EP2992187A2 - Method for operating a combined cycle power plant - Google Patents

Method for operating a combined cycle power plant

Info

Publication number
EP2992187A2
EP2992187A2 EP14734828.8A EP14734828A EP2992187A2 EP 2992187 A2 EP2992187 A2 EP 2992187A2 EP 14734828 A EP14734828 A EP 14734828A EP 2992187 A2 EP2992187 A2 EP 2992187A2
Authority
EP
European Patent Office
Prior art keywords
turbine
steam
power
sub
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14734828.8A
Other languages
German (de)
French (fr)
Inventor
Edwin Gobrecht
Matthias Heue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP14734828.8A priority Critical patent/EP2992187A2/en
Publication of EP2992187A2 publication Critical patent/EP2992187A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST Partial power is less than the ST operating power.
  • CCPPs are used to generate electrical energy for the municipal energy supply.
  • a combined cycle power plant supplies a supply network with electrical energy, whereby the energy requirement depends on the passage of time. This means that the energy demand over the day ⁇ running is not constant.
  • the electrical supply network is supplied with electrical power by several power plants.
  • conventional power plants and power plants come ⁇ example. Used that convert renewable energy into electrical energy.
  • the feed-in of renewable energies is subject to fluctuations, which leads to increasing demands on conventional power plants. This means that conventional power plants have to be operated in sogenann ⁇ th partial loads or loads park longer and deeper. In gas and steam turbine power plants, such low partial loads are associated with reduced gas turbine outlet temperatures, depending on the configuration of the gas turbine.
  • Another way to prevent thermal stress is to shut down the steam turbine before lowering the gas turbine power.
  • the components of the steam turbine will then cool at very low thermal stresses. Once the components have cooled down far enough, the steam turbine could be restarted at a reduced gas turbine capacity and thus at a low steam inlet temperature. This would lead to a very low lifetime consumption.
  • the invention has set itself the task of specifying another way to reduce thermal stresses.
  • the object is achieved by a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST sub-power is less than the ST operating power, and then the power of the gas turbine is reduced to a GT parking power, the GT parking power is less than the GT operating power.
  • ST parking performance ranges from 20% to 60% of ST operating performance.
  • the invention proposes to indicate a driving style, wherein the steam turbine is involved in the parking load.
  • the steam turbine is involved in the parking load.
  • the ST partial power is set at 5% to 40%, 5% to 30%, 5% to 20%, but 5% to 10% of the ST operating performance.
  • the GT parking performance is 20% to 60% of the gas turbine Melleis ⁇ tion.
  • the steam turbine could be kept in this deep part load until the end of the parking load. According to the invention is thus proposed, the performance of
  • the ST part power is smaller than the ST operation line.
  • the reduction to the ST partial power occurs by closing a Steam inlet valve.
  • the steam inlet valve is controlled in such a way that hardly any live steam flows through the steam turbine.
  • a diverter station is also manufactured ⁇ det, that a fluidic connection between the steam inlet and the capacitor is formed.
  • steam is not passed to the steam generator to the steam turbine, but directly to the capacitor, which adversely affects the efficiency.
  • the steam turbine cools down.
  • An ⁇ closing the power of the gas turbine is reduced to a GT parking performance. This has an effect on the steam inlet temperature. This means that the steam inlet temperature is lower.
  • the steam inlet valve is opened again and interrupted the fluidic connection between the steam inlet and the condenser.
  • the steam turbine comprises a high-pressure, medium-pressure and low-pressure turbine part, wherein
  • FIG. 1 is a schematic representation of a combined cycle power plant.
  • 1 shows a schematic representation of a gas and steam turbine power plant (combined cycle power plant).
  • a combined cycle power plant 1 comprises a gas turbine 2 drivable with fossil fuels.
  • This gas turbine 2 comprises a compressor part 3 in which air is heated and compressed, a combustion chamber 4 in which the air from the compressor part 3 is mixed with fuel and ignited and a turbine part 5 in which the hot exhaust gases in various stages, which consist of not-shown vanes and blades, set a rotor into rotation.
  • This rotation is transmitted via a shaft 6 to a generator 7.
  • the generator 7 then supplies a supply network with electrical energy (not shown).
  • the hot exhaust gases of the gas turbine 2 are fed into a steam generator 8.
  • this steam generator 8 by means of a line 9 generates live steam and finally passed through a steam turbine steam line 10 in a high-pressure turbine section 11.
  • an HP valve 12 is arranged in the steam turbine main steam line 10.
  • the effluent from the HP sub-turbine 11 steam is fed to a reheater 13. This is done via the cold reheater line 14.
  • a medium-pressure turbine section 16 with steam From the medium-pressure turbine part 16, the steam flows via an overflow line 17 into two low-pressure turbine sections 18.
  • the low and expanded steam flows into a condenser 19 and condenses there to form water Pump 20 is again guided via the main steam line 9 in the main steam generator 8.
  • the steam turbine main steam line 10 is connected via a bypass station 21 directly to the condenser 19 fluidically.
  • an overflow valve 22 is arranged in the overflow 21.
  • An electric generator 23 is connected via a common shaft 24 to transmit torque to the high-pressure turbine section 11, the medium-pressure turbine section 16 and the low-pressure turbine section 18.
  • the HP sub-turbine 11, the MD sub-turbine 16 and the ND sub-turbines 18 form the
  • the combined cycle power plant comprises a bypass system.
  • This bypass system comprises a high-pressure bypass station 22 and a high-pressure diverter valve 21 arranged in the high-pressure diverter station 22, wherein a high-pressure bypass station 22 forms a fluidic connection between the steam main steam line 10 and the cold reheater line 14.
  • the bypass system comprising a medium pressure diverter station 22a and a valve disposed in the intermediate-pressure bypass station 22a medium-pressure bypass valve 21a, which is made with the with ⁇ teldruck bypass station 22a a fluidic connection between the hot reheater line 15 and the capacitor 19th
  • steam can pass from the steam turbine main steam line 10 to the condenser 19 via the diverter system comprising the high-pressure diverter station 22 and medium-pressure diverter station 22a.
  • the combined cycle power plant comprises a medium-pressure valve 12a arranged in the hot reheater line 15.
  • the gas and steam plant will now be operated according to the invention as follows.
  • the gas turbine 2 is initially in a Gasturbi- operating company.
  • the steam turbine 25 is operated at an ST operating line.
  • the power of the steam turbine 25 is reduced to an ST partial power, where ⁇ the ST partial power is smaller than the ST operating power.
  • the ST partial output is then 5% to 40%, 5% to 30%, 5% to 20% or 5% to 10% of the ST operating performance.
  • the steam turbine 25 includes a high pressure turbine 11, an intermediate-pressure turbine 16 and a low pressure Operatur ⁇ bine 18, wherein the high-pressure turbine 11, the high pressure turbine section 11 and the intermediate-pressure turbine 16 connected ⁇ tel horr horr horrank turbine section 16 in that the medium-pressure turbine section 16 and the low-pressure turbine section 18 or the low-pressure turbine section 18 are not subjected to steam.
  • Partial turbines remain closed and can of course cool down.
  • the pressure of the steam in the non-steamed turbine sections is then lowered as far as possible.
  • drainage systems, evacuation pipes, starting pipes or process steam pipes are opened.

