WO2010150683A1 - Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member - Google Patents

Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member Download PDF

Info

Publication number
WO2010150683A1
WO2010150683A1 PCT/JP2010/060127 JP2010060127W WO2010150683A1 WO 2010150683 A1 WO2010150683 A1 WO 2010150683A1 JP 2010060127 W JP2010060127 W JP 2010060127W WO 2010150683 A1 WO2010150683 A1 WO 2010150683A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
steel sheet
forming
stage
quenching
Prior art date
Application number
PCT/JP2010/060127
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 石森
弘 福地
哲男 嶋
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010546169A priority Critical patent/JP4795486B2/en
Priority to CN201080027975.3A priority patent/CN102458708B/en
Publication of WO2010150683A1 publication Critical patent/WO2010150683A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article

Definitions

  • the present invention relates to a forming method, a forming apparatus, and a forming member that facilitate processing of a part in a subsequent process by forming a structure including tempered martensite in an arbitrary part of a steel sheet in hot press forming. Is.
  • hot press forming which has been increasingly used as a steel plate forming means for automobile parts using high-tensile steel plate, forms a steel plate at a higher temperature than cold press forming.
  • hot press forming is performed, the deformation resistance of the steel sheet during press forming is reduced, and due to this reduction in deformation resistance, the desired shape can be obtained without causing molding defects such as press cracks and wrinkles, and the mold It can be press-molded into a shape conforming to the shape.
  • the punch is lowered to the bottom dead center in a state where a steel plate that has been heated to a predetermined temperature in a heating furnace is placed on the die of the molding die, and the state is maintained while maintaining the state.
  • the steel sheet is rapidly cooled for a certain period of time by supplying a coolant into the mold. This quenching by quenching changes the structure of the steel sheet to martensite, thereby increasing the hardness of the steel sheet and greatly improving the strength of the molded product.
  • Patent Document 1 proposes that a heating element is pressed against a portion that requires machining in a subsequent process. In Patent Document 1, by adopting these methods, it is said that the cooling rate can be reduced, that is, the hardness of the part can be reduced, and the machining of the steel sheet can be facilitated in the subsequent process.
  • the present invention has been made in view of such points, and when performing hot press forming on a steel sheet, the hardness of a predetermined part is set to be higher than that of other parts without changing the maximum temperature at the time of heating depending on the part.
  • the purpose is to lower.
  • Hot press forming method of the steel sheet of the present invention for achieving the above objects, in hot press forming of a steel sheet forming is carried out and hardening of the steel sheet is heated to a temperature not lower than the A 1 transformation point at the same time, A 1 A partial quenching step of rapidly cooling a predetermined portion of the steel sheet to a martensitic transformation start temperature (Ms point) or lower before forming a flat steel sheet uniformly heated to a temperature equal to or higher than the transformation point; After the recooling step of returning the rapidly cooled predetermined part to a temperature higher than the start temperature (Ms point) of martensite transformation, and after reheating the steel plate, the forming of the steel plate and the end temperature of martensite transformation (Mf) Point) It has the shaping
  • the reheated part can be made into a structure containing tempered martensite, and the other parts can be made into a martensite structure.
  • part which welds can be made into the structure
  • the steel sheet partial quenching step and the recuperation step are performed in a plate-like state, for example, a position where bending is performed by press forming, a position that becomes a vertical surface after forming, etc. A structure containing tempered martensite can be produced. Therefore, the degree of freedom in design is great. Furthermore, since the steel plate is uniformly heated to a predetermined temperature in advance, even when a plated steel plate is used as the steel plate, the degree of alloying of the plating can be made uniform over the entire surface of the steel plate.
  • the upper cooling body is brought into contact with the predetermined portion of the steel plate from above, and the lower cooling body is brought into contact with the predetermined portion of the steel plate from below,
  • the steel plate and the upper cooling body or the lower cooling body are formed by unevenness formed on one or both of the contact surface of the upper cooling body with the steel plate and the contact surface of the lower cooling body with the steel plate.
  • the jetted refrigerant may be sucked and discharged from a refrigerant suction port formed in a cooling body in which unevenness is formed on a contact surface with the steel plate.
  • the forming and quenching step uses a punch and a die to press the steel plate from above and below, and the steel plate and the die are formed by unevenness formed on one or both of the forming surface of the punch and the forming surface of the die.
  • the refrigerant may be ejected into a gap formed between the punch or the die.
  • the jetted refrigerant may be sucked and discharged from a refrigerant suction port formed in a mold having irregularities formed on the contact surface with the steel plate.
  • the time required in the partial quenching step, the recuperation step, and the molding quenching step may be the same.
  • the recuperation step may be performed by placing the steel plate at a predetermined processing position for a predetermined time. At this time, the required time in the partial quenching step, the recuperation step, and the forming quenching step can be made the same based on at least the amount of the refrigerant ejected from the steel plate.
  • the steel plate placed at the predetermined processing position may be heated by a non-contact heating device.
  • a non-contact heating apparatus refers to what can heat the said heating target object, without contacting with a heating target object, such as the heating by a near-infrared lamp, the heating by a laser, and induction heating, for example.
  • a non-contact heating device is used in this way, at least the time required for the partial quenching step, the recuperation step, and the molding quenching step is the same based on the amount of heating by the non-contact heating device. can do.
  • the predetermined portion where the steel sheet is rapidly cooled may be a continuous region around the region where the steel plate is not rapidly cooled.
  • the hot press forming apparatus of the steel sheet of the present invention the lower cooling with respect to a predetermined portion of the uniformly heated flat plate-like steel sheet to a temperature above the A 1 transformation point, contacting the upper cooling body from above The body is brought into contact with the bottom, a partial quenching stage for rapidly cooling a predetermined portion of the steel sheet to a martensitic transformation start temperature (Ms point) or less, and the steel plate with the predetermined portion rapidly cooled to a predetermined processing position.
  • Ms point martensitic transformation start temperature
  • the predetermined cooling unit comprising a die and a punch, and a recuperation stage that reheats a predetermined portion of the steel sheet that has been rapidly cooled to a temperature higher than a martensitic transformation start temperature (Ms point), Forming a quenching stage that simultaneously performs forming of the steel sheet after reheating of the part and quenching to a martensitic transformation end temperature (Mf point) or lower, and the steel sheet from the partial quenching stage to the recuperating stage, in front And a transport mechanism that sequentially transports from the regenerative heat stage to the molding quenching stage.
  • Ms point martensitic transformation start temperature
  • Mf point martensitic transformation end temperature
  • a refrigerant supply source that supplies the refrigerant to the steel plate, a suction mechanism that sucks and discharges the supplied refrigerant, and a contact surface of the upper cooling body with the steel plate, and the lower portion Either or both of the contact surface with the steel plate of the cooling body, unevenness, a refrigerant supply port serving as a refrigerant outlet for the steel plate, a refrigerant suction port serving as a suction and discharge port for the jetted refrigerant, Is formed on one or both of the molding surface of the punch and the molding surface of the die, and a refrigerant supply port serving as a refrigerant outlet for the steel plate, and a refrigerant suction serving as a suction port for the jetted refrigerant.
  • a discharge port, and the refrigerant supply source may eject the refrigerant into a gap formed by the irregularities.
  • the steel forming member of the present invention is a steel forming member formed by a hot press forming method of the steel plate, and the hardness of the predetermined part after the forming is higher than the hardness of other parts. It is characterized by being 20 or more smaller.
  • the hardness of a predetermined part can be reduced as compared with other parts without changing the maximum temperature during heating depending on the part.
  • FIG. 1 is a side view showing an outline of a configuration of a hot press molding apparatus according to the present embodiment.
  • FIG. 2 is a plan view showing an outline of the configuration of the hot press forming apparatus according to the present embodiment.
  • FIG. 3 is an explanatory diagram showing an outline of the configuration of the partial quenching stage.
  • FIG. 4 is an explanatory diagram showing an outline of the configuration of the partial quenching stage.
  • FIG. 5 is an enlarged view of the die surface of the quenching mold to which the present invention is applied.
  • FIG. 6 is an explanatory view of a die of a quenching mold to which the present invention is applied.
  • FIG. 7 is an explanatory view showing a state in which concentric partial quenching portions are formed on the plated steel sheet.
  • FIG. 8 is an explanatory diagram when the hot press molding apparatus according to the present embodiment is applied to a transfer press.
  • FIG. 9 is an explanatory diagram of a plated steel sheet used in the examples.
  • FIG. 1 is a side view showing an outline of the configuration of a hot press forming apparatus 1 according to an embodiment.
  • FIG. 2 is a plan view schematically showing the configuration of the hot press molding apparatus 1 according to the embodiment.
  • the hot press molding apparatus 1 includes a charging stage (stage) 10, a partial quenching stage (stage) 11, a recuperation stage (stage) 12, a molding quenching stage (stage) 13, and a transport mechanism 14. is doing.
  • the input stage (stage) 10 is a stage (stage) into which a flat steel plate (here, plated steel plate K) heated to a predetermined temperature by a heating device (not shown) is input.
  • the partial quenching stage (stage) 11 is a stage (stage) for rapidly cooling a predetermined portion of the plated steel sheet K conveyed from the charging stage (stage) 10.
  • the recuperation stage (stage) 12 is a stage (stage) that performs so-called recuperation in which a predetermined portion of the plated steel sheet K rapidly cooled in the partial quenching stage (stage) 11 is returned to a temperature higher than a predetermined temperature.
  • the forming and quenching stage (stage) 13 is a stage (stage) that simultaneously forms and quenches the plated steel sheet K reheated by the recuperating stage (stage) 12.
  • the conveyance mechanism 14 conveys the plated steel plate K in the hot press forming apparatus 1.
  • the charging stage 10, the partial quenching stage 11, the recuperation stage 12, and the forming quenching stage 13 are provided on the upper surface of the base 15 in the flow direction H of the plated steel plate K (the positive direction of the X axis in FIG. 1 (arrow direction)). Are arranged at equal intervals in order.
  • An upper support 16 is provided above the base 15. The upper support 16 supports an upper stamp 37 and a punch 62 described later.
  • the plated steel plate K in the present embodiment is, for example, in mass% C: 0.05 to 0.7%, Si: 0.1 to 1%, Mn: 0.7 to 2%, P: 0.003.
  • the target temperature for heating the steel sheet before hot pressing is 850 ° C. or higher and 1000 ° C. or lower.
  • the plated steel plate K, the entire surface of which is uniformly heated to such a temperature range, is conveyed to the charging stage 10.
  • the input stage 10 has a pair of support bases 20, and positioning pins 21 for positioning between pre-pierce holes P previously formed on the plated steel plate K on the upper surface of each support base 20.
  • a support pin 22 that supports the plated steel plate K is provided at its upper end.
  • the support base 20 is formed in a rectangular shape in plan view, for example, and is arranged on the base 15 so that the longitudinal direction thereof coincides with the flow direction H of the plated steel plate K.
  • the positioning pin 21 is provided at the center position of the support base 20, for example.
  • the support pins 22 are provided on both sides of the positioning pins 21 along the longitudinal direction of the support base 20. In FIG. 2, two support pins 22 are depicted for one support base 20, but the number and arrangement of the positioning pins 21 and the support pins 22 are not limited to the present embodiment.
  • the upper end of the support pin 22 is in point contact with the back surface of the plated steel plate K so that the contact area between the support pin 22 and the plated steel plate K is reduced and heat transfer is minimized. Therefore, the upper end of the support pin 22 is formed in a spherical shape, for example.
  • the partial quenching stage 11 includes a pair of support tables 30 and a quenching stamp 31 as a cooling body that rapidly cools a predetermined portion of the plated steel plate K by contacting the predetermined portion of the plated steel plate K in the same manner as the charging stage 10; have.
  • Positioning pins 32 and support pins 33 having the same shape as the support table 20 are provided on the upper surface of the support table 30.
  • a pedestal 34 which is a substantially rectangular plate partially recessed in a substantially U shape in plan view, is provided. Between the pedestal 34 and the base 15, there is provided a spring body 35 that can expand and contract in the vertical direction by a load.
  • round bar-shaped push rods 36 extending vertically upward are provided. The push rod 36 is formed such that its upper end is lower than the upper end of the support pin 33.
  • the quenching stamp 31 has an upper stamp 37 and a lower stamp 38.
  • the upper surface 38a of the lower stamp 38 is formed in a substantially disk shape, for example.
  • the upper surface 38 a of the lower stamp 38 is parallel to the lower surface of the plated steel plate K placed on the support pin 33 and is located at a position lower than the upper end of the support pin 33.
  • the plated steel plate K and the upper surface 38a of the lower stamp 38 do not come into contact with each other as shown in FIG. For this reason, in the state in which the plated steel plate K is placed on the support pins 33, the plated steel plate K is not cooled by the rapid cooling stamp 31.
  • the lower stamp 38 is disposed directly on the upper surface of the base 15 inside the U-shaped depression of the base 34, for example.
  • the upper stamp 37 is provided vertically above the lower stamp 38, and the lower surface 37a has the same shape as the lower stamp 38.
  • the lower surface 37 a of the upper stamp 37 is parallel to the upper surface of the plated steel plate K placed on the support pin 33.
  • the upper portion of the upper stamp 37 is supported by the upper support 16.
  • the upper stamp 37 can be moved up and down by moving the upper support 16 up and down in the vertical direction (positive and negative directions of the Y axis in FIG. 1) by an elevating mechanism (not shown).
  • An upper push rod 36a is provided extending downward in the vertical direction at a position corresponding to the push rod 36 on the lower surface of the upper support 16.
  • the spring body 35 can be bent and the pedestal 34 can be pushed downward by lowering the upper support 16 and pressing the push rod 36 vertically downward by the upper push rod 36a.
  • the length of the upper push rod 36 a in the extending direction is such that when the upper support 16 is lowered, the upper stamp 37 contacts the upper end of the push rod 36 before contacting the upper surface of the plated steel plate K on the support pin 33. It has become.
  • the upper push rod 36a presses the push rod 36 to push down the pedestal 34, and the plated steel plate K placed on the support pin 33 is pushed down together with the pedestal 34.
  • the plated steel plate K descends relative to the lower stamp 38.
  • the plated steel plate K on the support pin 33 is transferred to the upper surface 38a of the lower stamp 38, and then the lower surface 37a of the upper stamp 37 and the plated steel plate K as shown in FIG. In contact with the top surface.
  • the pedestal 34 is a substantially rectangular plate that is recessed in a substantially U-shape, but the pedestal 34 can be moved up and down without interfering with the lower stamp 38.
  • the present invention is not limited to this embodiment.
  • the refrigerant suction port 41 is connected to a suction mechanism 47.
  • the refrigerant supply port 40 communicates with a refrigerant flow path 42 provided inside the lower stamp 38.
  • a refrigerant supply pipe 43 is connected to the flow path 42, and a refrigerant is supplied from the refrigerant supply source 46 to the plated steel plate K by opening a supply valve 44 provided in the refrigerant supply pipe 43.
  • a plurality of independent convex portions 38 b having a certain height are formed on the upper surface 38 a of the lower stamp 38.
  • the upper surface 38a of the lower stamp 38 and the plated steel plate are formed by the concave portions between the plurality of convex portions 38b, that is, the plurality of convex portions 38b.
  • the refrigerant supplied from the refrigerant supply port 40 can flow through the gap formed between the refrigerant and the K. Therefore, the predetermined part of the plated steel plate K can be cooled in a short time, that is, rapidly cooled.
  • the refrigerant supplied from the refrigerant supply port 40 is sucked from the refrigerant suction port 41 and discharged to the outside of the lower stamp 38.
  • coolant of this Embodiment water etc. can be used, for example.
  • a cooling pipe 45 for cooling the lower surface 37a of the upper stamp 37 is provided inside the upper stamp 37.
  • the plated steel plate K can be cooled by supplying a coolant to the cooling pipe 45.
  • the recuperation stage 12 has the same configuration as the charging stage 10, and includes a pair of support bases 50, positioning pins 51 and support pins 52 provided on the upper surface of the support base 50.
  • the forming and quenching stage 13 has a quenching mold 60 for simultaneously forming and quenching the plated steel plate K.
  • the quenching mold 60 has a die 61 that is a lower mold and a punch 62 that is an upper mold.
  • the die 61 has the same configuration as the lower stamp 38 shown in FIGS. That is, the die 61 is connected to the coolant supply port 63, the coolant suction port 64 that sucks and discharges the coolant supplied from the coolant supply port 63, the flow path 65 communicating with the coolant supply port 63, and the flow path 65.
  • the refrigerant supply pipe 66 and a supply valve 67 provided in the refrigerant supply pipe 66 are provided.
  • the coolant supply port 63 supplies the coolant to the plated steel plate K when the punch 62 is lowered to the bottom dead center and the plated steel plate K is hot press formed.
  • the refrigerant suction port 64 is connected to the suction mechanism 81 similarly to the refrigerant suction port 41 of the lower stamp 38.
  • On the molding surface 61a of the die 61 like the upper surface 38a of the lower stamp 38, a plurality of independent convex portions 61b having a certain height are formed.
  • the coolant supplied from the coolant supply source 82 via the coolant supply port 63 is caused to flow through the gap formed between the forming surface 61a of the die 61 and the plated steel plate K by the plurality of convex portions 61b, and the plated steel plate K Cool quickly.
  • the lower stamp 38 and the die 61 are shown as being exactly the same for convenience of description, but in actuality, their shapes and sizes are different.
  • a cooling pipe (not shown) for cooling the molding surface 62a of the punch 62 is provided in the same manner as the upper stamp 37.
  • the plated steel plate K can be cooled by supplying a coolant to a cooling pipe (not shown).
  • the upper portion of the punch 62 is supported by the upper support 16.
  • the punch 62 is also moved up and down by moving the upper support 16 up and down in the vertical direction by a lifting mechanism (not shown). For this reason, the upper stamp 37 and the punch 62 are configured to move up and down in synchronization with the upper support 16 moving up and down.
  • the die 61 is provided with a positioning pin 68 that penetrates the inside of the die 61 and projects vertically upward, and is slidable with respect to the die 61.
  • the positioning pin 68 is supported on the upper surface of the base 15 via a spring (not shown).
  • the transport mechanism 14 includes a gripping portion 70 that grips the plated steel plate K and a pair of transport supports 71.
  • a pair of conveyance support bodies 71 support the grip part 70, and follow a horizontal direction (vertical direction toward FIG. 2) perpendicular to the flow direction H of the plated steel plate K and the flow direction H by a drive mechanism (not shown). And reciprocally movable.
  • the conveyance support body 71 is disposed so as to face the insertion stage 10 and the molding quenching stage 13.
  • the gripping part 70 has, for example, three gripping parts 70a, 70b, and 70c.
  • the three gripping portions 70 a, 70 b, and 70 c are provided at equal intervals in order along the flow direction H of the plated steel plate K on each of the pair of transport supports 71. For this reason, the gripping portion 70a is moved from the charging stage 10 to the partial quenching stage 11 and the gripping portion 70b is moved to the partial quenching stage by reciprocating the transport support 71 in parallel with the flow direction H of the plated steel plate K by a drive mechanism (not shown). 11 to the recuperation stage 12, and the gripping portion 710 c can simultaneously convey a plurality of plated steel plates K from the recuperation stage 12 to the forming and quenching stage 13.
  • the hot press molding apparatus 1 is configured as described above, and the principle of the hot press molding of the present invention will be briefly described below.
  • the temperature of the steel product A 1 transformation point or more, or from A 3 transformation point or higher, after lowering to the Ms point or lower, by heating the steel material raises the temperature of the steel material to more than Ms point, the so-called recuperation And then quenching again to bring the temperature of the steel below the martensite transformation end point Mf (Martensite-transformation finishing point), so-called tempering, so that the steel has a lower hardness than the martensite structure.
