EP2592241A1 - Method for operating a gas and steam turbine facility for frequency support - Google Patents

Method for operating a gas and steam turbine facility for frequency support Download PDF

Info

Publication number
EP2592241A1
EP2592241A1 EP11188956.4A EP11188956A EP2592241A1 EP 2592241 A1 EP2592241 A1 EP 2592241A1 EP 11188956 A EP11188956 A EP 11188956A EP 2592241 A1 EP2592241 A1 EP 2592241A1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
steam turbine
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11188956.4A
Other languages
German (de)
French (fr)
Inventor
Andreas Pickard
Erich Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP11188956.4A priority Critical patent/EP2592241A1/en
Priority to US14/356,158 priority patent/US20140345278A1/en
Priority to IN869KON2014 priority patent/IN2014KN00869A/en
Priority to EP14004089.0A priority patent/EP2907980A1/en
Priority to CN201280055971.5A priority patent/CN104246151B/en
Priority to PCT/EP2012/071478 priority patent/WO2013072183A2/en
Priority to RU2014124127/06A priority patent/RU2014124127A/en
Priority to EP12780192.6A priority patent/EP2798164A2/en
Priority to KR1020147012600A priority patent/KR20140088145A/en
Publication of EP2592241A1 publication Critical patent/EP2592241A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the invention relates to the frequency support operation of a gas and steam turbine plant.
  • the EP 1 164 254 B1 describes a gas and steam turbine plant with steam diversion for the peak load coverage, ie for additional power at full load.
  • a portion of the steam generated in the heat recovery steam generator bypass ducts past the turbine inlets downstream of these turbine inlets arranged further inputs the turbine parts, whereby the pressure in the heat recovery steam generator can be kept substantially constant and the absorption capacity of the steam turbine and thus the output power are increased ,
  • the object of the invention is to provide a method for the frequency support operation of a gas and steam turbine plant, which provides an improved power reserve available.
  • the invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a heat recovery steam generator, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid from a stationary operation out the absorption capacity of the steam turbine increased and the pressure in the heat recovery steam generator can be lowered to use storage reserves in the heat recovery steam generator for increased steam generation, and that the heat recovery steam generator so quickly heat energy is supplied that a performance curve of the gas and steam turbine plant as a result of the increase Damping ability of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to an immediately prior existing power of stationary operation.
  • the invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves.
  • the pressure drop in the heat recovery steam generator additionally generates steam and a sufficiently large and rapid supply of heat energy is the usual dent in the performance curve prevent.
  • This method can provide control power at partial and full load.
  • the flexibility and efficiency of the power plant can be significantly increased, since high power requirements additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and the operation of the system designed more economical (peak load capacity).
  • the primary frequency support or the peak load operation it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation.
  • the load range of the power plant can be extended, since even the low load operation can be set more flexible.
  • At least one valve in a bypass channel for bypassing a steam turbine stage or a steam turbine module is opened.
  • Valve of a control wheel on a high-pressure turbine and / or a medium-pressure turbine is opened.
  • the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.
  • the heat energy is supplied via an additional firing.
  • this must be dimensioned accordingly.
  • FIG. 1 shows a gas and steam turbine plant 1, which includes a gas turbine 2 and a steam turbine 3.
  • a gas turbine 2 and a steam turbine 3.
  • a rotor of the gas turbine, a rotor of a generator 5 and a rotor of the steam turbine 3 are coupled together, the rotor of the steam turbine 3 and the Rotor of the generator 4 via a clutch 6 rotatably separable from each other and can be coupled.
  • the rotor of the generator 5 and the gas turbine 2 are rigidly connected to each other via the shaft 4.
  • a flue gas outlet of the gas turbine 2 is connected via an exhaust pipe 7 with a heat recovery steam generator 8, which is provided for generating the operating steam of the steam turbine 3 from waste heat of the gas turbine.
  • a compressor 9 is driven by the rotating rotor of the gas turbine 2 via the shaft 4, which sucks combustion air from the environment and a combustion chamber 10 supplies.
  • the combustion air is mixed with fuel supplied by a fuel supply 11 and burned and the hot, pressurized exhaust gases are supplied to the gas turbine 12 and there relaxed under the power of work.
  • the still about 500 to 600 ° C hot exhaust gases are then fed through the exhaust pipe 7 to the heat recovery steam generator 8 and flow through this until they pass through a chimney 13 into the environment.
  • superheated steam is supplied through a steam discharge line 24 of a high pressure stage 25 of the steam turbine 3 and there relaxed under the power of work.
  • the shaft 4 and thus the generator 5 is moved to generate electrical energy.
  • the partially relaxed in the high-pressure stage 25 hot steam is then fed to the high-pressure reheater 15, where it is reheated and fed via a derivative 26 a medium-pressure stage 27 of the steam turbine 3 and there relaxed under the power of mechanical work.
  • the there partially relaxed steam is via an overflow 28 of a low pressure stage 29th fed to the steam turbine 3 and further relaxed there with the release of mechanical energy.
  • the expanded steam is condensed in the condenser 30 of the steam turbine 3, and the resulting condensate is a condensate pump 31 directly to a low pressure stage 32 of the heat recovery steam generator 8 or via a feed 33 - and provided by the corresponding pressure - a medium-pressure stage 34 or a high-pressure stage 35th the heat recovery steam generator 8 supplies, where the condensate is evaporated.
  • the steam is supplied via the corresponding outlets 24, 26, 36 of the heat recovery steam generator 8 back to the steam turbine 3 for relaxation and performance mechanical work.
  • shut-off valves 37 and 38 are arranged. From the high pressure stage 25 of the steam turbine 3 leading steam discharge line 24 branches off a bypass channel 39 with a shut-off valve 40 for bypassing the high-pressure stage 25 from. Similarly, a bypass channel 41 branches off with a shut-off valve 42 for bypassing the intermediate-pressure stage 27.
  • a first control wheel 43 is attached to the rotor of the steam turbine 3.
  • a second control wheel 44 is attached to the rotor of the steam turbine 3.
  • a control wheel comprises valves controlled via valves, which can be acted upon by segments of a turbine. Depending on how many of the valves are opened, a more or less large amount of additional steam flows through the nozzles into the turbine.
  • FIG. 1 shows an additional firing 45 at the entrance of the heat recovery steam generator 8, in which the gas turbine exhaust gas, which still contains much oxygen, fuel is added and the mixture is burned.
  • the live steam over the temperature of the gas turbine exhaust gas can be overheated or for generating process steam when the steam generation is to be decoupled from the power generation of the gas turbine 2.
  • supplemental firing 45 may be of interest to increase the output of electrical power during peak demand periods.
  • the inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an overload valve 40, 42 and a turbine bypass 39, 41 and connected to the power of the steam turbine 3 increases rapidly (seconds range).
  • the overload introduction can be utilized both on the high-pressure turbine 25 for raising the live steam mass flow and on the medium-pressure turbine 27 for increasing the reheat steam mass flow as well as before each further turbine stage (for example low-pressure turbine 29).
  • the intake capacity of the steam turbine can be increased via a control wheel 43, 44 on the high-pressure turbine 25 and / or the medium-pressure turbine 27 by opening associated valves.
  • Storage reserves can be released from all pressure stages 32, 34, 35 of the heat recovery steam generator 8 (for example also medium and low pressure systems, if present).
  • the drum pressure e.g. by a pressure control valve 46 in the medium-pressure steam system 34, while the Aus Grandefil can be increased. This increase in steam mass flow rate is due to an increase in the absorption capacity of the steam turbine and an associated pressure drop in the system.
  • the decreasing storage effect either by a self-igniting supplementary firing 45 in the heat recovery steam generator 8, operated in continuous minimum load additional firing 45 or by existing power reserves in the gas turbine 2 (turning up the compressor vanes, over-firing, steam injection or water injection in the compressor. 9 or combustion chamber 10) compensated or further increased.

