EP2992187A2 - Procédé de fonctionnement d'une installation gaz et vapeur - Google Patents

Procédé de fonctionnement d'une installation gaz et vapeur

Info

Publication number
EP2992187A2
EP2992187A2 EP14734828.8A EP14734828A EP2992187A2 EP 2992187 A2 EP2992187 A2 EP 2992187A2 EP 14734828 A EP14734828 A EP 14734828A EP 2992187 A2 EP2992187 A2 EP 2992187A2
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
power
sub
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14734828.8A
Other languages
German (de)
English (en)
Inventor
Edwin Gobrecht
Matthias Heue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14734828.8A priority Critical patent/EP2992187A2/fr
Publication of EP2992187A2 publication Critical patent/EP2992187A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST Partial power is less than the ST operating power.
  • CCPPs are used to generate electrical energy for the municipal energy supply.
  • a combined cycle power plant supplies a supply network with electrical energy, whereby the energy requirement depends on the passage of time. This means that the energy demand over the day ⁇ running is not constant.
  • the electrical supply network is supplied with electrical power by several power plants.
  • conventional power plants and power plants come ⁇ example. Used that convert renewable energy into electrical energy.
  • the feed-in of renewable energies is subject to fluctuations, which leads to increasing demands on conventional power plants. This means that conventional power plants have to be operated in sogenann ⁇ th partial loads or loads park longer and deeper. In gas and steam turbine power plants, such low partial loads are associated with reduced gas turbine outlet temperatures, depending on the configuration of the gas turbine.
  • Another way to prevent thermal stress is to shut down the steam turbine before lowering the gas turbine power.
  • the components of the steam turbine will then cool at very low thermal stresses. Once the components have cooled down far enough, the steam turbine could be restarted at a reduced gas turbine capacity and thus at a low steam inlet temperature. This would lead to a very low lifetime consumption.
  • the invention has set itself the task of specifying another way to reduce thermal stresses.
  • the object is achieved by a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST sub-power is less than the ST operating power, and then the power of the gas turbine is reduced to a GT parking power, the GT parking power is less than the GT operating power.
  • ST parking performance ranges from 20% to 60% of ST operating performance.
  • the invention proposes to indicate a driving style, wherein the steam turbine is involved in the parking load.
  • the steam turbine is involved in the parking load.
  • the ST partial power is set at 5% to 40%, 5% to 30%, 5% to 20%, but 5% to 10% of the ST operating performance.
  • the GT parking performance is 20% to 60% of the gas turbine Melleis ⁇ tion.
  • the steam turbine could be kept in this deep part load until the end of the parking load. According to the invention is thus proposed, the performance of
  • the ST part power is smaller than the ST operation line.
  • the reduction to the ST partial power occurs by closing a Steam inlet valve.
  • the steam inlet valve is controlled in such a way that hardly any live steam flows through the steam turbine.
  • a diverter station is also manufactured ⁇ det, that a fluidic connection between the steam inlet and the capacitor is formed.
  • steam is not passed to the steam generator to the steam turbine, but directly to the capacitor, which adversely affects the efficiency.
  • the steam turbine cools down.
  • An ⁇ closing the power of the gas turbine is reduced to a GT parking performance. This has an effect on the steam inlet temperature. This means that the steam inlet temperature is lower.
  • the steam inlet valve is opened again and interrupted the fluidic connection between the steam inlet and the condenser.
  • the steam turbine comprises a high-pressure, medium-pressure and low-pressure turbine part, wherein
  • FIG. 1 is a schematic representation of a combined cycle power plant.