Abstract

The invention relates to a method for operating a combined cycle power plant, according to which shortly before the planned start-up of a parked load the steam turbine (25) is lowered to a very low output, the gas turbine (2) is then operated in parked load, and next the steam turbine (25) is powered up to a parked output. The GT operating power can be the rated power of the gas turbine. The ST operating power can be the rated power of the steam turbine.

Description

Beschreibung description
Verfahren zum Betreiben einer GuD-Anlage Method for operating a combined cycle plant
Die Erfindung betrifft ein Verfahren zum Betreiben einer GuD- Anlage, wobei die Gasturbine bei einer GT-Betriebsleistung und die Dampfturbine bei einer ST-Betriebsleistung betrieben wird, wobei die Leistung der Dampfturbine auf eine ST-Teil- leistung verringert wird, wobei die ST-Teilleistung kleiner als die ST-Betriebsleistung ist. The invention relates to a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST Partial power is less than the ST operating power.
GuD-Kraftwerke werden zur Erzeugung von elektrischer Energie für die kommunale Energieversorgung eingesetzt. In der Regel versorgt ein GuD-Kraftwerk ein Versorgungsnetz mit elektrischer Energie, wobei der Energiebedarf abhängig ist vom Zeitverlauf. Das bedeutet, dass der Energiebedarf über den Tages¬ verlauf nicht konstant ist. Das elektrische Versorgungsnetz wird mit mehreren Kraftwerken mit elektrischer Energie ver- sorgt. So kommen bspw. konventionelle Kraftwerke und Kraft¬ werke zum Einsatz, die erneuerbare Energien in elektrische Energie umwandeln. Die Einspeisung der erneuerbaren Energien ist Schwankungen unterworfen, was zu zunehmenden Anforderungen an die konventionellen Kraftwerke führt. Das bedeutet, dass konventionelle Kraftwerke länger und tiefer in sogenann¬ ten Teillasten bzw. Parklasten betrieben werden müssen. In Gas- und Dampfturbinenkraftwerken sind derartige tiefe Teil¬ lasten je nach Konfiguration der Gasturbine mit reduzierten Gasturbinen-Austrittstemperaturen verbunden . CCPPs are used to generate electrical energy for the municipal energy supply. As a rule, a combined cycle power plant supplies a supply network with electrical energy, whereby the energy requirement depends on the passage of time. This means that the energy demand over the day ¬ running is not constant. The electrical supply network is supplied with electrical power by several power plants. Thus, conventional power plants and power plants come ¬ example. Used that convert renewable energy into electrical energy. The feed-in of renewable energies is subject to fluctuations, which leads to increasing demands on conventional power plants. This means that conventional power plants have to be operated in sogenann ¬ th partial loads or loads park longer and deeper. In gas and steam turbine power plants, such low partial loads are associated with reduced gas turbine outlet temperatures, depending on the configuration of the gas turbine.
Das führt dazu, dass auch die Dampfturbinen-Eintrittstempera¬ tur absinkt. Somit wird, sobald die Anlage in Teillast gefah¬ ren wird, die Dampf-Eintrittstemperatur abgesenkt. Dies führt allerdings dazu, dass die heißen Bauteile der Dampfturbine mit kaltem Dampf beaufschlagt werden, was zu thermischen Spannungen führt . Wenn dann die Parklast wieder verlassen wird, steigen die Dampftemperaturen wieder an, was wiederum zu thermischen Spannungen führt. Um diesen thermischen Spannungen vorzubeugen, gibt es die Möglichkeit, die Gasturbine nicht so weit in Teillast zu fahren, damit die Dampftemperatur nicht so stark absinkt. Ebenfalls ist es möglich, die Dampftemperatur durch Abspritzung vor der eigentlichen Lastreduzierung langsam zu reduzieren. Anschließend erfolgt die Laständerung bei tiefer, aber dafür konstanter Temperatur. Nach dem Steigern der Last wird die Dampftemperatur wieder langsam auf Nenntemperatur angehoben . As a result, the steam turbine inlet tempera ture also drops. Thus, the steam inlet temperature as soon as the plant in partial load gefah ¬ ren is lowered. However, this leads to the fact that the hot components of the steam turbine are subjected to cold steam, which leads to thermal stresses. When the parking load is then left again, the steam temperatures rise again, which in turn leads to thermal stresses. In order to prevent these thermal stresses, there is the possibility of not driving the gas turbine so far in partial load, so that the steam temperature does not drop so much. It is also possible to slowly reduce the steam temperature by spraying before the actual load reduction. Subsequently, the load change takes place at a low but constant temperature. After increasing the load, the steam temperature is slowly raised again to nominal temperature.
Eine weitere Möglichkeit thermischen Spannungen vorzubeugen, besteht darin, die Dampfturbine vor dem Absenken der Gastur- binenleistung abzufahren. Die Bauteile der Dampfturbine werden dann bei sehr geringen thermischen Spannungen auskühlen. Sobald die Bauteile weit genug abgekühlt sind, könnte die Dampfturbine bei einer reduzierten Gasturbinenleistung und somit bei einer tiefen Dampf-Eintrittstemperatur wieder ange- fahren werden. Dies würde zu einem sehr niedrigen Lebensdauerverbrauch führen. Another way to prevent thermal stress is to shut down the steam turbine before lowering the gas turbine power. The components of the steam turbine will then cool at very low thermal stresses. Once the components have cooled down far enough, the steam turbine could be restarted at a reduced gas turbine capacity and thus at a low steam inlet temperature. This would lead to a very low lifetime consumption.