Abstract

The method involves increasing injectivity of a steam turbine and lowering pressure in a waste heat steam generator to utilize storage reserves in the waste heat steam generator to increase steam generation such that heat energy is quickly supplied to the waste heat steam generator. A power characteristic of a gas and steam turbine system due to increasing of the injectivity of the steam turbine and decreasing of the pressure in the waste heat steam generator is made greater or equal to existing or present power of a stationary operation.

Description

Die Erfindung betrifft den Frequenzstützbetrieb einer Gas-und Dampfturbinenanlage.The invention relates to the frequency support operation of a gas and steam turbine plant.

Der Energiemarkt fordert in vermehrtem Maße hochflexible Kraftwerksanlagen, die neben schnellen An- und Abfahrzeiten auch einen großen Leistungsbereich abdecken können und für den Frequenzstützbetrieb gut vorbereitet sind.The energy market is increasingly demanding highly flexible power plants that can cover not only fast startup and shutdown times but also a large power range and are well prepared for frequency support operations.

Dazu gehört u.a. auch die Fähigkeit, bei hohem Strombedarf zusätzlich Leistung freizusetzen (sog. Spitzenlastbetrieb). Dabei wird in Zukunft erwartet, dass sich auch Kraftwerke, die in ihrem Nominalpunkt betrieben werden, an der Spitzenlastabdeckung und an der Frequenzstützung beteiligen.This includes u.a. also the ability to release additional power at high power consumption (so-called peak load operation). In the future, it is expected that power plants operating at their nominal point will also participate in peak load coverage and frequency support.

Heutige Lösungen setzen auf die Nutzung von Leistungsreserven innerhalb der Komponenten oder beruhen auf Technologien, die nur eine sehr geringe Leistungsreserve zur Verfügung stellen können. Sowohl für die Frequenzstützung als auch die Spitzenlastabdeckung kann die Gasturbine überfeuert werden, es können die Verdichterleitschaufeln über die GrundlaststeIlung hinaus geöffnet werden, oder es kann Wasser in den Ansaugluftkanal eingedüst werden. Anforderungen, die lediglich die Spitzenlastabdeckung betreffen, können durch Dampfeindüsung in die Gasturbinen-Brennkammer, durch Kühlung der Gasturbinen-Ansaugluft, beispielsweise mit Verdunstungskühlern oder mit Kältemaschinen (sog. Chiller) erfüllt werden, oder indem der Abhitzedampferzeuger (AHDE) mit einer Zusatzfeuerung ausgestattet wird, um die Dampfturbinenleistung anzuheben. Zur Frequenzstützung können der Frischdampf oder der Dampf aus der Zwischenüberhitzung (modifizierte Gleitdruckfahrweise) angestaut werden und die Turbinen-Regelventile anschließend schnell geöffnet werden.Today's solutions rely on the use of power reserves within the components or are based on technologies that can provide only a very low power reserve. For both frequency support and peak load coverage, the gas turbine may overfill, the compressor vanes may be opened beyond the base load range, or water may be injected into the intake air duct. Requirements relating only to peak load coverage can be met by steam injection into the gas turbine combustor, by cooling the gas turbine intake air, for example with evaporative coolers or chillers, or by providing the heat recovery steam generator (AHDE) with auxiliary firing to raise the steam turbine power. For frequency support, the live steam or the steam from the reheat (modified Gleitdruckfahrweise) can be accumulated and the turbine control valves are then opened quickly.

