EP2993241B1 - Method and press for manufacturing cured sheet metal components, in sections at least - Google Patents
Method and press for manufacturing cured sheet metal components, in sections at least Download PDFInfo
- Publication number
- EP2993241B1 EP2993241B1 EP15181420.9A EP15181420A EP2993241B1 EP 2993241 B1 EP2993241 B1 EP 2993241B1 EP 15181420 A EP15181420 A EP 15181420A EP 2993241 B1 EP2993241 B1 EP 2993241B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- press
- sheet metal
- die station
- metal component
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 147
- 239000002184 metal Substances 0.000 title claims description 147
- 238000000034 method Methods 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000001816 cooling Methods 0.000 claims description 73
- 238000012546 transfer Methods 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 27
- 229910000734 martensite Inorganic materials 0.000 claims description 16
- 239000002826 coolant Substances 0.000 claims description 13
- 230000009466 transformation Effects 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 description 9
- 238000009966 trimming Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 230000000712 assembly Effects 0.000 description 4
- 238000000429 assembly Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 229910001562 pearlite Inorganic materials 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000418 atomic force spectrum Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- PALQHNLJJQMCIQ-UHFFFAOYSA-N boron;manganese Chemical compound [Mn]#B PALQHNLJJQMCIQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/10—Stamping using yieldable or resilient pads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/022—Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/208—Deep-drawing by heating the blank or deep-drawing associated with heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D24/00—Special deep-drawing arrangements in, or in connection with, presses
- B21D24/005—Multi-stage presses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
- B21D35/002—Processes combined with methods covered by groups B21D1/00 - B21D31/00
- B21D35/003—Simultaneous forming, e.g. making more than one part per stroke
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/10—Die sets; Pillar guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/10—Die sets; Pillar guides
- B21D37/12—Particular guiding equipment, e.g. pliers; Special arrangements for interconnection or cooperation of dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D37/00—Tools as parts of machines covered by this subclass
- B21D37/16—Heating or cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/88—Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
Definitions
- the invention relates to a method and a press for producing sheet metal components that are hardened at least in sections.
- hot forming also known as press hardening or press hardening
- press hardening has been widespread for many years for the production of chassis and structural components of motor vehicles.
- the DE 10 2008 034 596 A1 describes a method for producing at least partially hardened sheet metal components in two successive tool stages, each tool stage having an upper tool and a Has the lower tool arranged in a press and the upper tool and lower tool are closed by the closing movement of the press and thereby a sheet metal blank heated to austenitizing temperature is hot-formed into a sheet metal component.
- a sheet metal blank heated to austenitizing temperature is hot-formed into a sheet metal component.
- the formed sheet metal blank is quickly cooled.
- sheet metal components hardened only in sections should be produced.
- the DE 10 2009 057 382 A1 describes a method and a press with several tool stages for the hot forming of sheet metal blanks heated to austenitizing temperature for the production of hardened sheet metal components. After hot forming in a cooled forming tool stage, the sheet metal component is to be hardened in a further cooled tool stage and then cold cut.
- the press should be operated with high throughput, which is why it is proposed to close the tool stages with the upper tool and lower tool as early as possible and to open them as late as possible.
- JP 2007 136 535 A referenced.
- a production process in a press with three tool stages is described.
- a hot forming stage is followed by a trimming stage and a cooling stage or mold hardening stage.
- Only the cooling stage has a lower tool with an elastic actuator, so that the lower tool can be raised relative to the press table in order to produce the closed state of the cooling tool stage.
- the post-publish EP 2 907 881 A2 discloses a hot forming line and method for making hot formed sheet metal products.
- a heating station and a forming station are proposed.
- the heating station has a lower tool and an upper tool, between which a metal plate is received for heating.
- the heating or the heating of a metal plate in the heating station takes place through indirect resistance heating.
- the entire lower tool carrier can be moved downwards against the force of spring elements, with the movement of the heating station, forming station and cooling station being elastically supported as a result.
- the US 2010/0018277 A1 discloses a method in which a blank is hot-formed and the forming begins by an upper, elastically mounted body. Spring-loaded hold-downs in the upper tool press the unformed areas of the blank to be formed against the lower tool before the blank is trimmed at the edge in a final operation.
- the object of the invention based on the aforementioned prior art, is to propose a reliable method that can be implemented on a large industrial scale and a press for producing hardened sheet metal components, which has an increased production throughput and a higher resulting product quality.
- the forming tool stage is moved during the closing movement from an upper reversal point to a lower reversal point of the press by at least one elastic actuator relative to the press, so that the hot forming is ended and the locking begins before the press reaches the lower reversal point, and / or that the closing of the forming tool stage by an elastic actuator is only ended during the upward movement of the press after the lower reversal point of the press has been completely passed, the upper tool and the lower tool having cooling channels, whereby a cooling medium is conducted.
- the cycle time for hot forming and hardening of the sheet metal component can be reduced by starting and ending the forming very early and by making maximum use of the holding time for quenching the formed sheet metal component in the individual tool stages.
- the elastic actuator (s) can compensate for inaccuracies in the positioning of the upper and lower tool of the forming tool stage, as well as discontinuities in the surface properties and thickness of the sheet metal blank.
- the sheet metal blank is further processed into a sheet metal component by hot forming, with both terms also being used in parallel in the following description if it is not about the properties caused by the forming, but rather the process steps, in particular the heat treatment and the press, are explained in more detail.
- the sheet metal blank is brought to a temperature above the austenitizing temperature of the steel alloy used, at least in sections, by heating methods known per se.
- heating methods known per se.
- it makes sense to use heating devices with a high heating rate, for example by contact heating with inductively or conductively heated contact masses, direct burner heating or furnace heating with overtemperature in the furnace.
- a combination of these or with other known types of furnace is also possible, for example when using metal-coated sheet metal blanks.
- the austenitizing temperature Ac3 is also referred to as the recrystallization temperature, the level of the austenitizing temperature depending on the exact alloy composition.
- the use of manganese boron steels has proven successful, which, after being heated by rapid cooling or quenching, experience a continuous hardening by converting the austenitic structure into martensite structure.
- the mechanical properties yield point Rp0.2 and tensile strength Rm increase with hardness, while the maximum bending angle and elongation A50 decrease.
- holding time is to be understood as the period in which the upper tool and lower tool at least the forming tool stage and the second tool stage are closed, i.e. at least in sections are in intimate contact with the formed sheet metal blank or with the sheet metal component.
- transfer includes any handling operation that brings about the transport of the sheet metal component from one tool level to the next following tool level, including removal from the respective tool level and insertion into the respective tool level.
- the reversal point of the press is defined in such a way that the press reaches exactly one open position, the upper reversal point, and precisely one maximally closed position, the lower reversal point, in the work cycle.
- the maximum that can be achieved for maintenance or retooling operations is to distinguish between the open position of the press, which may be greater than the top dead center.
- Edge trimming and / or perforation are preferably carried out during or after the end of hot forming in the forming tool stage, in particular before the press is completely closed. This has the advantage that a subsequent perforation or edge trimming can be omitted in the cold and hardened state of the sheet metal component, thus avoiding tool wear and additional handling processes. Because the punching or trimming takes place before the press is completely closed, the closing movement can be used to drive the cutting means that are necessary for punching or trimming. The trimmed sheet metal component is then transferred to the second tool stage for further rapid cooling, at least in sections.
- the second tool stage is also preferably moved relative to the press, at least in some areas, during the closing movement of the press by at least one elastic actuator, so that the locking begins before the press reaches the lower reversal point.
- the locking of the second tool stage it is also possible for the locking of the second tool stage to be terminated at least in sections by an elastic actuator only during the upward movement of the press, after the lower reversal point of the press has been completely passed.
- the second tool stage is mounted in relation to the press by at least one elastic actuator in such a way that the upper tool and lower tool remain closed during a significant time portion of the closing movement and during a significant time portion of the upward movement.
- a time share of more than 30 percent each in the closing movement and / or in the upward movement of the press is to be regarded as decisive.
- the forming tool stage and preferably also the second tool stage can be spring-mounted mechanically, hydraulically or pneumatically by the elastic actuator.
- the elastic actuators themselves can either have a passive, purely mechanical effect by permanently applying a force counteracting the press force on the upper tool or the lower tool raise.
- a simple example would be spiral springs or spring assemblies made from other mechanical springs.
- the sheet metal component is transferred according to the invention by a transfer system, comprising a linearly guided transfer bar with grippers, in a transfer time of 1 to 4 seconds, preferably in 2 to 3 seconds, between at least two tool stages. It is thus possible to keep the heat losses during the movement of the sheet metal component between the tool stages as low as possible and ideally to dispense with complicated multi-axis handling devices. It can be provided that the grippers of the transfer system are already brought close to the sheet metal component before the press has reached the upper reversal point.
- recesses can be provided in the tool stages for the collision-free implementation of the transfer system or for bringing the grippers close to the sheet metal component, so that the sheet metal component is immediately carried out by the transfer system or the lower tool when the upper tool and lower tool are moved apart, i.e. after the end of the holding time Gripper is removed from the forming tool stage and moved on.
- a sheet metal component hardened only in sections can be produced in a particularly simple and reliable manner with the method according to the invention.
- in sections means that the sheet metal component has at least a first section with relatively low strength and yield point with a structure that is preferably unhardened or only slightly hardened, and at least one second section with high strength Rm and yield point Rp0.2 but reduced Has elongation A50 and essentially has a martensitic structure.
- the first section of the Sheet metal component has a tensile strength between 400 and 800 megapascals (MPa), in particular between 450 and 650 MPa, and predominantly ferrite-pearlite structural components.
- a cooling temperature of the sheet metal component is preferably set which is higher in a first section of the sheet metal blank than the martensite start temperature Ms required for the transformation of the martensite structure and which is lower than Ms in a second section, with the sheet metal blank in the first section in particular to a cooling temperature of 540 is cooled to 660 ° C.
- a cooling temperature of the sheet metal component can be set in the second tool stage, which at the end of the second holding time is between 350 to 500 ° C in the first section and in which
- the second section is smaller than the martensite finish temperature Mf required for complete transformation of the martensite structure, the sheet metal component in the second section preferably being cooled to less than 200 ° C., in particular to room temperature.
- the temperature control of the second section is intended to achieve a completely martensitic structure, with a tensile strength between 1400 and 2100 MPa, preferably 1450 and 1800 MPa, depending on the steel alloy, in particular depending on the carbon and manganese content, being set.
- the sheet metal component is held for a first holding time between 2 and 8 seconds and for a second holding time between 2 and 10 seconds.
- the cycle time of the press unchanged, the time available for cooling the formed sheet metal blank and for the associated structural transformations is almost doubled.
- the difference between the two holding times results primarily from the time required for hot forming in the forming tool stage.
- the cycle time of the press with a forming tool stage and a temporally following second tool stage between its upper reversal point and its lower reversal point is preferably between 3 and 11 seconds. This makes it possible to achieve an extremely high output or a high throughput and thus very low production costs. In combination with the production of hardened sheet metal components in sections, there is also the advantage that the component properties and quality do not suffer from the high production cycle. It should be emphasized that the sheet metal components produced have a high degree of dimensional accuracy, in contrast to a one-step hot-forming and press-hardening process for the production of press-hardened sheet-metal components in sections with heated tool areas.
- Another aspect of the invention provides that the hardening is only ended in a third tool stage, after which the sheet metal component completely has a cooling temperature below 200 ° C.
- This has the advantage that the cycle time of the press can be reduced again and at the end of the press a cool sheet metal component that is not critical when touched can be removed. A residual heat distortion is completely excluded, in particular due to the adjustment of the cooling temperatures of the two sections of the sheet metal component.
- the cycle time of the press with a forming tool stage and a second tool stage and a third tool stage, therefore in a three-stage chronologically successive process, between its upper reversal point and its lower reversal point is between 3 and 9 seconds.
- the use of a mechanical crank or eccentric press or a servo-electric press is preferred to be provided, whereby in the case of the mechanical press the reversal points are passed through without any significant interruption of the press movement. A holding time due to a press standstill can thus advantageously be dispensed with.
- the press has several tool stages, a press ram and a press table, and is used to carry out the method described above.
- at least one tool stage is a forming tool stage that can be cooled at least in some areas for hot forming of sheet metal blanks, which comprises an upper tool and a lower tool which form a mold cavity in a closed state.
- At least one elastic actuator is arranged between the press table and the lower tool so that either the lower tool can be raised relative to the press table and / or the upper tool can be pressurized at a distance relative to the press ram in order to establish the closed state of the forming tool stage before the press is completely closed
- the upper tool and the lower tool have cooling channels, whereby a cooling medium can be conducted, the cooling channels extending over the entire longitudinal extent of the upper tool and the lower tool, with a cooling source in the form of a heat exchanger being provided outside the forming tool stage as well as an inlet and outlet line from the cooling channels to the heat exchanger.
- the sheet metal component is transferred between at least two tool stages by a transfer system which is designed as a linearly guided transfer bar with grippers.
- the lower tool and / or the upper tool can be spaced apart from the press table or press ram at least until the lower reversal point of the press is reached.