Die Erfindung hat es sich zur Aufgabe gemacht, eine weitere Möglichkeit anzugeben, thermische Spannungen zu reduzieren. The invention has set itself the task of specifying another way to reduce thermal stresses.
Die Aufgabe wird gelöst durch ein Verfahren zum Betreiben einer GuD-Anlage, wobei die Gasturbine bei einer GT-Betriebs- leistung und die Dampfturbine bei einer ST-Betriebsleistung betrieben wird, wobei die Leistung der Dampfturbine auf eine ST-Teilleistung verringert wird, wobei die ST-Teilleistung kleiner als die ST-Betriebsleistung ist, wobei anschließend die Leistung der Gasturbine auf eine GT-Parkleistung verringert wird, wobei die GT-Parkleistung kleiner ist als die GT- Betriebsleistung . The object is achieved by a method for operating a combined cycle gas turbine plant, wherein the gas turbine is operated at a GT operating power and the steam turbine at an ST operating power, wherein the power of the steam turbine is reduced to an ST partial power, wherein the ST sub-power is less than the ST operating power, and then the power of the gas turbine is reduced to a GT parking power, the GT parking power is less than the GT operating power.
Nach Erreichen der GT-Parkleistung wird der Gasturbine die Leistung der Dampfturbine auf eine ST-Parkleistung hochgefah- ren, wobei die ST-Parkleistung bei 20% bis 60% der ST- Betriebsleistung liegt. After the GT parking power has been achieved, the gas turbine increases the power of the steam turbine to an ST parking performance. ST parking performance ranges from 20% to 60% of ST operating performance.
Somit wird erfindungsgemäß vorgeschlagen, eine Fahrweise an- zugeben, wobei die Dampfturbine an der Parklast beteiligt wird. Somit wird im Sinne der Netzstabilität möglichst viel drehende Masse durch den Dampfturbinenrotor am Netz gehalten. Thus, the invention proposes to indicate a driving style, wherein the steam turbine is involved in the parking load. Thus, in the sense of grid stability as much rotating mass held by the steam turbine rotor on the grid.
Die ST-Leistung der Dampfturbine wird kurz vor dem geplanten Anfahren der Parklast auf eine sehr kleine Leistung abge¬ senkt. Anschließend wird die Gasturbine in Parklast gefahren. Aufgrund der bei Teillast deutlich geringeren Wärmeübergänge zwischen Dampf- und Dampfturbinen-Bauteilen ist der Lebensdauerverbrauch durch das Absinken der Dampftemperatur deut- lieh geringer. Dabei kühlt die Dampfturbine langsam aus. The ST power of the steam turbine is abge lowers ¬ to a very small performance just before the scheduled start of the parking load. Subsequently, the gas turbine is driven in parking load. Due to the considerably lower heat transfer between steam and steam turbine components at partial load, the service life consumption is significantly lower due to the drop in the steam temperature. The steam turbine slowly cools down.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben. So wird in einer ersten vorteilhaften Weiterbildung die ST-Teilleistung bei 5% bis 40%, 5% bis 30%, 5% bis 20%, aber 5% bis 10% der ST-Betriebsleistung festgelegt. Advantageous developments are specified in the subclaims. Thus, in a first advantageous development, the ST partial power is set at 5% to 40%, 5% to 30%, 5% to 20%, but 5% to 10% of the ST operating performance.
In einer weiteren vorteilhaften Weiterbildung liegt die GT- Parkleistung bei 20% bis 60 % der Gasturbinen-Betriebsleis¬ tung . In a further advantageous development, the GT parking performance is 20% to 60% of the gas turbine Betriebsleis ¬ tion.
Somit wird vorgeschlagen, nachdem die Dampfturbine langsam auskühlt bei einer reduzierten Gasturbinenleistung und dadurch tiefe Dampf-Eintrittstemperatur wieder Last aufzunehmen . Thus, it is suggested that after the steam turbine slowly cools down at a reduced gas turbine power and thereby regain low steam inlet temperature load.
In einer alternativen Ausführungsform könnte die Dampfturbine bis zur Beendigung der Parklast in dieser tiefen Teillast gehalten werden. Erfindungsgemäß wird somit vorgeschlagen, die Leistung derIn an alternative embodiment, the steam turbine could be kept in this deep part load until the end of the parking load. According to the invention is thus proposed, the performance of
Dampfturbine auf eine ST-Teilleistung zu verringern. Die ST- Teilleistung ist kleiner als die ST-Betriebsleitung . Das Verringern auf die ST-Teilleistung erfolgt durch Schließen eines Dampf-Eintrittsventils . Das Dampf-Eintrittsventil wird dabei derart angesteuert, dass kaum Frischdampf durch die Dampfturbine strömt. Dabei wird eine Umleitstation derart ausgebil¬ det, dass eine strömungstechnische Verbindung zwischen dem Dampfeintritt und dem Kondensator entsteht. Somit wird Dampf nach dem Dampferzeuger nicht zur Dampfturbine geführt, sondern direkt zum Kondensator, was sich nachteilig auf den Wirkungsgrad auswirkt. Die Dampfturbine kühlt dabei aus. An¬ schließend wird die Leistung der Gasturbine auf eine GT-Park- leistung verringert. Dies hat Auswirkungen auf die Dampf-Eintrittstemperatur. Das bedeutet, dass