  • the structure contains tempered martensite.
  • a part of the steel sheet for example, a part that requires machining in a subsequent process or a part to be welded is selectively tempered, and tempered martensite.
  • a tissue for example, a product (steel molded member) having the required hardness for the other parts while ensuring the workability of the parts that need to be machined in the post-process and the strength of the welded joints. be able to.
  • a 1 transformation point or above by the heating device uniformly heated plated steel sheet K over the entire surface is placed on the support pins 22 of input stage 10 by a not shown transfer device.
  • the transport mechanism 14 starts operating.
  • the plated steel plate K placed on the charging stage 10 is gripped by the gripping portion 70 a of the transport mechanism 14, transported to the partial quenching stage 11, and placed on the support pin 33.
  • the positioning pin 32 is inserted into the prepierce hole P of the plated steel plate K placed on the support pin 33, and the relative positional relationship between the plated steel plate K and the quenching stamp 31 is present. It is set by the prepierce hole P and the positioning pin 32.
  • a partial quenching process is performed in which, for example, the central portion of the plated steel plate K is rapidly cooled.
  • the partial quenching step first, the upper stamp 37 and the upper push rod 36a are lowered together with the upper support 16, and the upper push rod 36a and the push rod 36 are in contact with each other as shown in FIG. At this time, the lower surface 37a of the upper stamp 37 and the upper surface of the plated steel plate K are separated from each other by a predetermined distance.
  • the upper support 16 continues to descend from this state, moves the plated steel plate K placed on the support pin 33 downward via the push rod 36 and the base 34, and lowers the plated steel plate K on the support pin 33. Transfer to the upper surface 38 a of the stamp 38.
  • the upper support 16 is further lowered, and the state where the upper surface of the plated steel plate K is pressed by the lower surface 37a of the upper stamp 37 is maintained for a predetermined time as shown in FIG. That is, the upper stamp 37 is held for a predetermined time at the position of the bottom dead center of the upper stamp 37.
  • the supply valve 44 is opened, and the coolant is supplied to the plated steel plate K from the coolant supply port 40 of the lower stamp 38. Note that the coolant is constantly supplied to the cooling pipe 45 inside the upper stamp 37.
  • part which contacts the upper stamp 37 and the lower stamp 38 of the plated steel plate K is rapidly cooled, and it becomes the partial quenching part Kc.
  • a portion that is not in contact with the upper stamp 37 and the lower stamp 38 is maintained as a high temperature portion Ka that maintains a high temperature.
  • the upper stamp 37 rises to the top dead center together with the upper support 16.
  • the partial quenching process ends.
  • the plated steel plate K is gripped by the gripping portion 70b of the transport mechanism 14 and transported from the partial quenching stage 11 to the recuperation stage 12.
  • the second plated steel plate K on the charging stage 10 is conveyed to the partial quenching stage 11 and the third plated steel plate K is placed on the charging stage 10.
  • a recuperation step is performed in which the temperature of the partially quenched portion Kc of the plated steel plate K is reheated to a temperature equal to or higher than the Ms point.
  • the recuperation stage is performed for a predetermined time, that is, a time in which the upper support 16 reciprocates once between the top dead center and the bottom dead center with the plated steel plate K placed on the support pins 52. Twelve.
  • the temperature of the partially quenched portion Kc of the plated steel plate K rises due to heat transfer from a portion that is not rapidly cooled in the partially quenched process and maintains a high temperature, and is reheated to a temperature equal to or higher than the Ms point.
  • the plated steel plate K is held by the holding portion 70 c of the transfer mechanism 14 and transferred from the reheat stage 12 to the forming and quenching stage 13.
  • the plated steel plate K is conveyed to the forming and quenching stage 13, first, the plated steel plate K is positioned by the prepierce hole P of the plated steel plate K and the positioning pin 68 of the die 61, and the plated steel plate K is placed on the die 61. Placed. Next, the punch 62 descends to the bottom dead center, and the plated steel plate K is formed. Simultaneously with the formation of the plated steel plate K, the supply valve 67 of the coolant supply pipe 66 is opened, and the coolant is supplied from the coolant supply port 63 to the plated steel plate K. A refrigerant is always supplied to a cooling pipe (not shown) inside the punch 62.
  • the plated steel plate K is rapidly cooled over the entire surface.
  • the punch 62 rises to the top dead center together with the upper support 16, and the forming and quenching process ends.
  • the formed plated steel sheet K is removed from the die 61 by, for example, an unillustrated unloading device and unloaded from the hot press forming device 1. This series of hot press molding is repeated.
  • partial quenching the predetermined portion of the plated steel sheet K preheated to A 1 transformation point or above the temperature, and quenched to the starting temperature (Ms point) below the temperature of the transformation to martensite Part Kc is formed. Thereafter, in the recuperation stage 12, the partially quenched portion Kc is reheated to a temperature higher than the start temperature (Ms point) of transformation to martensite. After this, the forming of the plated steel sheet K and the rapid cooling of the entire forming surface (rapid cooling to a temperature not higher than the end temperature (Mf point) of transformation into martensite) are performed simultaneously.
  • the reheated part can be made into a structure containing tempered martensite, and the other part of the molding surface can be made into a martensite structure.
  • a part that does not require machining in the subsequent process after molding is formed into a martensite structure.
  • a part that requires machining in the subsequent process or a part that requires welding in the subsequent process is tempered martensite. It can be set as the organization containing. Therefore, it is possible to form a molded product that ensures the workability in the subsequent process while maintaining the necessary strength as a product.
  • the plated steel plate K is uniformly heated over the entire surface in advance, the highest temperature achieved when the plated steel plate K is heated can be made uniform over the entire surface of the plated steel plate K. Therefore, the degree of alloying of plating can be made uniform over the entire surface of the steel sheet. Furthermore, the partial rapid cooling process and the recuperation process of the plated steel plate K are performed in a state where the plated steel plate K is in a flat plate shape. Therefore, for example, a structure containing tempered martensite can be generated at an arbitrary position such as a part that is subjected to bending in the forming and quenching process or a part that becomes a vertical surface after forming. Therefore, the degree of freedom in design is great.
  • the plated steel plate K is positioned by the prepierce hole P and the positioning pin 32.
  • the plated steel plate K is positioned by the prepierce hole P and the positioning pin 68 of the die 61. Therefore, in the partial quenching stage 11 and the forming quenching stage 13, the relative positional relationship between the plated steel plate K and the positioning pins 32 and 68, that is, the relative relationship between the quenched stamp 31 and the quenching mold 60 and the plated steel plate K. The positional relationship does not shift. Therefore, a structure including tempered martensite can be generated very accurately at a predetermined position of the molded product.
  • the arrangement of the plated steel plate K on the die 61 is deviated for some reason, and press forming in the deviated state can be reliably prevented. Therefore, it is possible to reliably prevent a structure containing tempered martensite from being generated at a site where machining or welding is performed in a subsequent process. Therefore, troubles such as hindrance to machining in the subsequent process and insufficient joint strength of welding can be avoided.
  • the convex portions 38b and 61b are formed on the upper surface 38a and the forming surface 61a which are the contact surfaces of the lower stamp 38 and the die 61 with the plated steel plate K. For this reason, in the partial quenching process and the forming quenching process, the plated steel sheet K can be rapidly cooled in a short time by ejecting the coolant from the coolant supply ports 40 and 63 to the plated steel sheet K. Therefore, the productivity of hot press molding can be improved.
  • the means for rapidly cooling the plated steel plate K is a lower stamp 38 or die that is an example of a lower cooling body.
  • the means may be provided on the upper stamp 37 or the punch 62 side which is an example of the upper cooling body.
  • the means may be provided on both the lower stamp 38 and the die 61 side which are examples of the lower cooling body, and the means may be provided on both the upper stamp 37 and the punch 62 side which are examples of the upper cooling body. .
  • the shape of the partial quenching portion Kc is substantially a plate shape.
  • the quenching stamp 31 forming the partial quenching portion Kc and the quenching mold 60 are provided independently. For this reason, for example, when forming a molded product having the same shape but different only in the machining part in the subsequent process, it is possible to cope with the problem by simply changing the shape and arrangement of the quench stamp 31, for example. . Therefore, it is not necessary to replace the quenching mold 60 having a large mass.
  • a high temperature portion Ka portion that is maintained at a high temperature without quenching in the region of the partial quench portion Kc. May be set.
  • a partially quenched portion Kc is formed in an annular shape on a plated steel plate K, and is maintained at a high temperature in a region surrounded by the annular partially quenched portion Kc. You may make it leave the high temperature part Ka.
  • one sheet of plated steel sheet K is processed in the hot press forming apparatus 1, but, for example, a plurality of plated sheet steels K may be processed simultaneously.
  • the tact time is determined after obtaining the optimum condition for the holding time at the bottom dead center of the punch 62 necessary for satisfying the quality of the molded product by obtaining an optimum condition by a test or the like in advance.
  • the required cooling can be performed by adjusting the amount of the refrigerant supplied from the refrigerant supply port 40.
  • the plated steel plate K1 is transferred from the charging stage 10 to the partial quenching stage 11, and at the same time, a new plated steel plate K2 is charged to the charging stage 10.
  • the partial quenching of the plated steel plate K1 is finished, and the plated steel plate K1 is transferred from the partial quenching stage 11 to the recuperation stage 12, and at the same time, a new plated steel plate K3 is charged and the plated steel plate K2 charging stage 10 is moved to the partial rapid cooling stage 11. Is carried out.
  • the plated steel plate K2 quenched in the partial quenching stage 11 is returned from the partial quenching stage 11 by the gripping portion 70b.
  • the plated steel plate K3 of the charging stage 10 is transported to the partial quenching stage 11, and a new plated steel plate K4 is charged to the charging stage 10.
  • the formed plated steel plate K ⁇ b> 1 is removed from the die 61 and carried out from the hot press forming apparatus 1.
  • the hot press molding apparatus 1 of the present embodiment is a so-called transfer press (a press method for forming a press molded part through a plurality of processes, It is possible to apply to a pressing method in which a steel plate is conveyed to the next step every time the press machine makes one stroke, and the productivity of the product can be improved.
  • the plated steel plate K in the partial quenching step and the forming quenching step, can be rapidly cooled in a short time, so that the tact time can be shortened. Therefore, in recuperation process, (to a temperature lower than the A 1 transformation point) temperature of the high temperature portion Ka is plated steel sheet K can be reliably achieved a decrease.
  • the recuperation after the partial quenching of the plated steel plate K is performed for a predetermined time, for example, a hot press forming apparatus, with the plated steel plate K placed on the support pins 52 of the recuperation stage 12. It is performed by keeping it on the recuperation stage 12 for only one tact time.
  • a time required for recuperation of the plated steel plate K is confirmed to be longer than the tact time by a preliminary test, for example, between the partial quenching stage 11 and the recuperation stage 12 or the recuperation stage 12.
  • a new recuperation stage 12 may be further provided between the molding and quenching stage 13.
  • a molding quenching stage 13 may be arranged next to the partial quenching stage 11.
  • the recuperation stage 12 when the recuperation stage 12 is further provided, the entire hot press molding apparatus 1 is increased in size, and a larger installation area is required.
  • the recuperating stage 12 is provided with a non-contact heating device 80 for heating the partially quenched portion Kc of the plated steel plate K, and the recuperating stage 12 Heating may be performed. If it does in this way, it will become unnecessary to install the new recuperation stage 12 further, and it can prevent that hot press molding device 1 enlarges.
  • the relative positional relationship between the plated steel plate K and the heating device 80 is maintained by the prepierce hole P of the plated steel plate K and the positioning pin 51 of the recuperated stage 12.
  • the apparatus 80 can accurately recover the partial quenching portion Kc.
  • the heating device 80 is provided, the amount of heat held by the plated steel plate K is not sufficient, and when the reheat of the plated steel plate K cannot be sufficiently performed only by adding the recuperation stage 12, specifically, the plated steel plate K. It is possible to cope with the case where the thickness of the plate is small.
  • the heating device 80 is preferably a near-infrared lamp that can be heated in a short time, but any heating method can be used as long as it is a non-contact heating method. For example, laser heating or induction heating can be used.
  • the tact time in each step can be adjusted by changing at least the heating amount of the plated steel plate K by the heating device 80 or the supply amount of the refrigerant in at least one of the lower stamp 38 and the die 61.
  • the time and heat capacity required for recuperation of the partial quenching portion Kc that is, the number of recuperation stages 12 required for recuperation (the number of stages), the necessity of the heating device 80 and the heat capacity are determined. As a method to do this, in addition to a test performed in advance, it is also possible to obtain by calculation.
  • a partially quenched portion Kc is formed in a rectangular region having a width ⁇ at the center of a flat plate-like steel plate K having a length A, a width B, and a thickness t.
  • the initial temperature of the plated steel plate K is Ti
  • the temperature of the partial quenching portion Kc in the partial quenching step is Tc1
  • the highest temperature at the time of recuperation of the partial quenching portion Kc is Tc2.
  • the heat capacity Qr [J] required to reheat to Tc2 after the temperature of the partial quenching portion Kc is once quenched to Tc1 can be obtained from the following equation (1).
  • Qr (Tc2 ⁇ Tc1) ⁇ ⁇ ⁇ Cm ⁇ ⁇ ⁇ t ⁇ A ⁇ B (1)
  • is the specific gravity [kg / m 3 ] of the plated steel plate K
  • Cm is the specific heat [J / kg ⁇ K] of the plated steel plate K
  • Ti is the temperature above the A1 transformation point [K]
  • Tc1 is the temperature below the Ms point.
  • [K] and Tc2 are temperatures [K] higher than the Ms point.
  • A, B, t, and ⁇ are the length [m], the width [m], the thickness [m], and the width [m] of the partially quenched portion Kc, respectively.
  • Sr (St ⁇ Sh) + N ⁇ St (3)
  • St is the tact time [sec] of the hot press molding apparatus 1
  • Sh is the bottom dead center holding time [sec] in the partial quenching stage 11 and the molding quenching stage 13
  • N is the number of stages of the recuperation stage 12 [-]. It is.
  • Ti1, ⁇ , and Sr that satisfy the relationship of the following expression (4) may be selected.
  • the heating device 80 supplies the partial cooling portion Kc.
  • the heat input amount QL can be obtained from the following equation (5). Further, in order to reheat the temperature of the partial quenching portion Kc to Tc2 or higher, QL may be set so as to satisfy the following expression (6).
  • QL f (qL, C, N, SL) (5) Qr ⁇ Q ⁇ + QL (6)
  • qL is the heat input density [W / m 2 ] of the heating device 80
  • C is the heating width [m] of the heating device 80
  • SL is the heating time [sec] by the heating device 80.
  • hot press forming was performed on the plated steel sheet K using the hot press forming apparatus 1, and a retest temperature and hardness confirmation test was performed.
  • the results of the confirmation test are shown in Table 1.
  • a confirmation test is performed by changing the width ⁇ of the partial quenching portion Kc, the thickness t of the plated steel plate K, the number N of the recuperation stages 12, and the presence or absence of heating by the heating device 80 in the recuperation stage 12. It was.
  • a steel plate containing 0.2% by mass of C and a small amount of Mn, B, and Si, plated with 80 g / m 2 of Al as a main component as a relatively low hardness plated steel plate K ( Examples 1 to 6) were used.
  • a steel plate K having relatively high hardness steel containing 0.3% by mass of C and a small amount of Mn, B, and Si was plated mainly with 80 g / m 2 of Al. (Examples 7 to 11) were used.
  • the initial temperature Ti of the plated steel plate K is 950 ° C.
  • the temperature Tc 1 at the time of quenching of the partial cooling part Kc is less than 400 ° C.
  • the temperature Ti1 was set to 800 ° C.
  • the heating device 80 a near infrared heating lamp was used.
  • the bottom dead center retention time was 2 seconds and the tact time was 5 seconds.
  • the recuperation of the partial cooling section Kc is appropriately performed, that is, when the temperature of the partial quenching section Kc returns to a temperature higher than the martensitic transformation start temperature Ms, enter a circle in the recuperation temperature column, Otherwise, x was entered in the recuperation temperature column.
  • the hardness of the high temperature portion Ka other than the partially quenched portion Kc is 450 Hv
  • the hardness of the partially quenched portion Kc is softer (smaller) by 20 Hv or more than the hardness of the high temperature portion Ka. ⁇ was entered, otherwise it was judged as defective, and x was entered in the hardness evaluation column.
  • the related art A shows the result of the confirmation test when the number of stages of the recuperation stage 12 is zero, that is, when a hot press molding apparatus having no recuperation stage is used.
  • the prior art B shows the result of the confirmation test in the case where the hot press forming apparatus 1 is used to hot press form a plated steel plate K having a thin plate thickness t.
  • the steel sheet containing 0.2% by mass of C and trace amounts of Mn, B, and Si as the plated steel sheet K was added to 80 g / m 2 of Al.
  • the one with plating mainly composed of was used.
  • the hardness of the partially quenched portion Kc is not lowered to a desired value.
  • the recuperation stage 12 since the recuperation stage 12 is not provided, the recuperation of the partial quenching portion Kc becomes insufficient.
  • the temperature of the partial quenching portion Kc does not return to a temperature higher than the Ms point, that is, the tempering of the entire plated steel plate K including the partial quenching portion Kc in the forming quenching stage 13 without tempering the partial quenching portion Kc. Rapid cooling is performed. For this reason, quenching is performed over the entire plated steel plate K.
  • the difference between the hardness of the partially quenched portion Kc and the hardness of the high temperature portion Ka is less than 20 in Hv.
  • the difference between the hardness of the partially quenched portion Kc and the hardness of the high temperature portion Ka is less than 20 in Hv.
  • the partial quenching portion Kc was reliably tempered in the recuperation stage 12, and as a result, good results were obtained (the hardness of the partial quenching portion Kc). Can be reduced to a value 20 or more smaller in Hv than the hardness of the high temperature portion Ka).
  • the plate thickness t is reduced as in the case of the prior art B.
  • the heating device 80 in the recuperation stage 12 the recuperation of the partial quenching portion Kc is sufficiently performed. become. For this reason, it has confirmed that the hardness of the partial quenching part Kc could be made into a desired value (The value smaller by 20 or more in Hv than the hardness of the high temperature part Ka).
  • Example 5 is based on a hot press molding apparatus that does not have the recuperation stage 12 as in the case of the prior art A, but in Example 5, the width of the partially quenched portion Kc as compared with the prior art A is shown. Since ⁇ is small, the time required for recuperation is short. Therefore, in Example 5, the partial quenching portion Kc is reheated while the plated steel plate K is transported from the partial quenching stage 11 to the forming quenching stage 13 by the transport mechanism 14, and the hardness of the partial quenching portion Kc is desired. The value could be Further, in Example 6, good results were obtained even when the plate thickness t was increased (the hardness of the partially quenched portion Kc was able to be 20 or more smaller in Hv than the hardness of the high temperature portion Ka). ).
  • Examples 7 to 11 correspond to Examples 1 to 5, respectively. Even if the content of C in the steel was increased to increase (increase) the hardness of the plated steel plate K, good results were obtained (the hardness of the partially quenched portion Kc is 20 or more smaller in Hv than the hardness of the high temperature portion Ka) Value).
  • the present invention is useful when continuously hot pressing a steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Before hot press-forming a flat plated steel sheet (K) that has been uniformly heated to a temperature equal to or greater than an A1 transformation point, a partial rapid cooling stage (11) rapidly cools a prescribed region of the plated steel sheet (K) to a temperature equal to or less than the martensite start (Ms) temperature, and then the rapidly cooled region of the plated steel sheet (K) is reheated to a temperature greater than the martensite start (Ms) temperature. After the plated steel sheet (K) is reheated, a forming/rapid-cooling stage (13) simultaneously forms the plated steel sheet (K) and rapidly cools same to a temperature equal to or less than the martensite finish (Mf) temperature.

