RU2014124127A - METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT - Google Patents

METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT Download PDF

Info

Publication number
RU2014124127A
RU2014124127A RU2014124127/06A RU2014124127A RU2014124127A RU 2014124127 A RU2014124127 A RU 2014124127A RU 2014124127/06 A RU2014124127/06 A RU 2014124127/06A RU 2014124127 A RU2014124127 A RU 2014124127A RU 2014124127 A RU2014124127 A RU 2014124127A
Authority
RU
Russia
Prior art keywords
steam
turbine
increase
gas
steam turbine
Prior art date
Application number
RU2014124127/06A
Other languages
Russian (ru)
Inventor
Андреас ПИКАРД
Эрих ШМИД
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2014124127A publication Critical patent/RU2014124127A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/02Use of accumulators and specific engine types; Control thereof
    • F01K3/04Use of accumulators and specific engine types; Control thereof the engine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

1. Способ эксплуатации парогазотурбинной установки (1), содержащей газовую турбину (2), паровую турбину (3) и утилизационный парогенератор (8), который выполнен с возможностью получения в нем пара для паровой турбины (3) путем теплообмена с отработавшим газом газовой турбины (2), отличающийся тем, что для поддержания частоты в электросети при стационарном режиме увеличивают пропускную способность паровой турбины (3) и снижают давление в утилизационном парогенераторе (8) для использования накопительных резервов утилизационного парогенератора (8) для увеличения производства пара, причем в утилизационный парогенератор (8) подают тепловую энергию настолько быстро, что мощностная характеристика парогазотурбинной установки (1) вследствие увеличения пропускной способности паровой турбины (3) и снижения давления в утилизационном парогенераторе (8) превышает имевшуюся непосредственно перед этим мощность в стационарном режиме.2. Способ по п. 1, причем для увеличения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан (40, 42) в байпасном канале (39, 41) для байпасирования ступени (25, 27, 29) паровой турбины или модуля паровой турбины.3. Способ по п. 1 или 2, причем пар подают по байпасному каналу (39) в паровую турбину (3) ниже впускного отверстия высокого давления.4. Способ по п. 1 или 2, причем пар подают по байпасному каналу (41) в паровую турбину (3) ниже впускного отверстия среднего давления.5. Способ по п. 1 или 2, причем для повышения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан регулирующего колеса (43, 44) в турбине (25) высокого давления и/или в турбине (27) среднего давления.6. Способ по1. A method of operating a steam and gas turbine plant (1) containing a gas turbine (2), a steam turbine (3) and a waste steam generator (8), which is configured to produce steam for the steam turbine (3) in it by heat exchange with the exhaust gas of the gas turbine (2), characterized in that in order to maintain the frequency in the power grid in stationary mode, the throughput of the steam turbine (3) is increased and the pressure in the utilization steam generator (8) is reduced to use the storage reserves of the utilization steam generator (8) to increase steam production, and in the utilization the steam generator (8) supplies thermal energy so quickly that the power characteristic of the steam and gas turbine plant (1) due to the increase in the throughput of the steam turbine (3) and the decrease in pressure in the utilization steam generator (8) exceeds the power available immediately before in stationary mode. The method according to claim 1, wherein to increase the throughput of the steam turbine (3), at least one valve (40, 42) is opened in the bypass channel (39, 41) to bypass the steam turbine stage (25, 27, 29) or steam turbine module.3. Method according to claim 1 or 2, wherein the steam is supplied through the bypass channel (39) to the steam turbine (3) below the high pressure inlet. Method according to claim 1 or 2, wherein steam is supplied through the bypass channel (41) to the steam turbine (3) below the medium pressure inlet. The method according to claim 1 or 2, wherein at least one control wheel valve (43, 44) is opened in the high pressure turbine (25) and/or in the medium pressure turbine (27) to increase the throughput of the steam turbine (3). .6. Method according to

Claims (13)

