EP2994641B1 - Ensemble de pompe à entraînement magnétique - Google Patents
Ensemble de pompe à entraînement magnétique Download PDFInfo
- Publication number
- EP2994641B1 EP2994641B1 EP14719796.6A EP14719796A EP2994641B1 EP 2994641 B1 EP2994641 B1 EP 2994641B1 EP 14719796 A EP14719796 A EP 14719796A EP 2994641 B1 EP2994641 B1 EP 2994641B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- external thread
- hub
- external
- rotor
- drive shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 125000006850 spacer group Chemical group 0.000 claims description 12
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000004880 explosion Methods 0.000 description 3
- 239000002360 explosive Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 240000001439 Opuntia Species 0.000 description 1
- 235000004727 Opuntia ficus indica Nutrition 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/064—Details of the magnetic circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D1/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
- F04D13/025—Details of the can separating the pump and drive area
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0613—Special connection between the rotor compartments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0626—Details of the can
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/043—Shafts
- F04D29/044—Arrangements for joining or assembling shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/053—Shafts
- F04D29/054—Arrangements for joining or assembling shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/18—Rotors
- F04D29/22—Rotors specially for centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/586—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps
- F04D29/5893—Cooling; Heating; Diminishing heat transfer specially adapted for liquid pumps heat insulation or conduction
Definitions
- the invention relates to a magnetic coupling pump assembly having a housing formed by a pump housing of the pump assembly, a containment shell hermetically seals a chamber enclosed by it against the interior formed by the pump housing, an impeller shaft rotatably driven about a rotation axis, an impeller arranged at one end of the impeller shaft an inner rotor arranged at the other end of the impeller shaft, a drive motor, a drive shaft rotatably driven by the drive motor and an outer rotor cooperating with the inner rotor and disposed on the drive shaft, the outer rotor having a hub and a first support member, the outer rotor between the hub and the first support member has a hollow cylindrical portion and the axial fixing of the outer rotor to the drive shaft is effected by a fastener.
- Such a pump arrangement is known from WO 2005/017362 A1 known.
- Explosion-proof block motors in particular standard motors in flange design, allow only a certain heat input into the motor at the interfaces, in particular flange and shaft, such that the maximum permissible temperatures of the motor are not exceeded.
- the object of the invention is to provide a pump assembly which allows for increased temperature of the medium to be delivered, while maintaining the explosion protection of the drive motor, a reduction of the axial and radial space and ease of assembly.
- the fastening element has a first external thread at one end and a second external thread at the end opposite the first external thread, wherein between the first external thread and the second external thread is a spacer holding portion whose outer diameter is larger than that Outer diameter of the first external thread and the second external thread.
- the hub is not disposed directly on the first support member, but the hollow cylinder-like portion is connected downstream of the drive shaft, the heat input is reduced by the outer magnet carrier in the drive shaft and thus in the drive motor.
- the hollow-cylindrical portion and the hub with respect to the first support member are formed thin-walled.
- the hollow cylindrical portion and the hub each have a wall with a certain wall thickness, wherein the wall thickness of the wall of the hollow cylindrical portion and the wall thickness of the wall of the hub is smaller than the radius of the drive shaft and chosen so that in each case a safe torsion - And bending fatigue strength is guaranteed.
- the axial fixing of the outer magnetic carrier to the drive shaft is effected by a fastening element.
- the fastening element has at one end a first external thread and at the end opposite the first external thread second external thread, wherein between the first external thread and the second external thread is a Distanzhalteabrisk whose outer diameter is greater than the outer diameter of the first external thread and the second external thread.
- the distance holding portion has on the side close to the first external thread side a collar with enlarged outer diameter, whereby the fastening element can be positioned exactly axially and uncomplicated.
- the spacer portion on the side close to the first external thread may taper conically.
- a radial threaded bore is formed in the hub into which a screw is screwed.
- the Fig. 1 shows a pump assembly 1 in the form of a magnetic coupling pump assembly with a pump part and an electrical part.
- the pump part of the pump arrangement 1 has a multipart pump housing 2 of a centrifugal pump, which comprises a hydraulic housing 3 designed as a spiral housing, a housing cover 4, a bearing support lantern 5 and a connecting element 6.
