EP1934434A2 - Method for heating a steam turbine - Google Patents

Method for heating a steam turbine

Info

Publication number
EP1934434A2
EP1934434A2 EP06793858A EP06793858A EP1934434A2 EP 1934434 A2 EP1934434 A2 EP 1934434A2 EP 06793858 A EP06793858 A EP 06793858A EP 06793858 A EP06793858 A EP 06793858A EP 1934434 A2 EP1934434 A2 EP 1934434A2
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
pressure turbine
turbine section
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06793858A
Other languages
German (de)
French (fr)
Other versions
EP1934434B1 (en
Inventor
Henri Diesterbeck
Edwin Gobrecht
Karsten Peters
Rainer Quinkertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06793858.9A priority Critical patent/EP1934434B1/en
Priority to PL06793858T priority patent/PL1934434T3/en
Publication of EP1934434A2 publication Critical patent/EP1934434A2/en
Application granted granted Critical
Publication of EP1934434B1 publication Critical patent/EP1934434B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type
    • F01K7/20Control means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • F01K7/24Control or safety means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for warming up a steam turbine, the steam turbine comprising a high-pressure Operatur ⁇ bine and a medium-pressure and / or low-pressure turbine part, wherein the high-pressure turbine part is coupled on the input side via a steam line to a steam generator fluidly, wherein between the high-pressure turbine section and the medium-pressure turbine section a steam valve is arranged, wherein the high-pressure turbine section, the main steam line and the steam generator are heated in parallel.
  • the values for the starting temperature, the starting pressure and the starting quality of the steam are selected so that after the To ⁇ drive the steam turbine a no-load operation or a load ranges ⁇ operating at low load for the steam turbine feasible. Until the start of the actual start-up procedure, these parameters must be stable. Depending on the type of power plant and boiler design or size of the power plant, this can take around 1 to 3 hours regularly. When starting up from a cold machine condition, the application of hot steam regularly results in high material loads due to the thermal expansion stresses that occur. Today typically ER follows a metrological monitoring of hillsdeh ⁇ voltage stresses. There is an increased interest in shortening the start times for such a steam turbine plant in order to thereby fulfill the cost-effectiveness of the steam turbine plant or of a power plant equipped therewith.
  • the vapor space above a body of soil or condensate has taken up the largest possible amount of molecules for an existing equilibrium temperature: this vapor is called saturated steam, dry steam or saturated steam.
  • a method for operating steam turbines with an intermediate superheating of the effluent from the high-pressure turbine section and flowing into a medium-pressure turbine section steam are known.
  • reheating the tempera ⁇ ture is the steam that has done work already in the high-pressure part of a steam turbine, again increased and thus the comparable increases available slope before the steam enters the low - pressure ⁇ part of the turbine. This increases the efficiency of the system.
  • the invention has the object to accelerate the warm-up of a cooled steam turbine.
  • the object is achieved by a method for warming up a steam turbine, wherein the steam turbine comprises a high pressure turbine section and an intermediate-pressure turbine and / or low ⁇ -pressure turbine section, said high-pressure turbine section coupled on the input side via a steam pipe to a Steamer generators fluidically is, wherein the high-pressure turbine and the intermediate-pressure turbine, a steam valve is arranged, wherein the high-pressure Operatur ⁇ bine, the steam line and the steam generator to be warmed at the same time, the method comprising the steps environmentally sandwiched between:
  • the invention is based, inter alia, on the aspect that it does not appear necessary to simultaneously flow the steam turbine comprising the high-pressure, medium-pressure and low-pressure steam turbine sections with steam of sufficiently good quality.
  • the high-pressure turbine part can be supplied with a steam of insufficiently good quality, such as the conductivity, when the method steps according to the invention are taken into account.
  • the initial opening of the steam valves is dependent on the conductivity of the Damp ⁇ fes, the overheating and the absolute temperatures of the steam.
  • the steam must have a certain quality.
  • a vapor of inadequate quality can lead to increased corrosion stress due to aggressive impurities which, for example in the region of an incipient wetness, is unfavorable to a flexural fatigue strength of the blade mechanism. Substances.
  • the problem of insufficient steam quality is directed to the low-pressure turbine section, since particularly high utilization of the power amplifiers takes place here.
  • the high-pressure turbine section can be supplied with a vapor which has a lower conductivity than a steam, which is applied to the low-pressure turbine section.
  • the heating of the entire steam turbine begins, measured in the prior art, only at a sufficient conductivity of the steam.
  • the invention proposes to preheat the high-pressure turbine section together with the live steam lines and the steam generator in a closed medium-pressure and / or low-pressure turbine.
  • An essential aspect of the invention is, on the one hand, that steam with comparatively high electrical conductivity is permitted for preheating the high-pressure turbine section and, on the other hand, that the back pressure at the outlet of the high-pressure turbine section is increased at the beginning of a preheating phase and before a subsequent ramp-up to rated speeds is lowered again.
  • This steam initially flows through the high ⁇ pressure turbine section.
  • the pressure of the steam at the outlet of the high pressure turbine section ⁇ is increased. This is achieved, for example, with a flap arranged between the high-pressure and medium-pressure turbine sections, or a valve which can be partially or completely closed.
  • FIG. 1 shows a schematic representation of a steam turbine comprising a high-pressure, medium-pressure and low-pressure turbine part
  • FIG. 2 shows a schematic representation of an alternative steam turbine comprising a high-pressure, medium-pressure and low-pressure turbine part.
  • the high-pressure turbine part 2 comprises at least two live steam lines 5, wherein 5 valves 6 are arranged in a main steam line.
  • the valves 6 are designed to regulate the flow of a steam flowing through the main steam line 5.
  • the live steam is generated in a steam generator or boiler, not shown.
  • the steam generated in the steam generator passes through the main steam line 5 and the valves 6 in the high-pressure turbine section 2, where it is relaxed and then flows out of the high-pressure turbine section 2 at the output 7.