Die EP 1 164 254 B1 beschreibt eine Gas- und Dampfturbinenanlage mit Dampfumleitungen für die Spitzenlastabdeckung, d.h. für Zusatzleistung bei Volllast. Dabei wird ein Teil des im Abhitzedampferzeuger erzeugten Dampfes über Bypasskanäle an den Turbineneinlässen vorbei in stromab dieser Turbineneinlässe angeordnete weitere Einlässe den Turbinenteilen zugeführt, wodurch der Druck im Abhitzedampferzeuger im wesentlichen konstant gehalten werden kann und die Schluckfähigkeit der Dampfturbine und damit auch die abgegebene Leistung erhöht werden.The EP 1 164 254 B1 describes a gas and steam turbine plant with steam diversion for the peak load coverage, ie for additional power at full load. In this case, a portion of the steam generated in the heat recovery steam generator bypass ducts past the turbine inlets downstream of these turbine inlets arranged further inputs the turbine parts, whereby the pressure in the heat recovery steam generator can be kept substantially constant and the absorption capacity of the steam turbine and thus the output power are increased ,

Aufgabe der Erfindung ist es, ein Verfahren für den Frequenzstützbetrieb einer Gas- und Dampfturbinenanlage bereitzustellen, das eine verbesserte Leistungsreserve zur Verfügung stellt.The object of the invention is to provide a method for the frequency support operation of a gas and steam turbine plant, which provides an improved power reserve available.

Die Erfindung löst diese Aufgabe, indem sie vorsieht, dass beim Betrieb einer Gas- und Dampfturbinenanlage mit einer Gasturbine, einer Dampfturbine und einem Abhitzedampferzeuger, in dem im Wärmetausch mit Abgas aus der Gasturbine Dampf für die Dampfturbine erzeugbar ist, zur Frequenzstützung im Stromnetz aus einem stationären Betrieb heraus die Schluckfähigkeit der Dampfturbine vergrößert und der Druck im Abhitzedampferzeuger abgesenkt werden, um Speicherreserven im Abhitzedampferzeuger zu einer erhöhten Dampferzeugung zu nutzen, und dass dem Abhitzedampferzeuger so schnell Wärmeenergie zugeführt wird, dass ein Leistungsverlauf der Gas- und Dampfturbinenanlage in Folge der Vergrößerung der Schluckfähigkeit der Dampfturbine und der Druckabsenkung im Abhitzedampferzeuger größer gleich einer unmittelbar zuvor vorhandenen Leistung des stationären Betriebs ist.The invention solves this problem by providing that in the operation of a gas and steam turbine plant with a gas turbine, a steam turbine and a heat recovery steam generator, in the heat exchange with exhaust gas from the gas turbine steam for the steam turbine can be generated for frequency support in the power grid from a stationary operation out the absorption capacity of the steam turbine increased and the pressure in the heat recovery steam generator can be lowered to use storage reserves in the heat recovery steam generator for increased steam generation, and that the heat recovery steam generator so quickly heat energy is supplied that a performance curve of the gas and steam turbine plant as a result of the increase Damping ability of the steam turbine and the pressure reduction in the heat recovery steam generator is greater than or equal to an immediately prior existing power of stationary operation.

Die Erfindung beruht demnach auf dem Gedanken, Speicherreserven im Abhitzedampferzeuger zu nutzen, um zusätzlichen Dampf bei schlagartigem Öffnen der Ventile zu erzeugen. Durch den Druckabfall im Abhitzedampferzeuger wird zusätzlich Dampf erzeugt und eine ausreichend dimensionierte und schnelle Zufuhr von Wärmeenergie soll die übliche Delle im Leistungsverlauf verhindern. Durch dieses Verfahren kann Regelleistung bei Teil- und Volllast bereitgestellt werden.The invention is therefore based on the idea to use storage reserves in the heat recovery steam generator to generate additional steam at sudden opening of the valves. The pressure drop in the heat recovery steam generator additionally generates steam and a sufficiently large and rapid supply of heat energy is the usual dent in the performance curve prevent. This method can provide control power at partial and full load.

Durch das erfinderische Verfahren kann die Flexibilität und Wirtschaftlichkeit der Kraftwerksanlage erheblich gesteigert werden, da bei hohem Leistungsbedarf zusätzliche Energie zur Verfügung steht, die insbesondere bei hohen Stromerlösen in Strommärkten zu erhöhten Einnahmen führt und den Betrieb der Anlage wirtschaftlicher gestaltet (Spitzenlastfähigkeit). Dies gilt für den Frequenzstützbetrieb insbesondere für die Sekundär- und Tertiär-Stützung. Somit ist es für die Primärfrequenzstützung bzw. den Spitzenlastbetrieb nicht notwendig, den Hochdruck- bzw. auch den Zwischenüberhitzungsteil im Druck höher auszulegen als für den Nennbetrieb. Außerdem ist es nicht erforderlich, die Anlage im sogenannten modifizierten Gleitdruckbetrieb zu fahren, der durch die Androsselung der Dampfturbinen-Regelventile Leistungs- und Wirkungsgradverluste im Bereitschaftsbetrieb der Anlage produziert. Mit dem erfinderischen Verfahren kann der Lastbereich des Kraftwerkes ausgedehnt werden kann, da auch der Schwachlastbetrieb flexibler eingestellt werden kann.The inventive method, the flexibility and efficiency of the power plant can be significantly increased, since high power requirements additional energy is available, which leads to increased revenue especially at high electricity revenues in electricity markets and the operation of the system designed more economical (peak load capacity). This applies to the frequency support operation, in particular for secondary and tertiary support. Thus, it is not necessary for the primary frequency support or the peak load operation to design the high-pressure or the reheat part higher in the pressure than for the nominal operation. In addition, it is not necessary to run the system in the so-called modified sliding pressure operation, which produces power and efficiency losses in the standby mode of the plant by throttling the steam turbine control valves. With the inventive method, the load range of the power plant can be extended, since even the low load operation can be set more flexible.

Vorteilhafterweise wird zur Erhöhung der Schluckfähigkeit der Dampfturbine mindestens ein Ventil in einem Bypasskanal zum Umfahren einer Dampfturbinenstufe oder eines Dampfturbinenmoduls geöffnet.Advantageously, to increase the absorption capacity of the steam turbine, at least one valve in a bypass channel for bypassing a steam turbine stage or a steam turbine module is opened.

Dabei ist es zweckmäßig, wenn Dampf über den Bypasskanal stromab eines Hochdruckeinlasses in die Dampfturbine geleitet wird.It is expedient if steam is passed via the bypass channel downstream of a high-pressure inlet into the steam turbine.