- the distance can be adjusted by means of the elastic actuator and is reduced during the hot forming and preferably also during a portion of the holding time when the upper tool and lower tool are closed.
- An elastic actuator arranged on one side is sufficient to compensate for the position of the upper tool and lower tool with one another and for any discontinuities in the thickness of the sheet metal blank.
- a vertical adjustment path can preferably be set by the elastic actuator, the adjustment path being less than the maximum press stroke path between the upper and lower reversal points of the press, but at least 100 mm. In combination with the speed given by the press drive during the closing movement and during the upward movement of the press, it is thus advantageously possible to extend the holding time through contact between the sheet metal blank, the upper tool and the lower tool.
- the elastic actuator preferably has an actuating force that increases at least over part of an actuating path from the upper reversal point to the lower reversal point of the press, in particular the actuating force in the closed state of the forming tool stage is at least 20 percent greater, whereby the contact and pressure between the tool stage and the sheet metal component is increased and thus a high heat transfer or the rapid achievement of at least one desired quenching temperature of the sheet metal component is possible.
- At least the forming tool step can be heated in some areas by a heat source in order to bring about a reduced cooling rate in the sheet metal component in a first section, with unheated areas having cooling channels for the passage of a cooling medium.
- a temperature close to room temperature, but in any case below 200 ° C can be set in the unheated area of the tool step.
- the heat source is in the heated A temperature range between 650 and 450 ° C can be set.
- the upper tool and the lower tool are provided to cool the formed sheet metal component during the holding time at different cooling rates and thereby to different quenching temperatures or to keep them at these temperatures.
- a first section with lower tensile strength and at least one second section with high strength can thus be set in the sheet metal component.
- both the forming tool stage and at least the subsequent second tool stage can be heated in certain areas, in particular by a heat source, in order to obtain at least no completely hardened sheet metal component in a first section.
- the unheated area of the second tool stage can have an active cooling source, at least corresponding to a transition section between the first section and the second section of the sheet metal component.
- the cooling source is used to reduce heat transfer between the sections of the sheet metal blank with different temperatures in order to ensure the narrowest possible transition section. This has the advantage that when designing sheet metal components, especially for the vehicle industry, designers only have to consider a small area to which no mechanical parameters can be directly assigned or for which no mechanical parameters can be guaranteed. It is also ensured that the second area has a homogeneous distribution of the structure and the mechanical properties throughout.
- the cooling source comprises a heat exchanger arranged outside the press, which is in operative connection with the cooling medium and the cooling channels of at least the forming tool stage.
- the first section and the transition section of the sheet metal component that can be fixed in a form-fitting manner by fixing elements, at least in the second tool stage.
- the sheet metal component can preferably also be positively fixed in the third tool stage by means of fixing elements.
- this results in an equalization of the pressing force in all tool stages and, in particular, it prevents the press table and press ram from being unevenly aligned with one another.
- Figure 1 shows a longitudinal section of a press 1 according to the invention with two tool stages, the forming tool stage 2 and a second tool stage 3.
- An initially unformed sheet metal blank 26 first passes through the forming tool stage 2 and then the second tool stage 3 for forming into a sheet metal component 27.
- the press 1 has a press ram 6 and a press table 5, two clamping plates 10 being arranged on the press table 5.
- Each clamping plate 10 furthermore has a plurality of elastic actuators 7 which extend from the clamping plate 10 in the direction of the press ram 6, a tool clamping plate 9 being fixed to the ends of the press ram 6 facing away from the press table 5.
- the clamping plates 10 are each fixed on the press table 5 via clamping elements 31.
- the tool clamping plates 9 are fixed to the ends of the actuators 7 facing away from the press table 5.
- a lower tool 12 which comprises the forming tool stage 2 and the second tool stage 3, is fixed to the tool clamping plates 9 via clamping elements 31 ′.
- an upper tool 11 is fixed on the press ram 6, a sheet metal blank 26 being able to be arranged between the upper tool 11 and the lower tool 12.
- Both the upper tool 11 and the lower tool 12 have cooling channels 17, as a result of which a cooling medium 18 can be conducted.
- the lower tool 12 also has guide elements 32 ′ which are designed to be insertable into corresponding guide recess 32.
- the guide elements 32 ′ and guide recesses 32 are designed to correspond to one another and allow the upper tool 12 and the lower tool 11 to be guided with respect to one another.
- the elastic actuators 7 are in Figure 1 designed as pneumatic spring assemblies, ie they are actuators 7 which can be acted upon by gas pressure and which can be actively controlled.
- the state of the press at the upper reversal point OP is shown here, whereby it can be seen that the elastic actuators 7 lift the lower tool 12 relative to the press table 5, whereby the path of the closing movement Y of the forming tool stage 2 and the second tool stage 3 is shorter than the press stroke between the upper reversal point OP and the lower reversal point UP of the press 1.
- Figure 2a shows a further embodiment of the press 1 according to the invention, the press 1 having two tool stages, but here shown in longitudinal section only the double forming tool stage 2.
- the second tool stage 3 which also falls twice, is arranged, which receives the sheet metal blanks 26 that have already been hot-formed in the forming tool stage 2 and cools them down further.
- the term double means that in the tool stage two components can be thermoformed and cooled at the same time in the press cycle.
- mechanical spring assemblies 8 here as a plurality of spiral springs.
- the press 1 in the second variant has additional cutting means 33 on the upper tool 11 and cutting means 33 on the lower tool 12, which are used to trim the formed sheet metal blank or the sheet metal component 27 while it is still warm and unhardened.
- the upper cutting means 33 ′ being shown by way of example being fixed to the upper tool 11 via elastic actuators 34.
- the elastic actuators 34 like the actuators 7, can be active or passive.
- the lower cutting means 33 are fixedly and immovably connected to the lower tool 12.
- a reverse connection of the cutting means 33, 33 'to the forming tool stage 2 is also possible, however.
- the cutting means 33 are firmly but interchangeably connected to the upper tool 11 and lower tool 12.
- the same type of connection can be implemented for both, both for the right and for the left halves of the forming tool stage 2.
- FIG. 2b shows a cross-sectional view of the second variant of the press 1 through the forming tool stage 2, which is here again arranged on the mechanical spring assembly 8 so that it can move relative to the press table 5.
- the cooling channels 17 extend over the entire longitudinal extension of the upper tool 11 and the lower tool 12, whereby (not shown here) an inlet and outlet line of the cooling channels 17 to a cooling source 19, which is located outside the heat exchanger, for example Forming tool stage 2, preferably also outside the press 1, is located.
- the Figure 3 shows in a longitudinal section an alternative embodiment of the press 1 according to the invention with a forming tool stage 2 and a second tool stage 3 that follows in the process.
- elastic actuators 7 in the form of mechanical spring assemblies 8 are arranged on a common press table 5 via a clamping plate 10 .
- the ends of the elastic actuators 7 facing away from the press table 5 can be coupled to a tool clamping plate 9, which in turn is connected to the lower tool 12 or is an integral part of the lower tool 12.
- a tool clamping plate 9 which in turn is connected to the lower tool 12 or is an integral part of the lower tool 12.
- Figure 4a shows the respective operating position of the press 1 and the corresponding forming tool stage 2 based on different times of the press cycle 11 and the lower tool 12 includes and the hot forming takes place.
- the lower tool 12 is still fully raised by the elastic actuators 7 at this point in time.
- the closing movement Y of the press 1 is continued continuously.
- the travel W7 is the portion of the press stroke which, starting from the upper reversal point UP of the press, moves the upper tool 11 and the lower tool 12 towards one another until the forming tool stage 2 is completely closed with the formation of a mold cavity 13.
- FIG. 5 shows a variant of a forming tool stage 2 of the press 1 according to the invention for producing hardened sheet metal components 27 in sections.
- the forming tool stage 2 comprises an upper tool 11 and a lower tool 12, each of which has an unheated area 22 and a heated area 21.
- Cooling channels 17 for the passage of a cooling medium 18 run through the unheated area 22, the cooling channels 17 being connected in such a way that the cooling medium 18 can be fed from the forming tool stage 2 to the outside in a cooling source (not shown), for example a heat exchanger.
- the heated areas 21 are designed as molded inserts 15 and with the unheated Areas 22 firmly but interchangeably connected. Heating cartridges heated by gas burners or electrical resistance serve as the heating source 14.
- the forming tool stage 2 can be coupled via the clamping plate 10 on the press ram 6 and additionally via the tool clamping plate 9 and elastic actuators 7 on the press table 5 or on the clamping plate 10 fixed thereon.
- a segmented upper tool 11 and lower tool 12 designed for the production of hardened sheet metal components in sections.
- a heated area 21 is arranged as a separate mold segment 16 separated from the unheated area 22 by an insulation 20 in the upper tool 11 and in the lower tool 12. This is used for more energy-efficient use of the heating sources 14 and cooling sources.
- a temperature profile is established in the sheet metal component with a first section at a relatively high temperature and a second section at a lower temperature. This prepares the structural transformation into martensite in the second section and into ferrite and / or pearlite in the first section. Between the first and second section there is a narrow transition section 30 with later relatively undefined mechanical properties.
- FIG. 7a a longitudinal section through the press 1 is shown. It comprises the forming tool stage 2 according to Figure 6 as well as a second, regionally heated tool stage 3 with fixing elements 24 for, in particular, form-fitting reception of the sheet metal component (not shown) and areas 21 heated by heat sources 14 in the form of a further molding segment 16.
- the molding segment 16 can be of identical design in the forming tool stage 2, or at least with regard to the material, the material quality, the The thermal capacity or the temperature resistance can be designed to be stronger or more robust than in the second tool stage 3.
- a transfer bar 25 and in the forming tool stage 2 gripper recesses 25 ', which serve to ensure that when removing the sheet metal component 27, grippers (not shown), which are connected to the transfer bar 25, can approach the sheet metal component as early as possible are indicated by dashed lines. without colliding with the lower tool 12 during the upward movement Z.
- the second tool stage 3 is followed by a further tool stage 4, which here primarily serves to further cool down the sheet metal component.
- a further tool stage 4 which here primarily serves to further cool down the sheet metal component.
- the sheet metal component can be fixed precisely in position for further cooling.
- the cooling itself can be done by cooling sources not shown, for example by air ventilation, air or cooling medium shower or by immersion according to the German patent DE 10 2005 028 010 B3 take place in that part of the third tool stage 4 with the sheet metal component 27 can be immersed in the cooling medium.
- each tool step is designed to be doubly falling and has two tools in each of the forming tool step 2, the second tool step 3 and the third tool step 4.
- the transfer bar for transporting the sheet metal blank or the sheet metal component into or out of the tool stages 2, 3, 4 is not shown.
- a heating device 35 is indicated in which the sheet metal blanks 26 are heated to Ac3 temperature at least in sections.
- FIG Figure 8a and 8b an alternative embodiment of the entire press 1 for the production of hardened sheet metal components 27 is shown in FIG Figure 8a as a longitudinal section and in Figure 8b as a horizontal section through the lower tools 12.
- the third tool stage 4 ' is arranged separately in another press 36, which has the advantage that the final cooling can be decoupled from the high press cycle and more space in the press 1 for the forming tool stage 2 and second tool stage 3 remains.
- a triple-falling forming tool stage 2 and a triple-falling second tool stage 3 and a heating device 35 in front of the press 1 are shown.
- the sheet metal component 27 can also be used in the embodiment variant according to FIG Figure 7 manufacture in this way.
- a transfer takes place within 2 seconds from the heating device 35 to the forming tool stage 2 of the press 1. Then the closing movement of the press and the tool begins until the forming tool stage 2 is completely closed and the sheet metal blank 26 to the sheet metal component 27 is hot forged. The first holding time t 2 ' then begins to cool the sheet metal component while the press 1 executes the lower reversal point UP and the upward movement begins. During the upward movement, the forming tool stage 2 is opened with a delay, the sheet metal component 27 having cooled down to different cooling temperatures T 1.1 and T 1.2 due to the different temperatures and / or tool material properties.
- Figure 9a corresponds to the variant of the press according to Figure 8 and Figure 9b with the variant according to the Figure 7a and 7b . It can be seen that the cooling at the cooling time t 6 in Figure 9a lasts longer than in Figure 9b , since the last process takes place with press 1 linked to the cycle time.
- the cooling temperatures T 3.1 and T 3.2 have come very close and are below 200 ° C in both sections.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Forging (AREA)
Description
Die Erfindung betrifft ein Verfahren sowie eine Presse zur Herstellung wenigstens abschnittsweise gehärteter Blechbauteile.The invention relates to a method and a press for producing sheet metal components that are hardened at least in sections.
In der Umformtechnik ist es bekannt, Blechbauteile aus Metallbandmaterial, insbesondere aus Stahl, durch eine wenigstens einstufige Umformoperation in einer Presse durchzuführen. Dazu wird das Blech vom Band abgewickelt und es werden Blechplatinen bestimmter Formgeometrie vom Band geschnitten. Anschließend erfolgt das Umformen in einer Presse mit wenigstens einer Presswerkzeugstufe.In forming technology it is known to carry out sheet metal components made of metal strip material, in particular made of steel, by means of an at least one-stage forming operation in a press. For this purpose, the sheet metal is unwound from the strip and sheet metal blanks of a certain shape are cut from the strip. The forming then takes place in a press with at least one press tool stage.