- the hydraulic housing 3 has an inlet opening 7 for sucking in a conveyed medium and an outlet opening 8 for ejecting the conveyed medium.
- the housing cover 4 is arranged at the inlet opening 7 opposite side of the hydraulic housing 3.
- the connecting element 6 is attached to the housing cover 4 opposite side of the bearing bracket lantern 5.
- a drive motor 9 forming the electrical part is arranged on the opposite side of the bearing support lantern 5.
- a containment shell 10 is fastened to the side of the housing cover 4 facing away from the hydraulic housing 3 and extends at least partially through an inner space 11 bounded by the pump housing 2, in particular by the housing cover 4, by the bearing support lantern 5 and by the connecting element 6.
- the containment shell 10 seals one of enclosed chamber 12 hermetically against the interior 11 from.
- a impeller shaft 13 extends from a limited by means of the hydraulic housing 3 and the housing cover 4 flow chamber 14 through an opening provided in the housing cover 4 opening 15 in the chamber 12th
- An impeller 16 is fastened to a shaft end of the impeller shaft 13 located within the flow chamber 14, an inner rotor 17 arranged inside the chamber 12 is arranged at the opposite end of the shaft, which has two shaft sections 13a, 13b with increasing diameters.
- the inner rotor 17 is equipped with a plurality of magnets 18, which are arranged on the side of the inner rotor 17 facing the gap pot 10.
- a bearing assembly 19 operatively connected to the impeller shaft 13 rotatably driven about the rotation axis A is arranged.
- the drive motor 9 comprises a drive shaft 20.
- the drive shaft 20 which can be driven about the axis of rotation A is arranged essentially coaxially to the rotor shaft 13.
- the drive shaft 20 extends into the connecting element 6 and possibly at least partially into the bearing support lantern 5.
- a plurality of magnets 21 supporting outer rotor 22 is arranged.
- the magnets 21 are arranged on the side of the outer rotor 22 facing the containment shell 10.
- the outer rotor 22 extends at least partially over the containment shell 10 and interacts with the inner rotor 17 together, such that the rotating outer rotor 22 by means of magnetic forces the inner rotor 17 and thus the impeller shaft 13 and the impeller 16 is also placed in a rotational movement.
- the Indian Fig. 2 outer rotor 22 shown enlarged comprises a hub 23 with an outer circumferential surface 24, a hollow cylinder-like portion 25 formed on the side facing away from the drive motor 9 hollow cylindrical portion 25 with a cell 27 bounded by a wall 26.
- the outer rotor 22 further comprises a facing on the gap pot 10 Side of the hollow cylinder-like portion 25 formed or arranged flange-like first support member 28 and formed on the first support member 28 or arranged hollow cylinder-like second support member 29 which at least partially surrounds the can 10 and on which the magnets 21 are arranged.
- First and second support members 28, 29 are shown as two interconnectable parts, but may also be made as one part.
- the hollow-cylindrical section 25 has a wall 25a with a wall thickness S1 and the hub 23 has a wall 23a with a wall thickness S2.
- the hollow cylindrical portion 25 and the hub 23 are formed thin-walled with respect to the first support member 28.
- the wall thicknesses S1, S2 are substantially smaller than the thickness d1 of the first carrier element 28.
- the wall thickness S1 of the wall 25a of the hollow cylinder-like portion 25 and the wall thickness S2 of the wall 23a of the hub 23 are selected so that in each case a secure torsional and bending fatigue is ensured.
- the wall thicknesses S1, S2 are also smaller than the radius r of the drive shaft 20.
- the wall thickness S1 of the wall 25a is smaller than the wall thickness S2 of the wall 23a.
- a through hole 30 extends into the cell 27 of the arranged between the hub 23 and the first support member 28 hollow cylindrical portion 25 and forms a hub inner surface 31.
- the hub inner surface 31 is a parallel to the axis of rotation
- a extending axial groove 32 is provided in the hub inner surface 31 .