Description

鋼板の熱間プレス成形方法、鋼板の熱間プレス成形装置、及び鋼成形部材Steel plate hot press forming method, steel plate hot press forming apparatus, and steel forming member
 本発明は、熱間プレス成形において、鋼板の任意の部位に焼き戻しマルテンサイトを含む組織を形成することで、後工程において当該部位の加工を容易とする成形方法、成形装置、及び成形部材に関するものである。 The present invention relates to a forming method, a forming apparatus, and a forming member that facilitate processing of a part in a subsequent process by forming a structure including tempered martensite in an arbitrary part of a steel sheet in hot press forming. Is.
 近年、高張力鋼板を用いた自動車部品材等の鋼板成形手段として採用が拡大している熱間プレス成形では、冷間プレス成形よりも高い温度で鋼板を成形する。熱間プレス成形を行えば、プレス成形時の鋼板の変形抵抗が低下し、この変形抵抗の低下によって、プレス割れ、しわ等の成形不具合を発生させることなく所望の形状に、かつ、金型の形状により則った形状にプレス成形することができる。 In recent years, hot press forming, which has been increasingly used as a steel plate forming means for automobile parts using high-tensile steel plate, forms a steel plate at a higher temperature than cold press forming. When hot press forming is performed, the deformation resistance of the steel sheet during press forming is reduced, and due to this reduction in deformation resistance, the desired shape can be obtained without causing molding defects such as press cracks and wrinkles, and the mold It can be press-molded into a shape conforming to the shape.
 熱間プレス成形方法では、予め加熱炉によって所定の温度に加熱された鋼板を成形用金型のダイ上に載置した状態でポンチを下死点まで降下し、その状態を保持したまま成形用金型の内部に冷媒を供給することで鋼板を一定時間急冷する。この急冷による焼き入れによって鋼板の組織がマルテンサイトに変化することで鋼板の硬度が上昇し、成形品の強度を大幅に向上させることができる。 In the hot press forming method, the punch is lowered to the bottom dead center in a state where a steel plate that has been heated to a predetermined temperature in a heating furnace is placed on the die of the molding die, and the state is maintained while maintaining the state. The steel sheet is rapidly cooled for a certain period of time by supplying a coolant into the mold. This quenching by quenching changes the structure of the steel sheet to martensite, thereby increasing the hardness of the steel sheet and greatly improving the strength of the molded product.
 しかしながら、鋼板の全体に亘って急冷すると、部位によっては成形品の硬度の向上により、好ましくない場合が生ずる。例えば、溶接接合局部の周辺の屈曲性が低下して継手強度が低下したり、穴あけ加工やせん断加工等の後工程において当該成形品の加工が困難となったり、加工用工具の寿命が低下したりする。このため、特許文献1では、熱間プレス成形の後工程において機械加工が必要となる部位が成形用金型に接触しないように金型に空隙を設けることで鋼板に焼き入れを行わないようにすることが提案されている。また、特許文献1では、後工程での機械加工が必要な部位に発熱体を押圧させるようにすることも提案されている。特許文献1では、これらの方法を採用することで、冷却速度を低下、即ち当該部位の硬度を低下させ、後工程において鋼板の機械加工を容易にすることができるとしている。 However, if the steel sheet is cooled rapidly over the entire steel sheet, depending on the part, the hardness of the molded product may increase, which may be undesirable. For example, the bending strength around the welded joint area is reduced, the joint strength is reduced, the processing of the molded product is difficult in the subsequent processes such as drilling and shearing, and the life of the processing tool is reduced. Or For this reason, in Patent Document 1, a steel plate is not quenched by providing a gap in a mold so that a portion that requires machining in a subsequent process of hot press molding does not contact the molding die. It has been proposed to do. Patent Document 1 also proposes that a heating element is pressed against a portion that requires machining in a subsequent process. In Patent Document 1, by adopting these methods, it is said that the cooling rate can be reduced, that is, the hardness of the part can be reduced, and the machining of the steel sheet can be facilitated in the subsequent process.
 また、特許文献2においては、鋼板の一部分に断熱材を装着した状態で加熱して鋼板の温度上昇を抑えることで、断熱材を装着した部分への焼き入れを抑制し、当該部位に加工性のよい軟質部を形成する方法が提案されている。 Moreover, in patent document 2, by suppressing the temperature rise of a steel plate by heating in a state where a heat insulating material is attached to a part of the steel sheet, quenching to the part where the heat insulating material is attached is suppressed, and the workability is applied to the part. A method for forming a soft part with good quality has been proposed.
特開2003-328031号公報JP 2003-328031 A 特開2009-61473号公報JP 2009-61473 A
 しかしながら、特許文献1に開示される、金型に空隙を設ける方法では、例えば硬度を低下させたい部位が金型に接触しない。このため、硬度を低下させたい部位とプレス成形により曲げ加工が施される部位とが重複している場合、鋼板を高精度で成形することができないという問題がある。また、硬度を低下させたい部位とプレス成形により曲げ加工が施される部位とが重複しないようにすると、硬度を低下させたい部位に制限が課せられるため、設計の自由度が低下するという問題がある。また、特許文献1に開示される、金型に空隙を設ける方法では、後工程で機械加工が必要な部位の大きさや場所に応じて、熱間プレスを行う金型(成形と焼き入れを同時に行うための金型)を用意しなければならない。この金型製作に多大な費用を要するという問題がある。また、特許文献1に開示される、発熱体を押圧させる方法では、発熱体を鋼板に対して鉛直方向に接触させるので、例えば成形品の側面に硬度を低下させたい部位を形成することができず、設計の自由度という点で問題があった。 However, in the method disclosed in Patent Document 1, in which a gap is provided in a mold, for example, a portion whose hardness is to be reduced does not contact the mold. For this reason, when the site | part which wants to reduce hardness and the site | part to which a bending process is given by press molding overlap, there exists a problem that a steel plate cannot be shape | molded with high precision. In addition, if the portion where the hardness is desired to be lowered and the portion where the bending process is performed by press molding are not overlapped, a restriction is imposed on the portion where the hardness is desired to be reduced, so that the degree of freedom in design is reduced. is there. Further, in the method of providing a gap in a mold disclosed in Patent Document 1, a mold that performs hot pressing (molding and quenching at the same time depending on the size and location of a part that needs to be machined in a later process is performed. You have to prepare a mold to do). There is a problem in that a large amount of cost is required for manufacturing the mold. Further, in the method of pressing the heating element disclosed in Patent Document 1, the heating element is brought into contact with the steel plate in the vertical direction, so that, for example, a portion where the hardness is desired to be reduced can be formed on the side surface of the molded product. However, there was a problem in terms of design freedom.
 また、一般に、熱間プレス成形のために鋼板を加熱炉で加熱する際に、鋼板の表面にはスケールが発生する。このスケールは、成形後の後工程、例えば塗装処理工程などに悪影響を与えるため、極力スケールを発生させないようにすることが好ましい。したがって、スケールの発生を抑制するため、表面にめっきを施した鋼板が用いられるのが通常である。めっきを施した鋼板では、加熱により鋼板とめっき層との合金化が進行する。このようなめっきと鋼板との合金化の度合いは、成形品の耐食性、塗装性、溶接性等に影響を与える。このため、加熱時に鋼板の熱履歴を均等にして、鋼板とめっき層との合金化の度合いを鋼板の全面に亘って均一化することは、製品の品質上極めて重要である。 In general, when a steel sheet is heated in a heating furnace for hot press forming, scale is generated on the surface of the steel sheet. Since this scale adversely affects a post-process after molding, for example, a coating process, it is preferable to prevent the scale from being generated as much as possible. Therefore, in order to suppress the generation of scale, a steel plate having a surface plated is usually used. In a plated steel plate, alloying between the steel plate and the plating layer proceeds by heating. The degree of alloying between the plating and the steel sheet affects the corrosion resistance, paintability, weldability, etc. of the molded product. For this reason, it is extremely important in terms of product quality to make the thermal history of the steel sheet uniform during heating and to uniformize the degree of alloying between the steel sheet and the plating layer over the entire surface of the steel sheet.
 しかしながら、特許文献2に開示される方法では、鋼板の断熱材が装着された箇所と装着されていない箇所とにおける加熱時の鋼板の温度履歴が異なる。このため、鋼板とめっき層との合金化の度合を鋼板の全体に亘って均一化することができず、製品の品質に影響を与えるという問題があった。このように場所によって加熱時の温度履歴が異なることを防止することは、安定した品質を確保するという観点から、めっきを施した鋼板に限らず、裸鋼板においても重要である。 However, in the method disclosed in Patent Document 2, the temperature history of the steel sheet during heating is different between the place where the heat insulating material of the steel sheet is attached and the place where it is not attached. For this reason, there has been a problem that the degree of alloying between the steel sheet and the plating layer cannot be made uniform over the entire steel sheet, affecting the quality of the product. Thus, preventing the temperature history during heating from being different depending on the location is important not only for plated steel sheets but also for bare steel sheets from the viewpoint of ensuring stable quality.
 本発明はかかる点に鑑みてなされたものであり、鋼板に対して熱間プレス成形を行うに際し、加熱時の最高到達温度を部位によって変えずに、所定の部位の硬度をその他の部位よりも低下させることを目的としている。 The present invention has been made in view of such points, and when performing hot press forming on a steel sheet, the hardness of a predetermined part is set to be higher than that of other parts without changing the maximum temperature at the time of heating depending on the part. The purpose is to lower.
 前記の目的を達成するための本発明の鋼板の熱間プレス成形方法は、A変態点以上の温度に加熱された鋼板の成形及び焼き入れを同時に行う鋼板の熱間プレス成形において、A変態点以上の温度に均一に加熱された平板状の鋼板を成形する前に、当該鋼板の所定の部位をマルテンサイト変態の開始温度(Ms点)以下に急冷する部分急冷工程と、前記鋼板の急冷された所定の部位をマルテンサイト変態の開始温度(Ms点)より高い温度に戻す復熱工程と、前記鋼板の復熱を行った後に、当該鋼板の成形とマルテンサイト変態の終了温度(Mf点)以下までの急冷とを同時に行う成形急冷工程と、を有することを特徴としている。 Hot press forming method of the steel sheet of the present invention for achieving the above objects, in hot press forming of a steel sheet forming is carried out and hardening of the steel sheet is heated to a temperature not lower than the A 1 transformation point at the same time, A 1 A partial quenching step of rapidly cooling a predetermined portion of the steel sheet to a martensitic transformation start temperature (Ms point) or lower before forming a flat steel sheet uniformly heated to a temperature equal to or higher than the transformation point; After the recooling step of returning the rapidly cooled predetermined part to a temperature higher than the start temperature (Ms point) of martensite transformation, and after reheating the steel plate, the forming of the steel plate and the end temperature of martensite transformation (Mf) Point) It has the shaping | molding rapid cooling process which performs rapid cooling to the following simultaneously, It is characterized by having.
 本発明によれば、A変態点以上の温度に加熱された鋼板を成形する前に、当該鋼板の所定の部位に急冷及び復熱を施し、その後、当該鋼板の成形と急冷とを同時に行う。したがって、復熱を行った部位を焼き戻しマルテンサイトを含む組織に、その他の部位をマルテンサイト組織とすることができる。このため、後工程において機械加工が必要となる部位や溶接を行う部位を焼き戻しマルテンサイトを含む組織とすることができる。よって、成形品全体としては必要な強度を維持しつつ、後工程における加工性や溶接継手の強度などを確保した成形品を形成することができる。また、鋼板の部分急冷工程及び復熱工程は、鋼板が平板状の状態で行われるので、例えば、プレス成形により曲げ加工が施される部位や、成形後に垂直面となる部位など、任意の位置に焼き戻しマルテンサイトを含む組織を生成することができる。したがって、設計の自由度も大きい。さらに、鋼板は予め所定の温度に均一に加熱されているため、鋼板としてめっき鋼板を用いた場合でも、めっきの合金化の度合いを鋼板の全面に亘って均一にすることができる。 According to the present invention, prior to forming the steel sheet is heated to a temperature not lower than the A 1 transformation point, subjected to rapid cooling and recuperation at the predetermined site of the steel sheet is performed thereafter, a rapid cooling and shaping of the steel sheet at the same time . Therefore, the reheated part can be made into a structure containing tempered martensite, and the other parts can be made into a martensite structure. For this reason, the site | part which requires machining in a post process, or the site | part which welds can be made into the structure | tissue containing tempered martensite. Therefore, it is possible to form a molded product that ensures the workability in the subsequent process, the strength of the welded joint, and the like while maintaining the necessary strength as the entire molded product. In addition, since the steel sheet partial quenching step and the recuperation step are performed in a plate-like state, for example, a position where bending is performed by press forming, a position that becomes a vertical surface after forming, etc. A structure containing tempered martensite can be produced. Therefore, the degree of freedom in design is great. Furthermore, since the steel plate is uniformly heated to a predetermined temperature in advance, even when a plated steel plate is used as the steel plate, the degree of alloying of the plating can be made uniform over the entire surface of the steel plate.
 ここで、前記部分急冷工程は、上部冷却体を、前記鋼板の前記所定の部位に対して上から接触させると共に、下部冷却体を、前記鋼板の前記所定の部位に対して下から接触させ、前記上部冷却体の前記鋼板との接触面と、前記下部冷却体の前記鋼板との接触面とのいずれかまたは両方に形成された凹凸によって前記鋼板と前記上部冷却体または前記下部冷却体との間に形成された隙間に冷媒を噴出するようにしてもよい。また、前記鋼板との接触面に凹凸が形成されている冷却体に形成された冷媒吸引口から前記噴出した冷媒を吸引し、排出するようにしてもよい。 Here, in the partial quenching step, the upper cooling body is brought into contact with the predetermined portion of the steel plate from above, and the lower cooling body is brought into contact with the predetermined portion of the steel plate from below, The steel plate and the upper cooling body or the lower cooling body are formed by unevenness formed on one or both of the contact surface of the upper cooling body with the steel plate and the contact surface of the lower cooling body with the steel plate. You may make it eject a refrigerant | coolant to the clearance gap formed in between. Further, the jetted refrigerant may be sucked and discharged from a refrigerant suction port formed in a cooling body in which unevenness is formed on a contact surface with the steel plate.
 前記成形急冷工程は、ポンチとダイとを用いて、前記鋼板を上下からプレスすると共に、前記ポンチの成形面と前記ダイの成形面とのいずれかまたは両方に形成された凹凸によって前記鋼板と前記ポンチまたは前記ダイとの間に形成された隙間に冷媒を噴出するようにしてもよい。また、前記鋼板との接触面に凹凸が形成されている金型に形成された冷媒吸引口から前記噴出した冷媒を吸引し、排出するようにしてもよい。 The forming and quenching step uses a punch and a die to press the steel plate from above and below, and the steel plate and the die are formed by unevenness formed on one or both of the forming surface of the punch and the forming surface of the die. The refrigerant may be ejected into a gap formed between the punch or the die. In addition, the jetted refrigerant may be sucked and discharged from a refrigerant suction port formed in a mold having irregularities formed on the contact surface with the steel plate.
 また、前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にしてもよい。 Further, the time required in the partial quenching step, the recuperation step, and the molding quenching step may be the same.
 また、前記復熱工程は、前記鋼板を所定の処理位置に所定時間載置することにより行ってもよい。この際、少なくとも、前記鋼板に対する前記冷媒の噴出量に基づいて、前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にすることができる。また、前記所定の処理位置に載置された鋼板を、非接触の加熱装置により加熱してもよい。なお、非接触の加熱装置とは、例えば、近赤外線ランプによる加熱、レーザーによる加熱や、誘導加熱といった、加熱対象物と接触することなく当該加熱対象物を加熱することができるものを指す。このように非接触の加熱装置を用いる場合には、少なくとも、前記非接触の加熱装置による加熱量に基づいて、前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にすることができる。 The recuperation step may be performed by placing the steel plate at a predetermined processing position for a predetermined time. At this time, the required time in the partial quenching step, the recuperation step, and the forming quenching step can be made the same based on at least the amount of the refrigerant ejected from the steel plate. Moreover, the steel plate placed at the predetermined processing position may be heated by a non-contact heating device. In addition, a non-contact heating apparatus refers to what can heat the said heating target object, without contacting with a heating target object, such as the heating by a near-infrared lamp, the heating by a laser, and induction heating, for example. When a non-contact heating device is used in this way, at least the time required for the partial quenching step, the recuperation step, and the molding quenching step is the same based on the amount of heating by the non-contact heating device. can do.
 さらに、前記鋼板の急冷される所定の部位を、その内側の急冷されない領域を巡る一続きの領域としてもよい。 Furthermore, the predetermined portion where the steel sheet is rapidly cooled may be a continuous region around the region where the steel plate is not rapidly cooled.
 また、本発明の鋼板の熱間プレス成形装置は、A変態点以上の温度に均一に加熱された平板状の鋼板の所定の部位に対して、上部冷却体を上から接触させると共に下部冷却体を下から接触させて、当該鋼板の所定の部位をマルテンサイト変態の開始温度(Ms点)以下に急冷する部分急冷ステージと、前記所定の部位が急冷された前記鋼板を所定の処理位置に載置し、前記鋼板の急冷された所定の部位をマルテンサイト変態の開始温度(Ms点)より高い温度に復熱させる復熱ステージと、ダイとポンチとを備えた急冷金型により、前記所定の部位が復熱した後の前記鋼板の成形とマルテンサイト変態の終了温度(Mf点)以下までの急冷とを同時に行う成形急冷ステージと、前記鋼板を、前記部分急冷ステージから前記復熱ステージ、前記復熱ステージから前記成形急冷ステージに順次搬送する搬送機構と、を有することを特徴としている。 Further, the hot press forming apparatus of the steel sheet of the present invention, the lower cooling with respect to a predetermined portion of the uniformly heated flat plate-like steel sheet to a temperature above the A 1 transformation point, contacting the upper cooling body from above The body is brought into contact with the bottom, a partial quenching stage for rapidly cooling a predetermined portion of the steel sheet to a martensitic transformation start temperature (Ms point) or less, and the steel plate with the predetermined portion rapidly cooled to a predetermined processing position. The predetermined cooling unit comprising a die and a punch, and a recuperation stage that reheats a predetermined portion of the steel sheet that has been rapidly cooled to a temperature higher than a martensitic transformation start temperature (Ms point), Forming a quenching stage that simultaneously performs forming of the steel sheet after reheating of the part and quenching to a martensitic transformation end temperature (Mf point) or lower, and the steel sheet from the partial quenching stage to the recuperating stage, in front And a transport mechanism that sequentially transports from the regenerative heat stage to the molding quenching stage.
 ここで、前記鋼板に冷媒を供給する冷媒供給源と、前記供給された冷媒を吸引し、排出する吸引機構と、をさらに有し、前記上部冷却体の前記鋼板との接触面と、前記下部冷却体の前記鋼板との接触面とのいずれかまたは両方に、凹凸と、前記鋼板に対する冷媒の噴出口となる冷媒供給口と、噴出された冷媒の吸引および排出口となる冷媒吸引口と、が形成され、前記ポンチの成形面と前記ダイの成形面のいずれかまたは両方に、凹凸と、前記鋼板に対する冷媒の噴出口となる冷媒供給口と、噴出された冷媒の吸引口となる冷媒吸引および排出口と、が形成され、前記冷媒供給源は、前記凹凸により形成された隙間に前記冷媒を噴出するようにしてもよい。また、前記復熱ステージに、前記部分急冷ステージで急冷された所定の部位を加熱する非接触の加熱装置を設けるようにしてもよい。 Here, a refrigerant supply source that supplies the refrigerant to the steel plate, a suction mechanism that sucks and discharges the supplied refrigerant, and a contact surface of the upper cooling body with the steel plate, and the lower portion Either or both of the contact surface with the steel plate of the cooling body, unevenness, a refrigerant supply port serving as a refrigerant outlet for the steel plate, a refrigerant suction port serving as a suction and discharge port for the jetted refrigerant, Is formed on one or both of the molding surface of the punch and the molding surface of the die, and a refrigerant supply port serving as a refrigerant outlet for the steel plate, and a refrigerant suction serving as a suction port for the jetted refrigerant. And a discharge port, and the refrigerant supply source may eject the refrigerant into a gap formed by the irregularities. Moreover, you may make it provide the non-contact heating apparatus which heats the predetermined | prescribed site | part rapidly cooled by the said partial quenching stage in the said recuperation stage.
 本発明の鋼成形部材は、前記鋼板の熱間プレス成形方法で成形された鋼成形部材であって、前記成形された後の前記所定の部位の硬度は、その他の部位の硬度よりも、Hvで20以上小さいことを特徴としている。 The steel forming member of the present invention is a steel forming member formed by a hot press forming method of the steel plate, and the hardness of the predetermined part after the forming is higher than the hardness of other parts. It is characterized by being 20 or more smaller.
 本発明によれば、鋼板に対して熱間プレス成形を行うに際し、加熱時の最高到達温度を部位によって変えずに、所定の部位の硬度をその他の部位よりも低下させることができる。 According to the present invention, when hot press forming is performed on a steel sheet, the hardness of a predetermined part can be reduced as compared with other parts without changing the maximum temperature during heating depending on the part.
図1は、本実施の形態にかかる熱間プレス成形装置の構成の概略を示す側面図である。FIG. 1 is a side view showing an outline of a configuration of a hot press molding apparatus according to the present embodiment. 図2は、本実施の形態にかかる熱間プレス成形装置の構成の概略を示す平面図である。FIG. 2 is a plan view showing an outline of the configuration of the hot press forming apparatus according to the present embodiment. 図3は、部分急冷ステージの構成の概略を示す説明図である。FIG. 3 is an explanatory diagram showing an outline of the configuration of the partial quenching stage. 図4は、部分急冷ステージの構成の概略を示す説明図である。FIG. 4 is an explanatory diagram showing an outline of the configuration of the partial quenching stage. 図5は、本発明の適用対象となる急冷金型のダイ表面の拡大図である。FIG. 5 is an enlarged view of the die surface of the quenching mold to which the present invention is applied. 図6は、本発明の適用対象となる急冷金型のダイの説明図である。FIG. 6 is an explanatory view of a die of a quenching mold to which the present invention is applied. 図7は、めっき鋼板に同心円状の部分急冷部を形成した状態を示す説明図である。FIG. 7 is an explanatory view showing a state in which concentric partial quenching portions are formed on the plated steel sheet. 図8は、本実施の形態にかかる熱間プレス成形装置をトランスファープレスに適用した場合の説明図である。FIG. 8 is an explanatory diagram when the hot press molding apparatus according to the present embodiment is applied to a transfer press. 図9は、実施例に用いるめっき鋼板の説明図である。FIG. 9 is an explanatory diagram of a plated steel sheet used in the examples.