  • 1 shows a schematic representation of a gas and steam turbine power plant (combined cycle power plant).
  • a combined cycle power plant 1 comprises a gas turbine 2 drivable with fossil fuels.
  • This gas turbine 2 comprises a compressor part 3 in which air is heated and compressed, a combustion chamber 4 in which the air from the compressor part 3 is mixed with fuel and ignited and a turbine part 5 in which the hot exhaust gases in various stages, which consist of not-shown vanes and blades, set a rotor into rotation.
  • This rotation is transmitted via a shaft 6 to a generator 7.
  • the generator 7 then supplies a supply network with electrical energy (not shown).
  • the hot exhaust gases of the gas turbine 2 are fed into a steam generator 8.
  • this steam generator 8 by means of a line 9 generates live steam and finally passed through a steam turbine steam line 10 in a high-pressure turbine section 11.
  • an HP valve 12 is arranged in the steam turbine main steam line 10.
  • the effluent from the HP sub-turbine 11 steam is fed to a reheater 13. This is done via the cold reheater line 14.
  • a medium-pressure turbine section 16 with steam From the medium-pressure turbine part 16, the steam flows via an overflow line 17 into two low-pressure turbine sections 18.
  • the low and expanded steam flows into a condenser 19 and condenses there to form water Pump 20 is again guided via the main steam line 9 in the main steam generator 8.
  • the steam turbine main steam line 10 is connected via a bypass station 21 directly to the condenser 19 fluidically.
  • an overflow valve 22 is arranged in the overflow 21.
  • An electric generator 23 is connected via a common shaft 24 to transmit torque to the high-pressure turbine section 11, the medium-pressure turbine section 16 and the low-pressure turbine section 18.
  • the HP sub-turbine 11, the MD sub-turbine 16 and the ND sub-turbines 18 form the
  • the combined cycle power plant comprises a bypass system.
  • This bypass system comprises a high-pressure bypass station 22 and a high-pressure diverter valve 21 arranged in the high-pressure diverter station 22, wherein a high-pressure bypass station 22 forms a fluidic connection between the steam main steam line 10 and the cold reheater line 14.
  • the bypass system comprising a medium pressure diverter station 22a and a valve disposed in the intermediate-pressure bypass station 22a medium-pressure bypass valve 21a, which is made with the with ⁇ teldruck bypass station 22a a fluidic connection between the hot reheater line 15 and the capacitor 19th
  • steam can pass from the steam turbine main steam line 10 to the condenser 19 via the diverter system comprising the high-pressure diverter station 22 and medium-pressure diverter station 22a.
  • the combined cycle power plant comprises a medium-pressure valve 12a arranged in the hot reheater line 15.
  • the gas and steam plant will now be operated according to the invention as follows.
  • the gas turbine 2 is initially in a Gasturbi- operating company.
  • the steam turbine 25 is operated at an ST operating line.
  • the power of the steam turbine 25 is reduced to an ST partial power, where ⁇ the ST partial power is smaller than the ST operating power.
  • the ST partial output is then 5% to 40%, 5% to 30%, 5% to 20% or 5% to 10% of the ST operating performance.
  • the steam turbine 25 includes a high pressure turbine 11, an intermediate-pressure turbine 16 and a low pressure Operatur ⁇ bine 18, wherein the high-pressure turbine 11, the high pressure turbine section 11 and the intermediate-pressure turbine 16 connected ⁇ tel horr horr horrank turbine section 16 in that the medium-pressure turbine section 16 and the low-pressure turbine section 18 or the low-pressure turbine section 18 are not subjected to steam.
  • Partial turbines remain closed and can of course cool down.
  • the pressure of the steam in the non-steamed turbine sections is then lowered as far as possible.
  • drainage systems, evacuation pipes, starting pipes or process steam pipes are opened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