Gerade im Automobilbauumfeld ist es üblich, komplexe Geometrien herzustellen und am Bauteil neben der Formgebung gleichzeitig auch bestimmte mechanische Eigenschaften einzustellen. Dazu ist das Warmformen, auch bekannt als Presshärten oder Formhärten, seit vielen Jahren weit verbreitet zur Herstellung von Fahrwerk- und Strukturbauteilen von Kraftfahrzeugen.In the automotive industry in particular, it is common to produce complex geometries and to set certain mechanical properties on the component in addition to the shape. For this purpose, hot forming, also known as press hardening or press hardening, has been widespread for many years for the production of chassis and structural components of motor vehicles.
Die
Die
Zum Stand der Technik wird noch auf die
Die nachveröffentliche
Die
Aufgabe der Erfindung ausgehend vom vorgenannten Stand der Technik ist es, ein großindustriell umsetzbares und zuverlässiges Verfahren sowie eine Presse zur Herstellung gehärteter Blechbauteile vorzuschlagen, welche einen gesteigerten Produktionsdurchsatz und eine höhere resultierende Produktqualität aufweist.The object of the invention, based on the aforementioned prior art, is to propose a reliable method that can be implemented on a large industrial scale and a press for producing hardened sheet metal components, which has an increased production throughput and a higher resulting product quality.
Gelöst wird die Aufgabe betreffend des Verfahrens durch die Merkmale des Anspruch 1. Die Unteransprüche 2 bis 12 stellen vorteilhafte Ausführungsvarianten dar.The object relating to the method is achieved by the features of
Die Aufgabe wird des Weiteren gegenständlich gelöst durch eine Presse gemäß Patentanspruch 13. Die davon abhängigen Unteransprüche 14 bis 19 bilden vorteilhafte Ausführungsvarianten.The object is further objectively achieved by a press according to
Es wird ein Verfahren zur Herstellung eines wenigstens abschnittsweise gehärteten Blechbauteils vorgeschlagen, welches in einer Presse, die einen Pressentisch, einen Pressenstößel und mehrere Werkzeugstufen umfasst, durchgeführt wird. Dabei werden die folgenden Schritte durchgeführt:
- Wenigstens abschnittsweises Erwärmen einer Blechplatine auf eine Temperatur von größer als die Austenitisierungstemperatur Ac3,
- Einlegen der erwärmten Blechplatine in eine erste Umformwerkzeugstufe der Presse,
- Warmumformen der Blechplatine zum Blechbauteil in der Umformwerkzeugstufe, wobei dabei die Presse eine Schließbewegung ausführt,
- Zuhalten der Umformwerkzeugstufe für eine erste Haltezeit,
- Abkühlen der umgeformten Blechplatine während der ersten Haltezeit, und
- Transfer der umgeformten Blechplatine in eine zweite Werkzeugstufe,
- wenigstens abschnittsweises Härten der Blechplatine durch Abkühlen in der zweiten Werkzeugstufe innerhalb wenigstens einer zweiten Haltezeit.
- At least in sections heating a sheet metal blank to a temperature greater than the austenitizing temperature Ac3,
- Insertion of the heated sheet metal blank into a first forming tool stage of the press,
- Hot forming of the sheet metal blank into the sheet metal component in the forming tool stage, the press executing a closing movement,
- Holding the forming tool stage closed for a first holding time,
- Cooling the formed sheet metal blank during the first holding time, and
- Transfer of the formed sheet metal blank to a second tool stage,
- Hardening of the sheet metal blank at least in sections by cooling in the second tool stage within at least a second holding time.
Bei dem Verfahren wird die Umformwerkzeugstufe während der Schließbewegung von einem oberen Umkehrpunkt zu einem unteren Umkehrpunkt der Presse durch wenigstens ein elastisches Stellglied relativ zur Presse bewegt, so dass das Warmumformen beendet wird und das Zuhalten beginnt, bevor die Presse den unteren Umkehrpunkt erreicht, und/oder dass das Zuhalten der Umformwerkzeugstufe durch ein elastisches Stellglied erst während der Aufwärtsbewegung der Presse beendet wird, nachdem der untere Umkehrpunkt der Presse vollständig durchfahren wurde, wobei das Oberwerkzeug sowie das Unterwerkzeug Kühlkanäle aufweisen, wodurch ein Kühlmedium geleitet wird.In the method, the forming tool stage is moved during the closing movement from an upper reversal point to a lower reversal point of the press by at least one elastic actuator relative to the press, so that the hot forming is ended and the locking begins before the press reaches the lower reversal point, and / or that the closing of the forming tool stage by an elastic actuator is only ended during the upward movement of the press after the lower reversal point of the press has been completely passed, the upper tool and the lower tool having cooling channels, whereby a cooling medium is conducted.
Damit wird ein hoch wirtschaftliches Herstellungsverfahren, vor allem für die industrielle Großserienfertigung erreicht und gleichzeitig eine Verbesserung von Prozess- und Bauteilqualität bewirkt. Konkret kann die Zykluszeit vom Warmumformen und Härten des Blechbauteils reduziert werden, indem die Umformung sehr frühzeitig beginnt und endet sowie die Haltezeit zum Abschrecken des geformten Blechbauteils in den einzelnen Werkzeugstufen maximal ausgenutzt wird. Zudem lassen sich durch das/die elastischen Stellglieder Ungenauigkeiten in der Positionierung von Ober- und Unterwerkzeug der Umformwerkzeugstufe sowie Unstetigkeiten in der Oberflächenbeschaffenheit und Dicke der Blechplatine ausgleichen.This achieves a highly economical manufacturing process, especially for industrial large-scale production, and at the same time improves process and component quality. Specifically, the cycle time for hot forming and hardening of the sheet metal component can be reduced by starting and ending the forming very early and by making maximum use of the holding time for quenching the formed sheet metal component in the individual tool stages. In addition, the elastic actuator (s) can compensate for inaccuracies in the positioning of the upper and lower tool of the forming tool stage, as well as discontinuities in the surface properties and thickness of the sheet metal blank.
Die Blechplatine wird durch Warmumformen zum Blechbauteil weiterverarbeitet, wobei in der folgenden Beschreibung beide Begriffe auch parallel verwendet werden, wenn es nicht um die durch das Umformen hervorgerufenen Eigenschaften geht, sondern die Verfahrensschritte, insbesondere die Wärmebehandlung und die Presse näher erläutert werden.The sheet metal blank is further processed into a sheet metal component by hot forming, with both terms also being used in parallel in the following description if it is not about the properties caused by the forming, but rather the process steps, in particular the heat treatment and the press, are explained in more detail.
Im Rahmen der Erfindung wird die Blechplatine durch an sich bekannte Erwärmungsmethoden wenigstens abschnittsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur der verwendeten Stahllegierung gebracht. Sinnvoll ist im Rahmen der Erfindung die Verwendung von Heizeinrichtungen hoher Aufheizrate, so zum Beispiel durch Kontakterwärmung mit induktiv oder konduktiv beheizten Kontaktmassen, direkte Brennererwärmung oder Ofenerwärmung mit Ofenraumübertemperatur. Auch eine Kombination daraus oder mit anderen bekannten Ofentypen ist möglich, beispielsweise bei Verwendung metallisch beschichteter Blechplatinen.Within the scope of the invention, the sheet metal blank is brought to a temperature above the austenitizing temperature of the steel alloy used, at least in sections, by heating methods known per se. In the context of the invention, it makes sense to use heating devices with a high heating rate, for example by contact heating with inductively or conductively heated contact masses, direct burner heating or furnace heating with overtemperature in the furnace. A combination of these or with other known types of furnace is also possible, for example when using metal-coated sheet metal blanks.
Die Austenitisierungstemperatur Ac3 wird auch als Rekristallisationstemperatur bezeichnet, wobei die Höhe der Austenitisierungstemperatur von der genauen Legierungszusammensetzung abhängt. Für das erfindungsgemäße Verfahren hat sich der Einsatz von Manganborstählen bewährt, welche nach dem Erwärmen durch rasches Abkühlen beziehungsweise Abschrecken eine durchgehende Härtung durch Umwandlung des austenitischen Gefüges in Martensitgefüge erfahren. Mit der Härte nehmen die mechanischen Eigenschaften Streckgrenze Rp0,2 und Zugfestigkeit Rm zu, während maximaler Biegewinkel und Dehnung A50 abnehmen.The austenitizing temperature Ac3 is also referred to as the recrystallization temperature, the level of the austenitizing temperature depending on the exact alloy composition. For the process according to the invention, the use of manganese boron steels has proven successful, which, after being heated by rapid cooling or quenching, experience a continuous hardening by converting the austenitic structure into martensite structure. The mechanical properties yield point Rp0.2 and tensile strength Rm increase with hardness, while the maximum bending angle and elongation A50 decrease.
Unter Haltezeit ist erfindungsgemäß derjenige Zeitraum zu verstehen, in welchem Oberwerkzeug und Unterwerkzeug zumindest der Umformwerkzeugstufe und der zweiten Werkzeugstufe geschlossen sind, sich also wenigstens abschnittsweise in innigem Kontakt mit der geformten Blechplatine beziehungsweise mit dem Blechbauteil befinden.According to the invention, holding time is to be understood as the period in which the upper tool and lower tool at least the forming tool stage and the second tool stage are closed, i.e. at least in sections are in intimate contact with the formed sheet metal blank or with the sheet metal component.
Der Begriff Transfer beinhaltet jegliche Handhabungsoperation, die den Transport des Blechbauteils von einer Werkzeugstufe in die zeitlich nächstfolgende Werkzeugstufe bewirkt, einschließlich der Entnahme aus der jeweiligen Werkzeugstufe und Einlegen in die jeweilige Werkzeugstufe.The term transfer includes any handling operation that brings about the transport of the sheet metal component from one tool level to the next following tool level, including removal from the respective tool level and insertion into the respective tool level.
Der Umkehrpunkt der Presse ist erfindungsgemäß so definiert, dass die Presse im Arbeitstakt genau eine geöffnete Stellung, den oberen Umkehrpunkt und genau eine maximal geschlossene Stellung, den unteren Umkehrpunkt, erreicht. Davon ist je nach Pressenart eine zu Wartungs- oder Umrüstvorgängen erreichbare maximal geöffnete Stellung der Presse, die unter Umständen größer sein kann als der obere Umkehrpunkt, zu unterscheiden.According to the invention, the reversal point of the press is defined in such a way that the press reaches exactly one open position, the upper reversal point, and precisely one maximally closed position, the lower reversal point, in the work cycle. Of this, depending on the type of press, the maximum that can be achieved for maintenance or retooling operations is to distinguish between the open position of the press, which may be greater than the top dead center.
Bevorzugt werden während oder nach Abschluss des Warmumformens in der Umformwerkzeugstufe ein Randbeschnitt und/oder eine Lochung durchgeführt, insbesondere bevor die Presse vollständig geschlossen wird. Das hat den Vorteil, dass eine anschließende Lochung beziehungsweise ein Randbeschnitt im kalten und gehärteten Zustand des Blechbauteils unterbleiben kann und damit Werkzeugverschleiß und zusätzliche Handlingprozesse vermieden werden. Dadurch, dass das Lochen oder der Beschnitt noch vor dem vollständigen Schließen der Presse erfolgt, kann die Schließbewegung für den Antrieb der Schneidmittel genutzt werden, die für das Lochen oder Beschneiden notwendig sind. Im Anschluss daran wird das beschnittene Blechbauteil zur weiteren, wenigstens abschnittsweisen, raschen Abkühlung in die zweite Werkzeugstufe transferiert.Edge trimming and / or perforation are preferably carried out during or after the end of hot forming in the forming tool stage, in particular before the press is completely closed. This has the advantage that a subsequent perforation or edge trimming can be omitted in the cold and hardened state of the sheet metal component, thus avoiding tool wear and additional handling processes. Because the punching or trimming takes place before the press is completely closed, the closing movement can be used to drive the cutting means that are necessary for punching or trimming. The trimmed sheet metal component is then transferred to the second tool stage for further rapid cooling, at least in sections.