  • a Abdampflei- tung reaches 8 of the expanded steam at an unspecified represents ⁇ reheater placed and is heated there to a higher temperature and subsequently at least flowed an With ⁇ telbert input line 9 in the intermediate pressure turbine section 3 via.
  • the steam to a lower temperature and a low pressure is released and flows on the output side 10 of the medium-pressure part ⁇ turbine 3 out and 4 is through a conduit 11 into the low-pressure turbine section in the low-pressure turbine section 4 of the Steam continues to relax.
  • the temperature of the vapor increases as ⁇ off at on.
  • Via output lines 12 the steam finally flows out of the steam turbine and is guided to a capacitor, not shown.
  • the preparatory required steam flow occurs during the operating phase with intended ⁇ KISSING of the steam turbine 1. After a stoppage of more than 48 hours is the steam turbine 1 in a starting ⁇ cooled state.
  • the shafts and other thick-walled construction ⁇ parts in the steam turbine 1 have to be preheated controlled before application or being exposed to hot, fresh steam to unacceptable stresses to prevent in the components.
  • the first opening of the valves 6 is dependent on the conductivity of the steam, the overheating and the Abso ⁇ lut manuscript such.
  • the method for warming up the steam turbine 1 is carried out as described below.
  • the steam turbine 1 comprises a high-pressure turbine part 2 and a medium-pressure 3 and / or never ⁇ dertik turbine part 4. Between the high-pressure turbine section 2 and the medium-pressure turbine section 3 at least one HD-MD valve 14 is arranged.
  • the high-pressure turbine section 2, the main steam line 5 and the steam generator are warmed up at the same time.
  • the backpressure on the output side 7 of the high-pressure turbine section is increased. This can be done by closing the arranged between the high-pressure and medium-pressure turbine section steam valve 14.
  • the number of revolutions of the rotor of the high pressure turbine section 2 is controlled to a value below the nominal speed ⁇ . It has been found that values for the number of revolutions of the rotor for the preheating of the high pressure Sub-turbine should be best between 100 to 1000 rev / min.
  • the counter-pressure prevailing on the outlet side 7 is lowered as soon as the conductivity of the steam generated in the steam generator falls below a limit value of 0.2 to 0.5 ⁇ Siemens / cm. And the lowering of the back pressure can be done by opening the steam valves 14.
  • the rated speed is 3000 U / m or 3600 U / m, depending on which mains frequency - 50 Hz or 60 Hz - the AC mains is operated.
  • the rated speed may be 1500 rpm. In any case, it is important that in step d) the number of revolutions of the rotor clearly, d. H. is many times lower than the rated speed.
  • the steam turbine 1 Comprises a high-pressure turbine section 2' and a medium-pressure and low-pressure turbine section 3 'constructed as a compact unit.
  • the medium-pressure and low-pressure turbine section is also known as the E-turbine part.
  • An essential difference to the embodiment of the steam turbine shown in FIG. 1 is that the steam turbine 1 'shown in FIG. 2 does not comprise an overflow line 11.
  • the operation of the procedural ⁇ Rens, based on the embodiment shown in FIG 2 the steam turbine is in this case almost identical to the nen to the descriptions in FIG 1 ⁇ steam turbine.
  • the steam turbine 1 in FIG. 1 comprises two sub-turbines, one of which has a medium-pressure turbine section 3 and the other a low-pressure turbine section. Partial turbine 4 is. Whereas in the illustrated in Figure 2 Darge ⁇ sub-turbine 3 'includes both the medium-pressure and the low-pressure turbine section in a single housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)

Abstract

The invention relates to a method for heating a steam turbine (1) comprising a high-pressure turbine section (2) and a medium-pressure turbine section (3) and/or a low-pressure turbine section (4). Said method is characterized by the essential aspect that the high-pressure turbine section (2) is impinged upon by steam having relatively great conductivity while the medium-pressure turbine section (3) or the low-pressure turbine section (4) remains closed during said impingement following a cold start. As soon as the conductivity drops below a certain value, the medium-pressure turbine section (3) or the low-pressure turbine section (4) is also impinged upon by steam.

Description

Beschreibungdescription
Verfahren zum Aufwärmen einer DampfturbineProcess for warming up a steam turbine
Die Erfindung betrifft ein Verfahren zum Aufwärmen einer Dampfturbine, wobei die Dampfturbine eine Hochdruck-Teiltur¬ bine und eine Mitteldruck- und/oder eine Niederdruck-Teilturbine umfasst, wobei die Hochdruck-Teilturbine eingangsseitig über eine Frischdampfleitung an einem Dampferzeuger strömungstechnisch angekoppelt wird, wobei zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine ein Dampf- Ventil angeordnet wird, wobei die Hochdruck-Teilturbine, die Frischdampfleitung und der Dampferzeuger parallel aufgewärmt werden.The invention relates to a method for warming up a steam turbine, the steam turbine comprising a high-pressure Teiltur ¬ bine and a medium-pressure and / or low-pressure turbine part, wherein the high-pressure turbine part is coupled on the input side via a steam line to a steam generator fluidly, wherein between the high-pressure turbine section and the medium-pressure turbine section a steam valve is arranged, wherein the high-pressure turbine section, the main steam line and the steam generator are heated in parallel.