- a keyway 33 oriented toward the axial groove 32 is formed, into which the motor torque is transmitted to the hub 23 of the outer rotor 22 a feather key 34 is inserted.
- the axial fixing of the outer rotor 22 to the drive shaft 20 is effected by a fastening element 35.
- the fastening element 35 has at one end a first external thread 37 which can be screwed into a threaded bore 36 formed coaxially with the axis of rotation A on the end face of the drive shaft 20, and a second external thread 38 at the end opposite the first external thread 37. Between the first external thread 37 and the second external thread 38, a spacer holding portion 39 is formed, whose outer diameter is greater than the outer diameter of the first external thread 37 and the second external thread 38th
- the spacer holding section 39 has, on the side close to the first external thread 37, a collar 40 with an enlarged outside diameter, which bears against the drive shaft 20.
- the collar 40 is preferably listed as a hexagon or has at least two key surfaces.
- the spacer holding section 39 on the side close to the first external thread 37 may taper conically and come into abutment with the conical inlet region of the threaded bore 36.
- the second external thread 38 extends through an opening 41 in the wall 26, wherein the spacer holding portion 39 of the fastening element 35 is in contact with the wall 26. With a screwed onto the second external thread 38 nut 42, the axial fixing of the outer rotor 22 takes place on the drive shaft 20.
- the outer rotor 22 is in this way axially accurately positioned and fastened in a simple manner.
- a through hole 43 extends from one end face of the fastener 35 to the other to keep the heat transferring the heat from the outer rotor 22 into the drive shaft 20 as small as possible.
- a blind hole can be provided, which extends either from the first external thread 37 near end face extends close to or in the spacer portion 39 or from the second external thread 38 near end to the collar 40 or beyond.
- a radial threaded bore 44 is formed, in which a screw 45, in particular grub screw, is screwed.
- the drive shaft 20 facing the end of the screw 45 is preferably formed frustoconical.
- the threaded bore 44 is always in the direction of rotation of the driven drive shaft 20, which is indicated here by the arrow M, at an angle ⁇ of about 35 ° to about 55 ° and preferably at an angle ⁇ of 40 ° to 50 ° and preferably at an angle ⁇ of about 45 ° to the axial groove 32 is arranged. If necessary, there are further, not shown, threaded holes 44 in the hub 23 along its axial extent.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Details Of Reciprocating Pumps (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Claims (5)
- Ensemble de pompe à entraînement magnétique avec un espace intérieur (11) formé par un corps de pompe (2) de l'ensemble de pompe à entraînement magnétique (1), avec un pot d'entrefer (10) étanchéifiant une chambre (12) entourée par lui de façon hermétique par rapport à l'espace intérieur (11) formé par le corps de pompe (2), avec un arbre de roue de roulement (13) pouvant être entraîné de façon à pouvoir tourner autour d'un axe de rotation (A), avec une roue de roulement (16) disposée à une extrémité de l'arbre de roue de roulement (13), avec un rotor intérieur (17) disposé à l'autre extrémité de l'arbre de roue de roulement (13), avec un moteur d'entraînement (9), avec un arbre d'entraînement (20) pouvant être entraîné par le moteur d'entraînement (9) de façon à pouvoir pivoter autour de l'axe de rotation (A) et avec un rotor extérieur (22) disposé sur l'arbre d'entraînement (20) interagissant avec le rotor intérieur (17), le rotor extérieur (22) comportant un moyeu (23) ainsi qu'un premier élément de support (28), le rotor extérieur (22) comportant entre le moyeu (23) et le premier élément de support (28) une section (25) de type cylindrique creuse et la fixation axiale du rotor extérieur (22) se produisant au niveau de l'arbre d'entraînement (20) par le biais d'un élément de fixation (35) ;
caractérisé en ce que :l'élément de fixation (35) comporte au niveau d'une extrémité un premier filet extérieur (37) et au niveau de l'extrémité opposée au premier filet extérieur (37) un deuxième filet extérieur (38), une section d'entretoise (39) se trouvant entre le premier filet extérieur (37) et le deuxième filet extérieur (38), le diamètre extérieur de cette section étant supérieur au diamètre extérieur du premier filet extérieur (37) et du deuxième filet extérieur (38). - Ensemble de pompe à entraînement magnétique selon la revendication 1, caractérisé en ce que la section (25) de type cylindrique creuse et le moyeu (23) sont réalisés avec une paroi mince par rapport au premier élément de support (28).