 以下、本発明の実施の形態について説明する。図1は実施の形態にかかる熱間プレス成形装置1の構成の概略を示す側面図である。図2は実施の形態にかかる熱間プレス成形装置1の構成の概略を示す平面図である。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a side view showing an outline of the configuration of a hot press forming apparatus 1 according to an embodiment. FIG. 2 is a plan view schematically showing the configuration of the hot press molding apparatus 1 according to the embodiment.
 熱間プレス成形装置1は、投入ステージ(段)10と、部分急冷ステージ(段)11と、復熱ステージ(段)12と、成形急冷ステージ(段)13と、搬送機構14と、を有している。
 投入ステージ(段)10は、加熱装置(図示せず)により所定の温度に加熱された平板状の鋼板(ここでは、めっき鋼板K)が投入されるステージ(段)である。部分急冷ステージ(段)11は、投入ステージ(段)10から搬送されためっき鋼板Kの所定の部位を急冷するステージ(段)である。復熱ステージ(段)12は、部分急冷ステージ(段)11で急冷されためっき鋼板Kの所定の部位を所定の温度よりも高い温度に戻す、いわゆる復熱を行うステージ(段)である。成形急冷ステージ(段)13は、復熱ステージ(段)12で復熱されためっき鋼板Kの成形と急冷とを同時に行うステージ(段)である。搬送機構14は、熱間プレス成形装置1内でめっき鋼板Kの搬送を行うものである。投入ステージ10、部分急冷ステージ11、復熱ステージ12、及び成形急冷ステージ13は、基台15の上面に、めっき鋼板Kの流れ方向H(図1のX軸の正方向(矢印の方向))に沿って順に等間隔で配置されている。基台15の上方には、上部支持体16が設けられている。上部支持体16は、後述する上スタンプ37及びポンチ62を支持している。
The hot press molding apparatus 1 includes a charging stage (stage) 10, a partial quenching stage (stage) 11, a recuperation stage (stage) 12, a molding quenching stage (stage) 13, and a transport mechanism 14. is doing.
The input stage (stage) 10 is a stage (stage) into which a flat steel plate (here, plated steel plate K) heated to a predetermined temperature by a heating device (not shown) is input. The partial quenching stage (stage) 11 is a stage (stage) for rapidly cooling a predetermined portion of the plated steel sheet K conveyed from the charging stage (stage) 10. The recuperation stage (stage) 12 is a stage (stage) that performs so-called recuperation in which a predetermined portion of the plated steel sheet K rapidly cooled in the partial quenching stage (stage) 11 is returned to a temperature higher than a predetermined temperature. The forming and quenching stage (stage) 13 is a stage (stage) that simultaneously forms and quenches the plated steel sheet K reheated by the recuperating stage (stage) 12. The conveyance mechanism 14 conveys the plated steel plate K in the hot press forming apparatus 1. The charging stage 10, the partial quenching stage 11, the recuperation stage 12, and the forming quenching stage 13 are provided on the upper surface of the base 15 in the flow direction H of the plated steel plate K (the positive direction of the X axis in FIG. 1 (arrow direction)). Are arranged at equal intervals in order. An upper support 16 is provided above the base 15. The upper support 16 supports an upper stamp 37 and a punch 62 described later.
 なお、本実施の形態におけるめっき鋼板Kは、例えば質量%でC:0.05~0.7%、Si:0.1~1%、Mn:0.7~2%、P:0.003~0.1%、S:0.003~0.1%を含有する鋼にめっき層の厚みが30μm以下のAlを主体とするめっきを施した鋼板である。熱間プレス前の鋼板を加熱するにあたっての目標温度は850℃以上1000℃以下である。このような範囲の温度に全面が均一に加熱されためっき鋼板Kが投入ステージ10に搬送される。 The plated steel plate K in the present embodiment is, for example, in mass% C: 0.05 to 0.7%, Si: 0.1 to 1%, Mn: 0.7 to 2%, P: 0.003. A steel sheet containing steel containing 0.1 to 0.1% and S: 0.003 to 0.1% and plated mainly with Al having a plating layer thickness of 30 μm or less. The target temperature for heating the steel sheet before hot pressing is 850 ° C. or higher and 1000 ° C. or lower. The plated steel plate K, the entire surface of which is uniformly heated to such a temperature range, is conveyed to the charging stage 10.
 投入ステージ10は、一対の支持台20を有しており、夫々の支持台20の上面には、めっき鋼板Kに予め施されたプレピアス孔Pとの間で位置決めを行うための位置決めピン21と、その上端でめっき鋼板Kを支持する支持ピン22とが設けられている。支持台20は、例えば平面視において矩形状に形成されており、その長手方向がめっき鋼板Kの流れ方向Hと一致するように基台15上に配置されている。 The input stage 10 has a pair of support bases 20, and positioning pins 21 for positioning between pre-pierce holes P previously formed on the plated steel plate K on the upper surface of each support base 20. A support pin 22 that supports the plated steel plate K is provided at its upper end. The support base 20 is formed in a rectangular shape in plan view, for example, and is arranged on the base 15 so that the longitudinal direction thereof coincides with the flow direction H of the plated steel plate K.
 位置決めピン21は、例えば支持台20の中心位置に設けられている。支持ピン22は、支持台20の長手方向に沿って位置決めピン21の両側に設けられている。図2においては、一の支持台20に対して二つの支持ピン22を描図しているが、位置決めピン21及び支持ピン22の数及び配置は本実施の形態に限定されるものではない。支持ピン22の上端は、当該支持ピン22とめっき鋼板Kとの間での接触面積を減らして熱の伝達が最小限となるように、めっき鋼板Kの裏面と点接触する。そのため、支持ピン22の上端は、例えば球状に形成されている。 The positioning pin 21 is provided at the center position of the support base 20, for example. The support pins 22 are provided on both sides of the positioning pins 21 along the longitudinal direction of the support base 20. In FIG. 2, two support pins 22 are depicted for one support base 20, but the number and arrangement of the positioning pins 21 and the support pins 22 are not limited to the present embodiment. The upper end of the support pin 22 is in point contact with the back surface of the plated steel plate K so that the contact area between the support pin 22 and the plated steel plate K is reduced and heat transfer is minimized. Therefore, the upper end of the support pin 22 is formed in a spherical shape, for example.
 部分急冷ステージ11は、投入ステージ10と同様に一対の支持台30と、めっき鋼板Kの所定の部位に接触させることでめっき鋼板Kの所定の部位を急冷する冷却体としての急冷スタンプ31と、を有している。支持台30の上面には支持台20と同様の形状の位置決めピン32と支持ピン33とが夫々設けられている。一対の支持台30の下面には、平面視において例えば略U字状に一部が窪んだ略矩形状の板である台座34が設けられている。台座34と基台15との間には、荷重により鉛直方向に伸縮自在なばね体35が設けられている。支持台30の長手方向の両側であって台座34の上面には、鉛直上方に延伸する丸棒状のプッシュロッド36が設けられている。プッシュロッド36は、その上端が支持ピン33の上端よりも低くなるように形成されている。 The partial quenching stage 11 includes a pair of support tables 30 and a quenching stamp 31 as a cooling body that rapidly cools a predetermined portion of the plated steel plate K by contacting the predetermined portion of the plated steel plate K in the same manner as the charging stage 10; have. Positioning pins 32 and support pins 33 having the same shape as the support table 20 are provided on the upper surface of the support table 30. On the lower surfaces of the pair of support bases 30, a pedestal 34, which is a substantially rectangular plate partially recessed in a substantially U shape in plan view, is provided. Between the pedestal 34 and the base 15, there is provided a spring body 35 that can expand and contract in the vertical direction by a load. On both sides of the support base 30 in the longitudinal direction and on the upper surface of the pedestal 34, round bar-shaped push rods 36 extending vertically upward are provided. The push rod 36 is formed such that its upper end is lower than the upper end of the support pin 33.
 急冷スタンプ31は、上スタンプ37と下スタンプ38とを有している。下スタンプ38の上面38aは、例えば略円盤状に形成されている。下スタンプ38の上面38aは、支持ピン33に載置されるめっき鋼板Kの下面と平行となっており、且つ、支持ピン33の上端よりも低い位置に位置している。これにより、めっき鋼板Kが支持ピン33に載置された際に、図3に示すようにめっき鋼板Kと下スタンプ38の上面38aとが接触しないようになっている。このため、めっき鋼板Kが支持ピン33上に載置されている状態では、めっき鋼板Kは急冷スタンプ31により冷却されることがない。下スタンプ38は、例えば台座34のU字状の窪みの内側であって基台15の上面に直接配置されている。 The quenching stamp 31 has an upper stamp 37 and a lower stamp 38. The upper surface 38a of the lower stamp 38 is formed in a substantially disk shape, for example. The upper surface 38 a of the lower stamp 38 is parallel to the lower surface of the plated steel plate K placed on the support pin 33 and is located at a position lower than the upper end of the support pin 33. As a result, when the plated steel plate K is placed on the support pins 33, the plated steel plate K and the upper surface 38a of the lower stamp 38 do not come into contact with each other as shown in FIG. For this reason, in the state in which the plated steel plate K is placed on the support pins 33, the plated steel plate K is not cooled by the rapid cooling stamp 31. The lower stamp 38 is disposed directly on the upper surface of the base 15 inside the U-shaped depression of the base 34, for example.
 上スタンプ37は下スタンプ38の鉛直方向上方に設けられ、その下面37aは下スタンプ38と同一の形状を有している。上スタンプ37の下面37aは、支持ピン33に載置されるめっき鋼板Kの上面と平行となっている。上スタンプ37の上部は上部支持体16により支持されている。上部支持体16を昇降機構(図示せず)により鉛直方向(図1のY軸の正負の方向)に上下動させることで上スタンプ37を上下動できる。 The upper stamp 37 is provided vertically above the lower stamp 38, and the lower surface 37a has the same shape as the lower stamp 38. The lower surface 37 a of the upper stamp 37 is parallel to the upper surface of the plated steel plate K placed on the support pin 33. The upper portion of the upper stamp 37 is supported by the upper support 16. The upper stamp 37 can be moved up and down by moving the upper support 16 up and down in the vertical direction (positive and negative directions of the Y axis in FIG. 1) by an elevating mechanism (not shown).
 上部支持体16の下面の位置であってプッシュロッド36に対応する位置には、上部プッシュロッド36aが鉛直方向下方に延伸して設けられている。上部支持体16を降下させて上部プッシュロッド36aによりプッシュロッド36を鉛直下方に押圧することで、ばね体35を撓ませ、台座34を下方に押し下げることができる。上部プッシュロッド36aの延伸方向の長さは、上部支持体16を降下させた際、上スタンプ37が支持ピン33上のめっき鋼板Kの上面に接触する前にプッシュロッド36の上端と接触する長さになっている。このため、上部支持体16を降下させると、先ず、上部プッシュロッド36aがプッシュロッド36を押圧して台座34を押し下げ、支持ピン33に載置されるめっき鋼板Kが台座34と共に押し下げられることで、めっき鋼板Kが下スタンプ38に対して相対的に降下する。そして、上部支持体16の降下を続けると、支持ピン33上のめっき鋼板Kが下スタンプ38の上面38aに受け渡され、次いで、図4に示すように上スタンプ37の下面37aとめっき鋼板Kの上面とが接触する。なお、本実施の形態においては、台座34は略U字状に窪んだ略矩形状の板であるが、台座34は下スタンプ38と干渉することなく上下動できるものであればどのような形状でもよく、本実施の形態に限定されるものではない。 An upper push rod 36a is provided extending downward in the vertical direction at a position corresponding to the push rod 36 on the lower surface of the upper support 16. The spring body 35 can be bent and the pedestal 34 can be pushed downward by lowering the upper support 16 and pressing the push rod 36 vertically downward by the upper push rod 36a. The length of the upper push rod 36 a in the extending direction is such that when the upper support 16 is lowered, the upper stamp 37 contacts the upper end of the push rod 36 before contacting the upper surface of the plated steel plate K on the support pin 33. It has become. For this reason, when the upper support 16 is lowered, first, the upper push rod 36a presses the push rod 36 to push down the pedestal 34, and the plated steel plate K placed on the support pin 33 is pushed down together with the pedestal 34. The plated steel plate K descends relative to the lower stamp 38. When the lowering of the upper support 16 is continued, the plated steel plate K on the support pin 33 is transferred to the upper surface 38a of the lower stamp 38, and then the lower surface 37a of the upper stamp 37 and the plated steel plate K as shown in FIG. In contact with the top surface. In this embodiment, the pedestal 34 is a substantially rectangular plate that is recessed in a substantially U-shape, but the pedestal 34 can be moved up and down without interfering with the lower stamp 38. However, the present invention is not limited to this embodiment.
 下スタンプ38の上面38aには、例えば図5及び図6に示すように、めっき鋼板Kに対して冷媒を供給する冷媒供給口40と、供給された冷媒を吸引して排出する冷媒吸引口41と、が設けられている。冷媒吸引口41は吸引機構47に接続されている。冷媒供給口40は、下スタンプ38の内部に設けられた冷媒の流路42に連通している。流路42には冷媒供給管43が接続され、冷媒供給管43に設けられた供給弁44を開けることにより、冷媒供給源46からめっき鋼板Kに冷媒が供給される。また、下スタンプ38の上面38aには、一定の高さの独立した複数の凸部38bが形成されている。これにより、上スタンプ37の下面37aがめっき鋼板Kに接触する位置まで降下した際に、複数の凸部38bの間の凹部、即ち複数の凸部38bにより、下スタンプ38の上面38aとめっき鋼板Kとの間に形成される隙間に、冷媒供給口40から供給される冷媒を流すことができる。したがって、めっき鋼板Kの所定の部位の冷却を短時間で行える、即ち急冷することができる。冷媒供給口40から供給された冷媒は、冷媒吸引口41から吸引され下スタンプ38の外部に排出される。なお、本実施の形態の冷媒としては、例えば水などを用いることができる。 On the upper surface 38a of the lower stamp 38, for example, as shown in FIGS. 5 and 6, a refrigerant supply port 40 for supplying a refrigerant to the plated steel plate K, and a refrigerant suction port 41 for sucking and discharging the supplied refrigerant. And are provided. The refrigerant suction port 41 is connected to a suction mechanism 47. The refrigerant supply port 40 communicates with a refrigerant flow path 42 provided inside the lower stamp 38. A refrigerant supply pipe 43 is connected to the flow path 42, and a refrigerant is supplied from the refrigerant supply source 46 to the plated steel plate K by opening a supply valve 44 provided in the refrigerant supply pipe 43. In addition, a plurality of independent convex portions 38 b having a certain height are formed on the upper surface 38 a of the lower stamp 38. As a result, when the lower surface 37a of the upper stamp 37 is lowered to a position in contact with the plated steel plate K, the upper surface 38a of the lower stamp 38 and the plated steel plate are formed by the concave portions between the plurality of convex portions 38b, that is, the plurality of convex portions 38b. The refrigerant supplied from the refrigerant supply port 40 can flow through the gap formed between the refrigerant and the K. Therefore, the predetermined part of the plated steel plate K can be cooled in a short time, that is, rapidly cooled. The refrigerant supplied from the refrigerant supply port 40 is sucked from the refrigerant suction port 41 and discharged to the outside of the lower stamp 38. In addition, as a refrigerant | coolant of this Embodiment, water etc. can be used, for example.
 上スタンプ37の内部には、例えば図3及び図4に示すように、上スタンプ37の下面37aを冷却するための冷却管45が設けられている。上スタンプ37の下面37aをめっき鋼板Kに接触させる際に冷却管45に冷媒を供給することで、めっき鋼板Kの冷却を行える。 Inside the upper stamp 37, for example, as shown in FIGS. 3 and 4, a cooling pipe 45 for cooling the lower surface 37a of the upper stamp 37 is provided. When the lower surface 37a of the upper stamp 37 is brought into contact with the plated steel plate K, the plated steel plate K can be cooled by supplying a coolant to the cooling pipe 45.
 復熱ステージ12は、投入ステージ10と同一の構成を有しており、一対の支持台50と、支持台50の上面に設けられた位置決めピン51及び支持ピン52を有している。 The recuperation stage 12 has the same configuration as the charging stage 10, and includes a pair of support bases 50, positioning pins 51 and support pins 52 provided on the upper surface of the support base 50.
 成形急冷ステージ13は、めっき鋼板Kの成形及び急冷を同時に行う急冷金型60を有している。急冷金型60は下側の金型であるダイ61と、上側の金型であるポンチ62とを有している。ダイ61は、図5及び図6に示す下スタンプ38と同様の構成を有している。即ち、ダイ61は、冷媒供給口63と、冷媒供給口63から供給された冷媒を吸引して排出する冷媒吸引口64と、冷媒供給口63と連通する流路65と、流路65に接続された冷媒供給管66と、冷媒供給管66に設けられた供給弁67とを有する。
 冷媒供給口63は、ポンチ62を下死点まで降下してめっき鋼板Kを熱間プレス成形する際に、めっき鋼板Kに対して冷媒を供給する。冷媒吸引口64は、下スタンプ38の冷媒吸引口41と同様に、吸引機構81に接続されている。ダイ61の成形面61aには、下スタンプ38の上面38aと同様に、一定の高さの独立した複数の凸部61bが形成されている。複数の凸部61bにより、ダイ61の成形面61aとめっき鋼板Kとの間に形成される隙間に、冷媒供給源82から冷媒供給口63を介して供給される冷媒を流し、めっき鋼板Kを急冷する。なお、図5では、表記の都合上、下スタンプ38とダイ61とを全く同じものとして示しているが、実際には、これらの形状及び大きさは異なる。
The forming and quenching stage 13 has a quenching mold 60 for simultaneously forming and quenching the plated steel plate K. The quenching mold 60 has a die 61 that is a lower mold and a punch 62 that is an upper mold. The die 61 has the same configuration as the lower stamp 38 shown in FIGS. That is, the die 61 is connected to the coolant supply port 63, the coolant suction port 64 that sucks and discharges the coolant supplied from the coolant supply port 63, the flow path 65 communicating with the coolant supply port 63, and the flow path 65. The refrigerant supply pipe 66 and a supply valve 67 provided in the refrigerant supply pipe 66 are provided.
The coolant supply port 63 supplies the coolant to the plated steel plate K when the punch 62 is lowered to the bottom dead center and the plated steel plate K is hot press formed. The refrigerant suction port 64 is connected to the suction mechanism 81 similarly to the refrigerant suction port 41 of the lower stamp 38. On the molding surface 61a of the die 61, like the upper surface 38a of the lower stamp 38, a plurality of independent convex portions 61b having a certain height are formed. The coolant supplied from the coolant supply source 82 via the coolant supply port 63 is caused to flow through the gap formed between the forming surface 61a of the die 61 and the plated steel plate K by the plurality of convex portions 61b, and the plated steel plate K Cool quickly. In FIG. 5, the lower stamp 38 and the die 61 are shown as being exactly the same for convenience of description, but in actuality, their shapes and sizes are different.
 ポンチ62の内部には、上スタンプ37と同様に、ポンチ62の成形面62aを冷却するための冷却管(図示せず)が設けられている。ポンチ62の成形面62aをめっき鋼板Kに接触させる際に図示しない冷却管に冷媒を供給することで、めっき鋼板Kの冷却を行える。ポンチ62の上部は、上スタンプ37と同様に、その上部が上部支持体16により支持されている。上部支持体16を図示しない昇降機構により鉛直方向に上下動させることでポンチ62も上下動する。このため、上スタンプ37とポンチ62とは、上部支持体16が上下動することで、同期して上下動を行う構造となっている。 In the punch 62, a cooling pipe (not shown) for cooling the molding surface 62a of the punch 62 is provided in the same manner as the upper stamp 37. When the forming surface 62a of the punch 62 is brought into contact with the plated steel plate K, the plated steel plate K can be cooled by supplying a coolant to a cooling pipe (not shown). Similar to the upper stamp 37, the upper portion of the punch 62 is supported by the upper support 16. The punch 62 is also moved up and down by moving the upper support 16 up and down in the vertical direction by a lifting mechanism (not shown). For this reason, the upper stamp 37 and the punch 62 are configured to move up and down in synchronization with the upper support 16 moving up and down.
 ダイ61には、ダイ61の内部を貫通して鉛直上方に突出し、ダイ61に対して摺動自在な位置決めピン68が設けられている。位置決めピン68は、図示しないばねを介して基台15の上面に支持されている。ポンチ62が降下して位置決めピン68を押圧することで、位置決めピン68と共にめっき鋼板Kが下方に押し下げられ、急冷金型60によりめっき鋼板Kの成形が行われる。 The die 61 is provided with a positioning pin 68 that penetrates the inside of the die 61 and projects vertically upward, and is slidable with respect to the die 61. The positioning pin 68 is supported on the upper surface of the base 15 via a spring (not shown). When the punch 62 is lowered and presses the positioning pin 68, the plated steel plate K is pushed down together with the positioning pin 68, and the plated steel plate K is formed by the rapid cooling mold 60.
 搬送機構14は、図2に示すように、めっき鋼板Kを把持する把持部70と、一対の搬送支持体71とを有している。一対の搬送支持体71は、把持部70を支持し駆動機構(図示せず)によりめっき鋼板Kの流れ方向H及び流れ方向Hに直交する水平方向(図2に向かって上下の方向)に沿って往復動自在に構成されている。搬送支持体71は、投入ステージ10や成形急冷ステージ13などを挟み込むように、対向して配置されている。把持部70は、例えば3つの把持部70a、70b、70cを有している。3つの把持部70a、70b、70cは、一対の搬送支持体71の各々に、めっき鋼板Kの流れ方向Hに沿って順に等間隔で設けられている。このため、搬送支持体71を図示しない駆動機構によりめっき鋼板Kの流れ方向Hと平行に往復動させることで、把持部70aは投入ステージ10から部分急冷ステージ11へ、把持部70bは部分急冷ステージ11から復熱ステージ12へ、把持部710cは復熱ステージ12から成形急冷ステージ13へと、複数のめっき鋼板Kを夫々同時に搬送可能となっている。 As shown in FIG. 2, the transport mechanism 14 includes a gripping portion 70 that grips the plated steel plate K and a pair of transport supports 71. A pair of conveyance support bodies 71 support the grip part 70, and follow a horizontal direction (vertical direction toward FIG. 2) perpendicular to the flow direction H of the plated steel plate K and the flow direction H by a drive mechanism (not shown). And reciprocally movable. The conveyance support body 71 is disposed so as to face the insertion stage 10 and the molding quenching stage 13. The gripping part 70 has, for example, three gripping parts 70a, 70b, and 70c. The three gripping portions 70 a, 70 b, and 70 c are provided at equal intervals in order along the flow direction H of the plated steel plate K on each of the pair of transport supports 71. For this reason, the gripping portion 70a is moved from the charging stage 10 to the partial quenching stage 11 and the gripping portion 70b is moved to the partial quenching stage by reciprocating the transport support 71 in parallel with the flow direction H of the plated steel plate K by a drive mechanism (not shown). 11 to the recuperation stage 12, and the gripping portion 710 c can simultaneously convey a plurality of plated steel plates K from the recuperation stage 12 to the forming and quenching stage 13.
 本実施の形態にかかる熱間プレス成形装置1は以上のように構成されており、次に本発明の熱間プレス成形の原理を簡単に説明する。 The hot press molding apparatus 1 according to the present embodiment is configured as described above, and the principle of the hot press molding of the present invention will be briefly described below.
 鋼材はA変態点(A transformation point;本発明における実施形態の場合、690~720[℃])以上に加熱することでオーステナイト相の生成が始まり、A変態点(本発明における実施形態の場合、730~890[℃])以上に加熱することでオーステナイト単相組織となる。このオーステナイトをマルテンサイトへの変態の開始温度Ms点(Martensite-transformation Starting Point)以下まで急冷する、いわゆる焼き入れ(quenching)を行うことで、硬度の高いマルテンサイト組織が鋼材に生成される。一方、例えば鋼材の温度をA変態点以上、或いはA変態点以上から、Ms点以下まで低下させた後に、鋼材を加熱して鋼材の温度をMs点以上に上昇させる、いわゆる復熱を行い、その後再び急冷して鋼材の温度をマルテンサイト変態の終了温度Mf点(Martensite-transformation finishing Point)以下とする、いわゆる焼き戻し(tempering)を行うことにより、鋼材はマルテンサイト組織より硬度が低い焼き戻しマルテンサイトを含む組織となる。 The steel material is heated to an A 1 transformation point (A 1 transformation point; in the case of the embodiment of the present invention, 690 to 720 [° C.]) or more, and the formation of the austenite phase begins, and the A 3 transformation point (the embodiment of the present invention). In this case, an austenite single phase structure is obtained by heating to 730 to 890 [° C.] or higher. By performing so-called quenching, in which the austenite is rapidly cooled to a temperature below the starting temperature Ms (Martensite-transformation Starting Point) of transformation to martensite, a martensite structure having high hardness is generated in the steel material. On the other hand, for example, the temperature of the steel product A 1 transformation point or more, or from A 3 transformation point or higher, after lowering to the Ms point or lower, by heating the steel material raises the temperature of the steel material to more than Ms point, the so-called recuperation And then quenching again to bring the temperature of the steel below the martensite transformation end point Mf (Martensite-transformation finishing point), so-called tempering, so that the steel has a lower hardness than the martensite structure. The structure contains tempered martensite.