1. Способ эксплуатации парогазотурбинной установки (1), содержащей газовую турбину (2), паровую турбину (3) и утилизационный парогенератор (8), который выполнен с возможностью получения в нем пара для паровой турбины (3) путем теплообмена с отработавшим газом газовой турбины (2), отличающийся тем, что для поддержания частоты в электросети при стационарном режиме увеличивают пропускную способность паровой турбины (3) и снижают давление в утилизационном парогенераторе (8) для использования накопительных резервов утилизационного парогенератора (8) для увеличения производства пара, причем в утилизационный парогенератор (8) подают тепловую энергию настолько быстро, что мощностная характеристика парогазотурбинной установки (1) вследствие увеличения пропускной способности паровой турбины (3) и снижения давления в утилизационном парогенераторе (8) превышает имевшуюся непосредственно перед этим мощность в стационарном режиме.1. A method of operating a steam-gas-turbine installation (1) containing a gas turbine (2), a steam turbine (3) and a recovery steam generator (8), which is configured to receive steam therein for a steam turbine (3) by heat exchange with the exhaust gas of a gas turbine (2), characterized in that to maintain the frequency in the power supply network during stationary mode, increase the capacity of the steam turbine (3) and reduce the pressure in the recovery steam generator (8) to use the storage reserves of the recovery steam generator (8) to increase steam production, and heat energy is supplied to the recovery steam generator (8) so quickly that the power characteristic of the steam-gas-turbine installation (1) due to the increase in the capacity of the steam turbine (3) and pressure reduction in the recovery steam generator (8) exceeds the power available immediately before it in stationary mode. 2. Способ по п. 1, причем для увеличения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан (40, 42) в байпасном канале (39, 41) для байпасирования ступени (25, 27, 29) паровой турбины или модуля паровой турбины.2. The method according to p. 1, and to increase the throughput of the steam turbine (3) open at least one valve (40, 42) in the bypass channel (39, 41) to bypass the stage (25, 27, 29) of the steam turbines or steam turbine modules. 3. Способ по п. 1 или 2, причем пар подают по байпасному каналу (39) в паровую турбину (3) ниже впускного отверстия высокого давления.3. The method according to claim 1 or 2, wherein the steam is supplied via the bypass channel (39) to the steam turbine (3) below the high pressure inlet. 4. Способ по п. 1 или 2, причем пар подают по байпасному каналу (41) в паровую турбину (3) ниже впускного отверстия среднего давления.4. The method according to claim 1 or 2, wherein the steam is supplied via the bypass channel (41) to the steam turbine (3) below the medium pressure inlet. 5. Способ по п. 1 или 2, причем для повышения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан регулирующего колеса (43, 44) в турбине (25) высокого давления и/или в турбине (27) среднего давления.5. The method according to p. 1 or 2, and to increase the capacity of the steam turbine (3) open at least one valve of the control wheel (43, 44) in the turbine (25) high pressure and / or in the turbine (27) medium pressure. 6. Способ по п. 3, причем для повышения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан регулирующего колеса (43, 44) в турбине (25) высокого давления и/или в турбине (27) среднего давления.6. The method according to p. 3, and to increase the throughput of the steam turbine (3) open at least one valve of the control wheel (43, 44) in the turbine (25) high pressure and / or in the turbine (27) medium pressure . 7. Способ по п. 4, причем для повышения пропускной способности паровой турбины (3) открывают, по меньшей мере, один клапан регулирующего колеса (43, 44) в турбине (25) высокого давления и/или в турбине (27) среднего давления.7. The method according to p. 4, and to increase the capacity of the steam turbine (3) open at least one valve of the control wheel (43, 44) in the turbine (25) high pressure and / or in the turbine (27) medium pressure . 8. Способ по любому из пп. 1, 2, 6, 7, причем тепловую энергию подают за счет избыточной мощности газовой турбины (2) и, следовательно, увеличенного потока отработавшего газа.8. The method according to any one of paragraphs. 1, 2, 6, 7, moreover, thermal energy is supplied due to the excess power of the gas turbine (2) and, consequently, the increased flow of exhaust gas. 9. Способ по п. 5, причем тепловую энергию подают за счет избыточной мощности газовой турбины (2) и, следовательно, увеличенного потока отработавшего газа.9. The method according to p. 5, and thermal energy is supplied due to the excess power of the gas turbine (2) and, consequently, the increased flow of exhaust gas. 10. Способ по любому из пп. 1, 2, 6, 7, 9, причем тепловую энергию подают благодаря дополнительной топке (45).10. The method according to any one of paragraphs. 1, 2, 6, 7, 9, and thermal energy is supplied thanks to an additional firebox (45). 11. Способ по п. 8, причем тепловую энергию подают благодаря дополнительной топке (45).11. The method according to p. 8, and thermal energy is supplied through an additional firebox (45). 12. Способ по любому из пп. 1, 2, 6, 7, 9, 11, причем давление пара в барабане в стационарном режиме образуют посредством клапана (46), который открывают для поддержания частоты.12. The method according to any one of paragraphs. 1, 2, 6, 7, 9, 11, moreover, the vapor pressure in the drum in a stationary mode is formed by means of a valve (46), which is opened to maintain the frequency. 13. Способ по п. 10, причем давление пара в барабане в стационарном режиме образуют посредством клапана (46), который открывают для поддержания частоты. 13. The method according to p. 10, wherein the vapor pressure in the drum in a stationary mode is formed by means of a valve (46), which is opened to maintain the frequency.
RU2014124127/06A 2011-11-14 2012-10-30 METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT RU2014124127A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11188956.4 2011-11-14
EP11188956.4A EP2592241A1 (en) 2011-11-14 2011-11-14 Method for operating a gas and steam turbine facility for frequency support
PCT/EP2012/071478 WO2013072183A2 (en) 2011-11-14 2012-10-30 Method for operating a gas and steam turbine system for frequency assistance