- Ensemble de pompe à entraînement magnétique selon la revendication 1 ou 2, caractérisé en ce que la section d'entretoise (39) comporte au niveau du côté proche du premier filet extérieur (37) un lien (40) avec un diamètre extérieur agrandi.
- Ensemble de pompe à entraînement magnétique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la section d'entretoise (39) se termine de façon conique au niveau du côté proche du premier filet extérieur (37).
- Ensemble de pompe à entraînement magnétique selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un alésage fileté (44) radial dans lequel un élément vissé (45) est vissé est réalisé dans le moyeu (23) .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013208536.2A DE102013208536A1 (de) | 2013-05-08 | 2013-05-08 | Pumpenanordnung |
PCT/EP2014/058701 WO2014180711A1 (fr) | 2013-05-08 | 2014-04-29 | Ensemble pompe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2994641A1 EP2994641A1 (fr) | 2016-03-16 |
EP2994641B1 true EP2994641B1 (fr) | 2017-08-16 |
Family
ID=50588723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14719796.6A Active EP2994641B1 (fr) | 2013-05-08 | 2014-04-29 | Ensemble de pompe à entraînement magnétique |
Country Status (16)
Country | Link |
---|---|
US (1) | US9869316B2 (fr) |
EP (1) | EP2994641B1 (fr) |
JP (1) | JP6423864B2 (fr) |
KR (1) | KR102088479B1 (fr) |
CN (1) | CN105408632B (fr) |
AU (1) | AU2014264828B2 (fr) |
BR (1) | BR112015028023B1 (fr) |
DE (1) | DE102013208536A1 (fr) |
DK (1) | DK2994641T3 (fr) |
ES (1) | ES2642339T3 (fr) |
HU (1) | HUE034645T2 (fr) |
MX (1) | MX364925B (fr) |
RU (1) | RU2674296C2 (fr) |
SG (1) | SG11201508902VA (fr) |
WO (1) | WO2014180711A1 (fr) |
ZA (1) | ZA201508072B (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016225908A1 (de) * | 2016-12-21 | 2018-06-21 | KSB SE & Co. KGaA | Freistrompumpe |
CN107191385B (zh) * | 2017-04-28 | 2023-12-01 | 合肥工业大学 | 一种磁驱动式喷水推进泵 |
DE102019002392A1 (de) * | 2019-04-02 | 2020-10-08 | KSB SE & Co. KGaA | Wärmesperre |
TWI692586B (zh) * | 2019-05-09 | 2020-05-01 | 大港泵浦廠興業有限公司 | 泵浦 |
TWI694211B (zh) * | 2019-05-09 | 2020-05-21 | 大港泵浦廠興業有限公司 | 泵浦 |
EP3757395B1 (fr) * | 2019-06-28 | 2023-06-07 | Grundfos Holding A/S | Dispositif de pompe électrique avec moteur à rotor noyé |
CN113309707B (zh) * | 2021-04-12 | 2022-08-02 | 安徽南方化工泵业有限公司 | 一种高度抗压型磁力泵隔套及其制备方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1326350A (fr) * | 1961-09-08 | 1963-05-10 | Perfectionnements apportés aux dispositifs d'accouplement magnétique, notamment pour des moto-pompes centrifuges | |
US3663200A (en) | 1969-09-26 | 1972-05-16 | Monsanto Co | Grass selective herbicide composition |
FR2088867A5 (fr) * | 1970-04-28 | 1972-01-07 | Process Ind Inc | |
IT1230331B (it) * | 1989-07-12 | 1991-10-18 | Fedegari Autoclavi | Perfezionato metodo magnetico per trasmissione di movimento attraverso pareti di recipienti o contenitori chiusi. |
DE4212982C2 (de) * | 1992-04-18 | 1996-04-11 | Lederle Pumpen & Maschf | Pumpe für heiße Fördermedien |
DE4238132C2 (de) * | 1992-11-12 | 2002-10-24 | Teves Gmbh Alfred | Kreiselpumpe, insbesondere Wasserpumpe für Kraftfahrzeuge |
CH692881A5 (de) * | 1992-12-23 | 2002-11-29 | Cp Pumpen Ag | Magnetkupplung. |
JP3259432B2 (ja) * | 1993-05-06 | 2002-02-25 | トヨタ自動車株式会社 | パイプクランプ |