Auch die zweite Werkzeugstufe wird bevorzugt, wenigstens bereichsweise, während der Schließbewegung der Presse durch wenigstens ein elastisches Stellglied relativ zur Presse bewegt, so dass das Zuhalten beginnt, bevor die Presse den unteren Umkehrpunkt erreicht. Es ist aber auch möglich, dass das Zuhalten der zweiten Werkzeugstufe wenigstens abschnittsweise durch ein elastisches Stellglied erst während der Aufwärtsbewegung der Presse beendet wird, nachdem der untere Umkehrpunkt der Presse vollständig durchfahren wurde. Am bevorzugtesten ist durch wenigstens ein elastisches Stellglied die zweite Werkzeugstufe so zur Presse gelagert, dass während eines maßgeblichen Zeitanteils der Schließbewegung und während eines maßgeblichen Zeitanteils der Aufwärtsbewegung Oberwerkzeug und Unterwerkzeug geschlossen bleiben. Als maßgeblich ist dabei ein Zeitanteil von mehr als je 30 Prozent an der Schließbewegung und/oder an der Aufwärtsbewegung der Presse anzusehen.The second tool stage is also preferably moved relative to the press, at least in some areas, during the closing movement of the press by at least one elastic actuator, so that the locking begins before the press reaches the lower reversal point. However, it is also possible for the locking of the second tool stage to be terminated at least in sections by an elastic actuator only during the upward movement of the press, after the lower reversal point of the press has been completely passed. Most preferably, the second tool stage is mounted in relation to the press by at least one elastic actuator in such a way that the upper tool and lower tool remain closed during a significant time portion of the closing movement and during a significant time portion of the upward movement. A time share of more than 30 percent each in the closing movement and / or in the upward movement of the press is to be regarded as decisive.
Weiterhin kann die Umformwerkzeugstufe und bevorzugt auch die zweite Werkzeugstufe durch das elastische Stellglied mechanisch, hydraulisch oder pneumatisch federgelagert werden. Die elastischen Stellglieder selbst können dabei entweder passiv rein mechanisch wirksam werden, indem sie eine der Pressenkraft entgegenwirkende Kraft auf Oberwerkzeug oder Unterwerkzeug dauerhaft aufbringen. Zu nennen wären dafür als einfaches Beispiel Spiralfedern oder Federpakete aus anderen mechanischen Federn. Es ist aber auch möglich, dass wenigstens ein elastisches Stellglied aktiv angesteuert wird, um einen während der Pressenbewegung differenzierten Stellkraftverlauf des Stellgliedes einzustellen. Letzteres ermöglicht es, zwischen einem für das Warmumformen hinreichenden Stellkraftniveau und einem für das Zuhalten erforderlichen höheren Stellkraftniveau zu unterscheiden, dabei aber das elastische Stellglied um die damit verbundene Aktuatorik zu schonen. Dadurch kann auch die Haltezeit insgesamt zur Durchführung der raschen Abkühlung und zum Härten des Blechbauteils reduziert werden.Furthermore, the forming tool stage and preferably also the second tool stage can be spring-mounted mechanically, hydraulically or pneumatically by the elastic actuator. The elastic actuators themselves can either have a passive, purely mechanical effect by permanently applying a force counteracting the press force on the upper tool or the lower tool raise. A simple example would be spiral springs or spring assemblies made from other mechanical springs. However, it is also possible for at least one elastic actuator to be actively controlled in order to set an actuating force curve of the actuator that is differentiated during the press movement. The latter makes it possible to distinguish between a level of actuating force that is sufficient for hot forming and a higher level of actuating force required for locking, while protecting the elastic actuator in order to protect the associated actuators. As a result, the overall holding time for carrying out the rapid cooling and hardening of the sheet metal component can also be reduced.
Der Transfer des Blechbauteils erfolgt erfindungsgemäß durch ein Transfersystem, umfassend einen linear geführten Transferbalken mit Greifern, in einer Transferzeit von 1 bis 4 Sekunden, bevorzugt in 2 bis 3 Sekunden, zwischen wenigstens zwei Werkzeugstufen. Es ist damit möglich, die Wärmeverluste während der Bewegung des Blechbauteils zwischen den Werkzeugstufen so niedrig wie möglich zu halten und auf komplizierte mehrachsige Handhabungsvorrichtungen idealerweise zu verzichten. Dabei kann vorgesehen werden, dass die Greifer des Transfersystems an das Blechbauteil bereits nah herangeführt werden, bevor die Presse den oberen Umkehrpunkt erreicht hat. Insbesondere können dafür in den Werkzeugstufen Ausnehmungen zur kollisionsfreien Durchführung des Transfersystems beziehungsweise zum Heranführen der Greifer nah an das Blechbauteil vorgesehen werden, so dass das Blechbauteil sofort mit dem Auseinanderführen von Oberwerkzeug und Unterwerkzeug, das heißt nach Ende der Haltezeit, durch das Transfersystem beziehungsweise durch die Greifer der Umformwerkzeugstufe entnommen und weiterbewegt wird.The sheet metal component is transferred according to the invention by a transfer system, comprising a linearly guided transfer bar with grippers, in a transfer time of 1 to 4 seconds, preferably in 2 to 3 seconds, between at least two tool stages. It is thus possible to keep the heat losses during the movement of the sheet metal component between the tool stages as low as possible and ideally to dispense with complicated multi-axis handling devices. It can be provided that the grippers of the transfer system are already brought close to the sheet metal component before the press has reached the upper reversal point. In particular, recesses can be provided in the tool stages for the collision-free implementation of the transfer system or for bringing the grippers close to the sheet metal component, so that the sheet metal component is immediately carried out by the transfer system or the lower tool when the upper tool and lower tool are moved apart, i.e. after the end of the holding time Gripper is removed from the forming tool stage and moved on.
Weiterhin kann mit dem erfindungsgemäßen Verfahren auf besonders einfache und zuverlässige Weise ein nur abschnittsweise gehärtetes Blechbauteil hergestellt werden. Abschnittsweise bedeutet im Rahmen der Erfindung, dass das Blechbauteil wenigstens einen ersten Abschnitt mit relativ niedriger Festigkeit und Steckgrenze mit einem Gefüge, welches bevorzugt ungehärtet oder nur in geringem Maße gehärtet ist sowie wenigstens einen zweiten Abschnitt mit hoher Festigkeit Rm und Streckgrenze Rp0,2 aber reduzierter Dehnung A50 aufweist und im Wesentlichen ein martensitisches Gefüge besitzt. Das bedeutet, dass der erste Abschnitt des Blechbauteils eine Zugfestigkeit zwischen 400 und 800 Megapascal (MPa), insbesondere zwischen 450 und 650 MPa, und überwiegend Ferrit-Perlit-Gefügebestandteile aufweist.Furthermore, a sheet metal component hardened only in sections can be produced in a particularly simple and reliable manner with the method according to the invention. In the context of the invention, in sections means that the sheet metal component has at least a first section with relatively low strength and yield point with a structure that is preferably unhardened or only slightly hardened, and at least one second section with high strength Rm and yield point Rp0.2 but reduced Has elongation A50 and essentially has a martensitic structure. This means that the first section of the Sheet metal component has a tensile strength between 400 and 800 megapascals (MPa), in particular between 450 and 650 MPa, and predominantly ferrite-pearlite structural components.
Bevorzugt wird in der Umformwerkzeugstufe eine Abkühltemperatur des Blechbauteils eingestellt, die in einem ersten Abschnitt der Blechplatine größer ist als die zur Martensitgefügeumwandlung erforderliche Martensitstarttemperatur Ms und die in einem zweiten Abschnitt kleiner ist als Ms, wobei die Blechplatine im ersten Abschnitt insbesondere auf eine Abkühltemperatur von 540 bis 660°C gekühlt wird. Neben der Abkühltemperatur ist es in den zweiten Abschnitten wichtig, auch eine hohe Abkühlrate oberhalb von 25 Kelvin pro Sekunde (K/s), insbesondere oberhalb von 70 K/s einzuhalten, um eine ausreichende Durchhärtung des Gefüges in diesem Abschnitt sicherzustellen. Durch die Abkühlung des ersten Abschnitts der Blechplatine in geringerem Maße und auf eine höhere Temperatur verglichen mit der Abkühlung im zweiten Abschnitt wird erreicht, dass eine Gefügeumwandlung in der Blechplatine vom austenitischen Zustand in Martensit unterbunden wird, gleichzeitig aber eine Gefügeumwandlung von Austenit zu Ferrit und/oder Perlit beginnt.In the forming tool stage, a cooling temperature of the sheet metal component is preferably set which is higher in a first section of the sheet metal blank than the martensite start temperature Ms required for the transformation of the martensite structure and which is lower than Ms in a second section, with the sheet metal blank in the first section in particular to a cooling temperature of 540 is cooled to 660 ° C. In addition to the cooling temperature, it is important in the second sections to maintain a high cooling rate above 25 Kelvin per second (K / s), in particular above 70 K / s, in order to ensure sufficient hardening of the structure in this section. By cooling the first section of the sheet metal blank to a lesser extent and to a higher temperature compared to the cooling in the second section, it is achieved that a structural transformation in the sheet metal blank from the austenitic state to martensite is prevented, but at the same time a structural transformation from austenite to ferrite and / or pearlite begins.
Um im ersten Abschnitt ein besonders dehnbares und zuverlässig rissfrei verformbares, insbesondere deformierbares Bauteil zu erhalten, kann in der zweiten Werkzeugstufe eine Abkühltemperatur des Blechbauteils eingestellt werden, die am Ende der zweiten Haltezeit in dem ersten Abschnitt zwischen 350 bis 500°C beträgt und in dem zweiten Abschnitt kleiner ist als die zur vollständigen Martensitgefügeumwandlung erforderliche Martensitfinishtemperatur Mf, wobei das Blechbauteil im zweiten Abschnitt bevorzugt auf kleiner 200°C, insbesondere auf Raumtemperatur, gekühlt wird. Damit kann sichergestellt werden, dass das Stahlgefüge im ersten Abschnitt genügend Zeit bei einer gegenüber dem ersten Abschnitt deutlich erhöhten Temperatur hat, um die Gefügeumwandlung zu Ferrit und/oder Perlit zu vollziehen, ohne dass Bainit oder gar Martensit in erheblichen Maßen entsteht. Demgegenüber soll durch die Temperierung des zweiten Abschnitts erreicht werden, dass ein vollständig martensitisches Gefüge entsteht, wobei damit eine Zugfestigkeit zwischen 1400 und 2100 MPa, bevorzugt 1450 und 1800 MPa, je nach Stahllegierung, insbesondere je nach Kohlestoff- und Mangangehalt, eingestellt wird.In order to obtain a particularly elastic and reliably deformable, especially deformable, component in the first section, a cooling temperature of the sheet metal component can be set in the second tool stage, which at the end of the second holding time is between 350 to 500 ° C in the first section and in which The second section is smaller than the martensite finish temperature Mf required for complete transformation of the martensite structure, the sheet metal component in the second section preferably being cooled to less than 200 ° C., in particular to room temperature. This ensures that the steel structure in the first section has enough time at a temperature that is significantly higher than in the first section to complete the structural transformation to ferrite and / or pearlite without bainite or even martensite being produced to any significant extent. In contrast, the temperature control of the second section is intended to achieve a completely martensitic structure, with a tensile strength between 1400 and 2100 MPa, preferably 1450 and 1800 MPa, depending on the steel alloy, in particular depending on the carbon and manganese content, being set.
Weiterhin kann vorgesehen werden, dass das Blechbauteil für eine erste Haltezeit zwischen 2 und 8 Sekunden und für eine zweite Haltezeit zwischen 2 und 10 Sekunden gehalten wird. Es ergibt sich somit bei unveränderter Taktzeit der Presse nahezu eine Verdopplung der verfügbaren Zeitdauer für die Abkühlung der geformten Blechplatine und für die damit einhergehenden Gefügeumwandlungen. Der Unterschied der beiden Haltezeiten ergibt sich vor allem aus der erforderlichen Zeitdauer für das Warmumformen in der Umformwerkzeugstufe.Furthermore, it can be provided that the sheet metal component is held for a first holding time between 2 and 8 seconds and for a second holding time between 2 and 10 seconds. With the cycle time of the press unchanged, the time available for cooling the formed sheet metal blank and for the associated structural transformations is almost doubled. The difference between the two holding times results primarily from the time required for hot forming in the forming tool stage.
Bevorzugt beträgt die Taktzeit der Presse mit einer Umformwerkzeugstufe und einer zeitlich darauf folgenden zweiten Werkzeugstufe zwischen ihrem oberen Umkehrpunkt und ihrem unteren Umkehrpunkt zwischen 3 und 11 Sekunden. Dadurch ist es möglich, eine extrem hohe Ausbringungsmenge beziehungsweise einen hohen Durchsatz und damit sehr niedrige Fertigungskosten zu erreichen. In Kombination mit der Herstellung abschnittsweise gehärteter Blechbauteile ergibt sich zudem der Vorteil, dass die Bauteileigenschaften und die Qualität unter dem hohen Produktionstakt nicht leiden. Betont werden sollte dabei, dass die erzeugten Blechbauteile eine hohe Maßhaltigkeit aufweisen, im Gegensatz zu einem einstufigen Warmform- und Presshärteverfahren zur Herstellung abschnittsweiser pressgehärteter Blechbauteile mit beheizten Werkzeugbereichen.The cycle time of the press with a forming tool stage and a temporally following second tool stage between its upper reversal point and its lower reversal point is preferably between 3 and 11 seconds. This makes it possible to achieve an extremely high output or a high throughput and thus very low production costs. In combination with the production of hardened sheet metal components in sections, there is also the advantage that the component properties and quality do not suffer from the high production cycle. It should be emphasized that the sheet metal components produced have a high degree of dimensional accuracy, in contrast to a one-step hot-forming and press-hardening process for the production of press-hardened sheet-metal components in sections with heated tool areas.