Besonders vorteilhaft ist es, wenn Dampf alternativ oder zusätzlich über den Bypasskanal stromab eines Mitteldruckeinlasses in die Dampfturbine geleitet wird.It is particularly advantageous if steam is fed alternatively or additionally via the bypass channel downstream of a medium-pressure inlet into the steam turbine.

Alternativ oder ergänzend kann es vorteilhaft sein, wenn zur Erhöhung der Schluckfähigkeit der Dampfturbine mindestens einAlternatively or additionally, it may be advantageous if at least one to increase the absorption capacity of the steam turbine

Ventil eines Regelrads an einer Hochdruckturbine und / oder einer Mitteldruckturbine geöffnet wird.Valve of a control wheel on a high-pressure turbine and / or a medium-pressure turbine is opened.

Vorzugsweise wird die Wärmeenergie durch eine Mehrleistung der Gasturbine und somit einen erhöhten Abgasstrom zugeführt.Preferably, the heat energy is supplied by an additional power of the gas turbine and thus an increased exhaust gas flow.

Weiterhin kann es vorteilhaft sein, wenn die Wärmeenergie über eine Zusatzfeuerung zugeführt wird. Diese muss jedoch entsprechend dimensioniert sein.Furthermore, it may be advantageous if the heat energy is supplied via an additional firing. However, this must be dimensioned accordingly.

Um das Ausspeichervermögen weiter zu erhöhen, ist es zweckmäßig, wenn ein Dampftrommeldruck im stationären Betrieb durch ein Ventil angestaut wird, welches zur Frequenzstützung geöffnet wird.In order to further increase the Ausspeichervermögen, it is advantageous if a steam drum pressure is accumulated in stationary operation by a valve which is opened for frequency support.

Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch und nicht maßstäblich:

Figur 1
ein vereinfachtes Schaltschema einer Gas- und Dampfturbinenanlage mit Hoch- und MitteldruckÜberlasteinleitung sowie Regelrädern in der Dampfturbine und einer Zusatzfeuerung im Abhitzedampferzeuger,
Figur 2
Dampfturbinen-Leistungsverlauf bei Überlasteinleitung in die Hochdruckturbine für verschiedene Frischdampfdruck zu Einleitdruck-Verhältnisse und
Figur 3
Dampfturbinen-Leistungsverlauf bei Überlasteinleitung in die Mitteldruckturbine für verschiedene Frischdampfdruck zu Einleitdruck-Verhältnisse.
The invention will be explained in more detail by way of example with reference to the drawings. Shown schematically and not to scale:
FIG. 1
a simplified circuit diagram of a gas and steam turbine plant with high and medium pressure overload discharge and control wheels in the steam turbine and an additional firing in the heat recovery steam generator,
FIG. 2
Steam turbine power curve with overload introduction into the high-pressure turbine for various live steam pressure to inlet pressure ratios and
FIG. 3
Steam turbine power curve with overload introduction into the medium-pressure turbine for various live steam pressure to inlet pressure conditions.

FIG 1 zeigt eine Gas- und Dampfturbinenanlage 1, die eine Gasturbine 2 umfasst sowie eine Dampfturbine 3. Über eine Welle 4 sind ein Läufer der Gasturbine, ein Läufer eines Generators 5 und ein Läufer der Dampfturbine 3 miteinander gekoppelt, wobei der Läufer der Dampfturbine 3 und der Läufer des Generators 4 über eine Kupplung 6 rotatorisch voneinander trennbar und koppelbar sind. Die Läufer des Generators 5 und der Gasturbine 2 sind über die Welle 4 starr miteinander verbunden. Ein Rauchgasauslass der Gasturbine 2 ist über eine Abgasleitung 7 mit einem Abhitzedampferzeuger 8 verbunden, der zur Erzeugung des Betriebsdampfs der Dampfturbine 3 aus Abwärme der Gasturbine vorgesehen ist. FIG. 1 shows a gas and steam turbine plant 1, which includes a gas turbine 2 and a steam turbine 3. About a shaft 4, a rotor of the gas turbine, a rotor of a generator 5 and a rotor of the steam turbine 3 are coupled together, the rotor of the steam turbine 3 and the Rotor of the generator 4 via a clutch 6 rotatably separable from each other and can be coupled. The rotor of the generator 5 and the gas turbine 2 are rigidly connected to each other via the shaft 4. A flue gas outlet of the gas turbine 2 is connected via an exhaust pipe 7 with a heat recovery steam generator 8, which is provided for generating the operating steam of the steam turbine 3 from waste heat of the gas turbine.

Während eines Betriebs der Gas- und Dampfturbinenanlage 1 wird vom rotierenden Läufer der Gasturbine 2 über die Welle 4 ein Verdichter 9 angetrieben, der Verbrennungsluft aus der Umgebung ansaugt und einer Brennkammer 10 zuführt. Dort wird die Verbrennungsluft mit von einer Brennstoffzuführung 11 herangeführtem Brennstoff vermischt und verbrannt und die heißen, unter Druck stehenden Abgase werden der Gasturbine 12 zugeführt und dort unter Leistung von Arbeit entspannt. Die noch etwa 500 bis 600°C heißen Abgase werden anschließend durch die Abgasleitung 7 dem Abhitzedampferzeuger 8 zugeführt und durchströmen diesen, bis sie durch einen Kamin 13 in die Umgebung gelangen. Auf ihrem Weg durch den Abhitzedampferzeuger 8 führen sie ihre Wärme einem Hochdrucküberhitzer 14 zu, dann einem Hochdruck-Zwischenüberhitzer 15, einem Hochdruckverdampfer 16, einem Hochdruckvorwärmer 17, dann einem Mitteldrucküberhitzer 18, einem Mitteldruckverdampfer 19, einem Mitteldruckvorwärmer 20, dann einem Niederdrucküberhitzer 21, einem Niederdruckverdampfer 22 und schließlich einem Kondensatvorwärmer 23.During operation of the gas and steam turbine 1, a compressor 9 is driven by the rotating rotor of the gas turbine 2 via the shaft 4, which sucks combustion air from the environment and a combustion chamber 10 supplies. There, the combustion air is mixed with fuel supplied by a fuel supply 11 and burned and the hot, pressurized exhaust gases are supplied to the gas turbine 12 and there relaxed under the power of work. The still about 500 to 600 ° C hot exhaust gases are then fed through the exhaust pipe 7 to the heat recovery steam generator 8 and flow through this until they pass through a chimney 13 into the environment. On their way through the heat recovery steam generator 8, they pass their heat to a high pressure superheater 14, then a high pressure reheater 15, a high pressure evaporator 16, a high pressure preheater 17, then a medium pressure superheater 18, a medium pressure evaporator 19, a medium pressure preheater 20, then a low pressure superheater 21 Low-pressure evaporator 22 and finally a condensate preheater 23rd