die Dampf-Eintrittstemperatur geringer wird. Nach einer gewissen Zeit wird anschließend das Dampf-Eintrittsventil wieder geöffnet und die strömungstechnische Verbindung zwischen Dampfeintritt und dem Kondensator unterbrochen. Somit wird dann der gesamte imSteam turbine to reduce an ST partial power. The ST part power is smaller than the ST operation line. The reduction to the ST partial power occurs by closing a Steam inlet valve. The steam inlet valve is controlled in such a way that hardly any live steam flows through the steam turbine. In this case, a diverter station is ausgebil ¬ det, that a fluidic connection between the steam inlet and the capacitor is formed. Thus, steam is not passed to the steam generator to the steam turbine, but directly to the capacitor, which adversely affects the efficiency. The steam turbine cools down. An ¬ closing the power of the gas turbine is reduced to a GT parking performance. This has an effect on the steam inlet temperature. This means that the steam inlet temperature is lower. After a certain time, then the steam inlet valve is opened again and interrupted the fluidic connection between the steam inlet and the condenser. Thus, then the whole in the
Dampferzeuger erzeugte Dampf durch die Dampfturbine geführt. Steam generator produced steam passed through the steam turbine.
In einer vorteilhaften Weiterbildung umfasst die Dampfturbine eine Hochdruck-, Mitteldruck- und Niederdruck-Teilturbine, wobei In an advantageous development, the steam turbine comprises a high-pressure, medium-pressure and low-pressure turbine part, wherein
- die Hochdruck-Teilturbine,  - the high-pressure turbine section,
- die Hochdruck-Teilturbine und die Mitteldruck-Teilturbine, - the high-pressure turbine section and the medium-pressure turbine section,
- die Mitteldruck-Teilturbine, - the medium pressure turbine section,
- die Mitteldruck-Teilturbine und die Niederdruck-Teilturbine - oder die Niederdruck-Teilturbine  - The medium-pressure turbine section and the low-pressure turbine section - or the low-pressure turbine section
nicht mit Dampf beaufschlagt wird. steam is not applied.
Somit wird idealerweise eine Druckstufe komplett geschlossen. Im abgeschalteten Teilturbinenteil ist der Lebensdauerver- brauch noch geringer, da hier die Bauteile natürlich auskühlen. Vorteilhafterweise wird der Druck in der Dampfturbine bzw. der in Betrieb verbleibenden Turbinenteile möglichst weit abgesenkt, was durch Entwässerungen, Evakuierungsleitungen, Anfahrleitungen oder auch Prozessdampfleitungen ermög- licht wird. Somit wird durch das deutliche Absenken des Druckes in der Dampfturbine der Wärmeübergang gesenkt und der Lebensdauerverbrauch bei Teillast deutlich verringert. Die Erfindung wird nun anhand eines Ausführungsbeispiels nä¬ her erläutert. Darin zeigt: Thus, ideally one compression stage is completely closed. In the switched-off sub-turbine part, the lifetime consumption is even lower, since the components naturally cool down here. Advantageously, the pressure in the steam turbine or the turbine parts remaining in operation is lowered as far as possible, which is made possible by drains, evacuation lines, starting lines or process steam lines. Thus, the heat transfer is lowered by the significant lowering of the pressure in the steam turbine and the life consumption at part load significantly reduced. The invention will now be explained nä ¬ forth using an exemplary embodiment. It shows:
Figur 1 eine schematische Darstellung eines GuD-Kraftwerks . Die Figur 1 zeigt eine schematische Darstellung eines Gas- und Dampfturbinenkraftwerkes (GuD-Kraftwerk) . Im Wesentlichen umfasst ein GuD-Kraftwerk 1 eine mit fossilen Brennstoffen antreibbare Gasturbine 2. Diese Gasturbine 2 umfasst ein Verdichterteil 3 in dem Luft erwärmt und verdichtet wird, ei- ne Brennkammer 4 in der die Luft aus dem Verdichterteil 3 mit Brennstoff vermischt und gezündet wird und ein Turbinenteil 5 in dem die heißen Abgase in verschiedenen Stufen, die aus nicht-dargestellten Leit- und Laufschaufeln bestehen, einen Rotor in eine Rotation versetzen. Diese Rotation wird über eine Welle 6 an einem Generator 7 übertragen. Der Generator 7 versorgt anschließend ein Versorgungsnetz mit elektrischer Energie (nicht dargestellt) . Figure 1 is a schematic representation of a combined cycle power plant. 1 shows a schematic representation of a gas and steam turbine power plant (combined cycle power plant). Essentially, a combined cycle power plant 1 comprises a gas turbine 2 drivable with fossil fuels. This gas turbine 2 comprises a compressor part 3 in which air is heated and compressed, a combustion chamber 4 in which the air from the compressor part 3 is mixed with fuel and ignited and a turbine part 5 in which the hot exhaust gases in various stages, which consist of not-shown vanes and blades, set a rotor into rotation. This rotation is transmitted via a shaft 6 to a generator 7. The generator 7 then supplies a supply network with electrical energy (not shown).