 したがって、本実施の形態では、熱間プレス成形の過程において、鋼板の一部、例えば、後工程において機械加工が必要となる部位や溶接を行う部位を選択的に焼き戻して、焼き戻しマルテンサイトを含む組織を形成する。このようにすれば、例えば、後工程において機械加工の必要がある部位の加工性や溶接継手の強度を確保しつつ、それ以外の部分は要求される硬度を持つ製品(鋼成形部材)を作ることができる。次に、本実施の形態にかかる熱間プレス成形装置1によるめっき鋼板Kの熱間プレス成形の方法の一例について説明する。 Therefore, in the present embodiment, in the process of hot press forming, a part of the steel sheet, for example, a part that requires machining in a subsequent process or a part to be welded is selectively tempered, and tempered martensite. To form a tissue. In this way, for example, a product (steel molded member) having the required hardness for the other parts while ensuring the workability of the parts that need to be machined in the post-process and the strength of the welded joints. be able to. Next, an example of the method of hot press forming of the plated steel plate K by the hot press forming apparatus 1 according to the present embodiment will be described.
 先ず、加熱装置により予めA変態点以上に、全面に亘って均一に加熱されためっき鋼板Kが、図示しない受け渡し装置により投入ステージ10の支持ピン22上に載置される。支持台20に設けられているセンサが、支持ピン22上にめっき鋼板Kが載置されたことを検出すると、搬送機構14が動作を開始する。投入ステージ10に載置されためっき鋼板Kは、搬送機構14の把持部70aにより把持されて部分急冷ステージ11へ搬送され、支持ピン33上に載置される。この際、支持ピン33上に載置されためっき鋼板Kのプレピアス孔Pには、図3に示すように位置決めピン32が挿通し、めっき鋼板Kと急冷スタンプ31との相対的な位置関係がプレピアス孔Pと位置決めピン32とにより設定される。 First, in advance A 1 transformation point or above by the heating device, uniformly heated plated steel sheet K over the entire surface is placed on the support pins 22 of input stage 10 by a not shown transfer device. When the sensor provided on the support base 20 detects that the plated steel plate K is placed on the support pins 22, the transport mechanism 14 starts operating. The plated steel plate K placed on the charging stage 10 is gripped by the gripping portion 70 a of the transport mechanism 14, transported to the partial quenching stage 11, and placed on the support pin 33. At this time, as shown in FIG. 3, the positioning pin 32 is inserted into the prepierce hole P of the plated steel plate K placed on the support pin 33, and the relative positional relationship between the plated steel plate K and the quenching stamp 31 is present. It is set by the prepierce hole P and the positioning pin 32.
 部分急冷ステージ11へめっき鋼板Kが搬送されると、めっき鋼板Kの、例えば中心部を急冷する部分急冷工程が行われる。部分急冷工程においては、先ず、上部支持体16と共に上スタンプ37及び上部プッシュロッド36aが降下し、図3に示すように、上部プッシュロッド36aとプッシュロッド36とが接触する。この際、上スタンプ37の下面37aとめっき鋼板Kの上面とは、所定の距離離間した状態となっている。上部支持体16はこの状態からさらに降下を続け、プッシュロッド36及び台座34を介して、支持ピン33に載置されるめっき鋼板Kを下方に移動させ、支持ピン33上のめっき鋼板Kを下スタンプ38の上面38aに受け渡す。 When the plated steel plate K is conveyed to the partial quenching stage 11, a partial quenching process is performed in which, for example, the central portion of the plated steel plate K is rapidly cooled. In the partial quenching step, first, the upper stamp 37 and the upper push rod 36a are lowered together with the upper support 16, and the upper push rod 36a and the push rod 36 are in contact with each other as shown in FIG. At this time, the lower surface 37a of the upper stamp 37 and the upper surface of the plated steel plate K are separated from each other by a predetermined distance. The upper support 16 continues to descend from this state, moves the plated steel plate K placed on the support pin 33 downward via the push rod 36 and the base 34, and lowers the plated steel plate K on the support pin 33. Transfer to the upper surface 38 a of the stamp 38.
 その後、さらに上部支持体16の降下を続け、図4に示すように、上スタンプ37の下面37aによりめっき鋼板Kの上面を押圧した状態が所定時間保持される。即ち上スタンプ37の下死点の位置で上スタンプ37が所定の時間保持される。めっき鋼板Kが上スタンプ37により押圧されると同時に供給弁44が開かれ、下スタンプ38の冷媒供給口40からめっき鋼板Kに冷媒が供給される。なお、上スタンプ37内部の冷却管45には、冷媒が常時供給されている。これにより、めっき鋼板Kの上スタンプ37及び下スタンプ38と接触する部位が急冷され、部分急冷部Kcとなる。一方、上スタンプ37及び下スタンプ38と接触していない部位は、そのまま高温を保つ高温部Kaとして維持される。 Thereafter, the upper support 16 is further lowered, and the state where the upper surface of the plated steel plate K is pressed by the lower surface 37a of the upper stamp 37 is maintained for a predetermined time as shown in FIG. That is, the upper stamp 37 is held for a predetermined time at the position of the bottom dead center of the upper stamp 37. At the same time that the plated steel plate K is pressed by the upper stamp 37, the supply valve 44 is opened, and the coolant is supplied to the plated steel plate K from the coolant supply port 40 of the lower stamp 38. Note that the coolant is constantly supplied to the cooling pipe 45 inside the upper stamp 37. Thereby, the site | part which contacts the upper stamp 37 and the lower stamp 38 of the plated steel plate K is rapidly cooled, and it becomes the partial quenching part Kc. On the other hand, a portion that is not in contact with the upper stamp 37 and the lower stamp 38 is maintained as a high temperature portion Ka that maintains a high temperature.
 部分急冷ステージ11において、めっき鋼板Kの所定の部位(上スタンプ37及び下スタンプ38と接触する部位)に所定の時間急冷を施すと、上部支持体16と共に上スタンプ37が上死点まで上昇し、部分急冷工程が終了する。部分急冷工程が終了すると、めっき鋼板Kは搬送機構14の把持部70bにより把持され、部分急冷ステージ11から復熱ステージ12へ搬送される。これと同時に、投入ステージ10にある2番目のめっき鋼板Kが部分急冷ステージ11へ搬送されると共に、3番目のめっき鋼板Kが投入ステージ10に載置される。 In the partial quenching stage 11, when the predetermined portion of the plated steel plate K (the portion that contacts the upper stamp 37 and the lower stamp 38) is rapidly cooled for a predetermined time, the upper stamp 37 rises to the top dead center together with the upper support 16. The partial quenching process ends. When the partial quenching step is finished, the plated steel plate K is gripped by the gripping portion 70b of the transport mechanism 14 and transported from the partial quenching stage 11 to the recuperation stage 12. At the same time, the second plated steel plate K on the charging stage 10 is conveyed to the partial quenching stage 11 and the third plated steel plate K is placed on the charging stage 10.
 復熱ステージ12の支持ピン52上にめっき鋼板Kが搬送されると、めっき鋼板Kの部分急冷部Kcの温度を、Ms点以上の温度まで復熱させる復熱工程が行われる。復熱工程では、めっき鋼板Kが支持ピン52上に載置された状態で、所定時間、即ち上部支持体16が上死点と下死点との間を一往復する時間だけ、復熱ステージ12に留め置かれる。この際、めっき鋼板Kの部分急冷部Kcは、部分急冷工程において急冷されず高温を維持している部位からの熱伝達により温度が上昇し、Ms点以上の温度に復熱する。 When the plated steel plate K is conveyed onto the support pin 52 of the recuperation stage 12, a recuperation step is performed in which the temperature of the partially quenched portion Kc of the plated steel plate K is reheated to a temperature equal to or higher than the Ms point. In the recuperation step, the recuperation stage is performed for a predetermined time, that is, a time in which the upper support 16 reciprocates once between the top dead center and the bottom dead center with the plated steel plate K placed on the support pins 52. Twelve. At this time, the temperature of the partially quenched portion Kc of the plated steel plate K rises due to heat transfer from a portion that is not rapidly cooled in the partially quenched process and maintains a high temperature, and is reheated to a temperature equal to or higher than the Ms point.
 復熱ステージ12において復熱工程が終了すると、めっき鋼板Kは搬送機構14の把持部70cにより把持され、復熱ステージ12から成形急冷ステージ13へ搬送される。 When the recuperation process is completed in the recuperation stage 12, the plated steel plate K is held by the holding portion 70 c of the transfer mechanism 14 and transferred from the reheat stage 12 to the forming and quenching stage 13.
 めっき鋼板Kが成形急冷ステージ13へ搬送されると、先ず、めっき鋼板Kのプレピアス孔Pとダイ61の位置決めピン68とにより、めっき鋼板Kの位置決めが行われ、ダイ61上にめっき鋼板Kが載置される。次いで、ポンチ62が下死点まで降下し、めっき鋼板Kの成形が行われる。めっき鋼板Kの成形と同時に、冷媒供給管66の供給弁67を開き、冷媒供給口63から冷媒がめっき鋼板Kに供給される。ポンチ62内部の図示しない冷却管には、冷媒が常時供給されている。これにより、めっき鋼板Kが全面に亘って急冷される。めっき鋼板Kが所定の時間急冷され、めっき鋼板Kの温度がMf点以下になると、上部支持体16と共にポンチ62が上死点まで上昇し、成形急冷工程が終了する。 When the plated steel plate K is conveyed to the forming and quenching stage 13, first, the plated steel plate K is positioned by the prepierce hole P of the plated steel plate K and the positioning pin 68 of the die 61, and the plated steel plate K is placed on the die 61. Placed. Next, the punch 62 descends to the bottom dead center, and the plated steel plate K is formed. Simultaneously with the formation of the plated steel plate K, the supply valve 67 of the coolant supply pipe 66 is opened, and the coolant is supplied from the coolant supply port 63 to the plated steel plate K. A refrigerant is always supplied to a cooling pipe (not shown) inside the punch 62. Thereby, the plated steel plate K is rapidly cooled over the entire surface. When the plated steel plate K is rapidly cooled for a predetermined time and the temperature of the plated steel plate K becomes equal to or lower than the Mf point, the punch 62 rises to the top dead center together with the upper support 16, and the forming and quenching process ends.
 成形急冷工程が終了すると、成形後のめっき鋼板Kは、例えば図示しない搬出装置によりがダイ61から取り除かれ、熱間プレス成形装置1から搬出される。この一連の熱間プレス成形が繰り返し行われる。 When the forming and quenching process is completed, the formed plated steel sheet K is removed from the die 61 by, for example, an unillustrated unloading device and unloaded from the hot press forming device 1. This series of hot press molding is repeated.
 以上の実施の形態によれば、予めA変態点以上の温度に加熱しためっき鋼板Kの所定の部位を、マルテンサイトへの変態の開始温度(Ms点)以下の温度に急冷して部分急冷部Kcを形成する。その後、復熱ステージ12において、部分急冷部Kcを、マルテンサイトへの変態の開始温度(Ms点)よりも高い温度に復熱させる。このようにしてから、めっき鋼板Kの成形と成形面全体の急冷(マルテンサイトへの変態の終了温度(Mf点)以下の温度への急冷)とを同時に行う。したがって、復熱を行った部位を焼き戻しマルテンサイトを含む組織にすることができると共に、成形面のその他の部位をマルテンサイト組織とすることができる。このため、成形後の後工程において機械加工の必要がない部位をマルテンサイト組織とし、例えば、後工程において機械加工が必要となる部位や、後工程において溶接が必要となる部位を焼き戻しマルテンサイトを含む組織とすることができる。したがって、製品としての必要な強度を維持しつつ、後工程における加工性を確保した成形品を形成することができる。また、めっき鋼板Kは、予め全面に亘って均一に加熱されているため、めっき鋼板Kの加熱時の最高到達温度を、めっき鋼板Kの全面に亘って均一にすることができる。よって、めっきの合金化の度合いも鋼板の全面に亘って均一にすることができる。さらに、めっき鋼板Kの部分急冷工程及び復熱工程は、めっき鋼板Kが平板状の状態で行われる。よって、例えば、成形急冷工程において曲げ加工が施される部位や成形後に垂直面となる部位など、任意の位置に焼き戻しマルテンサイトを含む組織を生成することができる。したがって、設計の自由度も大きい。 According to the above embodiment, partial quenching the predetermined portion of the plated steel sheet K preheated to A 1 transformation point or above the temperature, and quenched to the starting temperature (Ms point) below the temperature of the transformation to martensite Part Kc is formed. Thereafter, in the recuperation stage 12, the partially quenched portion Kc is reheated to a temperature higher than the start temperature (Ms point) of transformation to martensite. After this, the forming of the plated steel sheet K and the rapid cooling of the entire forming surface (rapid cooling to a temperature not higher than the end temperature (Mf point) of transformation into martensite) are performed simultaneously. Therefore, the reheated part can be made into a structure containing tempered martensite, and the other part of the molding surface can be made into a martensite structure. For this reason, a part that does not require machining in the subsequent process after molding is formed into a martensite structure. For example, a part that requires machining in the subsequent process or a part that requires welding in the subsequent process is tempered martensite. It can be set as the organization containing. Therefore, it is possible to form a molded product that ensures the workability in the subsequent process while maintaining the necessary strength as a product. Moreover, since the plated steel plate K is uniformly heated over the entire surface in advance, the highest temperature achieved when the plated steel plate K is heated can be made uniform over the entire surface of the plated steel plate K. Therefore, the degree of alloying of plating can be made uniform over the entire surface of the steel sheet. Furthermore, the partial rapid cooling process and the recuperation process of the plated steel plate K are performed in a state where the plated steel plate K is in a flat plate shape. Therefore, for example, a structure containing tempered martensite can be generated at an arbitrary position such as a part that is subjected to bending in the forming and quenching process or a part that becomes a vertical surface after forming. Therefore, the degree of freedom in design is great.
 また、部分急冷ステージ11において、プレピアス孔Pと位置決めピン32とによりめっき鋼板Kの位置決めを行うようにした。また、成形急冷ステージ13においても、当該プレピアス孔Pとダイ61の位置決めピン68とによりめっき鋼板Kの位置決めを行うようにした。よって、部分急冷ステージ11及び成形急冷ステージ13において、めっき鋼板Kと位置決めピン32、68との相対的な位置関係、即ち、急冷スタンプ31及び急冷金型60と、めっき鋼板Kとの相対的な位置関係がずれることがない。したがって、焼き戻しマルテンサイトを含む組織を成形品の所定の位置にきわめて正確に生成することができる。これにより、例えば、めっき鋼板Kのダイ61上での配置が何らかの理由によりずれてしまい、そのずれた状態でプレス成形されることを確実に防止できる。したがって、後工程において機械加工や溶接を行う部位に焼き戻しマルテンサイトを含む組織が生成されなくなることを確実に防止できる。よって、後工程における機械加工に支障が出たり溶接の継手強度が不足したりするといったトラブルを避けることができる。 In the partial quenching stage 11, the plated steel plate K is positioned by the prepierce hole P and the positioning pin 32. In the forming quenching stage 13, the plated steel plate K is positioned by the prepierce hole P and the positioning pin 68 of the die 61. Therefore, in the partial quenching stage 11 and the forming quenching stage 13, the relative positional relationship between the plated steel plate K and the positioning pins 32 and 68, that is, the relative relationship between the quenched stamp 31 and the quenching mold 60 and the plated steel plate K. The positional relationship does not shift. Therefore, a structure including tempered martensite can be generated very accurately at a predetermined position of the molded product. Thereby, for example, the arrangement of the plated steel plate K on the die 61 is deviated for some reason, and press forming in the deviated state can be reliably prevented. Therefore, it is possible to reliably prevent a structure containing tempered martensite from being generated at a site where machining or welding is performed in a subsequent process. Therefore, troubles such as hindrance to machining in the subsequent process and insufficient joint strength of welding can be avoided.
 また、以上の実施の形態によれば、下スタンプ38及びダイ61のめっき鋼板Kとの接触面である上面38aと成形面61aに凸部38b、61bが形成されている。このため、部分急冷工程及び成形急冷工程において、冷媒供給口40、63からめっき鋼板Kに対して冷媒を噴出することで、めっき鋼板Kの急冷を短時間で行うことができる。したがって、熱間プレス成形の生産性を向上させることができる。 Further, according to the above embodiment, the convex portions 38b and 61b are formed on the upper surface 38a and the forming surface 61a which are the contact surfaces of the lower stamp 38 and the die 61 with the plated steel plate K. For this reason, in the partial quenching process and the forming quenching process, the plated steel sheet K can be rapidly cooled in a short time by ejecting the coolant from the coolant supply ports 40 and 63 to the plated steel sheet K. Therefore, the productivity of hot press molding can be improved.
 なお、以上実施の形態では、凸部38b、61bや冷媒供給口40、63や冷媒吸引口41、64といっためっき鋼板Kの急冷を行う手段は、下部冷却体の一例である下スタンプ38やダイ61側に設けられていたが、当該手段は、上部冷却体の一例である上スタンプ37やポンチ62側に設けられていてもよい。また、当該手段は、下部冷却体の一例である下スタンプ38やダイ61側と、当該手段は、上部冷却体の一例である上スタンプ37やポンチ62側との双方に設けられていてもよい。 In the above embodiment, the means for rapidly cooling the plated steel plate K, such as the convex portions 38b and 61b, the refrigerant supply ports 40 and 63, and the refrigerant suction ports 41 and 64, is a lower stamp 38 or die that is an example of a lower cooling body. Although provided on the 61 side, the means may be provided on the upper stamp 37 or the punch 62 side which is an example of the upper cooling body. The means may be provided on both the lower stamp 38 and the die 61 side which are examples of the lower cooling body, and the means may be provided on both the upper stamp 37 and the punch 62 side which are examples of the upper cooling body. .
 以上の実施の形態では、部分急冷部Kcの形状は略盤状であったが、例えば後工程での機械加工の内容に応じて急冷スタンプ31の形状を変更することで、他の任意の形状としてもよい。この場合、部分急冷部Kcを形成する急冷スタンプ31と、急冷金型60とが独立して設けられている。このため、例えば、形状は同じで、後工程における機械加工の部位のみが異なるような成形品を形成する場合には、例えば、急冷スタンプ31の形状や配置を変更するだけで対応が可能である。よって、質量が大きい急冷金型60を交換する必要がない。 In the above embodiment, the shape of the partial quenching portion Kc is substantially a plate shape. However, for example, by changing the shape of the quenching stamp 31 in accordance with the content of machining in a later process, any other shape is possible. It is good. In this case, the quenching stamp 31 forming the partial quenching portion Kc and the quenching mold 60 are provided independently. For this reason, for example, when forming a molded product having the same shape but different only in the machining part in the subsequent process, it is possible to cope with the problem by simply changing the shape and arrangement of the quench stamp 31, for example. . Therefore, it is not necessary to replace the quenching mold 60 having a large mass.
 また、後工程において、めっき鋼板Kの所定の部位に、例えば同心円状の孔加工を行うような場合、部分急冷部Kcの領域内に、急冷せずに高温のまま維持される高温部Ka部位を設定するようにしてもよい。具体的には、例えば図7に示すように、めっき鋼板K上に部分急冷部Kcを円環状に形成し、当該円環状の部分急冷部Kcに囲まれる領域内に、高温のまま維持される高温部Kaを残すようにしてもよい。このように、部分急冷部Kcの領域内に高温部Kaを残すことで、部分急冷部Kcと高温部Kaとの境界面、即ち部分急冷部Kcと高温部Kaとの間で熱伝達が行われる領域が大きくなる。また、加工が行われる部位、即ち図7における円環状の部分急冷部Kcのみを選択的に急冷し、部分急冷部Kcの範囲を小さくすることで、復熱に必要となる熱容量が小さくなる。したがって、効率的に部分急冷部Kcの復熱を行うことが可能となる。 Further, in a subsequent process, when a concentric hole is drilled in a predetermined portion of the plated steel plate K, for example, a high temperature portion Ka portion that is maintained at a high temperature without quenching in the region of the partial quench portion Kc. May be set. Specifically, as shown in FIG. 7, for example, a partially quenched portion Kc is formed in an annular shape on a plated steel plate K, and is maintained at a high temperature in a region surrounded by the annular partially quenched portion Kc. You may make it leave the high temperature part Ka. As described above, by leaving the high temperature portion Ka in the region of the partial quenching portion Kc, heat transfer is performed between the partial quenching portion Kc and the high temperature portion Ka, that is, between the partial quenching portion Kc and the high temperature portion Ka. The area to be increased. Further, by selectively quenching only the part to be processed, that is, the annular partial quenching portion Kc in FIG. 7 and reducing the range of the partial quenching portion Kc, the heat capacity required for recuperation is reduced. Therefore, it is possible to efficiently recover the partial quenching portion Kc.
 以上の実施の形態では、熱間プレス形成装置1において、一枚のめっき鋼板Kを処理していたが、例えば、複数のめっき鋼板Kを同時に処理するようにしてもよい。その場合、例えば部分急冷ステージ11における、上スタンプ37の上下動を含めた部分急冷工程の所要時間と、成形急冷ステージ13における、ポンチ62の上下動を含めた成形急冷工程の所要時間、いわゆるタクトタイムが同一であれば効率がよい。このタクトタイムは、成形品の品質を満足するために必要なポンチ62の下死点での保持時間を、予め試験等により最適な条件を求めた上で決定される。しかしながら、上スタンプ37をポンチ62と上部支持体16により同期させて往復動させる場合、部分急冷工程においてめっき鋼板Kの急冷が不十分となってしまう場合が考えられる。その場合は、例えば冷媒供給口40から供給する冷媒の量を調整することで、必要な冷却を行うことが可能となる。このように、部分急冷ステージ11と成形急冷ステージ13のタクトタイムを合わせることにより、複数のめっき鋼板Kを同時に処理することができる。 In the above embodiment, one sheet of plated steel sheet K is processed in the hot press forming apparatus 1, but, for example, a plurality of plated sheet steels K may be processed simultaneously. In that case, for example, the time required for the partial quenching process including the vertical movement of the upper stamp 37 in the partial quenching stage 11 and the time required for the molding rapid cooling process including the vertical movement of the punch 62 in the molding quench stage 13, so-called tact. If the time is the same, the efficiency is good. The tact time is determined after obtaining the optimum condition for the holding time at the bottom dead center of the punch 62 necessary for satisfying the quality of the molded product by obtaining an optimum condition by a test or the like in advance. However, when the upper stamp 37 is reciprocated in synchronization with the punch 62 and the upper support 16, there may be a case where the rapid cooling of the plated steel plate K becomes insufficient in the partial quenching process. In that case, for example, the required cooling can be performed by adjusting the amount of the refrigerant supplied from the refrigerant supply port 40. Thus, by matching the tact times of the partial quenching stage 11 and the forming quenching stage 13, a plurality of plated steel plates K can be processed simultaneously.