Bei Kraftwerken, die zur Stromerzeugung mit einer Dampfturbinenanlage ausgestattet sind, kann es in Abhängigkeit des ak¬ tuellen Strombedarfs erforderlich sein, eine einzelne Dampf- turbine oder mehrere Dampfturbinen abzuschalten und bedarfsabhängig wieder zuzuschalten. Ein schnelles Starten der jeweiligen Dampfturbinenanlage ist hierbei von entscheidender Bedeutung. Dies gilt insbesondere für längere Stillstandszei¬ ten, insbesondere nach einem Kaltstart und nach einem Warm- Start, z.B. nach einem Wochenendstillstand. Gemäß dem Stand der Technik wird während des Startvorgangs zunächst ein Dampferzeuger hochgefahren bzw. erwärmt, um die Dampftemperatur und den Dampfdruck zu erhöhen. Sobald für den Dampf eine vorbestimmte Starttemperatur und ein vorbestimmter Startdruck sowie eine vorbestimmte Startqualität stabil vorliegen, wird ein Anfahrverfahren zum Anfahren der Dampfturbine gestartet. Hierzu werden u. a. Frischdampfventile mehr oder weniger stark geöffnet. Dabei sind die Werte für die Starttemperatur, den Startdruck und die Startqualität des Dampfes so gewählt, dass nach dem Anfahren der Dampfturbine ein Leerlaufbetrieb oder ein Lastbetrieb mit geringer Last für die Dampfturbine realisierbar ist. Der Dampf weist hierbei eine Leitfähigkeit auf, dessen Werte innerhalb eines vorgegebenen Bereiches lie- gen müssen, um Schäden durch verunreinigten Dampf an der Dampfturbine zu vermeiden.In power plants that are equipped to generate electricity with a steam turbine system, it may be necessary depending on the ac ¬ cient power requirement, off a single steam turbine or more steam turbines and switch back on demand. A quick start of each steam turbine plant is crucial here. This applies in particular to longer standstill times , in particular after a cold start and after a warm start, eg after a weekend shutdown. According to the prior art, during the starting process, first a steam generator is raised or heated in order to increase the steam temperature and the steam pressure. As soon as a predetermined starting temperature and a predetermined starting pressure as well as a predetermined starting quality for the steam are stable, a starting method for starting the steam turbine is started. For this purpose, main steam valves are opened more or less strongly. In this case, the values for the starting temperature, the starting pressure and the starting quality of the steam are selected so that after starting the steam turbine an idling operation or a load operation with a low load for the steam turbine can be realized. The vapor in this case has a conductivity whose values lie within a predetermined range. conditions to prevent damage from contaminated steam at the steam turbine.
Beim Anfahren einer Dampfturbinenanlage wird deswegen die Leitfähigkeit des Dampfes fortwährend ermittelt und erst wenn der Dampf einen gewissen Grenzwert unterschritten hat, lässt man ihn in die Dampfturbine einströmen.When starting a steam turbine plant, therefore, the conductivity of the steam is continuously determined and only when the steam has fallen below a certain limit, it is allowed to flow into the steam turbine.
Die Werte für die Starttemperatur, den Startdruck und die Startqualität des Dampfes sind so gewählt, dass nach dem An¬ fahren der Dampfturbine ein Leerlaufbetrieb oder ein Lastbe¬ trieb mit geringer Last für die Dampfturbine realisierbar ist. Bis zum Start des eigentlichen Anfahrverfahrens müssen diese Parameter stabil vorliegen. Je nach Kraftwerkstyp und Kesselbauart oder Kraftwerksgröße können hierbei regelmäßig etwa 1 bis 3 Stunden vergehen. Beim Anfahren aus einem kalten Maschinenzustand werden durch die Beaufschlagung mit heißem Dampf regelmäßig hohe Materialbelastungen durch die auftretenden Wärmedehnungsspannungen erreicht. Typischerweise er- folgt heute eine messtechnische Überwachung der Wärmedeh¬ nungsspannungen. Es besteht dabei ein erhöhtes Interesse, die Startzeiten für eine solche Dampfturbinenanlage zu verkürzen, um dadurch die Wirtschaftlichkeit der Dampfturbinenanlage bzw. eines damit ausgestatteten Kraftwerks zu erfüllen.The values for the starting temperature, the starting pressure and the starting quality of the steam are selected so that after the To ¬ drive the steam turbine a no-load operation or a load ranges ¬ operating at low load for the steam turbine feasible. Until the start of the actual start-up procedure, these parameters must be stable. Depending on the type of power plant and boiler design or size of the power plant, this can take around 1 to 3 hours regularly. When starting up from a cold machine condition, the application of hot steam regularly results in high material loads due to the thermal expansion stresses that occur. Today typically ER follows a metrological monitoring of Wärmedeh ¬ voltage stresses. There is an increased interest in shortening the start times for such a steam turbine plant in order to thereby fulfill the cost-effectiveness of the steam turbine plant or of a power plant equipped therewith.
Das Anfahrverfahren wird üblicherweise nur dann gestartet, wenn für den Dampf eine vorbestimmte Startqualität, insbeson¬ dere hinsichtlich Reinheit und pH-Wert vorliegt. Vorzugsweise wird auch das Vorwärmverfahren nur dann gestartet, wenn der Dampf eine vorbestimmte Vorwärmqualität aufweist, wobei die Startqualität höher ist als die Vorwärmqualität. Der Aufwand zur Erzielung einer hohen Dampfqualität ist relativ hoch.The start-up procedure is usually started only when particular in terms of purity for the steam a predetermined starting quality, insbeson ¬ and pH is present. Preferably, the preheating process is only started when the steam has a predetermined preheating quality, wherein the starting quality is higher than the preheating quality. The effort to achieve a high steam quality is relatively high.
Unter einer Dampfturbine im Sinne der vorliegenden Anmeldung wird eine Dampfturbine verstanden, die mehrere Teilturbinen umfassen kann. Die Teilturbinen können hierbei für verschiedene Dampfparameter wie z. B. Temperatur und Druck ausgelegt sein. Bekannt sind hierbei Hochdruck-, Mitteldruck- und Nie- derdruck-Teilturbinen . In die Hochdruck-Teilturbine strömt in der Regel überhitzter Dampf, der eine Temperatur bis zu 62O0C aufweisen kann. Darüber hinaus kann dieser überhitzte Dampf einen Druck bis zu 300 bar aufweisen. Der überhitzte Dampf wird auch als Heißdampf bezeichnet. Wird Sattdampf von einem Bodenkörper oder Kondensat getrennt und bei gleich bleibendem Druck erhitzt, so wird der Dampf zunehmend ungesättigter. Dieser Dampf wird als Heißdampf oder überhitzter Dampf bezeichnet .For the purposes of the present application, a steam turbine is understood to mean a steam turbine which may comprise a plurality of partial turbines. The sub-turbines can be used for different steam parameters such. B. be designed temperature and pressure. High-pressure, medium-pressure and low-pressure derdruck sub-turbines. In the high-pressure turbine section usually superheated steam flows, which may have a temperature up to 62O 0 C. In addition, this superheated steam can have a pressure of up to 300 bar. The superheated steam is also called superheated steam. If saturated steam is separated from a body of soil or condensate and heated at a constant pressure, the steam becomes increasingly more unsaturated. This steam is called superheated steam or superheated steam.