Die heißen Abgase der Gasturbine 2 werden in einen Dampf- erzeuger 8 geführt. In diesem Dampferzeuger 8 mittels einer Leitung 9 Frischdampf erzeugt und über eine Dampfturbinen- Frischdampfleitung 10 schließlich in eine Hochdruck-Teilturbine 11 geführt. In der Dampfturbinen-Frischdampfleitung 10 ist ein HD-Ventil 12 angeordnet. Der aus der HD-Teilturbine 11 ausströmende Dampf wird zu einem Zwischenüberhitzer 13 geführt. Dies erfolgt über die kalte Zwischenüberhitzerleitung 14. Nach Erhitzung des Dampfes im Zwischenüberhitzer 13 wird über die heiße Zwischenüberhitzerleitung 15 eine Mitteldruck- Teilturbine 16 mit Dampf versorgt. Aus der Mitteldruck-Teil- turbine 16 strömt der Dampf über eine Überströmleitung 17 in zwei Niederdruck-Teilturbinen 18. Nach der Niederdruck-Teilturbine 18 strömt der kalte und entspannte Dampf in einen Kondensator 19 und kondensiert dort zu Wasser, das über eine Pumpe 20 wieder über die Frischdampfleitung 9 in den Frischdampferzeuger 8 geführt wird. The hot exhaust gases of the gas turbine 2 are fed into a steam generator 8. In this steam generator 8 by means of a line 9 generates live steam and finally passed through a steam turbine steam line 10 in a high-pressure turbine section 11. In the steam turbine main steam line 10, an HP valve 12 is arranged. The effluent from the HP sub-turbine 11 steam is fed to a reheater 13. This is done via the cold reheater line 14. After heating the steam in the reheater 13 is supplied via the hot reheater line 15, a medium-pressure turbine section 16 with steam. From the medium-pressure turbine part 16, the steam flows via an overflow line 17 into two low-pressure turbine sections 18. After the low-pressure turbine section 18, the cold and expanded steam flows into a condenser 19 and condenses there to form water Pump 20 is again guided via the main steam line 9 in the main steam generator 8.
Die Dampfturbinen-Frischdampfleitung 10 ist über eine Umleit- Station 21 direkt mit dem Kondensator 19 strömungstechnisch verbunden. In der Überströmleitung 21 ist ein Überströmventil 22 angeordnet. Ein elektrischer Generator 23 ist über eine gemeinsame Welle 24 drehmomentübertragend mit der Hochdruck- Teilturbine 11, der Mitteldruck-Teilturbine 16 und der Nie- derdruck-Teilturbine 18 verbunden. Die HD-Teilturbine 11, die MD-Teilturbine 16 und die ND-Teilturbinen 18 bilden die The steam turbine main steam line 10 is connected via a bypass station 21 directly to the condenser 19 fluidically. In the overflow 21 an overflow valve 22 is arranged. An electric generator 23 is connected via a common shaft 24 to transmit torque to the high-pressure turbine section 11, the medium-pressure turbine section 16 and the low-pressure turbine section 18. The HP sub-turbine 11, the MD sub-turbine 16 and the ND sub-turbines 18 form the
Dampfturbine 25. Steam turbine 25.
In einer alternativen Ausführungsform umfasst das Gas- und Dampfturbinenkraftwerk ein Umleitsystem. Dieses Umleitsystem umfasst eine Hochdruck-Umleitstation 22 und ein in der Hochdruck-Umleitstation 22 angeordnetes Hochdruck-Umleitventil 21, wobei mit der Hochdruck-Umleitstation 22 eine strömungstechnische Verbindung zwischen der Dampfturbine-Frischdampf- leitung 10 und der kalten Zwischenüberhitzerleitung 14 erfolgt. Ferner umfasst das Umleitsystem eine Mitteldruck-Umleitstation 22a und ein in der Mitteldruck-Umleitstation 22a angeordnetes Mitteldruck-Umleitventil 21a, wobei mit der Mit¬ teldruck-Umleitstation 22a eine strömungstechnische Verbin- dung zwischen der heißen Zwischenüberhitzerleitung 15 und dem Kondensator 19 erfolgt. In an alternative embodiment, the combined cycle power plant comprises a bypass system. This bypass system comprises a high-pressure bypass station 22 and a high-pressure diverter valve 21 arranged in the high-pressure diverter station 22, wherein a high-pressure bypass station 22 forms a fluidic connection between the steam main steam line 10 and the cold reheater line 14. Further, the bypass system comprising a medium pressure diverter station 22a and a valve disposed in the intermediate-pressure bypass station 22a medium-pressure bypass valve 21a, which is made with the with ¬ teldruck bypass station 22a a fluidic connection between the hot reheater line 15 and the capacitor 19th
Somit kann Dampf über das die Hochdruck-Umleitstation 22 und Mitteldruck-Umleitstation 22a umfassenden Umleitsystems von der Dampfturbinen-Frischdampfleitung 10 zum Kondensator 19 gelangen . Thus, steam can pass from the steam turbine main steam line 10 to the condenser 19 via the diverter system comprising the high-pressure diverter station 22 and medium-pressure diverter station 22a.
Ferner umfasst das Gas- und Dampfturbinenkraftwerk ein in der heißen Zwischenüberhitzerleitung 15 angeordnetes Mitteldruck- Ventil 12a. Furthermore, the combined cycle power plant comprises a medium-pressure valve 12a arranged in the hot reheater line 15.
Die GuD-Anlage wird nun folgendermaßen erfindungsgemäß be¬ trieben. Die Gasturbine 2 wird zunächst bei einer Gasturbi- nen-Betriebsleitung betrieben. Ebenso wird die Dampfturbine 25 bei einer ST-Betriebsleitung betrieben. Die Leistung der Dampfturbine 25 wird auf eine ST-Teilleistung verringert, wo¬ bei die ST-Teilleistung kleiner ist als die ST-Betriebsleis- tung. Die ST-Teilleistung liegt dann hierbei bei 5% bis 40%, 5% bis 30%, 5% bis 20% oder 5% bis 10% der ST-Betriebsleis- tung . The gas and steam plant will now be operated according to the invention as follows. The gas turbine 2 is initially in a Gasturbi- operating company. Likewise, the steam turbine 25 is operated at an ST operating line. The power of the steam turbine 25 is reduced to an ST partial power, where ¬ the ST partial power is smaller than the ST operating power. The ST partial output is then 5% to 40%, 5% to 30%, 5% to 20% or 5% to 10% of the ST operating performance.