L'invention concerne un procédé de fonctionnement d'une installation gaz et vapeur, la puissance de la turbine à vapeur (25) étant abaissée à un très faible niveau peu avant le démarrage planifié d'un mode ralenti, la turbine à gaz (2) étant finalement mise en marche en mode ralenti et la puissance de la turbine à vapeur (25) étant finalement relevée à un niveau de mode ralenti. La puissance de fonctionnement de la turbine à gaz peut être la puissance nominale de la turbine à gaz. La puissance de fonctionnement de la turbine à vapeur peut être la puissance nominale de la turbine à vapeur.
EP14734828.8A 2013-07-25 2014-07-03 Procédé de fonctionnement d'une installation gaz et vapeur Withdrawn EP2992187A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14734828.8A EP2992187A2 (fr) 2013-07-25 2014-07-03 Procédé de fonctionnement d'une installation gaz et vapeur

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13177932.4A EP2829691A1 (fr) 2013-07-25 2013-07-25 Procédé destiné au fonctionnement d'une centrale à gaz à cycle combiné
PCT/EP2014/064182 WO2015010870A2 (fr) 2013-07-25 2014-07-03 Procédé de fonctionnement d'une installation gaz et vapeur
EP14734828.8A EP2992187A2 (fr) 2013-07-25 2014-07-03 Procédé de fonctionnement d'une installation gaz et vapeur

Publications (1)

Publication Number Publication Date
EP2992187A2 true EP2992187A2 (fr) 2016-03-09

Family

ID=48914057

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13177932.4A Withdrawn EP2829691A1 (fr) 2013-07-25 2013-07-25 Procédé destiné au fonctionnement d'une centrale à gaz à cycle combiné
EP14734828.8A Withdrawn EP2992187A2 (fr) 2013-07-25 2014-07-03 Procédé de fonctionnement d'une installation gaz et vapeur

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13177932.4A Withdrawn EP2829691A1 (fr) 2013-07-25 2013-07-25 Procédé destiné au fonctionnement d'une centrale à gaz à cycle combiné

Country Status (6)

Country Link
US (1) US20160146060A1 (fr)
EP (2) EP2829691A1 (fr)
JP (1) JP2016528430A (fr)
KR (1) KR20160023811A (fr)
RU (1) RU2016106172A (fr)
WO (1) WO2015010870A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (fr) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Procédé destiné au soutien d'une fréquence du réseau
JP6618051B2 (ja) * 2016-02-25 2019-12-11 三菱日立パワーシステムズ株式会社 コンバインドサイクルプラント、その最低出力低減方法、及びその制御装置
EP3258074A1 (fr) * 2016-06-14 2017-12-20 Siemens Aktiengesellschaft Centrale thermique à vapeur pour produire de l'énergie électrique
JP6565860B2 (ja) 2016-10-17 2019-08-28 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532916A (en) * 1978-08-25 1980-03-07 Hitachi Ltd Method of making temperature of steam turbine metal of combined plant constant and its device
JPS59180014A (ja) * 1983-03-30 1984-10-12 Hitachi Ltd コンバインドサイクル発電プラントの負荷制御方法
JPS6077704U (ja) * 1983-11-02 1985-05-30 株式会社東芝 コンバインドサイクルの主蒸気温度制御装置
CA1245282A (fr) * 1984-10-25 1988-11-22 Alan Martens Regulation de la demande a la turbine a vapeur d'une centrale electrique a cycles combines
JPS62197604A (ja) * 1986-02-25 1987-09-01 Hitachi Ltd コンバインドプラントの起動方法
JPS6334404A (ja) * 1986-07-30 1988-02-15 株式会社日立製作所 コンバインドサイクルプラントにおける脱気システム
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
JPH0441908A (ja) * 1990-06-01 1992-02-12 Hitachi Ltd 蒸気タービンの運転制御システム
JP3073429B2 (ja) * 1995-06-20 2000-08-07 三菱重工業株式会社 多軸コンバインドプラントの蒸気系切離制御方法
JPH09303114A (ja) * 1996-05-14 1997-11-25 Mitsubishi Heavy Ind Ltd 蒸気冷却型ガスタービンを用いたコンバインドサイクル用蒸気サイクル
DE10227709B4 (de) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Dampfturbinenanlage sowie Verfahren zu deren Betrieb
JP2006002576A (ja) * 2004-06-15 2006-01-05 Tlv Co Ltd 蒸気タービンを利用したプロセス蒸気の制御装置
EP1710400A1 (fr) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Procédé pour démarrer une installation à turbines à gaz et à vapeur
US8028511B2 (en) * 2007-05-30 2011-10-04 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle power generation plant
US20100242430A1 (en) * 2009-03-31 2010-09-30 General Electric Company Combined cycle power plant including a heat recovery steam generator
US20100310356A1 (en) * 2009-06-04 2010-12-09 General Electric Company Clutched steam turbine low pressure sections and methods therefore
US8776523B2 (en) * 2010-12-01 2014-07-15 General Electric Company Steam-driven power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20160146060A1 (en) 2016-05-26
RU2016106172A (ru) 2017-08-30
WO2015010870A3 (fr) 2015-03-26
EP2829691A1 (fr) 2015-01-28
KR20160023811A (ko) 2016-03-03
JP2016528430A (ja) 2016-09-15
WO2015010870A2 (fr) 2015-01-29