Der Dampfraum über einem Bodenkörper oder Kondensat hat für eine vorliegende Gleichgewichtstemperatur die größtmögliche Menge an Molekülen aufgenommen: Dieser Dampf wird als Sattdampf, Trockendampf oder gesättigter Dampf bezeichnet.The vapor space above a body of soil or condensate has taken up the largest possible amount of molecules for an existing equilibrium temperature: this vapor is called saturated steam, dry steam or saturated steam.
Eine Mitteldruck-Teilturbine hingegen ist derart ausgebildet, dass der entspannte Dampf aus einer Hochdruck-Teilturbine in einen Zwischenüberhitzer gelangt, wobei in dem Zwischenüberhitzer die Temperatur des Dampfes erhöht wird, und anschlie- ßend in die Mitteldruck-Teilturbine strömt. Die Temperatur des Dampfes, der in die Mitteldruck-Teilturbine liegt hierbei bei ca. 6000C und weist eine Temperatur von ca. 80 bar auf. Der aus der Mitteldruckteilturbine ausströmende Dampf wird schließlich zu einer Niederdruck-Teilturbine geführt.By contrast, a medium-pressure turbine section is designed such that the expanded steam passes from a high-pressure turbine section into a reheater, wherein the temperature of the steam is increased in the reheater, and then flows into the medium-pressure turbine section. The temperature of the steam, which lies in the medium-pressure turbine section at about 600 0 C and has a temperature of about 80 bar. The effluent from the medium-pressure turbine section steam is finally passed to a low-pressure turbine section.
Die Unterteilung in Hochdruck-, Mitteldruck- und Niederdruck- Teilturbinen wird in der Fachwelt nicht einheitlich verwendet. So können die Dampfparameter wie z. B. Temperatur und Druck nicht als einziges Unterscheidungskriterium zwischen einer Hochdruck-, Mitteldruck- und Niederdruck-Teilturbinen verwendet werden.The subdivision into high-pressure, medium-pressure and low-pressure sub-turbines is not uniformly used in the art. So the steam parameters such. As temperature and pressure are not used as the only distinguishing criterion between a high-pressure, medium-pressure and low-pressure turbine sections.
Verfahren zum Betrieb von Dampfturbinen mit einer Zwischen- überhitzung des aus der Hochdruck-Teilturbine ausströmenden und in eine Mitteldruck-Teilturbine einströmenden Dampfes sind bekannt. Durch die Zwischenüberhitzung wird die Tempera¬ tur des Dampfes, der schon im Hochdruckteil einer Dampfturbine Arbeit geleistet hat, wieder erhöht und somit das ver- fügbare Gefälle vergrößert, ehe der Dampf in den Niederdruck¬ teil der Turbine gelangt. Dadurch wird der Wirkungsgrad der Anlage erhöht.A method for operating steam turbines with an intermediate superheating of the effluent from the high-pressure turbine section and flowing into a medium-pressure turbine section steam are known. By reheating the tempera ¬ ture is the steam that has done work already in the high-pressure part of a steam turbine, again increased and thus the comparable increases available slope before the steam enters the low - pressure ¬ part of the turbine. This increases the efficiency of the system.
Ein weiterer Vorteil des Betriebes von Dampf- oder Kombi¬ kraftwerken mit Zwischenüberhitzung des Dampfes besteht darin, dass durch die Zwischenüberhitzung die Endnässe des Dampfes in den Endstufen der Turbine vermindert und dadurch die strömungstechnische Güte und die Lebensdauer verbessert wird.Another advantage of the operation of steam or combined ¬ power plants with reheating of the steam is that reduced by the reheating the end-to-end of the steam in the final stages of the turbine and thereby the fluid quality and the life is improved.
Zwischenüberhitzung wird bei Dampfturbinen dann angewendet, wenn der Dampf bei der Expansion in der Maschine zu nass wird. Der Dampf wird dann nach Durchströmen einer Anzahl von Stufen aus der Turbine heraus zum Zwischenüberhitzer geleitet und danach erneut der Turbine zugeführt. Bei sehr hohen Druckgefällen wird eine mehrfache Zwischenüberhitzung angewendet, um in der Letztstufe keine zu große Dampfnässe zu er¬ halten .Reheat is used on steam turbines when the steam gets too wet during expansion in the machine. The steam is then passed out of the turbine to the reheater after passing through a number of stages, and then returned to the turbine. At very high pressure gradients, a multiple reheat is used to hold in the final stage not too large vapor wet it to ¬ .
Der Erfindung liegt die Aufgabe zugrunde, das Aufwärmen einer abgekühlten Dampfturbine zu beschleunigen.The invention has the object to accelerate the warm-up of a cooled steam turbine.