Dies wird dadurch erreicht, dass das HD-Ventil 12 und das Mitteldruck-Ventil 12a nahezu geschlossen werden, so dass kaum Dampf durch die Dampfturbine 25 strömt. Somit kühlen die Bauteile in der Dampfturbine 25 ab. Nach einer gewissen Verweildauer wird anschließend die Leistung der Gasturbine 2 auf eine GT-Parkleistung verringert, wobei die GT-Parkleistung kleiner ist als die GT-Betriebsleistung . Die GT-Parkleistung liegt hierbei bei 20% bis 60% der Gasturbinen-Betriebsleis¬ tung. Dies führt dazu, dass die Temperatur des heißen Abgases der Gasturbine 2 geringer ist, was zu einer Verringerung der im Dampferzeuger 8 erzeugten Temperatur des Frischdampfes ist, der durch die Dampfturbinen-Frischdampfleitung 10 und die heiße Zwischenüberhitzerleitung 15 führt. This is achieved in that the HP valve 12 and the medium-pressure valve 12a are almost closed, so that hardly any steam flows through the steam turbine 25. Thus, the components in the steam turbine 25 cool down. After a certain dwell time, the power of the gas turbine 2 is subsequently reduced to GT parking power, the GT parking power being less than the GT operating power. The GT park performance is here at 20% to 60% of the gas turbine Betriebsleis ¬ tion. This results in that the temperature of the hot exhaust gas of the gas turbine 2 is lower, which is to reduce the temperature of the live steam generated in the steam generator 8, which passes through the steam turbine main steam line 10 and the hot reheater line 15.
Nachdem das HD-Ventil 12 nahezu geschlossen wird, wird das Überströmventil 22 bzw. das Umleitsystem 22, 21; 22a, 21a ge- öffnet, so dass der Großteil des im Dampferzeuger 8 erzeugten Dampfes direkt in den Kondensator 19 geführt wird. Dies ist allerdings nachteilig für den Gesamtwirkungsgrad der GuD-An- lage . Nach Erreichen der GT-Parkleistung der Gasturbine 2 wird die Leistung der Dampfturbine 25 auf eine ST-Parkleistung hochge¬ fahren. Diese ST-Parkleistung liegt bei 20% bis 60% der ST- Betriebsleitung. Dies wird dadurch erreicht, dass das HD- Ventil 12 und das Mitteldruck-Ventil 12a geöffnet werden. Das Überströmventil 22 in der Überströmleitung 21 wird wieder geschlossen. Somit kann der nunmehr infolge der geringeren Dampf-Eintrittstemperatur des Dampfes in der Dampfturbinen- Frischdampfleitung 10 und in der heißen Zwischenüberhitzer- leitung 15 geführte Dampf in die HD-Teilturbine 11 geführt werden. Infolge der niedrigeren Frischdampftemperatur ist der Volumenstrom des Frischdampfes auch geringer. Die Verringerung der Leistung der Dampfturbine 25 wird durch ein Verringern des Druckes des Dampfes erreicht. Es kann nun, nachdem die ST-Teilleistung und die GT-Parkleistung erreicht wurden, die Dampfturbine 25 folgendermaßen betrieben werden. Die Dampfturbine 25 umfasst eine Hochdruck-Teilturbine 11, eine Mitteldruck-Teilturbine 16 und eine Niederdruck-Teiltur¬ bine 18, wobei die Hochdruck-Teilturbine 11, die Hochdruck- Teilturbine 11 und die Mitteldruck-Teilturbine 16, die Mit¬ teldruck-Teilturbine 16, die Mitteldruck-Teilturbine 16 und die Niederdruckteilturbine 18 oder die Niederdruck-Teiltur- bine 18 nicht mit Dampf beaufschlagt wird. Die restlichenAfter the HP valve 12 is almost closed, the spill valve 22 and the bypass system 22, 21; 22a, 21a, so that the majority of the steam generated in the steam generator 8 is fed directly into the condenser 19. However, this is disadvantageous for the overall efficiency of the CCGT plant. After reaching the GT parking power of the gas turbine 2, the power of the steam turbine 25 is hochge ¬ drive to an ST parking performance. This ST parking capacity is between 20% and 60% of the ST management. This is accomplished by opening the HP valve 12 and the medium pressure valve 12a. The overflow valve 22 in the overflow line 21 is closed again. Thus, the now due to the lower vapor inlet temperature of the steam in the steam turbine steam line 10 and in the hot reheater 15 guided steam in the HP turbine part 11 are performed. Due to the lower live steam temperature, the volume flow of the live steam is also lower. The reduction of the power of the steam turbine 25 is achieved by reducing the pressure of the steam. Now, after the ST split power and the GT parking power have been achieved, the steam turbine 25 may be operated as follows. The steam turbine 25 includes a high pressure turbine 11, an intermediate-pressure turbine 16 and a low pressure Teiltur ¬ bine 18, wherein the high-pressure turbine 11, the high pressure turbine section 11 and the intermediate-pressure turbine 16 connected ¬ teldruck turbine section 16 in that the medium-pressure turbine section 16 and the low-pressure turbine section 18 or the low-pressure turbine section 18 are not subjected to steam. The remaining
Teilturbinen bleiben geschlossen und können natürlich auskühlen . Partial turbines remain closed and can of course cool down.
Der Druck des Dampfes in den nicht mit Dampf beaufschlagten Teilturbinen wird dann möglichst weit abgesenkt. Dazu werden Entwässerungen, Evakuierungsleitungen, Anfahrleitungen oder Prozessdampfleitungen geöffnet. The pressure of the steam in the non-steamed turbine sections is then lowered as far as possible. For this purpose drainage systems, evacuation pipes, starting pipes or process steam pipes are opened.

