Ausführungsbeispiel für ein Statorengehäuse zeigt, näher erläutert. Die Figur zeigt einen Stator und ein Statorengehäuse:
Zu erkennen ist von innen nach außen der Aktivteil Motorrotor 1, ihn umgebend der Aktivteil Motorstator 2, beide von dem Gehäuse 3, das aus wärmeleitfähigem, faserverstärkten Kunst- Stoff gemäß der Erfindung mit den Z-Pins 4 hergestellt ist, ummantelt. Ganz außen befindet sich in dem hier gezeigten Beispiel noch der Leichtbauwärmetauscher 5, der das Gehäuse 3 aus wärmeleitfähigem, faserverstärkten Kunststoff umgibt. Durch die Erfindung wird erstmals ein Gehäuseaufbau für
Elektromotoren mit Materialmodifikationen von faserverstärkten Kunststoffen wie carbonfaserverstärktem Kunststoff zur Steigerung der Wärmeleitfähigkeit in Dickenrichtung durch die Einbringung von höher wärmeleitfähigen Materialien, beispielsweise von Metallstiften, in Kombination mit der
Gehäusekühlung über einen flüssigkeitsdurchströmten Kühlmantel. Dadurch wird eine neuartige Technologie für eine wärme- ableitende Gehäuserealisierung in Faserverbundtechnik dargestellt .

Claims

Patentansprüche
1. Wärmeleitfähiger, faserverstärkter Kunststoff, eine bet- tende Matrix mit Verstärkungsfasern umfassend, wobei hochwär- meleitfähige Bereiche vorgesehen sind, die zumindest teilweise quer zur Verstärkungsfaserrichtung angeordnet sind und die mit hochwärmeleitfähigen Materialien angereichert sind.
2. Wärmeleitfähiger, faserverstärkter Kunststoff nach Anspruch 1, wobei das hochwärmeleitfähige Material beispielsweise ein Metall, eine Metalllegierung, wärmeleitfähigen Fasern wie Pech-, Aluminiumoxid-, Bornitrid- und/oder
Sililziumcarbid umfasst.
3. Wärmeleitfähiger, faserverstärkter Kunststoff nach einem der vorstehenden Ansprüche, der mit einem Wärmetauscher in Leichtbauweise derart kombiniert vorliegt, dass die hochwärmeleitfähigen Bereiche wärmeleitend mit dem Wärmetauscher in Leichtbauweise gekoppelt sind.
4. Wärmeleitfähiger, faserverstärkter Kunststoff nach einem der vorstehenden Ansprüche, bei dem Verstärkungsfasern, ausgewählt sind aus der Gruppe folgender Verbindungen: Kohlen- stofffasern, Polyacrylnitril - und/oder Pechfasern, keramische Fasern, Fasern aus Aluminiumoxid, Bornitrid und/oder
Siliziumcarbid, Glasfasern, Stahlfasern, Basaltfasern, Nylonfasern und/oder Aramidfasern, sowie beliebige Mischungen der vorstehenden Fasermaterialien.
5. Wärmeleitfähiger, faserverstärkter Kunststoff nach einem der vorstehenden Ansprüche, wobei noch kohlenstoffbasierte Partikel, wie Graphit, gemahlene Kohlenstofffasern, gemahlene Kohlenstofffasern auf Basis von Polyacrylnitril- oder Pechfa- sern sowie metallische Partikel, beispielsweise aus Aluminium, Kupfer, Silber, oder keramische wärmeleitfähige Partikel wie Metalloxidpartikel wie Aluminiumoxid (A1203) oder Bornitrid (BN) , Siliziumkarbid (SiC) , Siliziumoxid (Si02) eingebracht sind.
6. Warmeleitfähiger, faserverstärkter Kunststoff nach einem der vorstehenden Ansprüche, wobei die bettende Matrix Polymere wie Duromere, Elastomere, Thermoplaste und/oder Biopolymere umfasst.
7. Verfahren zur Herstellung eines gut warmeleitfähigen, fa- serverstärkten Verbundmaterials, wobei entweder Schichtstapel wechselweise aus Schichten von faserverstärktem Kunststoff und wärmeleitfähigem Material laminiert oder vorimprägnierte Faserverbundhalbzeuge abwechselnd mit den Metallfolien und den faserverstärkten Kunststoffen geschichtet oder in den noch unausgehärteten Verbund von bettender Matrix und Verstärkungsfasern Metallstifte eingebracht werden.
8. Verwendung eines wärmeleitfähigen, faserverstärkten Kunststoffes nach einem der Ansprüche 1 bis 6 zur Herstellung ei- nes Gehäuses für einen Elektromotor.
9. Verwendung nach Anspruch 8 in Kombination mit einem
Leichtbauwärmetauscher .
EP14752808.7A 2013-09-30 2014-08-08 Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu Withdrawn EP3001840A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310219765 DE102013219765A1 (de) 2013-09-30 2013-09-30 Wärmeleitfähiger, faserverstärkter Kunststoff für Elektromotorengehäuse sowie Verfahren zur Herstellung und Verwendung dazu
PCT/EP2014/067084 WO2015043814A2 (de) 2013-09-30 2014-08-08 Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu

Publications (1)

Publication Number Publication Date
EP3001840A2 true EP3001840A2 (de) 2016-04-06

Family

ID=51359367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14752808.7A Withdrawn EP3001840A2 (de) 2013-09-30 2014-08-08 Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu

Country Status (3)