RU2114324C1 (ru) * | 1994-01-18 | 1998-06-27 | Открытое акционерное общество "Инвестиционная компания "ИНКОРН" | Герметичный центробежный насос |
DE19513962B4 (de) * | 1995-04-13 | 2007-06-28 | Allweiler Ag | Radiale Kreiselpumpe |
US5735668A (en) * | 1996-03-04 | 1998-04-07 | Ansimag Inc. | Axial bearing having independent pads for a centrifugal pump |
JPH10252060A (ja) * | 1997-03-13 | 1998-09-22 | Toei Kinzoku Kogyo Kk | 地中埋込管用継手 |
US5915931A (en) * | 1997-11-13 | 1999-06-29 | The Gorman-Rupp Company | Magnetic drive unit having molded plastic magnetic driver |
DE29814113U1 (de) | 1998-08-06 | 1998-10-15 | Hermetic-Pumpen GmbH, 79194 Gundelfingen | Permanentmagnetkupplungspumpe |
DE10240800B4 (de) * | 2002-08-30 | 2005-03-24 | Munsch Chemie-Pumpen Gmbh | Pumpe für chemisch aggressive Fördermedien |
US6997688B1 (en) * | 2003-03-06 | 2006-02-14 | Innovative Mag-Drive, Llc | Secondary containment for a magnetic-drive centrifugal pump |
WO2005017362A1 (fr) * | 2003-08-05 | 2005-02-24 | Ksb Aktiengesellschaft | Turbomachine a entrainement par accouplement magnetique |
CN201297259Y (zh) * | 2008-12-01 | 2009-08-26 | 张良光 | 一种高温高压磁力泵 |
CN101532500B (zh) * | 2009-04-07 | 2011-02-09 | 丹东克隆先锋泵业有限公司 | 高性能全封闭磁力泵 |
CN101614212A (zh) * | 2009-07-23 | 2009-12-30 | 蔡国华 | 磁力泵 |
-
2013
- 2013-05-08 DE DE102013208536.2A patent/DE102013208536A1/de not_active Withdrawn
-
2014
- 2014-04-29 JP JP2016512288A patent/JP6423864B2/ja active Active
- 2014-04-29 MX MX2015015298A patent/MX364925B/es active IP Right Grant
- 2014-04-29 HU HUE14719796A patent/HUE034645T2/en unknown
- 2014-04-29 BR BR112015028023-4A patent/BR112015028023B1/pt active IP Right Grant
- 2014-04-29 ES ES14719796.6T patent/ES2642339T3/es active Active
- 2014-04-29 US US14/889,527 patent/US9869316B2/en active Active
- 2014-04-29 RU RU2015148038A patent/RU2674296C2/ru active
- 2014-04-29 EP EP14719796.6A patent/EP2994641B1/fr active Active
- 2014-04-29 CN CN201480026111.8A patent/CN105408632B/zh active Active
- 2014-04-29 WO PCT/EP2014/058701 patent/WO2014180711A1/fr active Application Filing
- 2014-04-29 AU AU2014264828A patent/AU2014264828B2/en not_active Ceased
- 2014-04-29 KR KR1020157033740A patent/KR102088479B1/ko active IP Right Grant
- 2014-04-29 SG SG11201508902VA patent/SG11201508902VA/en unknown
- 2014-04-29 DK DK14719796.6T patent/DK2994641T3/da active
-
2015
- 2015-10-30 ZA ZA2015/08072A patent/ZA201508072B/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
SG11201508902VA (en) | 2015-11-27 |
AU2014264828B2 (en) | 2017-05-25 |
ZA201508072B (en) | 2016-10-26 |
BR112015028023A2 (pt) | 2017-07-25 |
KR102088479B1 (ko) | 2020-03-13 |
JP2016518550A (ja) | 2016-06-23 |
DE102013208536A1 (de) | 2014-11-13 |
BR112015028023B1 (pt) | 2022-03-15 |
JP6423864B2 (ja) | 2018-11-14 |
ES2642339T3 (es) | 2017-11-16 |
US9869316B2 (en) | 2018-01-16 |
RU2674296C2 (ru) | 2018-12-06 |
KR20160006713A (ko) | 2016-01-19 |
AU2014264828A1 (en) | 2015-11-12 |
HUE034645T2 (en) | 2018-02-28 |
CN105408632B (zh) | 2018-09-07 |
MX2015015298A (es) | 2016-02-18 |
CN105408632A (zh) | 2016-03-16 |
WO2014180711A1 (fr) | 2014-11-13 |
MX364925B (es) | 2019-05-10 |
DK2994641T3 (da) | 2017-11-27 |
EP2994641A1 (fr) | 2016-03-16 |
US20160084255A1 (en) | 2016-03-24 |
RU2015148038A (ru) | 2017-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2994641B1 (fr) | Ensemble de pompe à entraînement magnétique | |