 複数の、例えばめっき鋼板K1~K5を同時に処理する場合は、投入ステージ10から部分急冷ステージ11にめっき鋼板K1が搬送されるのと同時に、投入ステージ10に新たなめっき鋼板K2が投入される。次いで、めっき鋼板K1の部分急冷を終え、部分急冷ステージ11から復熱ステージ12へ搬送されるのと同時に、新たなめっき鋼板K3の投入と、めっき鋼板K2の投入ステージ10から部分急冷ステージ11への搬送が行われる。次いで、めっき鋼板K1の復熱が終了し、成形急冷ステージ13への搬送が行われるのと同時に、部分急冷ステージ11で急冷されためっき鋼板K2は、把持部70bにより、部分急冷ステージ11から復熱ステージ12へ搬送され、投入ステージ10のめっき鋼板K3は部分急冷ステージ11に搬送され、投入ステージ10には新たなめっき鋼板K4が投入される。図8に示すように、めっき鋼板K1の成形急冷工程が終了すると、成形後のめっき鋼板K1は、ダイ61から取り除かれ熱間プレス成形装置1から搬出される。それと同時に、めっき鋼板K2、K3、K4の搬送及び新たなめっき鋼板K5の投入が行われ、この一連の熱間プレス成形が繰り返し行われる。このように、各工程におけるタクトタイムを合わせることにより、本実施の形態の熱間プレス成形装置1のような、いわゆるトランスファープレス(複数の工程を経てプレス成形部品を形成するプレス方法であって、プレス機が1ストロークする毎に鋼板を次の工程に搬送するプレス方法)に適用することが可能となり、製品の生産性を向上させることができる。そして、前述したように、部分急冷工程及び成形急冷工程において、めっき鋼板Kの急冷を短時間で行うことができるので、タクトタイムを短くすることができる。よって、復熱工程で、めっき鋼板Kの高温部Kaの温度が(A変態点よりも低い温度まで)低下することを確実に実現することができる。 When processing a plurality of, for example, plated steel plates K1 to K5 simultaneously, the plated steel plate K1 is transferred from the charging stage 10 to the partial quenching stage 11, and at the same time, a new plated steel plate K2 is charged to the charging stage 10. Next, the partial quenching of the plated steel plate K1 is finished, and the plated steel plate K1 is transferred from the partial quenching stage 11 to the recuperation stage 12, and at the same time, a new plated steel plate K3 is charged and the plated steel plate K2 charging stage 10 is moved to the partial rapid cooling stage 11. Is carried out. Next, when the reheating of the plated steel plate K1 is completed and transported to the forming and quenching stage 13, the plated steel plate K2 quenched in the partial quenching stage 11 is returned from the partial quenching stage 11 by the gripping portion 70b. The plated steel plate K3 of the charging stage 10 is transported to the partial quenching stage 11, and a new plated steel plate K4 is charged to the charging stage 10. As shown in FIG. 8, when the forming and quenching process of the plated steel plate K <b> 1 is completed, the formed plated steel plate K <b> 1 is removed from the die 61 and carried out from the hot press forming apparatus 1. At the same time, the plated steel plates K2, K3, and K4 are transported and a new plated steel plate K5 is charged, and this series of hot press forming is repeated. Thus, by adjusting the tact time in each process, the hot press molding apparatus 1 of the present embodiment is a so-called transfer press (a press method for forming a press molded part through a plurality of processes, It is possible to apply to a pressing method in which a steel plate is conveyed to the next step every time the press machine makes one stroke, and the productivity of the product can be improved. As described above, in the partial quenching step and the forming quenching step, the plated steel plate K can be rapidly cooled in a short time, so that the tact time can be shortened. Therefore, in recuperation process, (to a temperature lower than the A 1 transformation point) temperature of the high temperature portion Ka is plated steel sheet K can be reliably achieved a decrease.
 また、以上の実施の形態では、めっき鋼板Kの部分急冷後の復熱は、めっき鋼板Kを復熱ステージ12の支持ピン52上に載置した状態で、所定時間、例えば熱間プレス成形装置1のタクトタイムだけ、復熱ステージ12に留め置くことにより行う。しかしながら、例えば予め行う試験により、めっき鋼板Kの復熱に要する時間がタクトタイムに比べて長いことが確認された場合は、部分急冷ステージ11と復熱ステージ12との間、あるいは復熱ステージ12と成形急冷ステージ13との間に新たな復熱ステージ12を更に設けてもよい。またその反対に、めっき鋼板Kが搬送機構14により部分急冷ステージ11から復熱ステージ12へ搬送される時間のみで十分に復熱することが確認された場合は、復熱ステージ12を設けず、部分急冷ステージ11の隣に成形急冷ステージ13を配置してもよい。 Moreover, in the above embodiment, the recuperation after the partial quenching of the plated steel plate K is performed for a predetermined time, for example, a hot press forming apparatus, with the plated steel plate K placed on the support pins 52 of the recuperation stage 12. It is performed by keeping it on the recuperation stage 12 for only one tact time. However, for example, when a time required for recuperation of the plated steel plate K is confirmed to be longer than the tact time by a preliminary test, for example, between the partial quenching stage 11 and the recuperation stage 12 or the recuperation stage 12. A new recuperation stage 12 may be further provided between the molding and quenching stage 13. On the other hand, when it is confirmed that the plated steel plate K is sufficiently reheated only by the time when the plated steel plate K is transported from the partial quenching stage 11 to the recuperation stage 12 by the transport mechanism 14, the recuperation stage 12 is not provided. A molding quenching stage 13 may be arranged next to the partial quenching stage 11.
 なお、復熱ステージ12を更に設けた場合、熱間プレス成形装置1全体が大型化し、より大きな設置面積が必要となってしまう。この場合、例えば図1に破線で示すように復熱ステージ12にめっき鋼板Kの部分急冷部Kcを加熱するための非接触の加熱装置80を設け、復熱ステージ12においてめっき鋼板Kに対して加熱を行うようにしてもよい。このようにすれば、新たな復熱ステージ12を更に設置する必要がなくなり、熱間プレス成形装置1が大型化することを防止できる。この場合、復熱ステージ12においても、めっき鋼板Kのプレピアス孔Pと、復熱ステージ12の位置決めピン51により、めっき鋼板Kと加熱装置80との相対的な位置関係が保たれるので、加熱装置80により正確に部分急冷部Kcの復熱を行うことができる。また、加熱装置80を設けることで、めっき鋼板Kの保有熱量が十分でなく、復熱ステージ12を追加するだけではめっき鋼板Kの復熱が十分に行えない場合、具体的にはめっき鋼板Kの厚みが薄い場合などにも対応することが可能となる。なお、加熱装置80としては、短時間で加熱が可能な近赤外線ランプを用いることが好ましいが、非接触による加熱方式であれば、何でもよく、例えばレーザー加熱や誘導加熱なども用いることができる。そして、少なくとも、加熱装置80によるめっき鋼板Kの加熱量、または、下スタンプ38及びダイ61の少なくともいずれか一方における冷媒の供給量を変えることにより、各工程におけるタクトタイムを合わせることができる。 In addition, when the recuperation stage 12 is further provided, the entire hot press molding apparatus 1 is increased in size, and a larger installation area is required. In this case, for example, as shown by a broken line in FIG. 1, the recuperating stage 12 is provided with a non-contact heating device 80 for heating the partially quenched portion Kc of the plated steel plate K, and the recuperating stage 12 Heating may be performed. If it does in this way, it will become unnecessary to install the new recuperation stage 12 further, and it can prevent that hot press molding device 1 enlarges. In this case, also in the recuperation stage 12, the relative positional relationship between the plated steel plate K and the heating device 80 is maintained by the prepierce hole P of the plated steel plate K and the positioning pin 51 of the recuperated stage 12. The apparatus 80 can accurately recover the partial quenching portion Kc. In addition, when the heating device 80 is provided, the amount of heat held by the plated steel plate K is not sufficient, and when the reheat of the plated steel plate K cannot be sufficiently performed only by adding the recuperation stage 12, specifically, the plated steel plate K. It is possible to cope with the case where the thickness of the plate is small. The heating device 80 is preferably a near-infrared lamp that can be heated in a short time, but any heating method can be used as long as it is a non-contact heating method. For example, laser heating or induction heating can be used. The tact time in each step can be adjusted by changing at least the heating amount of the plated steel plate K by the heating device 80 or the supply amount of the refrigerant in at least one of the lower stamp 38 and the die 61.
 また、部分急冷部Kcの復熱に要する時間や熱容量、即ち復熱を行うために必要な復熱ステージ12の設置数(段数)であったり、加熱装置80の要否及び熱容量を決定したりする方法としては、予め行われる試験の他に、計算により求めることも可能である。 Also, the time and heat capacity required for recuperation of the partial quenching portion Kc, that is, the number of recuperation stages 12 required for recuperation (the number of stages), the necessity of the heating device 80 and the heat capacity are determined. As a method to do this, in addition to a test performed in advance, it is also possible to obtain by calculation.
 計算により求める方法について簡単に説明する。例えば、図9に示ように長さA、幅B、厚みtの平板状のめっき鋼板Kの中央部に幅δで矩形の領域を部分急冷部Kcを形成するとする。また、この場合において、めっき鋼板Kの初期の温度をTi、部分急冷工程における部分急冷部Kcの温度をTc1、部分急冷部Kcの復熱時の最高到達温度をTc2、とする。そうすると、部分急冷部Kcの温度を一旦Tc1まで急冷した後にTc2まで復熱させるのに必要な熱容量Qr[J]は、以下の(1)式より求めることができる。
Qr=(Tc2-Tc1)・ρ・Cm・δ・t・A・B ・・・(1)
 但し、ρはめっき鋼板Kの比重[kg/m]、Cmはめっき鋼板Kの比熱[J/kg・K]、TiはA1変態点以上の温度[K]、Tc1はMs点以下の温度[K]、Tc2はMs点より高い温度[K]である。A、B、t、δは、前述したように、それぞれ、めっき鋼板Kの長さ[m]、幅[m]、厚み[m]、部分急冷部Kcの幅[m]である。
A method for obtaining by calculation will be briefly described. For example, as shown in FIG. 9, it is assumed that a partially quenched portion Kc is formed in a rectangular region having a width δ at the center of a flat plate-like steel plate K having a length A, a width B, and a thickness t. In this case, the initial temperature of the plated steel plate K is Ti, the temperature of the partial quenching portion Kc in the partial quenching step is Tc1, and the highest temperature at the time of recuperation of the partial quenching portion Kc is Tc2. Then, the heat capacity Qr [J] required to reheat to Tc2 after the temperature of the partial quenching portion Kc is once quenched to Tc1 can be obtained from the following equation (1).
Qr = (Tc2−Tc1) · ρ · Cm · δ · t · A · B (1)
Where ρ is the specific gravity [kg / m 3 ] of the plated steel plate K, Cm is the specific heat [J / kg · K] of the plated steel plate K, Ti is the temperature above the A1 transformation point [K], and Tc1 is the temperature below the Ms point. [K] and Tc2 are temperatures [K] higher than the Ms point. As described above, A, B, t, and δ are the length [m], the width [m], the thickness [m], and the width [m] of the partially quenched portion Kc, respectively.
 一方、部分急冷部Kcが一旦Tc1まで冷却された後に、部分急冷部Kc以外の高温の部分からの熱伝達により部分急冷部Kcの復熱に用いられる熱量Qλ[J]は、以下の(2)式の通り表される。
Qλ=f(λ,Ti1,Tc1,δ,Sr)     ・・・(2)
 但し、λはめっき鋼板Kの熱伝導率[W/m・K]、Ti1は部分急冷部Kcの温度がTiからTc1になった時点での部分急冷部Kcの周囲の温度[K]、Srはめっき鋼板Kの温度が一旦Tc1まで冷却された後に、Tc2まで復熱するために必要な時間[sec]である。
On the other hand, after the partial quenching portion Kc is once cooled to Tc1, the heat quantity Qλ [J] used for recuperation of the partial quenching portion Kc by heat transfer from a high temperature portion other than the partial quenching portion Kc is (2 ) Is expressed as the formula
Qλ = f (λ, Ti1, Tc1, δ, Sr) (2)
Where λ is the thermal conductivity [W / m · K] of the plated steel plate K, Ti1 is the temperature around the partially quenched portion Kc [K] when the temperature of the partially quenched portion Kc is changed from Ti to Tc1, and Sr. Is the time [sec] required to reheat to Tc2 after the temperature of the plated steel plate K is once cooled to Tc1.
 このとき、Srは以下の(3)式の通り表される。
Sr=(St-Sh)+N・St          ・・・(3)
 但し、Stは熱間プレス成形装置1のタクトタイム[sec]、Shは部分急冷ステージ11及び成形急冷ステージ13における下死点保持時間[sec]、Nは復熱ステージ12のステージ数[-]である。
At this time, Sr is expressed as the following equation (3).
Sr = (St−Sh) + N · St (3)
However, St is the tact time [sec] of the hot press molding apparatus 1, Sh is the bottom dead center holding time [sec] in the partial quenching stage 11 and the molding quenching stage 13, and N is the number of stages of the recuperation stage 12 [-]. It is.
 ここで、部分急冷部Kcの温度をTc2以上に復熱させるためには、以下の(4)式の関係を満足するようなTi1、δ、Srを選択すればよい。
Qr≦Qλ                    ・・・(4)
Here, in order to reheat the temperature of the partial quenching portion Kc to Tc2 or more, Ti1, δ, and Sr that satisfy the relationship of the following expression (4) may be selected.
Qr ≦ Qλ (4)
 また、復熱ステージ12に加熱装置80を設け、めっき鋼板Kの復熱を部分急冷部Kc以外の部分からの熱伝達と併用して行う場合には、加熱装置80による部分冷却部Kcへの入熱量QLは以下の(5)式より求めることができる。また、部分急冷部Kcの温度をTc2以上に復熱させるためには、以下の(6)式を満足するようにQLを設定すればよい。
QL=f(qL,C,N,SL)          ・・・(5)
Qr≦Qλ+QL                 ・・・(6)
 但し、qLは加熱装置80の入熱密度[W/m]、Cは加熱装置80の加熱幅[m]、SLは加熱装置80による加熱時間[sec]である。
Further, when the recuperation stage 12 is provided with a heating device 80 and recuperation of the plated steel plate K is performed in combination with heat transfer from a portion other than the partial quenching portion Kc, the heating device 80 supplies the partial cooling portion Kc. The heat input amount QL can be obtained from the following equation (5). Further, in order to reheat the temperature of the partial quenching portion Kc to Tc2 or higher, QL may be set so as to satisfy the following expression (6).
QL = f (qL, C, N, SL) (5)
Qr ≦ Qλ + QL (6)
However, qL is the heat input density [W / m 2 ] of the heating device 80, C is the heating width [m] of the heating device 80, and SL is the heating time [sec] by the heating device 80.
 上記の計算方法は、部分急冷部Kcが矩形状の場合を参考にして説明したが、部分急冷部Kcが円状や同心円状といった他の任意の形状であっても同様の計算方法を適用することができる。その場合には、部分急冷部Kcの大きさや形状に応じてQr、Qλ、QLを求めればよい。 The above calculation method has been described with reference to the case where the partial quenching portion Kc is rectangular, but the same calculation method is applied even if the partial quenching portion Kc has another arbitrary shape such as a circle or a concentric circle. be able to. In that case, Qr, Qλ, and QL may be obtained according to the size and shape of the partial quenching portion Kc.
 実施例として、熱間プレス成形装置1を用いてめっき鋼板Kに対して熱間プレス成形を行い、復熱温度と硬度の確認試験を行った。確認試験の結果を表1に示す。ここでは、部分急冷部Kcの幅δ、めっき鋼板Kの板厚t、復熱ステージ12のステージ数N、及び復熱ステージ12での加熱装置80による加熱の有無を変化させて確認試験を行った。相対的に硬度の低いめっき鋼板Kとして、0.2質量%のCと、微量のMn、B、Siとを含有する鋼に、80g/mのAlを主体とするめっきを施したもの(実施例1~6)を用いた。また、相対的に硬度の高いめっき鋼板Kとして、0.3質量%のCと、微量のMn、B、Siとを含有する鋼に、80g/mのAlを主体とするめっきを施したもの(実施例7~11)を用いた。めっき鋼板Kの初期の温度Tiを950℃、部分冷却部Kcの急冷時の温度Tc1を400℃未満、部分急冷部Kcの温度がTiからTc1になった時点での部分急冷部Kcの周囲の温度Ti1を800℃とした。加熱装置80としては、近赤外線の加熱ランプを用いた。 As an example, hot press forming was performed on the plated steel sheet K using the hot press forming apparatus 1, and a retest temperature and hardness confirmation test was performed. The results of the confirmation test are shown in Table 1. Here, a confirmation test is performed by changing the width δ of the partial quenching portion Kc, the thickness t of the plated steel plate K, the number N of the recuperation stages 12, and the presence or absence of heating by the heating device 80 in the recuperation stage 12. It was. A steel plate containing 0.2% by mass of C and a small amount of Mn, B, and Si, plated with 80 g / m 2 of Al as a main component as a relatively low hardness plated steel plate K ( Examples 1 to 6) were used. Moreover, as a steel plate K having relatively high hardness, steel containing 0.3% by mass of C and a small amount of Mn, B, and Si was plated mainly with 80 g / m 2 of Al. (Examples 7 to 11) were used. The initial temperature Ti of the plated steel plate K is 950 ° C., the temperature Tc 1 at the time of quenching of the partial cooling part Kc is less than 400 ° C., and the temperature around the partial quenching part Kc when the temperature of the partial quenching part Kc is changed from Ti to Tc 1. The temperature Ti1 was set to 800 ° C. As the heating device 80, a near infrared heating lamp was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ここでは、下死点保持時間を2秒、タクトタイムを5秒とした。部分冷却部Kcの復熱が適切に行われた場合、即ち部分急冷部Kcの温度がマルテンサイト変態の開始温度Ms点より高い温度に戻った場合、復熱温度の欄に○を記入し、そうでない場合、復熱温度の欄に×を記入した。また、部分急冷部Kc以外、即ち高温部Kaの硬度が450Hvで、且つ部分急冷部Kcの硬度が高温部Kaの硬度より20Hv以上軟らかく(小さく)なる場合を良好とし、硬度の評価の欄に○を記入し、そうでない場合を不良とし、硬度の評価の欄に×を記入した。 As shown in Table 1, the bottom dead center retention time was 2 seconds and the tact time was 5 seconds. When the recuperation of the partial cooling section Kc is appropriately performed, that is, when the temperature of the partial quenching section Kc returns to a temperature higher than the martensitic transformation start temperature Ms, enter a circle in the recuperation temperature column, Otherwise, x was entered in the recuperation temperature column. In addition, the hardness of the high temperature portion Ka other than the partially quenched portion Kc is 450 Hv, and the hardness of the partially quenched portion Kc is softer (smaller) by 20 Hv or more than the hardness of the high temperature portion Ka. ○ was entered, otherwise it was judged as defective, and x was entered in the hardness evaluation column.
 また、比較用の従来技術として、部分急冷工程後に、復熱を行わずに成形急冷工程を行った場合についても、復熱温度と硬度の確認試験を行った。具体的には、従来技術Aは、復熱ステージ12の段数を零、即ち復熱ステージを有しない熱間プレス成形装置を用いた場合の確認試験の結果を示す。一方、従来技術Bは、熱間プレス成形装置1を用いて板厚tが薄いめっき鋼板Kを熱間プレス成形した場合の確認試験の結果を示す。従来技術A、Bでは、実施例1~6と同様に、めっき鋼板Kとして、0.2質量%のCと、微量のMn、B、Siとを含有する鋼に、80g/mのAlを主体とするめっきを施したものを用いた。 In addition, as a comparative prior art, a confirmation test of the recuperation temperature and hardness was also performed in the case where the molding quenching step was performed without performing the recuperation after the partial quenching step. Specifically, the related art A shows the result of the confirmation test when the number of stages of the recuperation stage 12 is zero, that is, when a hot press molding apparatus having no recuperation stage is used. On the other hand, the prior art B shows the result of the confirmation test in the case where the hot press forming apparatus 1 is used to hot press form a plated steel plate K having a thin plate thickness t. In the conventional techniques A and B, as in Examples 1 to 6, the steel sheet containing 0.2% by mass of C and trace amounts of Mn, B, and Si as the plated steel sheet K was added to 80 g / m 2 of Al. The one with plating mainly composed of was used.
 従来技術においては、めっき鋼板Kの復熱が十分に行われていないため、部分急冷部Kcの硬度が所望の値まで低下していない。従来技術Aにおいては、復熱ステージ12を設けていないため部分急冷部Kcの復熱が不十分となる。その結果、部分急冷部Kcの温度がMs点より高い温度に戻りきらない、即ち部分急冷部Kcの焼き戻しが行われないまま、成形急冷ステージ13において部分急冷部Kcを含むめっき鋼板K全体の急冷が行われる。このため、めっき鋼板Kの全体に亘って焼き入れが行われてしまう。このことが原因で、部分急冷部Kcの硬度と高温部Kaの硬度との差がHvで20未満となる。従来技術Bにおいては、めっき鋼板Kの板厚tが薄いため、めっき鋼板Kの保有熱量が十分でなく、復熱ステージ12にめっき鋼板Kを載置するだけではめっき鋼板Kの復熱が十分に行えない。このことが原因で、部分急冷部Kcの硬度と高温部Kaの硬度との差がHvで20未満となる。 In the prior art, since the reheat of the plated steel plate K is not sufficiently performed, the hardness of the partially quenched portion Kc is not lowered to a desired value. In the prior art A, since the recuperation stage 12 is not provided, the recuperation of the partial quenching portion Kc becomes insufficient. As a result, the temperature of the partial quenching portion Kc does not return to a temperature higher than the Ms point, that is, the tempering of the entire plated steel plate K including the partial quenching portion Kc in the forming quenching stage 13 without tempering the partial quenching portion Kc. Rapid cooling is performed. For this reason, quenching is performed over the entire plated steel plate K. For this reason, the difference between the hardness of the partially quenched portion Kc and the hardness of the high temperature portion Ka is less than 20 in Hv. In the prior art B, since the thickness t of the plated steel plate K is thin, the amount of heat held by the plated steel plate K is not sufficient, and the reheating of the plated steel plate K is sufficient only by placing the plated steel plate K on the recuperation stage 12. I can not do it. For this reason, the difference between the hardness of the partially quenched portion Kc and the hardness of the high temperature portion Ka is less than 20 in Hv.
 これに対して、実施例1~3においては、復熱ステージ12において部分急冷部Kcの焼き戻しが確実に行われ、これにより、いずれも良好な結果が得られた(部分急冷部Kcの硬度を高温部Kaの硬度よりもHvで20以上小さい値にすることができた)。他方、実施例4においては、従来技術Bと同様に板厚tを薄くしているが、復熱ステージ12に加熱装置80を設けることで、部分急冷部Kcの復熱が十分に行われるようになる。このため、部分急冷部Kcの硬度を所望の値(高温部Kaの硬度よりもHvで20以上小さい値)とすることができることが確認できた。 On the other hand, in Examples 1 to 3, the partial quenching portion Kc was reliably tempered in the recuperation stage 12, and as a result, good results were obtained (the hardness of the partial quenching portion Kc). Can be reduced to a value 20 or more smaller in Hv than the hardness of the high temperature portion Ka). On the other hand, in Example 4, the plate thickness t is reduced as in the case of the prior art B. However, by providing the heating device 80 in the recuperation stage 12, the recuperation of the partial quenching portion Kc is sufficiently performed. become. For this reason, it has confirmed that the hardness of the partial quenching part Kc could be made into a desired value (The value smaller by 20 or more in Hv than the hardness of the high temperature part Ka).
 また、実施例5は、従来技術Aと同様に復熱ステージ12を有していない熱間プレス成形装置によるものであるが、実施例5は従来技術Aと比較して部分急冷部Kcの幅δが小さいため、復熱に要する時間が短くてすむ。したがって、実施例5においては、搬送機構14によりめっき鋼板Kが部分急冷ステージ11から成形急冷ステージ13に搬送される間に部分急冷部Kcの復熱が行われ、部分急冷部Kcの硬度を所望の値とすることができた。また、実施例6においては、板厚tを厚くしても良好な結果が得られた(部分急冷部Kcの硬度を高温部Kaの硬度よりもHvで20以上小さい値にすることができた)。 Further, Example 5 is based on a hot press molding apparatus that does not have the recuperation stage 12 as in the case of the prior art A, but in Example 5, the width of the partially quenched portion Kc as compared with the prior art A is shown. Since δ is small, the time required for recuperation is short. Therefore, in Example 5, the partial quenching portion Kc is reheated while the plated steel plate K is transported from the partial quenching stage 11 to the forming quenching stage 13 by the transport mechanism 14, and the hardness of the partial quenching portion Kc is desired. The value could be Further, in Example 6, good results were obtained even when the plate thickness t was increased (the hardness of the partially quenched portion Kc was able to be 20 or more smaller in Hv than the hardness of the high temperature portion Ka). ).
 実施例7~11は、それぞれ実施例1~5に対応するものである。鋼におけるCの含有量を増やしてめっき鋼板Kの硬度を高く(大きく)しても、良好な結果が得られた(部分急冷部Kcの硬度を高温部Kaの硬度よりもHvで20以上小さい値にすることができた)。 Examples 7 to 11 correspond to Examples 1 to 5, respectively. Even if the content of C in the steel was increased to increase (increase) the hardness of the plated steel plate K, good results were obtained (the hardness of the partially quenched portion Kc is 20 or more smaller in Hv than the hardness of the high temperature portion Ka) Value).
 本発明は、鋼板を連続的に熱間プレス成形する際に有用である。 The present invention is useful when continuously hot pressing a steel sheet.