Im Hochdrucküberhitzer 14 überhitzter Dampf wird durch eine Dampfableitung 24 einer Hochdruckstufe 25 der Dampfturbine 3 zugeführt und dort unter Leistung von Arbeit entspannt. Mit der Arbeit wird - analog zur in der Gasturbine geleisteten Arbeit - die Welle 4 und damit der Generator 5 zur Erzeugung elektrischer Energie bewegt. Der in der Hochdruckstufe 25 teilweise entspannte heiße Dampf wird anschließend dem Hochdruck-Zwischenüberhitzer 15 zugeführt, dort erneut erhitzt und über eine Ableitung 26 einer Mitteldruckstufe 27 der Dampfturbine 3 zugeführt und dort unter Leistung von mechanischer Arbeit entspannt. Der dort teilweise entspannte Dampf wird über eine Überströmleitung 28 einer Niederdruckstufe 29 der Dampfturbine 3 zugeführt und dort unter Abgabe von mechanischer Energie weiter entspannt.In the high pressure superheater 14 superheated steam is supplied through a steam discharge line 24 of a high pressure stage 25 of the steam turbine 3 and there relaxed under the power of work. With the work - analogous to the work done in the gas turbine - the shaft 4 and thus the generator 5 is moved to generate electrical energy. The partially relaxed in the high-pressure stage 25 hot steam is then fed to the high-pressure reheater 15, where it is reheated and fed via a derivative 26 a medium-pressure stage 27 of the steam turbine 3 and there relaxed under the power of mechanical work. The there partially relaxed steam is via an overflow 28 of a low pressure stage 29th fed to the steam turbine 3 and further relaxed there with the release of mechanical energy.

Der entspannte Dampf wird im Kondensator 30 der Dampfturbine 3 kondensiert, und das so entstehende Kondensat wird über eine Kondensatpumpe 31 direkt einer Niederdruckstufe 32 des Abhitzedampferzeugers 8 oder über eine Zuführpumpe 33 - und von dieser mit entsprechendem Druck versehen - einer Mitteldruckstufe 34 oder einer Hochdruckstufe 35 des Abhitzedampferzeugers 8 zuführt, wo das Kondensat verdampf wird. Nach einer Dampferzeugung und Überhitzung wird der Dampf über die entsprechenden Ableitungen 24, 26, 36 des Abhitzedampferzeugers 8 wieder der Dampfturbine 3 zur Entspannung und Verrichtung mechanischer Arbeit zugeführt.The expanded steam is condensed in the condenser 30 of the steam turbine 3, and the resulting condensate is a condensate pump 31 directly to a low pressure stage 32 of the heat recovery steam generator 8 or via a feed 33 - and provided by the corresponding pressure - a medium-pressure stage 34 or a high-pressure stage 35th the heat recovery steam generator 8 supplies, where the condensate is evaporated. After steam generation and overheating, the steam is supplied via the corresponding outlets 24, 26, 36 of the heat recovery steam generator 8 back to the steam turbine 3 for relaxation and performance mechanical work.

In den Dampfableitungen 24 und 26 sind Absperrarmaturen 37 und 38 angeordnet. Von der zur Hochdruckstufe 25 der Dampfturbine 3 führenden Dampfableitung 24 zweigt ein Bypasskanal 39 mit einer Absperrarmatur 40 zum Umfahren der Hochdruckstufe 25 ab. Analog zweigt ein Bypasskanal 41 mit einer Absperrarmatur 42 zum Umfahren der Mitteldruckstufe 27 ab.In the steam outlets 24 and 26 shut-off valves 37 and 38 are arranged. From the high pressure stage 25 of the steam turbine 3 leading steam discharge line 24 branches off a bypass channel 39 with a shut-off valve 40 for bypassing the high-pressure stage 25 from. Similarly, a bypass channel 41 branches off with a shut-off valve 42 for bypassing the intermediate-pressure stage 27.

In Strömungsrichtung vor dem Hochdruckteil 25 ist ein erstes Regelrad 43 am Rotor der Dampfturbine 3 befestigt. Analog ist in Strömungsrichtung vor dem Mitteldruckteil 27 ist ein zweites Regelrad 44 am Rotor der Dampfturbine 3 befestigt. Ein Regelrad umfasst über Ventile kontrollierte Düsen, über die jeweils Segmente einer Turbine beaufschlagt werden können. Je nach dem, wie viele der Ventile geöffnet werden, strömt eine mehr oder minder große Menge von Zusatzdampf über die Düsen in die Turbine.In the flow direction in front of the high-pressure part 25, a first control wheel 43 is attached to the rotor of the steam turbine 3. Analogously, in the flow direction in front of the medium-pressure part 27, a second control wheel 44 is attached to the rotor of the steam turbine 3. A control wheel comprises valves controlled via valves, which can be acted upon by segments of a turbine. Depending on how many of the valves are opened, a more or less large amount of additional steam flows through the nozzles into the turbine.