Publications (1)

Publication Number Publication Date
RU2014124127A true RU2014124127A (en) 2015-12-27

Family

ID=47115955

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014124127/06A RU2014124127A (en) 2011-11-14 2012-10-30 METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT

Country Status (7)

Country Link
US (1) US20140345278A1 (en)
EP (3) EP2592241A1 (en)
KR (1) KR20140088145A (en)
CN (1) CN104246151B (en)
IN (1) IN2014KN00869A (en)
RU (1) RU2014124127A (en)
WO (1) WO2013072183A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685055A1 (en) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Method for supporting a network frequency
US9243519B2 (en) * 2012-09-06 2016-01-26 General Electric Company Systems and methods for accelerating droop response to frequency variation of an electrical grid in a combined cycle power plant
EP2918797A1 (en) * 2014-03-12 2015-09-16 Siemens Aktiengesellschaft Method for operating a steam power plant assembly
EP2918796A1 (en) * 2014-03-13 2015-09-16 Siemens Aktiengesellschaft Steam power plant with steam generator comprising a drum pressure vessel regulator
JP2017044131A (en) * 2015-08-26 2017-03-02 株式会社東芝 Steam turbine equipment
EP3301267A1 (en) * 2016-09-29 2018-04-04 Siemens Aktiengesellschaft Method and device for operating a turbo set
KR20210021550A (en) * 2018-06-22 2021-02-26 지멘스 악티엔게젤샤프트 How to operate a power plant
CN111507011B (en) * 2020-04-26 2020-11-17 国电南京电力试验研究有限公司 Method for correcting influence quantity of heat supply extraction steam on sliding pressure operation of steam turbine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031404A (en) * 1974-08-08 1977-06-21 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved temperature control of the steam generated
ZA835029B (en) * 1982-09-27 1984-03-28 English Electric Co Ltd Power-generation plant and method
US4578944A (en) * 1984-10-25 1986-04-01 Westinghouse Electric Corp. Heat recovery steam generator outlet temperature control system for a combined cycle power plant
EP0976914B1 (en) * 1998-07-29 2003-02-26 ALSTOM (Switzerland) Ltd System and process providing rapid power reserve in combined gas- and steam turbines plants
US6442924B1 (en) 2000-06-13 2002-09-03 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
DE10042317A1 (en) * 2000-08-29 2002-03-14 Alstom Power Nv Steam turbine for combined cycle power plant, has quick acting valves in combination with regulating valves, provided in both fresh steam and bypass paths
DE10115131A1 (en) * 2001-03-27 2002-10-17 Alstom Switzerland Ltd Process for the immediate, quick and temporary increase in the output of a combined cycle power plant
AR029828A1 (en) * 2001-07-13 2003-07-16 Petrobras En S A METHOD FOR PRIMARY FREQUENCY REGULATION IN COMBINED CYCLE STEAM TURBINES
CN101142375B (en) * 2005-03-18 2010-05-26 西门子公司 Method and device for production of controlled power by means of a combined gas and steam turbine plant
US7608938B2 (en) * 2006-10-12 2009-10-27 General Electric Company Methods and apparatus for electric power grid frequency stabilization
EP2098691B1 (en) * 2008-03-06 2013-07-17 Ansaldo Energia S.P.A. Method for controlling a combined-cycle plant, and combined-cycle plant
AR066539A1 (en) * 2008-05-12 2009-08-26 Petrobras En S A METHOD FOR PRIMARY FREQUENCY REGULATION, THROUGH JOINT CONTROL IN COMBINED CYCLE TURBINES.
EP2136035A1 (en) * 2008-06-16 2009-12-23 Siemens Aktiengesellschaft Operation of a gas and steam turbine plant using a frequency converter