Ein weiterer Aspekt der Erfindung sieht vor, dass das Härten erst in einer dritten Werkzeugstufe beendet wird, wobei danach das Blechbauteil vollständig eine Abkühltemperatur unterhalb von 200°C aufweist. Dies hat den Vorteil, dass die Taktzeit der Presse noch einmal reduziert werden kann und am Ende der Presse ein kühles und bei Berührung unkritisches Blechbauteil entnommen werden kann. Ein Restwärmeverzug ist insbesondere durch die Angleichung der Abkühltemperaturen der beiden Abschnitte des Blechbauteils vollständig ausgeschlossen.Another aspect of the invention provides that the hardening is only ended in a third tool stage, after which the sheet metal component completely has a cooling temperature below 200 ° C. This has the advantage that the cycle time of the press can be reduced again and at the end of the press a cool sheet metal component that is not critical when touched can be removed. A residual heat distortion is completely excluded, in particular due to the adjustment of the cooling temperatures of the two sections of the sheet metal component.
Bevorzugt beträgt die Taktzeit der Presse mit einer Umformwerkzeugstufe und einer zweiten Werkzeugstufe und einer dritten Werkzeugstufe, mithin bei einem dreistufigen zeitlich aufeinanderfolgenden Prozess, zwischen ihrem oberen Umkehrpunkt und ihrem unteren Umkehrpunkt zwischen 3 und 9 Sekunden. Um diese niedrige Taktzeit der Presse zu erreichen, ist bevorzugt die Verwendung einer mechanischen Kurbel- oder Exzenterpresse oder einer servoelektrischen Presse vorzusehen, wobei im Falle der mechanischen Presse die Umkehrpunkte dabei ohne wesentliche Unterbrechung der Pressenbewegung durchlaufen werden. Eine Haltezeit durch Pressenstillstand kann so vorteilhafterweise entfallen.The cycle time of the press with a forming tool stage and a second tool stage and a third tool stage, therefore in a three-stage chronologically successive process, between its upper reversal point and its lower reversal point is between 3 and 9 seconds. In order to achieve this short press cycle time, the use of a mechanical crank or eccentric press or a servo-electric press is preferred to be provided, whereby in the case of the mechanical press the reversal points are passed through without any significant interruption of the press movement. A holding time due to a press standstill can thus advantageously be dispensed with.
Ein weiterer Aspekt der Erfindung betrifft eine Presse zum Herstellen wenigstens abschnittsweise gehärteten Blechbauteils. Die Presse weist mehrere Werkzeugstufen, einen Pressenstößel und einen Pressentisch auf, und wird zur Durchführung des oben beschriebenen Verfahrens eingesetzt. Erfindungsgemäß ist vorgesehen, dass wenigstens eine Werkzeugstufe eine wenigstens bereichsweise kühlbare Umformwerkzeugstufe zur Warmumformung von Blechplatinen ist, die ein Oberwerkzeug und ein Unterwerkzeug umfasst, welche in einem geschlossenen Zustand einen Formhohlraum ausbilden.Another aspect of the invention relates to a press for producing sheet metal components that are hardened at least in sections. The press has several tool stages, a press ram and a press table, and is used to carry out the method described above. According to the invention, it is provided that at least one tool stage is a forming tool stage that can be cooled at least in some areas for hot forming of sheet metal blanks, which comprises an upper tool and a lower tool which form a mold cavity in a closed state.
Zwischen dem Pressentisch und Unterwerkzeug ist wenigstens ein elastisches Stellglied angeordnet, so dass entweder das Unterwerkzeug relativ zum Pressentisch anhebbar ist, und/oder das Oberwerkzeug in einem Abstand relativ zum Pressenstößel druckbeaufschlagbar ist, um den geschlossenen Zustand der Umformwerkzeugstufe herzustellen, bevor die Presse vollständig geschlossen ist, wobei das Oberwerkzeug sowie das Unterwerkzeug Kühlkanäle aufweisen, wodurch ein Kühlmedium leitbar ist, wobei sich die Kühlkanäle über die gesamte Längserstreckung des Oberwerkzeugs und des Unterwerkzeugs erstrecken, wobei außerhalb der Umformwerkzeugstufe eine Kühlquelle in Form eines Wärmetauschers vorgesehen ist sowie eine Zu- und Ableitung von den Kühlkanälen zum Wärmetauscher.At least one elastic actuator is arranged between the press table and the lower tool so that either the lower tool can be raised relative to the press table and / or the upper tool can be pressurized at a distance relative to the press ram in order to establish the closed state of the forming tool stage before the press is completely closed The upper tool and the lower tool have cooling channels, whereby a cooling medium can be conducted, the cooling channels extending over the entire longitudinal extent of the upper tool and the lower tool, with a cooling source in the form of a heat exchanger being provided outside the forming tool stage as well as an inlet and outlet line from the cooling channels to the heat exchanger.
Der Transfer des Blechbauteils zwischen wenigstens zwei Werkzeugstufen erfolgt erfindungsgemäß durch ein Transfersystem, welches als linear geführter Transferbalken mit Greifern ausgebildet ist.According to the invention, the sheet metal component is transferred between at least two tool stages by a transfer system which is designed as a linearly guided transfer bar with grippers.
Es ist mit anderen Worten möglich, dass das Unterwerkzeug und/oder das Oberwerkzeug von Pressentisch oder Pressenstößel wenigstens solange beabstandet ist, bis der untere Umkehrpunkt der Presse erreicht wird. Der Abstand ist durch das elastische Stellglied einstellbar und verringert sich während des Warmumformens und bevorzugt auch noch während eines Zeitanteils der Haltezeit im geschlossenen Zustand von Oberwerkzeug und Unterwerkzeug. Für den Ausgleich der Lage von Oberwerkzeug und Unterwerkzeug untereinander sowie eventuell vorhandener Unstetigkeiten der Dicke der Blechplatine ist ein einseitig angeordnetes elastisches Stellglied ausreichend. Denkbar ist aber auch, beidseitig, mithin zwischen Oberwerkzeug und Pressenstempel sowie zwischen Unterwerkzeug und Pressentisch, entsprechende Stellglieder vorzusehen. Soll gleichzeitig oder nach dem Warmumformen ein Beschnitt oder ein Lochen in der Umformwerkzeugstufe erfolgen, ist zudem denkbar, auch ein auf einem elastischen Stellglied lagerbares Schneidmittel vorzusehen.In other words, it is possible for the lower tool and / or the upper tool to be spaced apart from the press table or press ram at least until the lower reversal point of the press is reached. The distance can be adjusted by means of the elastic actuator and is reduced during the hot forming and preferably also during a portion of the holding time when the upper tool and lower tool are closed. An elastic actuator arranged on one side is sufficient to compensate for the position of the upper tool and lower tool with one another and for any discontinuities in the thickness of the sheet metal blank. However, it is also conceivable to provide corresponding actuators on both sides, that is between the upper tool and the press ram and between the lower tool and the press table. If trimming or punching is to take place in the forming tool stage at the same time or after the hot forming, it is also conceivable to provide a cutting means that can be supported on an elastic actuator.
Bevorzugt ist durch das elastische Stellglied ein vertikaler Stellweg einstellbar, wobei der Stellweg weniger als der maximale Pressenhubweg zwischen den oberen und unteren Umkehrpunkten der Presse, mindestens jedoch 100 mm beträgt. In Kombination mit der durch den Pressenantrieb vorgegebenen Geschwindigkeit bei der Schließbewegung und bei der Aufwärtsbewegung der Presse ist es somit vorteilhaft möglich, die Haltezeit durch Kontakt zwischen Blechplatine, Oberwerkzeug und Unterwerkzeug zu verlängern.A vertical adjustment path can preferably be set by the elastic actuator, the adjustment path being less than the maximum press stroke path between the upper and lower reversal points of the press, but at least 100 mm. In combination with the speed given by the press drive during the closing movement and during the upward movement of the press, it is thus advantageously possible to extend the holding time through contact between the sheet metal blank, the upper tool and the lower tool.
Weiterhin bevorzugt weist das elastische Stellglied eine Stellkraft auf, die wenigstens über einen Teil eines Stellweges vom oberen Umkehrpunkt zum unteren Umkehrpunkt der Presse ansteigt, insbesondere ist die Stellkraft im geschlossenen Zustand der Umformwerkzeugstufe wenigstens 20 Prozent größer, wodurch der Kontakt- und Anpressdruck zwischen der Werkzeugstufe und dem Blechbauteil erhöht und damit ein hoher Wärmeübergang beziehungsweise das schnelle Erreichen wenigstens einer gewünschten Abschrecktemperatur des Blechbauteils möglich ist.Furthermore, the elastic actuator preferably has an actuating force that increases at least over part of an actuating path from the upper reversal point to the lower reversal point of the press, in particular the actuating force in the closed state of the forming tool stage is at least 20 percent greater, whereby the contact and pressure between the tool stage and the sheet metal component is increased and thus a high heat transfer or the rapid achievement of at least one desired quenching temperature of the sheet metal component is possible.
Um nur abschnittsweise gehärtete Bauteil herzustellen, ist weiterhin bevorzugt vorgesehen, dass zumindest die Umformwerkzeugstufe bereichsweise durch eine Heizquelle beheizbar ist, um in einem ersten Abschnitt eine reduzierte Abkühlgeschwindigkeit in dem Blechbauteil zu bewirken, wobei unbeheizte Bereiche Kühlkanäle zur Durchführung eines Kühlmediums aufweisen. Konkret ist dadurch im unbeheizten Bereich der Werkzeugstufe eine Temperatur nahe der Raumtemperatur, in jedem Fall aber unter 200°C einstellbar. Durch die Heizquelle ist im beheizten Bereich eine Temperatur zwischen 650 und 450°C einstellbar. Somit sind das Oberwerkzeug und das Unterwerkzeug dafür vorgesehen, das geformte Blechbauteil während der Haltezeit mit unterschiedlicher Abkühlrate und dadurch auf verschiedene Abschrecktemperatur abzukühlen beziehungsweise auf diesen Temperaturen zu halten. Wie oben bereits beschrieben, sind damit im Blechbauteil ein erster Abschnitt mit geringerer Zugfestigkeit und wenigstens ein zweiter Abschnitt mit hoher Festigkeit einstellbar.In order to produce hardened components only in sections, it is furthermore preferred that at least the forming tool step can be heated in some areas by a heat source in order to bring about a reduced cooling rate in the sheet metal component in a first section, with unheated areas having cooling channels for the passage of a cooling medium. Specifically, a temperature close to room temperature, but in any case below 200 ° C, can be set in the unheated area of the tool step. The heat source is in the heated A temperature range between 650 and 450 ° C can be set. Thus, the upper tool and the lower tool are provided to cool the formed sheet metal component during the holding time at different cooling rates and thereby to different quenching temperatures or to keep them at these temperatures. As already described above, a first section with lower tensile strength and at least one second section with high strength can thus be set in the sheet metal component.
Alternativ oder bevorzugt ergänzend ist es auch möglich, dass sowohl die Umformwerkzeugstufe als auch wenigstens die darauf folgende zweite Werkzeugstufe bereichsweise, insbesondere durch eine Heizquelle, beheizbar ist, um in einem ersten Abschnitt zumindest kein vollständig gehärtetes Blechbauteil zu erhalten. Es ergeben sich dieselben Merkmale und Vorteile wie oben beim Verfahren zur Herstellung nur abschnittsweise gehärteter Blechbauteile zur zweiten Werkzeugstufe bereits ausgeführt wurde.Alternatively or preferably in addition, it is also possible that both the forming tool stage and at least the subsequent second tool stage can be heated in certain areas, in particular by a heat source, in order to obtain at least no completely hardened sheet metal component in a first section. The same features and advantages result as was already carried out above in the method for the production of sheet metal components hardened only in sections for the second tool stage.
Weiterhin kann der unbeheizte Bereich der zweiten Werkzeugstufe zumindest korrespondierend zu einem Übergangsabschnitt zwischen erstem Abschnitt und zweitem Abschnitt des Blechbauteils eine aktive Kühlquelle aufweisen. Die Kühlquelle dient dazu, einen Wärmeübergang zwischen den unterschlich temperierten Abschnitten der Blechplatine zu reduzieren um so einen möglichst schmalen Übergangsabschnitt zu gewährleisten. Das hat den Vorteil, dass Konstrukteure bei der Auslegung von Blechbauteilen, insbesondere für die Fahrzeugindustrie nur eine kleine Fläche berücksichtigen müssen, denen keine mechanischen Kennwerte direkt zugeordnet beziehungsweise für die keine mechanischen Kennwerte garantiert werden können. Auch ist der sichergestellt, dass der zweite Bereich durchgehend eine homogene Verteilung des Gefüges und der mechanischen Eigenschaften aufweist. Die Kühlquelle umfasst einen außerhalb der Presse angeordneten Wärmetauscher, der in Wirkverbindung mit dem Kühlmedium und den Kühlkanälen zumindest der Umformwerkzeugstufe steht.Furthermore, the unheated area of the second tool stage can have an active cooling source, at least corresponding to a transition section between the first section and the second section of the sheet metal component. The cooling source is used to reduce heat transfer between the sections of the sheet metal blank with different temperatures in order to ensure the narrowest possible transition section. This has the advantage that when designing sheet metal components, especially for the vehicle industry, designers only have to consider a small area to which no mechanical parameters can be directly assigned or for which no mechanical parameters can be guaranteed. It is also ensured that the second area has a homogeneous distribution of the structure and the mechanical properties throughout. The cooling source comprises a heat exchanger arranged outside the press, which is in operative connection with the cooling medium and the cooling channels of at least the forming tool stage.