Die Aufgabe wird gelöst durch ein Verfahren zum Aufwärmen einer Dampfturbine, wobei die Dampfturbine eine Hochdruck- Teilturbine und eine Mitteldruck-Teilturbine und/oder Nieder¬ druck-Teilturbine umfasst, wobei die Hochdruck-Teilturbine eingangsseitig über eine Frischdampfleitung an einem Dampfer- zeuger strömungstechnisch angekoppelt wird, wobei zwischen der Hochdruck-Teilturbine und der Mitteldruck-Teilturbine ein Dampf-Ventil angeordnet wird, wobei die Hochdruck-Teiltur¬ bine, die Frischdampfleitung und der Dampferzeuger zeitgleich aufgewärmt werden, wobei das Verfahren folgende Schritte um- fasst:The object is achieved by a method for warming up a steam turbine, wherein the steam turbine comprises a high pressure turbine section and an intermediate-pressure turbine and / or low ¬-pressure turbine section, said high-pressure turbine section coupled on the input side via a steam pipe to a Steamer generators fluidically is, wherein the high-pressure turbine and the intermediate-pressure turbine, a steam valve is arranged, wherein the high-pressure Teiltur ¬ bine, the steam line and the steam generator to be warmed at the same time, the method comprising the steps environmentally sandwiched between:
a) Erhöhung eines ausgangsseitigen Gegendrucks der Hochdruck- Teilturbine, b) Öffnen eines vor dem Eingang der Hochdruck-Teilturbine an¬ geordneten Ventils, sobald die Leitfähigkeit des im Dampf¬ erzeuger erzeugten Dampfes einen Toleranzwert unterschrei¬ tet, c) Schließen des zwischen der Hochdruck- und Mitteldruck- Teilturbine angeordneten Dampf-Ventils, d) Regeln der Umdrehungszahl des Rotors der Hochdruck-Teil¬ turbine auf einen Wert unter der Nenndrehzahl, e) Absenken des Gegendrucks, sobald die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes einen Grenzwert unterschreitet, wobei der Grenzwert kleiner ist als dera) increasing an output-side counter-pressure of the high-pressure turbine section, b) opening a) closing prior to the input of the high-pressure turbine part on ¬ parent valve as soon as the conductivity of the steam ¬ generator steam generated tet a tolerance value falls ¬ c of which is arranged between the high pressure and medium-pressure part-turbine steam-valve d ) Regulating the number of revolutions of the rotor of the high-pressure part ¬ turbine to a value below the rated speed, e) lowering the back pressure as soon as the conductivity of the steam generated in the steam generator falls below a limit, wherein the limit value is smaller than that
Toleranzwert , f) Aufwärmen der Mitteldruck- und/oder Niederdruck-Teilturbine mit dem vom Dampferzeuger erzeugten Dampf, dessen Leitfähigkeit unter dem Grenzwert liegt, durch Öffnen des Dampf-Ventils .Tolerance value, f) warming up the medium-pressure and / or low-pressure turbine section with the steam generated by the steam generator whose conductivity is below the limit by opening the steam valve.
Die Erfindung geht u. a. von dem Aspekt aus, dass es nicht notwendig erscheint, die Hochdruck-, Mitteldruck- und Niederdruckdampf-Teilturbine umfassende Dampfturbine gleichzeitig mit einem Dampf mit hinreichend guter Qualität zu beströmen. So ist es ein Aspekt dieser Erfindung, dass die Hochdruck- Teilturbine mit einem Dampf mit nicht hinreichend guter Qualität, wie zum Beispiel der Leitfähigkeit, beaufschlagt werden kann, wenn die erfindungsgemäßen Verfahrensschritte berücksichtigt werden. Nach einem Kaltstart beginnt das Auf¬ wärmen der Dampfturbine mit einem entsprechenden Druckaufbau in der Frischdampfleitung. Die Frischdampfleitung wird meist gleichzeitig mit dem Dampferzeuger vorgewärmt. Der Dampfer¬ zeuger wird auch als Kessel bezeichnet. Das erstmalige Öffnen der Dampfventile ist abhängig von der Leitfähigkeit des Damp¬ fes, der Überhitzung und den Absoluttemperaturen des Dampfes. Der Dampf muss hierbei eine gewisse Qualität aufweisen. Ein Dampf mit unzureichender Qualität kann durch aggressive Verunreinigungen zu einer erhöhten Korrosionsbeanspruchung führen, die sich z.B. im Bereich einer beginnenden Dampfnässe ungünstig auf eine Biegewechselfestigkeit der Schaufelwerk- Stoffe auswirkt. Allerdings ist das Problem der ungenügenden Dampfqualität auf die Niederdruck-Teilturbine gerichtet, da hier besonders hohe Auslastungen der Endstufen erfolgen. Die Hochdruck-Teilturbine kann im Vergleich zur Niederdruck-Teil- turbine mit einem Dampf beaufschlagt werden, der eine schlechtere Leitfähigkeit aufweist als ein Dampf, mit dem die Niederdruck-Teilturbine beaufschlagt wird.The invention is based, inter alia, on the aspect that it does not appear necessary to simultaneously flow the steam turbine comprising the high-pressure, medium-pressure and low-pressure steam turbine sections with steam of sufficiently good quality. Thus, it is an aspect of this invention that the high-pressure turbine part can be supplied with a steam of insufficiently good quality, such as the conductivity, when the method steps according to the invention are taken into account. After a cold start, the on ¬ starts warming of the steam turbine with a corresponding pressure build-up in the steam line. The main steam line is usually preheated simultaneously with the steam generator. The steamer ¬ generator is also referred to as boiler. The initial opening of the steam valves is dependent on the conductivity of the Damp ¬ fes, the overheating and the absolute temperatures of the steam. The steam must have a certain quality. A vapor of inadequate quality can lead to increased corrosion stress due to aggressive impurities which, for example in the region of an incipient wetness, is unfavorable to a flexural fatigue strength of the blade mechanism. Substances. However, the problem of insufficient steam quality is directed to the low-pressure turbine section, since particularly high utilization of the power amplifiers takes place here. In comparison with the low-pressure turbine part, the high-pressure turbine section can be supplied with a vapor which has a lower conductivity than a steam, which is applied to the low-pressure turbine section.