Weiterhin zeigt Figur 1 eine Zusatzfeuerung 45 am Eingang des Abhitzedampferzeugers 8, bei der dem Gasturbinenabgas, das noch viel Sauerstoff enthält, Brennstoff zugesetzt wird und das Gemisch verbrannt wird. Damit kann der Frischdampf über die Temperatur des Gasturbinenabgases hinaus überhitzt werden oder zur Erzeugung von Prozessdampf, wenn die Dampferzeugung von der Stromerzeugung der Gasturbine 2 zu entkoppeln ist. Insbesondere kann eine Zusatzfeuerung 45 interessant sein, um die Abgabe an elektrischer Leistung in Zeiten des Spitzenbedarfs zu erhöhen.Further shows FIG. 1 an additional firing 45 at the entrance of the heat recovery steam generator 8, in which the gas turbine exhaust gas, which still contains much oxygen, fuel is added and the mixture is burned. Thus, the live steam over the temperature of the gas turbine exhaust gas can be overheated or for generating process steam when the steam generation is to be decoupled from the power generation of the gas turbine 2. In particular, supplemental firing 45 may be of interest to increase the output of electrical power during peak demand periods.

Das erfinderische Verfahren sieht vor, dass der Dampfmassenstrom durch die Dampfturbine kurzfristig durch Öffnen eines Überlastventils 40, 42 bzw. eines Turbinen-Bypasses 39, 41 erhöht wird und damit verbunden die Leistung der Dampfturbine 3 schnell ansteigt (Sekundenbereich).The inventive method provides that the steam mass flow is increased by the steam turbine in the short term by opening an overload valve 40, 42 and a turbine bypass 39, 41 and connected to the power of the steam turbine 3 increases rapidly (seconds range).

Die Überlasteinleitung kann erfindungsgemäß sowohl an der Hochdruckturbine 25 zur Anhebung des Frischdampfmassenstroms als auch an der Mitteldruckturbine 27 zur Anhebung des Zwischenüberhitzungs-Dampfmassenstroms als auch vor jeder weiteren Turbinenstufe (z.B. Niederdruck-Turbine 29) genutzt werden.According to the invention, the overload introduction can be utilized both on the high-pressure turbine 25 for raising the live steam mass flow and on the medium-pressure turbine 27 for increasing the reheat steam mass flow as well as before each further turbine stage (for example low-pressure turbine 29).

Alternativ kann die Schluckfähigkeit der Dampfturbine über ein Regelrad 43, 44 an der Hochdruckturbine 25 und/oder der Mitteldruckturbine 27 durch Öffnen zugehöriger Ventile vergrößert werden.Alternatively, the intake capacity of the steam turbine can be increased via a control wheel 43, 44 on the high-pressure turbine 25 and / or the medium-pressure turbine 27 by opening associated valves.

Dabei können Speicherreserven aus allen Druckstufen 32,34,35 des Abhitzedampferzeugers 8 (z.B. auch Mittel- und Niederdrucksystem, falls vorhanden) freigesetzt werden. Durch Anstauen des Trommeldruckes, z.B. durch ein Druckregelventil 46 im Mitteldruckdampfsystem 34, kann dabei das Ausspeichervermögen erhöht werden. Dieser Dampfmassenstromanstieg beruht auf einer Vergrößerung der Schluckfähigkeit der Dampfturbine und einem damit verbundenen Druckabfall im System.Storage reserves can be released from all pressure stages 32, 34, 35 of the heat recovery steam generator 8 (for example also medium and low pressure systems, if present). By accumulating the drum pressure, e.g. by a pressure control valve 46 in the medium-pressure steam system 34, while the Ausspeichervermögen can be increased. This increase in steam mass flow rate is due to an increase in the absorption capacity of the steam turbine and an associated pressure drop in the system.

Dieser Druckabfall führt zu einer Ausspeicherung von thermischen Reserven (Heißwasser, Stahlmassen im Abhitzedampferzeuger) und damit zu einer kurzzeitigen Leistungserhöhung der Dampfturbine, wie die Figuren 2 und 3 für den Leistungsverlauf bei Überlasteinleitung für verschiedene Größenverhältnisse von Frischdampfdruck zu Einleitdruck in Hoch- bzw. Mitteldruckturbine zeigen. Die horizontale Linie zeigt den Wert für den stationären Betrieb.This pressure drop leads to a depletion of thermal reserves (hot water, steel masses in the heat recovery steam generator) and thus to a short-term increase in output of the steam turbine, as the FIGS. 2 and 3 for the performance curve for overload introduction for different size ratios of live steam pressure to inlet pressure in high and medium pressure turbine demonstrate. The horizontal line shows the value for steady state operation.

Da die thermischen Speicherreserven limitiert sind, wird erfindungsgemäß die nachlassende Speicherwirkung entweder durch eine selbstzündende Zusatzfeuerung 45 im Abhitzedampferzeuger 8, eine in kontinuierlichen Mindestlast betriebene Zusatzfeuerung 45 oder durch vorhandene Leistungsreserven in der Gasturbine 2 (Aufdrehen der Verdichterleitschaufeln, Überfeuerung, Dampfeindüsung oder Wassereinspritzung in Verdichter 9 oder Brennkammer 10) kompensiert bzw. weiter erhöht.Since the thermal storage reserves are limited, according to the invention the decreasing storage effect either by a self-igniting supplementary firing 45 in the heat recovery steam generator 8, operated in continuous minimum load additional firing 45 or by existing power reserves in the gas turbine 2 (turning up the compressor vanes, over-firing, steam injection or water injection in the compressor. 9 or combustion chamber 10) compensated or further increased.