Schließlich ist es der erste Abschnitt und der Übergangsabschnitt des Blechbauteils zumindest in der zweiten Werkzeugstufe formschlüssig durch Fixierelemente fixierbar. Im Falle einer dreistufigen Presse mit Umformwerkzeugstufe, zweiter Werkzeugstufe und dritter Werkzeugstufe ist das Blechbauteil bevorzugt auch in der dritten Werkzeugstufe formschlüssig durch Fixierelemente fixierbar. Damit ergibt sich für die erfindungsgemäße Presse eine Vergleichmäßigung der Presskraft in allen Werkzeugstufen und insbesondere wird verhindert, dass Pressentisch und Pressenstößel ungleichmäßig zueinander ausgerichtet sind.Finally, it is the first section and the transition section of the sheet metal component that can be fixed in a form-fitting manner by fixing elements, at least in the second tool stage. In the case of a three-stage press with a forming tool stage, the second In the tool stage and the third tool stage, the sheet metal component can preferably also be positively fixed in the third tool stage by means of fixing elements. For the press according to the invention, this results in an equalization of the pressing force in all tool stages and, in particular, it prevents the press table and press ram from being unevenly aligned with one another.
Weitere Ziele, Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele anhand der Zeichnungen. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger sinnvoller Kombination den Gegenstand der vorliegenden Erfindung, auch unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.Further goals, advantages, features and possible applications of the present invention emerge from the following description of several exemplary embodiments with reference to the drawings. In this case, all of the features described and / or illustrated in the form of themselves or in any meaningful combination form the subject matter of the present invention, also regardless of their summary in the claims or their reference.
Dabei zeigen:
Figur 1- eine erste Ausführungsvariante der erfindungsgemäßen Presse im Querschnitt,
- Figur 2a und 2b
- eine zweite Ausführungsvariante einer Umformwerkzeugstufe der erfindungsgemäßen Presse im Querschnitt und Längsschnitt,
Figur 3- eine dritte Ausführungsvariante einer erfindungsgemäßen Presse im Längsschnitt,
- Figur 4a und 4b
- ein Ablaufschema für erfindungsgemäßes Verfahren anhand eines Längsschnitts durch die Umformwerkzeugstufe zu verschiedenen Zeitpunkten des Pressentaktes,
Figur 5- eine Ausführungsvariante einer Umformwerkzeugstufe einer erfindungsgemäßen Presse zur Herstellung abschnittsweise gehärteter Blechbauteile,
Figur 6- eine alternative Ausführungsvariante einer Umformwerkzeugstufe einer erfindungsgemäßen Presse zur Herstellung abschnittsweise gehärteter Blechbauteile im Längsschnitt,
- Figur 7a und 7b
- eine alternative Ausführungsvariante einer erfindungsgemäßen Presse zur Herstellung abschnittsweise gehärteter Blechbauteile 7a) im Längsschnitt und 7b) im Horizontalschnitt,
- Figur 8a und 8b
- eine alternative Ausführungsvariante einer erfindungsgemäßen Presse zur Herstellung abschnittsweise gehärteter Blechbauteile 8a) im Längsschnitt und 8b) im Horizontalschnitt,
- Figur 9a
- einen Zeit-Temperatur-Verlauf der Blechplatine für das erfindungsgemäße Verfahren in einer zweistufigen Presse und separater Kühlstufe und
- Figur 9b
- einen Zeit-Temperatur-Verlauf der Blechplatine für das erfindungsgemäße Verfahren in einer dreistufigen Presse.
- Figure 1
- a first variant of the press according to the invention in cross section,
- Figures 2a and 2b
- a second variant of a forming tool stage of the press according to the invention in cross section and longitudinal section,
- Figure 3
- a third embodiment of a press according to the invention in longitudinal section,
- Figures 4a and 4b
- a flow chart for the method according to the invention based on a longitudinal section through the forming tool stage at different times of the press cycle,
- Figure 5
- an embodiment variant of a forming tool stage of a press according to the invention for the production of hardened sheet metal components in sections,
- Figure 6
- an alternative embodiment of a forming tool stage of a press according to the invention for Production of hardened sheet metal components in sections in longitudinal section,
- Figures 7a and 7b
- an alternative embodiment of a press according to the invention for the production of hardened sheet metal components 7a) in longitudinal section and 7b) in horizontal section,
- Figures 8a and 8b
- an alternative embodiment of a press according to the invention for the production of partially hardened sheet metal components 8a) in longitudinal section and 8b) in horizontal section,
- Figure 9a
- a time-temperature curve of the sheet metal blank for the method according to the invention in a two-stage press and separate cooling stage and
- Figure 9b
- a time-temperature curve of the sheet metal blank for the method according to the invention in a three-stage press.
An den Werkzeugspannplatten 9 ist über Spannelemente 31' je ein Unterwerkzeug 12 festgelegt, welche die Umformwerkzeugstufe 2 sowie die zweite Werkzeugstufe 3 umfasst. Korrespondierend zum Unterwerkzeug 12 ist an dem Pressenstößel 6 ein Oberwerkzeug 11 festgelegt, wobei zwischen Oberwerkzeug 11 und Unterwerkzeug 12 eine Blechplatine 26 anordenbar ist. Sowohl Oberwerkzeug 11 als auch Unterwerkzeug 12 weisen Kühlkanäle 17 auf, wodurch ein Kühlmedium 18 leitbar ist. Weiterhin weist das Unterwerkzeug 12 Führungselemente 32' auf, welche in korrespondierende Führungsausnehmung 32 einführbar gestaltet sind. Die Führungselemente 32' und Führungsausnehmungen 32 sind korrespondierend zueinander ausgebildet und erlauben die Führung des Oberwerkzeugs 12 und des Unterwerkzeug 11 zueinander. In Folge der durch die elastischen Stellglieder 7 schwimmenden Lagerung der Unterwerkzeuge 12 sind mittels der Führungselemente 21 und Führungsausnehmungen 32 eventuell auftretende Lageabweichungen zu den Oberwerkzeugen 11 quer zur Pressenbewegung ausgleichbar. Die elastischen Stellglieder 7 sind in
Weiterhin weist die Presse 1 in der zweiten Ausführungsvariante zusätzliche Schneidmittel 33 am Oberwerkzeug 11 und Schneidmittel 33 am Unterwerkzeug 12 auf, welche dazu dienen, die umgeformte Blechplatine beziehungsweise das Blechbauteil 27 im noch warmen und ungehärteten Zustand zu beschneiden. Insbesondere wird hier ein Randbeschnitt durchgeführt, wobei exemplarisch gezeigt die oberen Schneidmittel 33' über elastische Stellglieder 34 am Oberwerkzeug 11 festgelegt sind. Die elastischen Stellglieder 34 können ähnlich wie die Stellglieder 7 aktiv oder passiv wirksam sein. Die unteren Schneidmittel 33 sind dagegen fest und unbeweglich mit dem Unterwerkzeug 12 verbunden. Eine umgekehrte Anbindung der Schneidmittel 33, 33' an der Umformwerkzeugstufe 2 ist jedoch auch möglich. In der Bildebene links exemplarisch gezeigt wird, dass die Schneidmittel 33 an Oberwerkzeug 11 und Unterwerkzeug 12 fest aber austauschbar angebunden sind. Selbstverständlich kann in der Praxis die gleiche Art der Anbindung für beide, sowohl für die rechten als auch für die linken Hälften der Umformwerkzeugstufe 2 ausgeführt sein.Furthermore, the
Die
In
Im Unterschied zur vorgenannten Ausführungsvariante in
Selbstverständlich ist es möglich, mehr als einen beheizten Bereich 21 in der Umformwerkzeugstufe 2, wie auch in der zweiten Werkzeugstufe 3 vorzusehen.It is of course possible to provide more than one
Schließlich ist in den
Weiterhin sind gestrichelt angedeutet ein Transferbalken 25 sowie in der Umformwerkzeugstufe 2 Greiferausnehmungen 25', die dazu dienen, dass beim Entfernen des Blechbauteils 27 Greifer (nicht dargestellt), die mit dem Transferbalken 25 verbunden sind, so frühzeitig wie möglich an das Blechbauteil annäherbar sind, ohne mit dem Unterwerkzeug 12 während der Aufwärtsbewegung Z zu kollidieren.Furthermore, a
Der zweiten Werkzeugstufe 3 folgt zeitlich betrachtet eine weitere Werkzeugstufe 4, die hier primär der weiteren Abkühlung des Blechbauteils dient. Sie weist wie der unbeheizte Bereich 23 der zweiten Werkzeugstufe 3 Fixierelemente 24 auf, wodurch das Blechbauteil zur weiteren Kühlung lagegenau fixierbar ist. Die Abkühlung selbst kann durch nicht dargestellte Kühlquellen beispielsweise durch Luftventilation, Luft- oder Kühlmediumdusche oder auch durch Eintauchen gemäß Deutschem Patent
Wie
In den
In der dritten Werkzeugstufe 4' ist eines der hergestellten Blechbauteile 27 dargestellt, wobei der erste Abschnitt 28 und der zweite Abschnitt 29 sowie der Übergangsabschnitt 30 zu erkennen sind mit oben beschriebenen unterschiedlichen, dem Bauteileinsatz angepassten mechanischen Eigenschaften und unterschiedlicher Gefügestruktur. Selbstverständlich lässt sich das Blechbauteil 27 wie hier dargestellt auch in der Ausführungsvariante gemäß
Schließlich zeigt die
Ausgehend von einer wenigstens bereichsweise auf Austenitisierungstemperatur Ac3 erwärmten Blechplatine 26 erfolgt ein Transfer innerhalb 2 Sekunden aus der Erwärmungseinrichtung 35 in die Umformwerkzeugstufe 2 der Presse 1. Dann beginnt die Schließbewegung der Presse und des Werkzeugs bis die Umformwerkzeugstufe 2 vollständig geschlossen und die Blechplatine 26 zum Blechbauteil 27 warmumgeformt ist. Sodann beginnt die erste Haltezeit t2' zur Abkühlung des Blechbauteils während die Presse 1den unteren Umkehrpunkt UP durchführt und die Aufwärtsbewegung einsetzt. Während der Aufwärtsbewegung wird die Umformwerkzeugstufe 2 verzögert geöffnet, wobei sich das Blechbauteil 27 durch die unterschiedlichen Temperaturen und/oder Werkzeugwerkstoffeigenschaften auf verschiedene Abkühltemperaturen T1.1 und T1.2 abgekühlt hat. Es folgt ein weiterer Transfer innerhalb der Transferzeit t3 von der Umformwerkzeugstufe 2 in die zweite Werkzeugstufe 3. Danach wird das Blechbauteil 27 weiter abgekühlt, während die zweite Werkzeugstufe 3 geschlossen wird und das Bauteil 27 lagefixiert gehalten wird. Der Temperaturunterschied zwischen der Abkühltemperatur T2.1 und T2.2 in den Abschnitten 28, 29 des Blechbauteils 27 wird wiederum durch unterschiedliche Abkühlraten durch die beheizten und unbeheizten Bereiche 21, 23 der zweiten Werkzeugstufe 3 (
Anschließend folgt der Transfer innerhalb der Transferzeit t5 des Blechbauteils 27 in die dritte Werkzeugstufe 4, 4', wobei sich hier nun die
- 1 - Presse1 - press
- 2 - Umformwerkzeugstufe2 - forming tool stage
- 3 - Zweite Werkzeugstufe3 - Second tool level
- 4, 4' - Weitere Werkzeugstufe4, 4 '- Another tool level
- 5 - Pressentisch5 - press table
- 6 - Pressenstößel6 - press ram
- 7 - Stellglied7 - actuator
- 8 - Mechanische Federpaket8 - Mechanical spring package
- 9 - Werkzeugspannplatte9 - mold clamping plate
- 10- 10 Spannplatte10-10 clamping plate
- 11 - Oberwerkzeug11 - upper tool
- 12 - Unterwerkzeug12 - lower tool
- 13 - Formhohlraum13 - mold cavity
- 14 - Heizquelle14 - heating source
- 15 - Formeinsatz15 - mold insert
- 16 - Formsegment16 - shape segment
- 17 - Kühlkanal17 - cooling duct
- 18 - Kühlmedium18 - cooling medium
- 19 - Kühlquelle19 - source of cooling
- 20 - Isolierung20 - insulation
- 21 - Beheizter Bereich21 - Heated area
- 22 - Unbeheizte Bereich zu 222 - Unheated area for 2
- 23 - Unbeheizte Bereich zu 323 - Unheated area for 3
- 24 - Fixierelement24 - fixing element
- 25 - Transferbalken25 - transfer bar
- 25' - Greiferausnehmung25 'gripper recess
- 26 - Blechplatine26 - sheet metal blank
- 27 - Blechbauteil27 - sheet metal component
- 28 - Erster Abschnitt zu 2728 - First section on 27
- 29 - Zweiter Abschnitt zu 2729 - Second section on 27
- 30 - Übergangsabschnitt zu 2730 - transition section to 27
- 31 - Spannelement31 - clamping element
- 32 - Führungsausnehmung32 - guide recess
- 32' - Führungselement32 'guide element
- 33,33' - Schneidmittel33.33 'cutting means
- 34 - Stellglied34 - actuator
- 35 - Erwärmungseinrichtung35 - heating device
- 36 - Presse36 - press
- D - Dicke zu 27D - thickness to 27
- A - PressenhubwegA - press stroke
- W7 -StellwegW7 travel
- t1 - Transferzeitt 1 - transfer time
- t2 - Werkzeugschließzeitt 2 - mold closing time
- t2' -erste Haltezeitt 2 ' - first hold time
- t3 - Transferzeitt 3 - transfer time
- t4 - Werkzeugschließzeitt 4 - mold closing time
- t4' -zweite Haltezeitt 4 ' - second holding time
- t5 - Transferzeitt 5 - transfer time
- t6 -Abkühlzeitt 6 cooling time
- A - AbstandA - distance
- Ac3 -AustenitisierungstemperaturAc3 austenitization temperature
- Ms - MartensitstarttemperaturMs - martensite start temperature
- Mf - MartensitfinishtemperaturMf - martensite finishing temperature
- OP - Obererer UmkehrpunktOP - top dead center
- UP - Unterer UmkehrpunktUP - lower dead center
- RT - RaumtemperaturRT - room temperature
- T1.1 - AbkühltemperaturT 1.1 - cooling temperature
- T1.2 - AbkühltemperaturT 1.2 - cooling temperature
- T2.1 - AbkühltemperaturT 2.1 - cooling temperature
- T2.2 - AbkühltemperaturT 2.2 - cooling temperature
- T3.1 - AbkühltemperaturT 3.1 - cooling temperature
- T3.2 - AbkühltemperaturT 3.2 - cooling temperature
- Y -SchließbewegungY closing movement
- Z- AufwärtsbewegungZ- upward movement
Claims (19)
- Method for manufacturing a sheet metal component (27), cured in sections at least, in a press (1), which comprises a press table (5), a press ram (6) and several die stations (2; 3; 4), characterised by the following steps:- heating, at least in sections, of a sheet metal plate (26) to a temperature of greater than the austenitisation temperature Ac3,- laying of the heated sheet metal plate (26) in a first forming die station (2) of the press (1),- hot forming of the sheet metal plate (26) to form the sheet metal component (27) in the forming die station (2), wherein here the press (1) carries out a closing movement,- keeping shut the forming die station (2) for a first holding time (t2'),- cooling the formed sheet metal plate (26) during the first holding time (t2'), and- transfer of the formed sheet metal plates (26; 27) into a second die station (3), wherein the sheet metal component (27) is conveyed by a transfer system, as a linearly guided transfer bar (25) with grippers, in a transfer time (t3, t5) of 1 to 4 seconds between at least two die stations (2; 3; 4),- curing, at least in sections, of the sheet metal plate (26) by cooling in the second die station (3) within at least one second holding time (t4'),wherein the forming die station (2) during the closing movement is moved from an upper return point (OP) to a lower return point (UP) of the press (1) by means of at least one resilient actuator (7) relatively to the press (1), such that the hot forming is ended and the keeping-shut starts, before the press (1) reaches the lower return point (UP) and/or that the keeping-shut of the forming die station (2) on the part of the resilient actuator (7) is ended only during the upward movement of the press (1) after the lower return point (UP) of the press (1) has been completely traversed.