Das Anwärmen der gesamten Dampfturbine beginnt, gemessen am Stand der Technik, erst bei einer ausreichenden Leitfähigkeit des Dampfes. Wohingegen erfindungsgemäß vorgeschlagen wird, die Hochdruck-Teilturbine zusammen mit den Frischdampfleitungen und dem Dampferzeuger bei einer geschlossenen Mitteldruck- und/oder Niederdruckturbine vorzuwärmen.The heating of the entire steam turbine begins, measured in the prior art, only at a sufficient conductivity of the steam. Whereas the invention proposes to preheat the high-pressure turbine section together with the live steam lines and the steam generator in a closed medium-pressure and / or low-pressure turbine.
Da für Hochdruck-Teilturbinen vergleichsweise niedrige Anforderungen an die Leitfähigkeit des Dampfes gestellt werden, kann bereits bei hohen Leitfähigkeiten mit der Beströmung begonnen werden. Dafür wird das vor der Mitteldruck-Teilturbine angeordnete Dampfventil geschlossen. Damit kann ein Gegen¬ druck am Ausgang der Hochdruck-Teilturbine erzeugt werden, der im Rahmen von zulässigen Werten nahezu beliebig angehoben werden kann. Dadurch erfolgt eine Aufwärmung mit hoher Kondensationswärme .Since comparatively low demands are placed on the conductivity of the steam for high-pressure turbine sections, the flow can begin even at high conductivities. For this purpose, the steam valve arranged in front of the medium-pressure turbine section is closed. Thus, a counter ¬ pressure at the output of the high-pressure turbine section can be generated, which can be raised almost arbitrarily within the limits of allowable values. This causes a warm-up with high heat of condensation.
Ein wesentlicher Aspekt der Erfindung ist zum einen, dass Dampf mit vergleichsweise hoher elektrischer Leitfähigkeit zum Vorwärmen der Hochdruck-Teilturbine zugelassen wird und zum anderen, dass der Gegendruck am Ausgang der Hochdruck- Teilturbine zu Beginn einer Vorwärmphase erhöht wird und vor einem anschließenden Hochfahren auf Nenndrehzahlen wieder abgesenkt wird. Dieser Dampf strömt zunächst durch die Hoch¬ druck-Teilturbine. Der Druck des Dampfes am Ausgang der Hoch¬ druck-Teilturbine wird erhöht. Dies wird beispielsweise mit einer zwischen der Hochdruck- und Mitteldruck-Teilturbine angeordneten Klappe oder einem Ventil, die bzw. das teilweise oder ganz geschlossen werden kann, erreicht. Durch die Erhöhung des Drucks wird der Wärmeübergang des Dampfes auf die dickwandigen Bauteile der Hochdruck-Teilturbine verbessert. Der durchströmende Dampf wird sozusagen am Ausgang gestaut, wodurch ein schnelles Erwärmen der Hochdruck-Teilturbine er¬ folgt. Dadurch wird die Sättigungstemperatur des Dampfes auf höhere Werte verschoben.An essential aspect of the invention is, on the one hand, that steam with comparatively high electrical conductivity is permitted for preheating the high-pressure turbine section and, on the other hand, that the back pressure at the outlet of the high-pressure turbine section is increased at the beginning of a preheating phase and before a subsequent ramp-up to rated speeds is lowered again. This steam initially flows through the high ¬ pressure turbine section. The pressure of the steam at the outlet of the high pressure turbine section ¬ is increased. This is achieved, for example, with a flap arranged between the high-pressure and medium-pressure turbine sections, or a valve which can be partially or completely closed. By increasing the pressure, the heat transfer of the steam to the thick-walled components of the high pressure turbine part improved. The steam flowing through is so to speak stowed at the output, whereby a rapid heating of the high-pressure turbine section he follows ¬ . As a result, the saturation temperature of the steam is shifted to higher values.
Die Schritte a) und c) können deswegen vertauscht werden.The steps a) and c) can therefore be reversed.
Bei einer Sättigung (Kondensation) können Wärmeübergangszahlen von ca. 5000 W/ (m2K) erreicht werden, wobei bei überhitz- ten Zuständen (Konvektion) lediglich Wärmeübergangszahlen von ca. 150 W/ (m2K) erreicht werden. Dadurch kann der Wärmeeintrag in die Bauteile der Hochdruck-Teilturbine während der Vorwärmphase gesteigert werden.With a saturation (condensation), heat transfer rates of approx. 5000 W / (m 2 K) can be achieved, whereby in superheated states (convection) only heat transfer coefficients of approx. 150 W / (m 2 K) are achieved. As a result, the heat input into the components of the high-pressure turbine section during the preheating phase can be increased.
Mit dem erfindungsgemäßen Verfahren kann eine Vorwärmung der Dampfturbine ca. 1 bis 3 Stunden früher begonnen werden. Ein weiterer Vorteil ist, dass der Wärmeeintrag durch die größere Sattdampftemperatur zu einer beschleunigten Aufwärmung der Bauteile der Hochdruck-Teilturbine führt. Dadurch können die Blockanfahrtszeiten bei einem Kaltstart um ca. 1 bis 1,5 Stunden verkürzt werden.With the method according to the invention, a preheating of the steam turbine can be started approx. 1 to 3 hours earlier. Another advantage is that the heat input through the larger saturated steam temperature leads to an accelerated warming of the components of the high-pressure turbine section. As a result, the start-up times for a cold start can be shortened by approx. 1 to 1.5 hours.
In einer vorteilhaften Weiterbildung liegt der Toleranzwert für die elektrische Leitfähigkeit des Dampfes zwischen 0,5 und 5 μSiemens/cm.In an advantageous development, the tolerance value for the electrical conductivity of the steam is between 0.5 and 5 μSiemens / cm.
Erfahrungswerte haben gezeigt, dass dieser Wertebereich für den Toleranzwert besonders geeignet ist.Experience has shown that this value range is particularly suitable for the tolerance value.