DE4331560B4 (de) | Magnetisch gekuppelte Kreiselpumpe | |
EP3187736B1 (fr) | Pompe centrifuge horizontale multi-etagée destinée au transport d'un fluide et son procédé de réparation | |
EP3004649B1 (fr) | Ensemble pompe | |
CH668101A5 (de) | Magnetisch angetriebene zentrifugalpumpe. | |
EP2411688B1 (fr) | Agencement de palier decouple thermiquement | |
DE102011001041A1 (de) | Magnetisch angetriebene Pumpenanordnung mit einer Mikropumpe mit Zwangsspuelung und Arbeitsverfahren | |
DE19746359A1 (de) | Pumpe, insbesondere regelbare Kühlmittelpumpe, für Kraftfahrzeuge | |
EP3208464A1 (fr) | Pompe centrifuge | |
EP3947976B1 (fr) | Barrière thermique | |
EP2063139A1 (fr) | Groupe motopompe | |
DE102015106614A1 (de) | Pumpenvorrichtung | |
EP2778428B1 (fr) | Système de montage d' un ventilateur pour une hotte | |
WO2007054169A1 (fr) | Pompe a fluide | |
EP2994645B1 (fr) | Agencement de pompe à accouplement magnétique | |
EP2721301B1 (fr) | Pompe submersible et methode d'assemblage d'une pompe submersible | |
DE102013113362A1 (de) | Regelbare Pumpe für eine Verbrennungskraftmaschine | |
DE20007099U1 (de) | Kreiselpumpe | |
DE102013200655B4 (de) | Kombiniertes Radial-Axiallager und Nassläuferpumpe | |
DE102019207312A1 (de) | Kühlanordnung für ein wärmeerzeugendes rotierendes Bauteil einer elektrischen Maschine sowie elektrische Maschine | |
DE29716110U1 (de) | Magnetkupplungspumpe | |
EP2818722B1 (fr) | Pompe centrifuge | |
EP3358225B1 (fr) | Système de moteur-réducteur compact | |
DE202004013080U1 (de) | Magnetkupplungspumpe | |
EP3803125B1 (fr) | Pompe à un couplage magnétique pourvue d'une chemise d'entrefer double enveloppe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20151104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170404 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 919339 Country of ref document: AT Kind code of ref document: T Effective date: 20170915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014005066 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2642339 Country of ref document: ES Kind code of ref document: T3 Effective date: 20171116 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20171121 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502014005066 Country of ref document: DE Owner name: KSB SE & CO. KGAA, DE Free format text: FORMER OWNER: KSB AKTIENGESELLSCHAFT, 67227 FRANKENTHAL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171116 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171216 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171116 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: KSB SE & CO. KGAA |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E034645 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014005066 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170816 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170816 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 919339 Country of ref document: AT Kind code of ref document: T Effective date: 20190429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190429 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240502 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240503 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240423 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240409 Year of fee payment: 11 |