- Method according to claim 1, characterised in that in the forming die station (2) an edge trim and/or a perforation is carried out, in particular before the press (1) is completely closed.
- Method according to claim 1 or 2, characterised in that the second die station (3) is moved at least in sections during the closing movement of the press (1) by at least one resilient actuator (7) relatively to the press (1), such that the keeping-shut starts before the press (1) reaches the lower return point (UP) and/or the keeping-shut of the second die station (3) at least in sections by a resilient actuator (7) is ended only during the upward movement of the press (1) after the lower return point (UP) of the press (1) has been completely traversed.
- Method according to any of the preceding claims, characterised in that the forming die station (2) and preferably also the second die station (3) is mechanically, hydraulically or pneumatically spring-mounted by the resilient actuator (7).
- Method according to any of the preceding claims, characterised in that the sheet metal component (27) is conveyed through the in a transfer time (t3, t5) of 2 to 3 seconds between at least two die stations (2; 3; 4).
- Method for manufacturing a sheet metal component (27) which is cured in sections according to any of the preceding claims, characterised in that in the forming die station (2) a cooling temperature (T1.1; T1.2) of the sheet metal (27) component is set which in a first section (28) is greater than the Martensite starting temperature Ms required for the Martensite structure transformation, and which in a second section (29) is less than Ms, wherein the sheet metal component (27) is cooled in the first section (28) in particular to a cooling temperature (T2.1) of 540 to 660°C.
- Method according to claim 6, characterised in that in the second die station (3) a cooling temperature (T2) of the sheet metal component (27) is set which at the end of the second holding time (t4') in the first section (28) is between 350 and 500°C and in the second section (29) is less than the Martensite finish temperature Mf necessary for the complete Martensite structure transformation, wherein the sheet metal component (27) is cooled in the second section (29) preferably to less than 200°C, in particular to room temperature (RT).
- Method according to at least one of the preceding claims, characterised in that the sheet metal component (27) is held for a first holding time (t2') between 2 and 8 seconds and for a second holding time (t4') between 2 and 10 seconds.
- Method according to at least one of the preceding claims, characterised in that the cycle time of the press (1) having a forming die station (2) and a second die station (3) between its upper return point (OP) and its lower return point (UP) is between 3 and 11 seconds.
- Method according to one of claims 1 to 8, characterised in that the curing is ended only in a third die station, wherein thereafter the sheet metal component has in its entirety a cooling temperature (T3.1, T3.1) of below 200°C.
- Method according to claim 10, characterised in that the cycle time of the press (1) having a forming die station (2) and a second die station (3) and a third die station (4) between its upper return point (OP) and its lower return point (UP) is between 3 and 9 seconds.
- Method according to claim 1, characterised in that the grippers of the transfer system are already brought close to the sheet metal component for the press has reached the upper return point.
- Press (1) for manufacturing a sheet metal component (27), cured at least in sections, having several die stations (2; 3; 4), a press ram (6) and a press table (5), for carrying out the method according to any of claims 1 to 12, wherein at least one die station (2, 3, 4) is a forming die station (2), which can be cooled at least in regions, for the hot forming of sheet metal plates (26), which comprises an upper die (11) and a lower die (12) which in a closed state form a mould cavity (13), wherein between press table (5) and lower die (12) is arranged at least one resilient actuator (7), such that either the lower die (12) can be raised relatively to the press table (5), and/or the upper die (11) can have pressure applied to it at a distance (A) relatively to the press ram (6) in order to create the closed state of the forming die station (2) before the press (1) is completely closed, characterised in that the upper die and the lower die of the forming die station have cooling channels for the passage of a cooling medium and the cooling channels extend across the entire longitudinal extension of the upper die and the lower die, wherein externally to the forming die station is provided a cooling source in the form of a heat exchanger as well as a feed line and discharge line from the cooling channels to the heat exchanger, wherein furthermore a transfer system is assigned to the press, which transfer system is in the form of a linearly guided transfer bar (25) with grippers, in order to convey the sheet metal component (27) between at least two die stations (2; 3; 4) of the press (1).
- Press (1) according to claim 13, characterised in that by means of the resilient actuator (7) a vertical actuating path (W7) can be set, wherein the actuating path (W7) amounts to less than the maximum press lift path (W1) between the upper and lower return points (OP, UP) of the press (1), however at least 100 mm.
- Press (1) according to claim 13 or 14, characterised in that the resilient actuator (7) has an actuating force which increases at least across a part of an actuating path (W7) from the upper return point (OP) to the lower return point (UP) of the press (1), in particular, the actuating force is at least 20% greater in the closed state of the forming die station (2).
- Press (1) for manufacturing a sheet metal component (27), cured in sections, according to any of claims 13 to 15, characterised in that at least the forming die station (2) can be heated in regions by a heating source (14), in order in a first section (28) to effect a reduced cooling speed in the sheet metal component (27), wherein unheated regions (22) have cooling channels (17) for the passage of a cooling medium (18).
- Press (1) according to any of claims 13 to 16, characterised in that both the forming die station (2) as well as at least the subsequent second die station (3) can be heated in regions, in particular by a heating source (14), in order in a first section (28) to obtain a sheet metal component (27) which is at least not completely cured.
- Press (1) according to claim 17, characterised in that the unheated region (22) of the second die station (3) at least corresponding to a transition section (30) between first section (28) and second section (29) of the sheet metal component (27) has an active cooling source (19).
- Press (1) according to claim 18, characterised in that the first section (28) and the transition section (30) of the sheet metal component (27) can be fixed at least in the second die station (3) in form-fitting manner by means of fixing elements (24).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102014112244.5A DE102014112244A1 (en) | 2014-08-26 | 2014-08-26 | Method and press for producing at least partially hardened sheet metal components |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2993241A1 EP2993241A1 (en) | 2016-03-09 |
EP2993241B1 true EP2993241B1 (en) | 2020-10-07 |
Family
ID=54007520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15181420.9A Active EP2993241B1 (en) | 2014-08-26 | 2015-08-18 | Method and press for manufacturing cured sheet metal components, in sections at least |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160059295A1 (en) |
EP (1) | EP2993241B1 (en) |
CN (1) | CN105478559A (en) |
DE (1) | DE102014112244A1 (en) |
ES (1) | ES2828966T3 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014107210A1 (en) * | 2014-05-22 | 2015-11-26 | Benteler Automobiltechnik Gmbh | Modular thermoforming tool |
EP3015183B1 (en) * | 2014-11-03 | 2019-09-04 | Peter Amborn | Forming press for forming a sheet-shaped blank made of metal and having two parts which can be moved together |
EP3034192A1 (en) * | 2014-12-18 | 2016-06-22 | Autotech Engineering, A.I.E. | A tool for hot forming structural components |
EP3067129A1 (en) * | 2015-03-09 | 2016-09-14 | Autotech Engineering, A.I.E. | Press systems and methods |
WO2017019855A1 (en) * | 2015-07-30 | 2017-02-02 | Magna International Inc. | Stamping die |
DE102015113407B4 (en) * | 2015-08-13 | 2018-01-11 | Ebner Industrieofenbau Gmbh | Furnace apparatus for heat treating a metal board |
US10758959B2 (en) * | 2015-09-18 | 2020-09-01 | Nippon Steel Corporation | Panel-like formed product and manufacturing method thereof |
DE102016100589A1 (en) * | 2016-01-14 | 2017-07-20 | Voestalpine Metal Forming Gmbh | Method and apparatus for thermoforming steel sheets |
CN105905168A (en) * | 2016-04-22 | 2016-08-31 | 北京新能源汽车股份有限公司 | Method for manufacturing side outer plate |
CN106086364B (en) * | 2016-08-11 | 2017-10-24 | 卡斯马汽车系统(重庆)有限公司 | Automobile thermoformed part local softening method |
DE102016125510B3 (en) | 2016-12-22 | 2018-04-12 | Benteler Automobiltechnik Gmbh | Thermoformed metal sheet metal component and method for producing an opening in such a sheet metal component |
CN108856430B (en) * | 2017-05-25 | 2019-12-13 | 四川成飞集成科技股份有限公司 | Multistation stamping device is used in automobile metal accessory production |
US10697035B2 (en) * | 2017-10-03 | 2020-06-30 | Ford Motor Company | 3-D printed cooling channels to produce PHS parts with tailored properties |
EP3720624B1 (en) * | 2017-12-07 | 2023-10-04 | GEDIA Gebrüder Dingerkus GmbH | Press and method for hot working and hardening sheet metal blanks |
KR102052931B1 (en) * | 2017-12-29 | 2019-12-11 | 주식회사 엠에스 오토텍 | Hot stamping die apparatus |
DE102018200310A1 (en) * | 2018-01-10 | 2019-07-11 | Thyssenkrupp Ag | Method for producing a sheet steel component |
JP7063074B2 (en) * | 2018-04-11 | 2022-05-09 | トヨタ紡織株式会社 | Press processing equipment |
DE202019000828U1 (en) * | 2019-02-20 | 2020-02-24 | Rolf Espe | Press pad with high spring action on a metallic basis for coating wood-based panels and manufacturing plastic panels in hydraulic single and multi-day heating presses. |
JP7172832B2 (en) * | 2019-04-23 | 2022-11-16 | 日本製鉄株式会社 | Method for manufacturing hot press-formed product |
ES2946893T3 (en) * | 2019-10-14 | 2023-07-27 | Autotech Eng Sl | Pressing systems and procedures |
MX2022005769A (en) | 2019-11-26 | 2022-06-09 | Magna Int Inc | Hot stamp tooling assembly and method of forming a part with tailored temper properties. |
DE102020207115B3 (en) | 2020-06-05 | 2021-09-30 | Volkswagen Aktiengesellschaft | Method and process arrangement for the production of a hot-formed and press-hardened sheet steel component |
KR20220013098A (en) * | 2020-07-24 | 2022-02-04 | 주식회사 포스코 | Method and apparatus manufacturing hot press formed parts for multi-step process |
EP4392191A1 (en) * | 2021-08-24 | 2024-07-03 | Magna International Inc | Process for manufacturing vehicle parts |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10049660A1 (en) | 2000-10-07 | 2002-04-25 | Daimler Chrysler Ag | Process for the production of locally reinforced sheet metal parts |
JP2005199300A (en) | 2004-01-15 | 2005-07-28 | Komatsu Sanki Kk | Press working method |
JP2007136533A (en) | 2005-11-22 | 2007-06-07 | Nippon Steel Corp | Forming method using transfer press and transfer press device |
US20100018277A1 (en) | 2008-07-25 | 2010-01-28 | Christian Hielscher | Apparatus for hot-forming, press-quenching, and cutting semifinished hardenable-steel workpiece |
DE102008034596A1 (en) | 2008-07-25 | 2010-02-04 | Bayerische Motoren Werke Aktiengesellschaft | Hardened sheet steel component producing method, involves heating sheet steel, and locally adjusting cooling process of sheet steel by selectively intervening heat transmission from sheet steel to molding tools |
WO2010150683A1 (en) | 2009-06-22 | 2010-12-29 | 新日本製鐵株式会社 | Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member |