Country Link
EP (1) EP3001840A2 (de)
DE (1) DE102013219765A1 (de)
WO (1) WO2015043814A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015111788A1 (de) * 2015-07-21 2017-01-26 Deutsches Zentrum für Luft- und Raumfahrt e.V. Gleitlagervorrichtung
DE102016207577A1 (de) * 2016-05-03 2017-11-09 Volkswagen Aktiengesellschaft Gehäuseanordnung für eine elektrische Maschine
DE102016211127A1 (de) * 2016-06-22 2017-12-28 BSH Hausgeräte GmbH Elektrische Maschine für ein Haushaltsgerät mit zumindest teilweise umspritzten Stator, Pumpe, Haushaltsgerät sowie Verfahren
US10476322B2 (en) * 2016-06-27 2019-11-12 Abb Schweiz Ag Electrical machine
CN109149821A (zh) * 2018-11-07 2019-01-04 珠海格力电器股份有限公司 电机转子和永磁电机
DE102021101522A1 (de) 2021-01-25 2022-07-28 Pierburg Gmbh Antriebsvorrichtung für eine Komponente eines Verbrennungsmotors
CN115085418B (zh) * 2022-07-08 2023-03-10 南京航空航天大学 一种超混杂复合材料转子磁钢表面隔热结构及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127600A1 (en) * 2002-07-24 2004-07-01 Moritz Bauer Fiber-reinforced ceramic brake linings
DE10319852B3 (de) * 2003-05-03 2004-12-09 Daimlerchrysler Ag Verbundmaterial und Verfahren zur Herstellung von Verbundmaterial

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962348A (en) * 1998-03-05 1999-10-05 Xc Associates Method of making thermal core material and material so made
DE102004022934A1 (de) * 2004-05-10 2005-12-08 Linde Ag Thermischer Schild
EP1860706A1 (de) * 2006-05-26 2007-11-28 H.-J. Stracke GFK basiertes Thermo-Photovoltaik Dacheindeckungs- und Wandverkleidungselement
DE102011003313A1 (de) * 2011-01-28 2012-08-02 Siemens Aktiengesellschaft Faserverbundkunststoff sowie Herstellungsverfahren dazu
JP2013027228A (ja) * 2011-07-25 2013-02-04 Seiko Epson Corp 電気機械装置、並びに、電機機械装置を用いた移動体およびロボット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127600A1 (en) * 2002-07-24 2004-07-01 Moritz Bauer Fiber-reinforced ceramic brake linings
DE10319852B3 (de) * 2003-05-03 2004-12-09 Daimlerchrysler Ag Verbundmaterial und Verfahren zur Herstellung von Verbundmaterial

Also Published As

Publication number Publication date
WO2015043814A3 (de) 2015-10-29
WO2015043814A2 (de) 2015-04-02
DE102013219765A1 (de) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2015043814A2 (de) Wärmeleitfähiger, faserverstärkter kunststoff für elektromotorengehäuse sowie verfahren zur herstellung und verwendung dazu
EP1737633B1 (de) Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings
DE102014100035B4 (de) Verbundwerkstoff-konstruktionsplatte und verfahren zum bilden solch einer platte
DE102015221078A1 (de) Faserverstärktes Metallbauteil für ein Luft- oder Raumfahrzeug und Herstellungsverfahren für faserverstärkte Metallbauteile
WO2018234316A1 (de) Verfahren und vorrichtung zum herstellen eines bauteils aus einem faserverbundwerkstoff
WO2008028973A1 (de) Verfahren zur herstellung eines sandwich-bauteils mit einem wabenkern und der so erhaltene sandwich-bauteil
DE102017213319A1 (de) Kurbelwellenanordnungen und verfahren zur herstellung derselben
EP2785503B1 (de) Verfahren zur herstellung eines formwerkzeugs sowie ein danach hergestelltes formwerkzeug
EP2984701A1 (de) Wärmeübertragerbauteil
EP2984700A1 (de) Wärmeübertragerbauteil
CN106103061A (zh) 用于制造由复合材料制成的部件的方法,部件包括形成力插入零件的至少一零件或局部厚度零件
WO2011073433A1 (de) Verfahren und vorrichtung zur herstellung von faserverbundwerkstoffen mit mikrowellenhärtung, und die dadurch erhaltene faserverbundstruktur
DE60213557T2 (de) Verfahren zum herstellen von einem läuferblock
DE102010014545A1 (de) Verfahren und Vorrichtung zur Herstellung eines Komposit-Formteils aus faserverstärktem Kunststoff
EP2626218B1 (de) Verfahren zum Herstellen einer Radfelge aus Faserverbundwerkstoff und Radfelge für ein Kraftfahrzeug
EP1254346B1 (de) Verbundwärmetauscher mit verstärkten verbindungen
DE102012003734A1 (de) Verfahren zur Herstellung eines Bauteils aus einem Hybridlaminat
DE112016005215T5 (de) Verfahren zur Herstellung eines Faser-Metall-Laminat-Materials
DE102012217543A1 (de) Verbundwerkstoff mit Faserverstärkung, Verwendung dazu und Elektromotor
JP2007016122A (ja) 炭素繊維強化複合材料
DE102018127661A1 (de) Magnetkern und Verfahren zur Herstellung eines Magnetkerns
DE102019216073B4 (de) Verfahren zur Herstellung einer Leichtbau-Turbinenschaufel als Verbundbauteil sowie eine mit dem Verfahren hergestellte Leichtbau-Turbinenschaufel
EP2522494A2 (de) Verfahren zur Herstellung von Hybridbauteilen aus faserverstärktem Kunststoff mit integriertem metallischem Formwerkzeug
WO2019081774A1 (de) Verfahren zur herstellung von gussteilen mit mikrokanälen
DE102020125149A1 (de) Verfahren und Vorrichtung zum Herstellen eines Objekts mit einer Basis und wenigstens einer Hohlraumfüllung und Objekt mit einer Basis und wenigstens einer Hohlraumfüllung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151228

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210302