Also Published As

Publication number Publication date
WO2013072183A2 (en) 2013-05-23
EP2798164A2 (en) 2014-11-05
KR20140088145A (en) 2014-07-09
EP2592241A1 (en) 2013-05-15
IN2014KN00869A (en) 2015-10-02
WO2013072183A3 (en) 2014-10-02
CN104246151A (en) 2014-12-24
EP2907980A1 (en) 2015-08-19
US20140345278A1 (en) 2014-11-27
CN104246151B (en) 2016-07-13

Similar Documents

Publication Publication Date Title
RU2014124127A (en) METHOD FOR OPERATING A STEAM-GAS-TURBINE UNIT WITH FREQUENCY SUPPORT
RU2643910C1 (en) Optimized integrated system for hybrid energy generation based on solar energy and biomass energy
RU2532635C2 (en) Electric energy accumulation by thermal accumulator and reverse electric energy production by thermodynamic cyclic process
MX2012007464A (en) Waste heat driven desalination process.
JP5555276B2 (en) Gas turbine engine device equipped with Rankine cycle engine
CN104405599A (en) Fuel gas-supercritical carbon dioxide united power electricity generation system utilizing solar energy
RU2010133532A (en) CO2 CAPACITION POWER PLANT
WO2013038423A3 (en) Combined cooling/heating and power generation system utilizing sustainable energy
RU2014107403A (en) COMBINED CYCLE CONTROL METHOD
CN103967544A (en) Waste heat utilization system of gas-steam combined cycle generator set
RU2014108590A (en) METHOD FOR STARTING AND OPERATION OF A COMBINED CYCLE POWER PLANT
CN102588020B (en) Solar power generation and thermal power generation combined turbine-generator unit and realizing method
CN103075216A (en) Brayton-cascade steam Rankine combined cycle power generation system
CN107702086B (en) Peak regulating system and method for storing heat by using molten salt
RU2014106649A (en) METHOD FOR ENSURING FREQUENCY CHARACTERISTICS OF STEAM-GAS POWER PLANT
JP6243700B2 (en) Combined cycle power plant with absorption heat converter
RU2547828C1 (en) Steam-gas unit of two-circuit nuclear power plant
RU2605878C1 (en) Turbo-expansion system of heat utilization of circulating water on condensation units of steam turbines of thermal power station
RU2015127469A (en) METHOD FOR CONTROL OF HEAT ELECTRIC POWER STATION WITH THE help OF CONTROL VALVES
RU2443871C2 (en) Peak hydrogen steam turbine plant
WO2011080576A3 (en) Combined-cycle plant for the production of electric and thermal energy and method for operating said plant
RU2489574C1 (en) Steam and gas plant based on npp
RU2013102139A (en) CONDENSER COOLING SYSTEM AND METHOD AND COMBINED CYCLE ENERGY GENERATION SYSTEM
RU147509U1 (en) THERMAL POWER PLANT
RU2012149900A (en) COGENERATION GAS-TURBINE POWER INSTALLATION

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20161212