DE102009057382A1 (en) | 2009-12-09 | 2011-06-16 | Benteler Automobiltechnik Gmbh | Method of manufacturing a sheet metal component, particularly for support part of car body of automobiles, in transfer press, involves heating sheet metal plate to certain temperature |
WO2011115539A1 (en) | 2010-03-16 | 2011-09-22 | Gestamp Hardtech Ab | Press hardening plant and a method of press hardening a steel sheet blank |
US20110283851A1 (en) | 2010-05-21 | 2011-11-24 | Thyssenkrupp Sofedit S.A.S. | Method and hot forming system for producing press-hardened formed components of sheet steel |
DE102011011013A1 (en) | 2011-02-11 | 2012-08-16 | Schuler Smg Gmbh & Co. Kg | Press plant for converting or editing any metal components, is provided with forming station that comprises material-deforming tools propelled by hydraulic operating device |
EP2543450A1 (en) | 2011-07-08 | 2013-01-09 | Cie Automotive, S.A. | Machine and method for stamping metal parts |
US20130205863A1 (en) | 2010-07-19 | 2013-08-15 | Gmf Umformtechnik Gmbh | Forming tool and method for hot forming and partially press hardening a workpiece made of sheet steel |
EP2762243A1 (en) | 2011-09-30 | 2014-08-06 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for manufacturing press-molded article and press molding equipment |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1216869A (en) * | 1959-02-20 | 1960-04-28 | Lauravia | Mounting for hot or cold die printing |
DE102004019772A1 (en) * | 2004-04-23 | 2005-12-01 | Bayerische Motoren Werke Ag | Sheet metal drawing press has moving upper section and fixed lower section with interchangeable tools |
DE102005025026B3 (en) * | 2005-05-30 | 2006-10-19 | Thyssenkrupp Steel Ag | Production of metal components with adjacent zones of different characteristics comprises press-molding sheet metal using ram and female mold, surfaces of ram which contact sheet being heated and time of contact being controlled |
DE102005028010B3 (en) | 2005-06-16 | 2006-07-20 | Benteler Automobiltechnik Gmbh | Shaping and hardening heated steel workpiece, e.g. sheet, using press with lower mold tool located in liquid bath, minimizing or eliminating holding time for hardening workpiece in closed mold |
JP4608420B2 (en) * | 2005-11-22 | 2011-01-12 | 新日本製鐵株式会社 | Transfer press machine |
US8230713B2 (en) * | 2008-12-30 | 2012-07-31 | Usamp | Elevated temperature forming die apparatus |
US8652276B2 (en) * | 2009-12-22 | 2014-02-18 | Sprint AeroSystems, Inc. | System and method for forming contoured new and near-net shape titanium parts |
MX2013013240A (en) * | 2011-05-23 | 2014-01-08 | Nippon Steel & Sumitomo Metal Corp | Hot press molding method and hot press molding die. |
EP2735620B1 (en) * | 2011-07-21 | 2016-05-25 | Kabushiki Kaisha Kobe Seiko Sho | Method for producing hot-pressed steel member |
DE102011108912A1 (en) * | 2011-07-28 | 2013-01-31 | Volkswagen Aktiengesellschaft | Segmented press hardening tool |
CN102554048A (en) * | 2011-12-13 | 2012-07-11 | 吉林大学 | Method for forming variable-strength hot stamping parts by ultrahigh-strength steel |
DE102012110650C5 (en) * | 2012-11-07 | 2017-12-14 | Benteler Automobiltechnik Gmbh | Hot forming line for the production of hot-formed and press-hardened sheet steel products |
CN103028645A (en) * | 2012-12-31 | 2013-04-10 | 哈尔滨工业大学 | Hot stamping forming method for variable strength distribution strong-strength steel plate part |
DE102014101539B9 (en) * | 2014-02-07 | 2016-08-11 | Benteler Automobiltechnik Gmbh | Hot forming line and method of making hot formed sheet metal products |
-
2014
- 2014-08-26 DE DE102014112244.5A patent/DE102014112244A1/en not_active Withdrawn
-
2015
- 2015-08-18 EP EP15181420.9A patent/EP2993241B1/en active Active
- 2015-08-18 ES ES15181420T patent/ES2828966T3/en active Active
- 2015-08-25 US US14/835,156 patent/US20160059295A1/en not_active Abandoned
- 2015-08-26 CN CN201510783562.2A patent/CN105478559A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10049660A1 (en) | 2000-10-07 | 2002-04-25 | Daimler Chrysler Ag | Process for the production of locally reinforced sheet metal parts |
JP2005199300A (en) | 2004-01-15 | 2005-07-28 | Komatsu Sanki Kk | Press working method |
JP2007136533A (en) | 2005-11-22 | 2007-06-07 | Nippon Steel Corp | Forming method using transfer press and transfer press device |
US20100018277A1 (en) | 2008-07-25 | 2010-01-28 | Christian Hielscher | Apparatus for hot-forming, press-quenching, and cutting semifinished hardenable-steel workpiece |
DE102008034596A1 (en) | 2008-07-25 | 2010-02-04 | Bayerische Motoren Werke Aktiengesellschaft | Hardened sheet steel component producing method, involves heating sheet steel, and locally adjusting cooling process of sheet steel by selectively intervening heat transmission from sheet steel to molding tools |
WO2010150683A1 (en) | 2009-06-22 | 2010-12-29 | 新日本製鐵株式会社 | Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member |
DE102009057382A1 (en) | 2009-12-09 | 2011-06-16 | Benteler Automobiltechnik Gmbh | Method of manufacturing a sheet metal component, particularly for support part of car body of automobiles, in transfer press, involves heating sheet metal plate to certain temperature |
WO2011115539A1 (en) | 2010-03-16 | 2011-09-22 | Gestamp Hardtech Ab | Press hardening plant and a method of press hardening a steel sheet blank |
US20110283851A1 (en) | 2010-05-21 | 2011-11-24 | Thyssenkrupp Sofedit S.A.S. | Method and hot forming system for producing press-hardened formed components of sheet steel |
US20130205863A1 (en) | 2010-07-19 | 2013-08-15 | Gmf Umformtechnik Gmbh | Forming tool and method for hot forming and partially press hardening a workpiece made of sheet steel |
DE102011011013A1 (en) | 2011-02-11 | 2012-08-16 | Schuler Smg Gmbh & Co. Kg | Press plant for converting or editing any metal components, is provided with forming station that comprises material-deforming tools propelled by hydraulic operating device |
EP2543450A1 (en) | 2011-07-08 | 2013-01-09 | Cie Automotive, S.A. | Machine and method for stamping metal parts |
EP2762243A1 (en) | 2011-09-30 | 2014-08-06 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method for manufacturing press-molded article and press molding equipment |
Non-Patent Citations (3)
Title |
---|
"GNMLT-2 800 Invernizzi presse Transfer Press Deep Drawing - Blech tiefziehen", YOUTUBE, pages 1 pp., XP054982070, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=P1RN-7lkLRw&t=34s> [retrieved on 20210720] |
HEIN PHILIPP ; WILSIUS JOEL: "Status and innovation trends in hot stamping of USIBOR 1500 P", STEEL RESEARCH INTERNATIONAL, vol. 79, no. 2, 1 February 2008 (2008-02-01), DE, pages 85 - 91, XP009101799, ISSN: 1611-3683 |
TOOLING U-SME: "Sheet Metal Stamping Dies & Processes", YOUTUBE, 14 June 2014 (2014-06-14), XP055935683, Retrieved from the Internet <URL:https://www.youtube.com/watch?v=5CuJjSk4U38> |
Also Published As
Publication number | Publication date |
---|---|
DE102014112244A1 (en) | 2016-03-03 |
EP2993241A1 (en) | 2016-03-09 |
ES2828966T3 (en) | 2021-05-28 |
US20160059295A1 (en) | 2016-03-03 |
CN105478559A (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2993241B1 (en) | Method and press for manufacturing cured sheet metal components, in sections at least | |
EP2233593B1 (en) | Method and device for thermal recasting of pressure-hardened casting components made of sheet metal | |
EP2324938B1 (en) | Method and thermal recasting assembly for producing a hardened, thermally recast workpiece | |
EP2497840B1 (en) | Oven system and process for partially heating steel blanks | |
DE102008047971B3 (en) | Method and apparatus for press-hardening a metallic mold component | |
EP3072980B1 (en) | Method and device for producing a partially cured moulded part | |
EP1786936B1 (en) | Method for press quenching components consisting of sheet steel | |
DE102005032113B3 (en) | Thermal deformation and partial hardening apparatus, e.g. for automobile components, comprises mold of at least two parts, each formed from segments adjustable to different temperatures | |
EP2414551B1 (en) | Process for producing a component, in particular a vehicle body part, and production line for carrying out the process | |
EP3160667B1 (en) | Method and forming tool for heat-forming, and corresponding work piece | |
DE102015101668A1 (en) | Double falling heating and forming tool and method for producing thermoformed and press-hardened motor vehicle components | |
EP2896466A1 (en) | Method and device for producing a metal component | |
WO2006128821A1 (en) | Method for producing a metallic component comprising adjacent sections having different material properties by means of press hardening | |
DE102011110597A1 (en) | Device for hot-forming sheet-shaped semi-finished product, has cutting device which is activated irrespective of movement of die and stamp, after curing semiconductor-finished material | |
DE202016104191U1 (en) | Heat treatment device | |
DE102009060388A1 (en) | Method for sheet deformation, involves heating zone of work piece at high temperature, and inserting heated work piece into heat insulated or heated deformation device | |
EP3420111A1 (en) | Heat treatment method and heat treatment device | |
EP2169084B1 (en) | Method for manufacturing a moulding with areas of different strength made of cold strip | |
EP1983063A2 (en) | Method for moulding and hardening a workpiece made from steel in a stamping machine | |
EP3088092A1 (en) | Hot forming and press hardening tool and method for operating the hot forming and press hardening tool | |
AT15624U1 (en) | Heat treatment process and heat treatment device | |
DE102016201936A1 (en) | Heat treatment process and heat treatment device | |
DE102014110400B4 (en) | Etagenpressumformwerkzeug | |
DE102014001872B4 (en) | Method and device for influencing the deformation behavior, in particular the springback when forming workpieces in clocked forming and processing stations, in particular during bending in progressive dies | |
DE102008043401B4 (en) | Method and device for producing sheet metal components by means of hot forming and sheet metal components produced thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
XX | Miscellaneous (additional remarks) |
Free format text: FEHLENDE ZEICHNUNGEN GEMAESS REGEL 56(3) EPUE. |
|
17P | Request for examination filed |
Effective date: 20160909 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190402 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200430 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20200729 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
XX | Miscellaneous (additional remarks) |
Free format text: FEHLENDE ZEICHNUNGEN GEMAESS REGEL 56(3) EPUE. |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1321226 Country of ref document: AT Kind code of ref document: T Effective date: 20201015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015013589 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210108 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210208 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2828966 Country of ref document: ES Kind code of ref document: T3 Effective date: 20210528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210107 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502015013589 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
26 | Opposition filed |
Opponent name: OXON IP B.V. Effective date: 20210706 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: OXON IP B.V. Effective date: 20210706 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210207 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1321226 Country of ref document: AT Kind code of ref document: T Effective date: 20210818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210818 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150818 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230824 Year of fee payment: 9 Ref country code: DE Payment date: 20230830 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231027 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201007 |