Claims (8)

Verfahren zum Betrieb einer Gas- und Dampfturbinenanlage (1) mit einer Gasturbine (2), einer Dampfturbine (3) und einem Abhitzedampferzeuger (8), in dem im Wärmetausch mit Abgas aus der Gasturbine (2) Dampf für die Dampfturbine (3) erzeugbar ist, dadurch gekennzeichnet, dass zur Frequenzstützung im Stromnetz aus einem stationären Betrieb heraus die Schluckfähigkeit der Dampfturbine (3) vergrößert und der Druck im Abhitzedampferzeuger (8) abgesenkt werden, um Speicherreserven im Abhitzedampferzeuger (8) zu einer erhöhten Dampferzeugung zu nutzen, und dass dem Abhitzedampferzeuger (8) so schnell Wärmeenergie zugeführt wird, dass ein Leistungsverlauf der Gas- und Dampfturbinenanlage (1) in Folge der Vergrößerung der Schluckfähigkeit der Dampfturbine (3) und der Druckabsenkung im Abhitzedampferzeuger (8) größer gleich einer unmittelbar zuvor vorhandenen Leistung des stationären Betriebs ist.Method for operating a gas and steam turbine plant (1) with a gas turbine (2), a steam turbine (3) and a heat recovery steam generator (8), in which in heat exchange with exhaust gas from the gas turbine (2) steam for the steam turbine (3) can be generated is characterized in that for frequency support in the power grid from a stationary operation, the capacity of the steam turbine (3) increases and the pressure in the heat recovery steam generator (8) are lowered to use storage reserves in the heat recovery steam generator (8) to increased steam generation, and the heat recovery steam generator (8) heat energy is supplied so quickly that a performance curve of the gas and steam turbine plant (1) as a result of increasing the absorption capacity of the steam turbine (3) and the pressure reduction in the heat recovery steam generator (8) greater than immediately prior existing power of the stationary Operation is. Verfahren nach Anspruch 1, wobei zur Erhöhung der Schluckfähigkeit der Dampfturbine (3) mindestens ein Ventil (40, 42) in einem Bypasskanal (39, 41) zum Umfahren einer Dampfturbinenstufe (25, 27, 29) oder eines Dampfturbinenmoduls geöffnet wird.The method of claim 1, wherein to increase the absorption capacity of the steam turbine (3) at least one valve (40, 42) in a bypass channel (39, 41) for bypassing a steam turbine stage (25, 27, 29) or a steam turbine module is opened. Verfahren nach einem der vorherigen Ansprüche, wobei Dampf über den Bypasskanal (39) stromab eines Hochdruckeinlasses in die Dampfturbine (3) geleitet wird.Method according to one of the preceding claims, wherein steam is passed via the bypass channel (39) downstream of a high-pressure inlet into the steam turbine (3). Verfahren nach einem der vorherigen Ansprüche, wobei Dampf über den Bypasskanal (41) stromab eines Mitteldruckeinlasses in die Dampfturbine (3) geleitet wird.Method according to one of the preceding claims, wherein steam is passed via the bypass channel (41) downstream of a medium-pressure inlet into the steam turbine (3). Verfahren nach einem der vorherigen Ansprüche, wobei zur Erhöhung der Schluckfähigkeit der Dampfturbine (3) mindestens ein Ventil eines Regelrads (43, 44) an einer Hochdruckturbine (25) und / oder einer Mitteldruckturbine (27) geöffnet wird.Method according to one of the preceding claims, wherein to increase the absorption capacity of the steam turbine (3) at least one valve of a control wheel (43, 44) on a high-pressure turbine (25) and / or a medium-pressure turbine (27) is opened. Verfahren nach einem der vorherigen Ansprüche, wobei die Wärmeenergie durch eine Mehrleistung der Gasturbine (2) und somit einen erhöhten Abgasstrom zugeführt wird.Method according to one of the preceding claims, wherein the heat energy is supplied by an additional power of the gas turbine (2) and thus an increased exhaust gas flow. Verfahren nach einem der vorherigen Ansprüche, wobei die Wärmeenergie über eine Zusatzfeuerung (45) zugeführt wird.Method according to one of the preceding claims, wherein the heat energy via an additional firing (45) is supplied. Verfahren nach einem der vorherigen Ansprüche, wobei ein Dampftrommeldruck im stationären Betrieb durch ein Ventil (46) angestaut wird, welches zur Frequenzstützung geöffnet wird.Method according to one of the preceding claims, wherein a steam drum pressure in stationary operation by a valve (46) is accumulated, which is opened for frequency support.
EP11188956.4A 2011-11-14 2011-11-14 Method for operating a gas and steam turbine facility for frequency support Withdrawn EP2592241A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP11188956.4A EP2592241A1 (en) 2011-11-14 2011-11-14 Method for operating a gas and steam turbine facility for frequency support
US14/356,158 US20140345278A1 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine installation for frequency support
IN869KON2014 IN2014KN00869A (en) 2011-11-14 2012-10-30
EP14004089.0A EP2907980A1 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine facility for frequency support
CN201280055971.5A CN104246151B (en) 2011-11-14 2012-10-30 For the method that frequency remains on combustion gas and steam turbine
PCT/EP2012/071478 WO2013072183A2 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance
RU2014124127/06A RU2014124127A (en) 2011-11-14 2012-10-30 METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT
EP12780192.6A EP2798164A2 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance
KR1020147012600A KR20140088145A (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11188956.4A EP2592241A1 (en) 2011-11-14 2011-11-14 Method for operating a gas and steam turbine facility for frequency support

Publications (1)

Publication Number Publication Date
EP2592241A1 true EP2592241A1 (en) 2013-05-15

Family

ID=47115955

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11188956.4A Withdrawn EP2592241A1 (en) 2011-11-14 2011-11-14 Method for operating a gas and steam turbine facility for frequency support
EP12780192.6A Withdrawn EP2798164A2 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance
EP14004089.0A Withdrawn EP2907980A1 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine facility for frequency support

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP12780192.6A Withdrawn EP2798164A2 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance
EP14004089.0A Withdrawn EP2907980A1 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine facility for frequency support

Country Status (7)