In einer weiteren vorteilhaften Weiterbildung wird im Schritt d) die Umdrehungszahl des Rotors auf Werte zwischen 100 bis 1000 U/min geregelt. Dadurch wird eine Ventilation vermieden und die Möglichkeit geschaffen, bereits bei niedrigen Dampf¬ massenströmen vorzuwärmen. Die Umdrehungszahlen liegen hier- bei unterhalb eines Sperrbereiches. Ausführungsbeispiele der Erfindung werden nachfolgend unter Bezugnahme auf die Zeichnungen näher beschrieben. Dabei haben mit demselben Bezugszeichen versehene Komponenten die gleiche Funktionsweise .In a further advantageous development, the number of revolutions of the rotor is regulated to values between 100 and 1000 rpm in step d). This avoids ventilation and creates the possibility of preheating even at low steam mass flows. The number of revolutions is below a stop band. Embodiments of the invention are described below with reference to the drawings. In this case, provided with the same reference numerals components have the same operation.
Dabei zeigen:Showing:
FIG 1 eine schematische Darstellung einer Dampfturbine umfassend eine Hochdruck-, Mitteldruck- und Nieder- druck-Teilturbine,1 shows a schematic representation of a steam turbine comprising a high-pressure, medium-pressure and low-pressure turbine part,
FIG 2 eine schematische Darstellung einer alternativen Dampfturbine umfassend eine Hochdruck-, Mitteldruck- und Niederdruck-Teilturbine .2 shows a schematic representation of an alternative steam turbine comprising a high-pressure, medium-pressure and low-pressure turbine part.
In FIG 1 ist eine schematische Darstellung einer Dampfturbine 1 umfassend eine Hochdruck-Teilturbine 2, eine Mitteldruck- Teilturbine 3 und eine zweiflutige Niederdruck-Teilturbine 4 dargestellt. Die Hochdruck-Teilturbine 2 umfasst zumindest zwei Frischdampfleitungen 5, wobei in einer Frischdampfleitung 5 Ventile 6 angeordnet sind. Die Ventile 6 sind zum Regeln des Durchflusses eines durch die Frischdampfleitung 5 strömenden Dampfes ausgebildet. Der Frischdampf wird in einem nicht näher dargestellten Dampferzeuger oder Kessel erzeugt. Der im Dampferzeuger erzeugte Dampf gelangt über die Frischdampfleitung 5 und die Ventile 6 in die Hochdruck-Teilturbine 2, wird dort entspannt und strömt anschließend am Ausgang 7 aus der Hochdruck-Teilturbine 2 heraus. Über eine Abdampflei- tung 8 gelangt der entspannte Dampf zu einem nicht näher dar¬ gestellten Zwischenüberhitzer und wird dort auf eine höhere Temperatur erhitzt und anschließend über zumindest eine Mit¬ teldruck-Eingangsleitung 9 in die Mitteldruck-Teilturbine 3 geströmt. In der Mitteldruck-Teilturbine 3 wird der Dampf auf eine niedrigere Temperatur und einen niedrigen Druck entspannt und strömt ausgangsseitig 10 aus der Mitteldruck-Teil¬ turbine 3 heraus und über eine Leitung 11 in die Niederdruck- Teilturbine 4. In der Niederdruck-Teilturbine 4 wird der Dampf weiter entspannt. Die Temperatur des Dampfes nimmt da¬ bei weiter ab. Über Ausgangsleitungen 12 strömt der Dampf schließlich aus der Dampfturbine heraus und wird zu einem nicht näher dargestellten Kondensator geführt. Die vorbe- schriebene Dampfführung erfolgt während der bestimmungsgemä¬ ßen Betriebsphase der Dampfturbine 1. Nach einem Stillstand von mehr als 48 Stunden liegt die Dampfturbine 1 in einem ab¬ gekühlten Zustand vor. Die Wellen und andere dickwandige Bau¬ teile in der Dampfturbine 1 müssen vor der Beaufschlagung bzw. Belastung mit heißem, frischem Dampf kontrolliert vorgewärmt werden, um unzulässige Spannungen in den Bauteilen zu verhindern. Das erste Öffnen der Ventile 6 ist abhängig von der Leitfähigkeit des Dampfes, der Überhitzung und den Abso¬ lutwerten wie z. B. Druck p und Temperatur T des Dampfes.1 shows a schematic representation of a steam turbine 1 comprising a high-pressure turbine section 2, a medium-pressure turbine section 3 and a double-flow low-pressure turbine section 4. The high-pressure turbine part 2 comprises at least two live steam lines 5, wherein 5 valves 6 are arranged in a main steam line. The valves 6 are designed to regulate the flow of a steam flowing through the main steam line 5. The live steam is generated in a steam generator or boiler, not shown. The steam generated in the steam generator passes through the main steam line 5 and the valves 6 in the high-pressure turbine section 2, where it is relaxed and then flows out of the high-pressure turbine section 2 at the output 7. A Abdampflei- tung reaches 8 of the expanded steam at an unspecified represents ¬ reheater placed and is heated there to a higher temperature and subsequently at least flowed an With ¬ teldruck input line 9 in the intermediate pressure turbine section 3 via. In the medium-pressure turbine 3, the steam to a lower temperature and a low pressure is released and flows on the output side 10 of the medium-pressure part ¬ turbine 3 out and 4 is through a conduit 11 into the low-pressure turbine section in the low-pressure turbine section 4 of the Steam continues to relax. The temperature of the vapor increases as ¬ off at on. Via output lines 12, the steam finally flows out of the steam turbine and is guided to a capacitor, not shown. The preparatory required steam flow occurs during the operating phase with intended ¬ KISSING of the steam turbine 1. After a stoppage of more than 48 hours is the steam turbine 1 in a starting ¬ cooled state. The shafts and other thick-walled construction ¬ parts in the steam turbine 1 have to be preheated controlled before application or being exposed to hot, fresh steam to unacceptable stresses to prevent in the components. The first opening of the valves 6 is dependent on the conductivity of the steam, the overheating and the Abso ¬ lutwerten such. B. pressure p and temperature T of the vapor.