Similar Documents

Publication Publication Date Title
DE102004020753A1 (de) Vorrichtung zur Ausnutzung der Abwärme von Verdichtern
EP2101051A1 (fr) Stockage d'énergie électrique dans un accumulateur thermique et rétro-électrification à l'aide d'un cycle thermodynamique
EP1934434A2 (fr) Procede pour chauffer une turbine a vapeur
EP1866521B1 (fr) Procédé pour démarrer une installation à turbines à gaz et à vapeur
DE102010042792A1 (de) System zur Erzeugung mechanischer und/oder elektrischer Energie
EP2288791B1 (fr) Utilisation d'un dispositif de turbine à gaz et à vapeur au moyen d'un convertisseur de fréquence
EP2705225B1 (fr) Installation de turbine à vapeur et procédé pour faire fonctionner une installation de turbine a vapeur
WO2015010870A2 (fr) Procédé de fonctionnement d'une installation gaz et vapeur
EP2592241A1 (fr) Procédé de fonctionnement d'une installation de turbine à gaz et à vapeur pour la stabilisation de fréquence
WO2014191268A2 (fr) Procédé pour faire fonctionner une centrale à cycle combiné
EP2694789B1 (fr) Installation et procédé de production d'eau chaude et/ou de vapeur et de stockage d'eau sous forme liquide et/ou gazeuse, destinée à être utilisée dans une centrale à turbines à gaz
DE2437782B2 (de) Verfahren zum Anfahren einer Gasturbinen-Anlage zur Stromerzeugung aus Brenngas von einem Kohle-Druckvergaser
EP1992794A1 (fr) Installation de cycle combiné et procédé destiné au démarrage d'une installation de cycle combiné
EP1896697B1 (fr) Procédé pour le démarrage d'une installation à turbine à gaz et à vapeur
DE102010009130A1 (de) Dampfkraftwerk umfassend eine Tuning-Turbine
EP2839119A2 (fr) Refroidissement forcé d'un système de turbine à vapeur
EP2138677B1 (fr) Installation de turbines à gaz et à vapeur
EP1510660B1 (fr) Régulation d'une installation pour la production couplée de chaleur et d'électricité
WO2016062532A1 (fr) Procede de réduction du processus de démarrage d'une turbine à vapeur
EP3365534A1 (fr) Procédé de préchauffage d'eau d'alimentation d'une chaudière à vapeur d'une centrale électrique et centrale à vapeur pour la mise en uvre du procédé
EP2710234A2 (fr) Générateur de vapeur auxiliaire utilisé comme mesure de régulation de fréquence et mesure de régulation primaire et/ou secondaire dans une centrale thermique à vapeur
DE102010004386B4 (de) Verfahren zum Betreiben eines Dampfturbosatzes eines Kraftwerkes
DE102007046659A1 (de) Einrichtung zur Erzeugung von Heizwasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/24 20060101AFI20170725BHEP

Ipc: F22B 1/18 20060101ALI20170725BHEP

Ipc: F01K 23/10 20060101ALI20170725BHEP

Ipc: F01K 13/02 20060101ALI20170725BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180201