Country Link
US (1) US20140345278A1 (en)
EP (3) EP2592241A1 (en)
KR (1) KR20140088145A (en)
CN (1) CN104246151B (en)
IN (1) IN2014KN00869A (en)
RU (1) RU2014124127A (en)
WO (1) WO2013072183A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918796A1 (en) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Steam power plant with steam generator comprising a drum pressure vessel regulator
EP2918797A1 (en) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Method for operating a steam power plant assembly

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (en) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Method for supporting a network frequency
US9243519B2 (en) * 2012-09-06 2016-01-26 General Electric Company Systems and methods for accelerating droop response to frequency variation of an electrical grid in a combined cycle power plant
JP2017044131A (en) * 2015-08-26 2017-03-02 株式会社東芝 Steam turbine equipment
EP3301267A1 (en) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Method and device for operating a turbo set
JP7234266B2 (en) 2018-06-22 2023-03-07 シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for operating a power plant
CN111507011B (en) * 2020-04-26 2020-11-17 国电南京电力试验研究有限公司 Method for correcting influence quantity of heat supply extraction steam on sliding pressure operation of steam turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976914A1 (en) * 1998-07-29 2000-02-02 Asea Brown Boveri AG System and process providing rapid power reserve in combined gas- and steam turbines plants
EP1164254B1 (en) 2000-06-13 2009-04-15 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
US20090277183A1 (en) * 2008-05-12 2009-11-12 Petrobras Energia S.A. Primary frequency regulation method through joint control in combined cycle turbines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031404A (en) * 1974-08-08 1977-06-21 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated
ZA835029B (en) * 1982-09-27 1984-03-28 English Electric Co Ltd Power-generation plant and method
US4578944A (en) * 1984-10-25 1986-04-01 Westinghouse Electric Corp. Heat recovery steam generator outlet temperature control system for a combined cycle power plant
DE10042317A1 (en) * 2000-08-29 2002-03-14 Alstom Power Nv Steam turbine for combined cycle power plant, has quick acting valves in combination with regulating valves, provided in both fresh steam and bypass paths
DE10115131A1 (en) * 2001-03-27 2002-10-17 Alstom Switzerland Ltd Process for the immediate, quick and temporary increase in the output of a combined cycle power plant
AR029828A1 (en) * 2001-07-13 2003-07-16 Petrobras En S A METHOD FOR PRIMARY FREQUENCY REGULATION IN COMBINED CYCLE STEAM TURBINES
WO2006097495A2 (en) * 2005-03-18 2006-09-21 Siemens Aktiengesellschaft Method and device for production of controlled power by means of a combined gas and steam turbine plant
US7608938B2 (en) * 2006-10-12 2009-10-27 General Electric Company Methods and apparatus for electric power grid frequency stabilization
EP2098691B1 (en) * 2008-03-06 2013-07-17 Ansaldo Energia S.P.A. Method for controlling a combined-cycle plant, and combined-cycle plant
EP2136035A1 (en) * 2008-06-16 2009-12-23 Siemens Aktiengesellschaft Operation of a gas and steam turbine plant using a frequency converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976914A1 (en) * 1998-07-29 2000-02-02 Asea Brown Boveri AG System and process providing rapid power reserve in combined gas- and steam turbines plants
EP1164254B1 (en) 2000-06-13 2009-04-15 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
US20090277183A1 (en) * 2008-05-12 2009-11-12 Petrobras Energia S.A. Primary frequency regulation method through joint control in combined cycle turbines

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918797A1 (en) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Method for operating a steam power plant assembly
EP2918796A1 (en) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Steam power plant with steam generator comprising a drum pressure vessel regulator
WO2015135772A1 (en) * 2014-03-13 2015-09-17 Siemens Aktiengesellschaft Steam power installation having a steam generator that comprises a drum-pressure-maintaining fitting

Also Published As

Publication number Publication date
EP2798164A2 (en) 2014-11-05
US20140345278A1 (en) 2014-11-27
KR20140088145A (en) 2014-07-09
IN2014KN00869A (en) 2015-10-02
RU2014124127A (en) 2015-12-27
CN104246151A (en) 2014-12-24
CN104246151B (en) 2016-07-13
WO2013072183A3 (en) 2014-10-02
WO2013072183A2 (en) 2013-05-23
EP2907980A1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
EP2907980A1 (en) Method for operating a gas and steam turbine facility for frequency support
EP1432889B1 (en) Method and device for the starting of emission-free gas turbine power stations
EP2480762B1 (en) Power plant comprising overload control valve
DE10041413B4 (en) Method for operating a power plant
EP2067940B2 (en) Method for operating a combined cycle power plant, and also combined-cycle power plant for carrying out the method
EP1866521B1 (en) Process for starting a gas and steam turbine plant
CH700310A1 (en) Processes for CO2 capture from a combined cycle power plant and combined cycle power plant with a gas turbine with flow separation and recirculation.
DE102010037861A1 (en) Gas turbine with reheat
EP2447506A2 (en) System for generating mechanical and/or electrical energy
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
CH702740B1 (en) System and method for powering up a heat recovery steam generator.
EP2288791B1 (en) Operation of a gas and a steam turbine system by means of a frequency converter
EP1801363A1 (en) Power plant
EP1896697B1 (en) Method of starting up a gas and steam turbine plant
EP0764768A1 (en) Process for operating a power plant
EP1904731B1 (en) Combined gas and steam turbine installation and method of operating same
DE102012110579B4 (en) Plant and process for generating process steam
EP2556218B1 (en) Method for quickly connecting a steam generator
EP2829691A1 (en) Method for operating a combined power generation system
EP0995891B1 (en) Turbomachine and method for its operation
EP2138677A1 (en) Gas and steam turbine array
WO2016062532A1 (en) Method for shortening the start-up process of a steam turbine
DE10307606A1 (en) Power supply plant for power station has take-out device in flow circulation path of gas turbine between last turbine and heat sink
DE102013202111B4 (en) Waste heat utilization and performance increase of gas turbine plants
DE102011078205A1 (en) Auxiliary steam generator as additional frequency or primary and / or secondary control measure in a steam power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131116