Claims

Patentansprüche claims
1. Verfahren zum Betreiben einer GuD-Anlage, 1. Method for operating a combined cycle plant,
wobei die Gasturbine (2) bei einer GT-Betriebsleistung und die Dampfturbine (25) bei einer ST-Betriebsleistung betrie¬ ben wird, wherein the gas turbine (2) is Betrie ¬ ben at a GT-operating power and the steam turbine (25) at a ST-operation power,
wobei die Leistung der Dampfturbine (25) auf eine ST-Teil¬ leistung verringert wird, wherein the power of the steam turbine (25) is reduced to an ST part ¬ performance,
wobei die ST-Teilleistung kleiner als die ST-Betriebsleis¬ tung ist, wherein the ST section power is less than the ST operating Leis ¬ tung,
wobei anschließend die Leistung der Gasturbine (2) auf eine GT-Parkleistung verringert wird, wobei die GT-Parkleistung kleiner ist als die GT-Betriebsleistung,  after which the power of the gas turbine (2) is reduced to GT parking power, the GT parking power being less than the GT operating power,
wobei nach Erreichen der GT-Parkleistung der Gasturbine (2) die Leistung der Dampfturbine (25) auf eine ST-Parkleistung hochgefahren wird.  wherein after reaching the GT parking power of the gas turbine (2), the power of the steam turbine (25) is raised to an ST parking performance.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
wobei die ST-Teilleistung bei 5% - 40%, 5% - 30%, 5% - 20% oder 5% - 10% der ST-Betriebsleistung liegt.  where ST power is 5% - 40%, 5% - 30%, 5% - 20% or 5% - 10% of ST performance.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
wobei die GT-Parkleistung bei 20% - 60% der GT-Betriebs- leistung liegt.  GT parking performance is 20% - 60% of GT operating power.
4. Verfahren nach Anspruch 1, 4. The method according to claim 1,
wobei die ST-Parkleistung bei 20% - 60% der ST-Betriebs¬ leistung liegt. where the ST parking performance is 20% - 60% of the ST operating ¬ power.
5. Verfahren nach einem der vorhergehenden Ansprüche, 5. Method according to one of the preceding claims,
wobei die Verringerung der Leistung der Dampfturbine (25) durch ein Verringern des Druckes des Dampfes erfolgt. wherein the reduction of the power of the steam turbine (25) is effected by reducing the pressure of the steam.
6. Verfahren nach Anspruch 1, 6. The method according to claim 1,
wobei die Dampfturbine (25) eine HD- (11), MD- (16) und ND- Teilturbine (18) umfasst und die  wherein the steam turbine (25) comprises a HD (11), MD (16) and LP partial turbine (18) and the
- HD-Teilturbine (11),  - HP sub-turbine (11),
- die HD-Teilturbine (11) und die MD-Teilturbine (16), the HP sub-turbine (11) and the MD sub-turbine (16),
- die MD-Teilturbine (16), the MD sub-turbine (16),
- die MD-Teilturbine (16) und die ND-Teilturbine (18) oder - The MD sub-turbine (16) and the ND sub-turbine (18) or
- die ND-Teilturbine (18) - the LP partial turbine (18)
nicht mit Dampf beaufschlagt wird,  not steamed,
die HD-Teilturbine (11), die HD-Teilturbine (11) und die MD-Teilturbine (16), die MD-Teilturbine (16), die MD-Teil¬ turbine (16) und die ND-Teilturbine (18) oder die ND-Teil¬ turbine (18) nicht mit Dampf beaufschlagt wird. the HP sub-turbine (11), the HP sub-turbine (11) and the MD sub-turbine (16), the MD sub-turbine (16), the MD sub-turbine ¬ (16) and the LP sub-turbine (18) or the ND part ¬ turbine (18) is not acted upon by steam.
7. Verfahren nach Anspruch 5, 7. The method according to claim 5,
wobei der Druck des Dampfes in den nicht mit Dampf beauf¬ schlagten Teilturbinen unter einem Grenzwert abgesenkt wird . wherein the pressure of the steam is lowered in the non-steam-turbine sections beauf ¬ estimated below a threshold.
8. Verfahren nach Anspruch 1, 8. The method according to claim 1,
wobei die Entwässerung, Evakuierungsleitungen, Anfahrlei- tungen oder Prozessdampfleitungen geöffnet werden.  whereby the drainage, evacuation pipes, start-up pipes or process steam pipes are opened.
EP14734828.8A 2013-07-25 2014-07-03 Method for operating a combined cycle power plant Withdrawn EP2992187A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14734828.8A EP2992187A2 (en) 2013-07-25 2014-07-03 Method for operating a combined cycle power plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13177932.4A EP2829691A1 (en) 2013-07-25 2013-07-25 Method for operating a combined power generation system
PCT/EP2014/064182 WO2015010870A2 (en) 2013-07-25 2014-07-03 Method for operating a combined cycle power plant
EP14734828.8A EP2992187A2 (en) 2013-07-25 2014-07-03 Method for operating a combined cycle power plant

Publications (1)

Publication Number Publication Date
EP2992187A2 true EP2992187A2 (en) 2016-03-09

Family

ID=48914057

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13177932.4A Withdrawn EP2829691A1 (en) 2013-07-25 2013-07-25 Method for operating a combined power generation system
EP14734828.8A Withdrawn EP2992187A2 (en) 2013-07-25 2014-07-03 Method for operating a combined cycle power plant