Claims (15)

  1.  A変態点以上の温度に加熱された鋼板の成形及び焼き入れを同時に行う鋼板の熱間プレス成形において、
     A変態点以上の温度に均一に加熱された平板状の鋼板を成形する前に、当該鋼板の所定の部位をマルテンサイト変態の開始温度以下に急冷する部分急冷工程と、
     前記鋼板の急冷された所定の部位をマルテンサイト変態の開始温度より高い温度に戻す復熱工程と、
     前記鋼板の復熱を行った後に、当該鋼板の成形とマルテンサイト変態の終了温度以下までの急冷とを同時に行う成形急冷工程と、を有することを特徴とする、鋼板の熱間プレス成形方法。
    In the hot press forming of a steel sheet forming is carried out and hardening of the steel sheet heated to A 1 transformation point or above the temperature at the same time,
    Before forming the uniformly heated flat plate-like steel sheet to a temperature above the A 1 transformation point, and portions quenching step of quenching the predetermined portion of the steel sheet below the starting temperature of martensitic transformation,
    A recuperation step of returning the rapidly cooled predetermined portion of the steel sheet to a temperature higher than the start temperature of the martensitic transformation;
    A hot press forming method for a steel sheet, comprising: a forming and quenching step in which after the reheating of the steel sheet, the forming of the steel sheet and the rapid cooling to a temperature below the end temperature of the martensite transformation are simultaneously performed.
  2.  前記部分急冷工程は、上部冷却体を、前記鋼板の前記所定の部位に対して上から接触させると共に、下部冷却体を、前記鋼板の前記所定の部位に対して下から接触させ、前記上部冷却体の前記鋼板との接触面と、前記下部冷却体の前記鋼板との接触面とのいずれかまたは両方に形成された凹凸によって前記鋼板と前記上部冷却体または前記下部冷却体との間に形成された隙間に冷媒を噴出することを特徴とする、請求項1に記載の鋼板の熱間プレス成形方法。 In the partial quenching step, the upper cooling body is brought into contact with the predetermined part of the steel plate from above, and the lower cooling body is brought into contact with the predetermined part of the steel plate from below, so that the upper cooling is performed. Formed between the steel plate and the upper cooling body or the lower cooling body by unevenness formed on one or both of the contact surface of the body with the steel plate and the contact surface of the lower cooling body with the steel plate The hot press forming method for a steel sheet according to claim 1, wherein a refrigerant is jetted into the formed gap.
  3.  前記部分急冷工程は、前記上部冷却体と前記下部冷却体とのうち、前記鋼板との接触面に凹凸が形成されている冷却体に形成された冷媒吸引口から前記噴出した冷媒を吸引し、排出することを特徴とする、請求項2に記載の鋼板の熱間プレス成形方法。 The partial quenching step sucks out the jetted refrigerant from a refrigerant suction port formed in a cooling body in which irregularities are formed on the contact surface with the steel plate among the upper cooling body and the lower cooling body, The hot press forming method for a steel sheet according to claim 2, wherein the steel sheet is discharged.
  4.  前記成形急冷工程は、ポンチとダイとを用いて、前記鋼板を上下からプレスすると共に、前記ポンチの成形面と前記ダイの成形面とのいずれかまたは両方に形成された凹凸によって前記鋼板と前記ポンチまたは前記ダイとの間に形成された隙間に冷媒を噴出することを特徴とする、請求項3に記載の鋼板の熱間プレス成形方法。 The forming and quenching step uses a punch and a die to press the steel plate from above and below, and the steel plate and the die are formed by unevenness formed on one or both of the forming surface of the punch and the forming surface of the die. The hot press forming method for a steel sheet according to claim 3, wherein the coolant is ejected into a gap formed between the punch or the die.
  5.  前記成形急冷工程は、前記ポンチと前記ダイとのうち、前記鋼板との接触面に凹凸が形成されている金型に形成された冷媒吸引口から前記噴出した冷媒を吸引し、排出することを特徴とする、請求項4に記載の鋼板の熱間プレス成形方法。 The forming and quenching step sucks and discharges the jetted refrigerant from a refrigerant suction port formed in a mold in which unevenness is formed on a contact surface with the steel plate of the punch and the die. The hot press forming method for a steel sheet according to claim 4, characterized in that it is characterized in that
  6.  前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にすることを特徴とする、請求項5に記載の鋼板の熱間プレス成形方法。 The method for hot press forming a steel sheet according to claim 5, wherein the time required in the partial quenching step, the recuperating step, and the forming quenching step is the same.
  7.  前記復熱工程は、前記鋼板を所定の処理位置に所定時間載置することにより、前記鋼板の急冷された所定の部位をマルテンサイト変態の開始温度より高い温度に戻すことを特徴とする、請求項6に記載の鋼板の熱間プレス成形方法。 In the recuperation step, the steel plate is placed in a predetermined processing position for a predetermined time to return a predetermined portion of the steel plate that has been rapidly cooled to a temperature higher than the start temperature of the martensitic transformation. Item 7. A method for hot press forming a steel sheet according to Item 6.
  8.  少なくとも、前記鋼板に対する前記冷媒の噴出量に基づいて、前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にすることを特徴とする、請求項7に記載の鋼板の熱間プレス成形方法。 The time required for the partial quenching step, the recuperation step, and the forming quenching step is set to be the same based on at least the amount of the refrigerant jetted onto the steel plate. Hot press molding method.
  9.  前記復熱工程は、前記所定の処理位置に所定時間載置された鋼板を、非接触の加熱装置により加熱することを特徴とする、請求項7に記載の鋼板の熱間プレス成形方法。 The method of hot press forming a steel plate according to claim 7, wherein the recuperating step heats the steel plate placed at the predetermined processing position for a predetermined time by a non-contact heating device.
  10.  少なくとも、前記非接触の加熱装置による加熱量に基づいて、前記部分急冷工程、前記復熱工程、及び前記成形急冷工程における所要時間を同一にすることを特徴とする、請求項9に記載の鋼板の熱間プレス成形方法。 The steel sheet according to claim 9, wherein the time required in the partial quenching step, the recuperation step, and the forming quenching step is made the same based on at least the amount of heating by the non-contact heating device. Hot press molding method.
  11.  前記鋼板の急冷される所定の部位は、その内側の急冷されない領域を巡る一続きの領域であることを特徴とする、請求項1に記載の鋼板の熱間プレス成形方法。 2. The method of hot press forming a steel sheet according to claim 1, wherein the predetermined portion of the steel plate that is rapidly cooled is a continuous region surrounding a region that is not rapidly cooled inside thereof.
  12.  A変態点以上の温度に均一に加熱された平板状の鋼板の所定の部位に対して、上部冷却体を上から接触させると共に下部冷却体を下から接触させて、当該鋼板の所定の部位をマルテンサイト変態の開始温度以下に急冷する部分急冷ステージと、
     前記所定の部位が急冷された前記鋼板を所定の処理位置に載置し、前記鋼板の急冷された所定の部位をマルテンサイト変態の開始温度より高い温度に復熱させる復熱ステージと、
     ダイとポンチとを備えた急冷金型により、前記所定の部位が復熱した後の前記鋼板の成形とマルテンサイト変態の終了温度以下までの急冷とを同時に行う成形急冷ステージと、
     前記鋼板を、前記部分急冷ステージから前記復熱ステージ、前記復熱ステージから前記成形急冷ステージに順次搬送する搬送機構と、を有することを特徴とする鋼板の熱間プレス成形装置。
    For a given site of the uniformly heated flat plate-like steel sheet to a temperature above the A 1 transformation point, contacting the lower cooling member from below with contacting the upper cooling body from above, a predetermined portion of the steel plate A partial quenching stage that rapidly cools the martensite transformation below the start temperature,
    A recuperation stage that places the steel sheet that has been rapidly cooled in the predetermined part at a predetermined processing position, and reheats the predetermined part that has been rapidly cooled in the steel sheet to a temperature higher than the start temperature of martensitic transformation,
    A forming and quenching stage that simultaneously performs forming of the steel sheet after the predetermined portion is reheated and quenching to a temperature not higher than the end temperature of the martensite transformation by a quenching mold including a die and a punch, and
    An apparatus for hot press forming a steel sheet, comprising: a transport mechanism that sequentially transports the steel sheet from the partial quenching stage to the recuperation stage and from the recuperation stage to the forming quenching stage.
  13.  前記鋼板に冷媒を供給する冷媒供給源と、
     前記供給された冷媒を吸引し、排出する吸引機構と、をさらに有し、
     前記上部冷却体の前記鋼板との接触面と、前記下部冷却体の前記鋼板との接触面とのいずれかまたは両方に、凹凸と、前記鋼板に対する冷媒の噴出口となる冷媒供給口と、噴出された冷媒の吸引および排出口となる冷媒吸引口と、が形成され、
     前記ポンチの成形面と前記ダイの成形面のいずれかまたは両方に、凹凸と、前記鋼板に対する冷媒の噴出口となる冷媒供給口と、噴出された冷媒の吸引および排出口となる冷媒吸引口と、が形成され、
     前記冷媒供給源は、前記凹凸により形成された隙間に前記冷媒を噴出することを特徴とする、請求項12に記載の鋼板の熱間プレス成形装置。
    A refrigerant supply source for supplying refrigerant to the steel plate;
    A suction mechanism that sucks and discharges the supplied refrigerant, and
    Either or both of the contact surface of the upper cooling body with the steel plate and the contact surface of the lower cooling body with the steel plate, unevenness, a refrigerant supply port serving as a refrigerant outlet for the steel plate, A refrigerant suction port serving as a suction and discharge port for the refrigerant formed,
    On either or both of the molding surface of the punch and the molding surface of the die, a concavity and convexity, a refrigerant supply port serving as a refrigerant ejection port for the steel plate, and a refrigerant suction port serving as a suction and discharge port for the ejected refrigerant Formed,
    The hot press forming apparatus for a steel sheet according to claim 12, wherein the refrigerant supply source ejects the refrigerant into a gap formed by the unevenness.
  14.  前記復熱ステージには、前記部分急冷ステージで急冷された所定の部位を加熱する非接触の加熱装置が設けられていることを特徴とする、請求項13に記載の鋼板の熱間プレス成形装置。 14. The hot-press forming apparatus for steel sheet according to claim 13, wherein the recuperation stage is provided with a non-contact heating device for heating a predetermined portion that has been quenched by the partial quenching stage. .
  15.  請求項1に記載の鋼板の熱間プレス成形方法で成形された鋼成形部材であって、
     前記成形された後の前記所定の部位の硬度は、その他の部位の硬度よりも、Hvで20以上小さいことを特徴とする、鋼成形部材。
    A steel forming member formed by the hot press forming method of a steel sheet according to claim 1,
    The steel molded member according to claim 1, wherein the hardness of the predetermined part after the molding is 20 or less in Hv than the hardness of other parts.
PCT/JP2010/060127 2009-06-22 2010-06-15 Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member WO2010150683A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010546169A JP4795486B2 (en) 2009-06-22 2010-06-15 Steel plate hot press forming method, steel plate hot press forming apparatus, and steel forming member
CN201080027975.3A CN102458708B (en) 2009-06-22 2010-06-15 Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009147340 2009-06-22
JP2009-147340 2009-06-22

Publications (1)

Publication Number Publication Date
WO2010150683A1 true WO2010150683A1 (en) 2010-12-29

Family

ID=43386453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060127 WO2010150683A1 (en) 2009-06-22 2010-06-15 Hot press-forming method for steel sheets, hot press-forming device for steel sheets, and steel formed member

Country Status (3)

Country Link
JP (1) JP4795486B2 (en)
CN (1) CN102458708B (en)
WO (1) WO2010150683A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006108A1 (en) * 2011-07-06 2013-01-10 Gestamp Hardtech Ab A method of hot-shaping and hardening a sheet steel blank
JP2013027903A (en) * 2011-07-28 2013-02-07 Daihatsu Motor Co Ltd Hot press molding method
US20160228934A1 (en) * 2015-02-05 2016-08-11 Benteler Automobiltechnik Gmbh Two-blow heating and forming tool and method for producing hot-formed and press-hardened motor vehicle components
EP3067128B1 (en) 2015-03-09 2017-09-13 Autotech Engineering, A.I.E. Press system for die quenching and method
JP2018089649A (en) * 2016-12-02 2018-06-14 株式会社ワイテック Press working apparatus
KR20180119579A (en) * 2016-01-25 2018-11-02 슈바츠 게엠베하 Method and apparatus for heat treatment of metal parts
JP2019506531A (en) * 2016-01-25 2019-03-07 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP2019506532A (en) * 2016-01-25 2019-03-07 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP2019508593A (en) * 2016-02-09 2019-03-28 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP2019508583A (en) * 2016-01-25 2019-03-28 シュヴァルツ ゲーエムベーハー Method and apparatus for heat treating metal parts
JP2019509401A (en) * 2016-02-23 2019-04-04 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
EP2907881B1 (en) 2014-02-07 2019-04-24 Benteler Automobiltechnik GmbH Hot forming line and method for the preparation of hot formed sheet metal products
US10618094B2 (en) 2015-03-09 2020-04-14 Autotech Engineering S.L. Press systems and methods
EP2993241B1 (en) 2014-08-26 2020-10-07 Benteler Automobiltechnik GmbH Method and press for manufacturing cured sheet metal components, in sections at least
WO2022128880A1 (en) * 2020-12-15 2022-06-23 Schwartz Gmbh Heat treatment of a component

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006656B2 (en) * 2012-05-28 2016-10-12 東プレ株式会社 Method for forming hot pressed product and method for producing hot pressed product
KR101580640B1 (en) * 2014-07-30 2015-12-28 주식회사 신영 System and method of manufacturing vehicle body part with different properties
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CZ308209B6 (en) * 2019-08-07 2020-02-26 Západočeská Univerzita V Plzni Method of producing sheet steel semi-finished products by the press-hardening method with locally modified structure in places for weldsThe method of producing sheet steel blanks (P) by the press-hardening method with locally modified structure at the locations for welds is that the steel semi-product (P) is heated to a temperature at which the ferritic-peritic structure is fully transformed into austenite, then the semi-product (P) is cooled locally in the spots to be welded to a temperature close to Mf steel, followed by reheating by heat conduction from the environment and, consequently, annealing of the haze structure. Thereafter, the semi-product is transformed into a spatial extract in the tool, which is also turbid in the tool, and the sheet semi-product (P) is removed from the tool when the desired temperature is reached.
CN114346037B (en) * 2021-12-23 2024-06-04 江门市新会区浩潮五金制品有限公司 Complete die set of arc handle and forming process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252621A (en) * 1986-11-07 1988-10-19 Daikin Mfg Co Ltd Method, die and center jig for forming diaphragm spring
JPH06108143A (en) * 1992-09-29 1994-04-19 Aisin Seiki Co Ltd Solid press-forming quenching method
JP2006198666A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Method and apparatus for hot press forming metallic sheet
JP2007075835A (en) * 2005-09-12 2007-03-29 Nippon Steel Corp Die, apparatus, and method for hot press forming

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117879A (en) * 1994-08-29 1996-05-14 Toyota Motor Corp Pressing method
CN100460530C (en) * 2003-10-08 2009-02-11 Ntn株式会社 Heat treatment system
JP2005113213A (en) * 2003-10-08 2005-04-28 Ntn Corp Heat treatment system
JP2005133212A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2005171276A (en) * 2003-12-08 2005-06-30 Nissan Motor Co Ltd Apparatus for cooling molded article and method therefor
JP2006130513A (en) * 2004-11-02 2006-05-25 Nissan Motor Co Ltd Hot press working method and hot press working apparatus
WO2007060905A1 (en) * 2005-11-24 2007-05-31 Kikuchi Co., Ltd. Quenching equipment and quenching system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252621A (en) * 1986-11-07 1988-10-19 Daikin Mfg Co Ltd Method, die and center jig for forming diaphragm spring
JPH06108143A (en) * 1992-09-29 1994-04-19 Aisin Seiki Co Ltd Solid press-forming quenching method
JP2006198666A (en) * 2005-01-21 2006-08-03 Nippon Steel Corp Method and apparatus for hot press forming metallic sheet
JP2007075835A (en) * 2005-09-12 2007-03-29 Nippon Steel Corp Die, apparatus, and method for hot press forming

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006108A1 (en) * 2011-07-06 2013-01-10 Gestamp Hardtech Ab A method of hot-shaping and hardening a sheet steel blank
JP2013027903A (en) * 2011-07-28 2013-02-07 Daihatsu Motor Co Ltd Hot press molding method
EP2907881B1 (en) 2014-02-07 2019-04-24 Benteler Automobiltechnik GmbH Hot forming line and method for the preparation of hot formed sheet metal products
EP2907881B2 (en) 2014-02-07 2021-11-10 Benteler Automobiltechnik GmbH Thermoforming line and method for the preparation of thermoformed sheet metal products
EP2993241B1 (en) 2014-08-26 2020-10-07 Benteler Automobiltechnik GmbH Method and press for manufacturing cured sheet metal components, in sections at least
US20160228934A1 (en) * 2015-02-05 2016-08-11 Benteler Automobiltechnik Gmbh Two-blow heating and forming tool and method for producing hot-formed and press-hardened motor vehicle components
EP3067128B1 (en) 2015-03-09 2017-09-13 Autotech Engineering, A.I.E. Press system for die quenching and method
EP3266531B1 (en) 2015-03-09 2019-02-27 Autotech Engineering, A.I.E. Press systems and methods
US10618094B2 (en) 2015-03-09 2020-04-14 Autotech Engineering S.L. Press systems and methods
JP2019506531A (en) * 2016-01-25 2019-03-07 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP2021179012A (en) * 2016-01-25 2021-11-18 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment device
JP2019508583A (en) * 2016-01-25 2019-03-28 シュヴァルツ ゲーエムベーハー Method and apparatus for heat treating metal parts
KR102576917B1 (en) * 2016-01-25 2023-09-08 슈바츠 게엠베하 Method and device for heat treatment of metal parts
JP2019508582A (en) * 2016-01-25 2019-03-28 シュヴァルツ ゲーエムベーハー Method and apparatus for heat treating metal
JP2019506532A (en) * 2016-01-25 2019-03-07 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
KR20180119579A (en) * 2016-01-25 2018-11-02 슈바츠 게엠베하 Method and apparatus for heat treatment of metal parts
US11078553B2 (en) 2016-01-25 2021-08-03 Schwartz Gmbh Method and device for the heat treatment of a metal component
JP7261267B2 (en) 2016-01-25 2023-04-19 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP7168450B2 (en) 2016-01-25 2022-11-09 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP7041626B2 (en) 2016-01-25 2022-03-24 シュヴァルツ ゲーエムベーハー Methods and equipment for heat treatment of metal parts
US11359254B2 (en) 2016-01-25 2022-06-14 Schwartz Gmbh Heat treatment method and heat treatment device
US11447838B2 (en) 2016-01-25 2022-09-20 Schwartz Gmbh Method and device for heat treating a metal component
JP7112329B2 (en) 2016-01-25 2022-08-03 シュヴァルツ ゲーエムベーハー Method and apparatus for heat treating metal
JP2019508593A (en) * 2016-02-09 2019-03-28 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP2022166196A (en) * 2016-02-23 2022-11-01 シュヴァルツ ゲーエムベーハー Heat treatment method
JP2019509401A (en) * 2016-02-23 2019-04-04 シュヴァルツ ゲーエムベーハー Heat treatment method and heat treatment apparatus
JP7437466B2 (en) 2016-02-23 2024-02-22 シュヴァルツ ゲーエムベーハー Heat treatment method
JP2018089649A (en) * 2016-12-02 2018-06-14 株式会社ワイテック Press working apparatus
WO2022128880A1 (en) * 2020-12-15 2022-06-23 Schwartz Gmbh Heat treatment of a component

Also Published As

Publication number Publication date
CN102458708B (en) 2014-07-23
JPWO2010150683A1 (en) 2012-12-10
JP4795486B2 (en) 2011-10-19
CN102458708A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4795486B2 (en) Steel plate hot press forming method, steel plate hot press forming apparatus, and steel forming member
US20160059295A1 (en) Method and press for producing sheet metal parts that are hardened at least in regions
US9433989B2 (en) Hot press molding method and hot press molding die
WO2013047526A1 (en) Method for manufacturing press-molded article and press molding equipment
JP7160917B2 (en) Pressing method for coated steel and use of steel
JP3882474B2 (en) Hot press forming method for metal plate
JP2006212690A (en) Method and apparatus for hot press forming of metal sheet
JP4968208B2 (en) Hot press forming method for metal plate
WO2012011224A1 (en) Method for forming steel plate by hot press
CN112118922B (en) Conductive preheating of sheet material for thermoforming
JP5493893B2 (en) Hot press forming method for thick steel plate
WO2018066045A1 (en) Hot pressing method and hot pressing system
KR101035796B1 (en) Press mold device and manufacturing method of press hardening member
US9840748B2 (en) Process and furnace for treating workpieces
JP2012091227A (en) Press forming equipment
JP2005170766A (en) Method and apparatus of bending glass plate
CN115397578A (en) Hot press line and method for manufacturing hot press molded article
US11850648B2 (en) Press systems and methods
JP2023123186A (en) Method for manufacturing press molding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027975.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010546169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9475/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10792001

Country of ref document: EP

Kind code of ref document: A1