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13177932.4A Withdrawn EP2829691A1 (en) 2013-07-25 2013-07-25 Method for operating a combined power generation system

Country Status (6)

Country Link
US (1) US20160146060A1 (en)
EP (2) EP2829691A1 (en)
JP (1) JP2016528430A (en)
KR (1) KR20160023811A (en)
RU (1) RU2016106172A (en)
WO (1) WO2015010870A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (en) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Method for supporting a network frequency
JP6618051B2 (en) * 2016-02-25 2019-12-11 三菱日立パワーシステムズ株式会社 Combined cycle plant, minimum output reduction method thereof, and control device thereof
EP3258074A1 (en) * 2016-06-14 2017-12-20 Siemens Aktiengesellschaft Steam power plant for generating electrical energy
JP6565860B2 (en) 2016-10-17 2019-08-28 トヨタ自動車株式会社 Fuel cell system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532916A (en) * 1978-08-25 1980-03-07 Hitachi Ltd Method of making temperature of steam turbine metal of combined plant constant and its device
JPS59180014A (en) * 1983-03-30 1984-10-12 Hitachi Ltd Method of controlling load in combined cycle power plant
JPS6077704U (en) * 1983-11-02 1985-05-30 株式会社東芝 Combined cycle main steam temperature control device
CA1245282A (en) * 1984-10-25 1988-11-22 Alan Martens Steam turbine load control in a combined cycle electrical power plant
JPS62197604A (en) * 1986-02-25 1987-09-01 Hitachi Ltd Starting method for combined plant
JPS6334404A (en) * 1986-07-30 1988-02-15 株式会社日立製作所 Deaerating system in combined cycle plant
US5042246A (en) * 1989-11-06 1991-08-27 General Electric Company Control system for single shaft combined cycle gas and steam turbine unit
JPH0441908A (en) * 1990-06-01 1992-02-12 Hitachi Ltd Operation control system for steam turbine
JP3073429B2 (en) * 1995-06-20 2000-08-07 三菱重工業株式会社 Steam system disconnection control method for multi-shaft combined plant
JPH09303114A (en) * 1996-05-14 1997-11-25 Mitsubishi Heavy Ind Ltd Steam cycle for combined cycle using steam cooling type gas turbine
DE10227709B4 (en) * 2001-06-25 2011-07-21 Alstom Technology Ltd. Steam turbine plant and method for its operation
JP2006002576A (en) * 2004-06-15 2006-01-05 Tlv Co Ltd Process steam controller utilizing steam turbine
EP1710400A1 (en) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Process for starting a gas and steam turbine plant
US8028511B2 (en) * 2007-05-30 2011-10-04 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle power generation plant
US20100242430A1 (en) * 2009-03-31 2010-09-30 General Electric Company Combined cycle power plant including a heat recovery steam generator
US20100310356A1 (en) * 2009-06-04 2010-12-09 General Electric Company Clutched steam turbine low pressure sections and methods therefore
US8776523B2 (en) * 2010-12-01 2014-07-15 General Electric Company Steam-driven power plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20160023811A (en) 2016-03-03
EP2829691A1 (en) 2015-01-28
JP2016528430A (en) 2016-09-15
RU2016106172A (en) 2017-08-30
WO2015010870A3 (en) 2015-03-26
WO2015010870A2 (en) 2015-01-29
US20160146060A1 (en) 2016-05-26

Similar Documents

Publication Publication Date Title
DE102004020753A1 (en) Device for utilizing the waste heat from compressors
EP2101051A1 (en) Storage of electrical energy in a heat accumulator and reverse electrical energy production by means of a thermodynamic cycle
EP1934434A2 (en) Method for heating a steam turbine
EP1866521B1 (en) Process for starting a gas and steam turbine plant
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
EP2288791B1 (en) Operation of a gas and a steam turbine system by means of a frequency converter
EP2705225B1 (en) Steam turbine installation and method for operating the steam turbine installation
EP2992187A2 (en) Method for operating a combined cycle power plant
EP2592241A1 (en) Method for operating a gas and steam turbine facility for frequency support
WO2014191268A2 (en) Method for operating a combined cycle power plant
DE2437782B2 (en) Method for starting up a gas turbine system for generating electricity from fuel gas from a coal pressure gasifier
EP1992794A1 (en) Combined cycle installation and method for starting up a combined cycle installation
EP2694789B1 (en) System and method for producing hot water and/or steam and for storing water in liquid and/or gaseous form for use for a gas turbine power plant
EP1896697B1 (en) Method of starting up a gas and steam turbine plant
DE102010009130A1 (en) Steam power plant comprising a tuning turbine
EP2839119A2 (en) Forced cooling in steam turbine plants
EP2138677B1 (en) Gas and steam turbine array
EP1510660B1 (en) Control of a combined heat and power plant
WO2016062532A1 (en) Method for shortening the start-up process of a steam turbine
EP3365534A1 (en) Method for preheating feed water of a steam generator of a power plant, and steam power plant for carrying out the method
EP2710234A2 (en) Auxiliary steam generator used as an additional frequency regulation measure and a primary and/or secondary regulation measure in a steam power plant
DE102010004386B4 (en) Method for operating a steam turbine set of a power plant
DE102007046659A1 (en) Hot water producing mechanism for operating heating system in solar plant, has turbine i.e. steam turbine, attached to supply line over feed line, where generator is connected with turbine for generation of current

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151204

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 7/24 20060101AFI20170725BHEP

Ipc: F22B 1/18 20060101ALI20170725BHEP

Ipc: F01K 23/10 20060101ALI20170725BHEP

Ipc: F01K 13/02 20060101ALI20170725BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180201