Das Verfahren zur Aufwärmung der Dampfturbine 1 erfolgt wie nachfolgend beschrieben. Die Dampfturbine 1 umfasst eine Hochdruck-Teilturbine 2 und eine Mitteldruck- 3 und/oder Nie¬ derdruck-Teilturbine 4. Zwischen der Hochdruck-Teilturbine 2 und der Mitteldruck-Teilturbine 3 wird zumindest ein HD-MD- Ventil 14 angeordnet. Die Hochdruck-Teilturbine 2, die Frischdampfleitung 5 und der Dampferzeuger werden gleichzeitig aufgewärmt. In einem ersten Schritt wird der Gegendruck an der Ausgangsseite 7 der Hochdruck-Teilturbine erhöht. Dies kann durch Schließen des zwischen der Hochdruck- und Mitteldruck-Teilturbine angeordneten Dampf-Ventils 14 erfolgen. In einem nächsten Schritt wird am Eingang 13 der Hochdruck-Teil¬ turbine 2 ein Ventil 6 geöffnet, sobald die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes einen Toleranzwert unter- schreitet. Dieser Toleranzwert kann Werte zwischen 0,5 und 5 μSiemens/cm annehmen. Die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes wird hierbei fortwährend gemessen und in einer Leitstation erfasst und weiter verwertet.The method for warming up the steam turbine 1 is carried out as described below. The steam turbine 1 comprises a high-pressure turbine part 2 and a medium-pressure 3 and / or never ¬ derdruck turbine part 4. Between the high-pressure turbine section 2 and the medium-pressure turbine section 3 at least one HD-MD valve 14 is arranged. The high-pressure turbine section 2, the main steam line 5 and the steam generator are warmed up at the same time. In a first step, the backpressure on the output side 7 of the high-pressure turbine section is increased. This can be done by closing the arranged between the high-pressure and medium-pressure turbine section steam valve 14. In a next step, a valve 6 is opened at the input 13 of the high-pressure part ¬ turbine 2, as soon as the conductivity of the steam generated in the steam generator falls below a tolerance value. This tolerance value can assume values between 0.5 and 5 μSiemens / cm. The conductivity of the steam generated in the steam generator is continuously measured and recorded in a control station and further utilized.
In einem nächsten Schritt wird die Umdrehungszahl des Rotors der Hochdruck-Teilturbine 2 auf einen Wert unter der Nenn¬ drehzahl geregelt. Es hat sich gezeigt, dass Werte für die Umdrehungszahl des Rotors für die Vorwärmung der Hochdruck- Teilturbine am besten zwischen 100 bis 1000 U/min liegen sollten .In a next step, the number of revolutions of the rotor of the high pressure turbine section 2 is controlled to a value below the nominal speed ¬. It has been found that values for the number of revolutions of the rotor for the preheating of the high pressure Sub-turbine should be best between 100 to 1000 rev / min.
In einem nächsten Schritt wird der an der Ausgangsseite 7 herrschende Gegendruck abgesenkt, sobald die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes einen Grenzwert von 0,2 bis 0,5 μSiemens/cm unterschreitet. Und das Absenken des Gegendruckes kann durch Öffnen der Dampf-Ventile 14 erfolgen.In a next step, the counter-pressure prevailing on the outlet side 7 is lowered as soon as the conductivity of the steam generated in the steam generator falls below a limit value of 0.2 to 0.5 μSiemens / cm. And the lowering of the back pressure can be done by opening the steam valves 14.
Die Nenndrehzahl liegt bei 3000 U/m bzw. 3600 U/m, je nach dem, mit welcher Netzfrequenz - 50 Hz oder 60 Hz - das Wechselstromnetz betrieben wird. Für Kernkraftwerks-Dampfturbi- nenanlagen kann die Nenndrehzahl bei 1500 U/m liegen. In jedem Fall ist es von Bedeutung, dass im Schritt d) die Umdre- hungszahl des Rotors deutlich, d. h. um ein Vielfaches unter der Nenndrehzahl liegt.The rated speed is 3000 U / m or 3600 U / m, depending on which mains frequency - 50 Hz or 60 Hz - the AC mains is operated. For nuclear power plant steam turbine plants, the rated speed may be 1500 rpm. In any case, it is important that in step d) the number of revolutions of the rotor clearly, d. H. is many times lower than the rated speed.
In einem nächsten Schritt erfolgt das Aufwärmen der MD- und/oder ND-Teilturbine 4 mit dem vom Dampferzeuger erzeugten Dampf, dessen Leitfähigkeit unter dem Grenzwert liegt, durch Öffnen des zwischen der Hochdruck- und Mitteldruck-Teilturbine angeordneten Dampf-Ventils.In a next step, the MD and / or LP turbine part 4 is reheated with the steam generated by the steam generator whose conductivity is below the limit value by opening the steam valve arranged between the high-pressure and medium-pressure turbine sections.
In der FIG 2 ist eine alternative Ausführungsform einer2 shows an alternative embodiment of a
Dampfturbine dargestellt. Die Dampfturbine 1' umfasst eine Hochdruckteilturbine 2' und eine als eine kompakte Einheit aufgebaute Mitteldruck- und Niederdruck-Teilturbine 3' . Die Mitteldruck- und Niederdruck-Teilturbine wird auch als E- Teilturbine bezeichnet. Ein wesentlicher Unterschied zu der in FIG 1 dargestellten Ausführungsform der Dampfturbine ist, dass die in der FIG 2 dargestellte Dampfturbine 1' keine Überströmleitung 11 umfasst. Die Funktionsweise des Verfah¬ rens, bezogen auf die in FIG 2 dargestellte Dampfturbine, ist hierbei nahezu identisch mit dem zu der in FIG 1 beschriebe¬ nen Dampfturbine. Ein Unterschied ist, dass die Dampfturbine 1 in FIG 1 zwei Teilturbinen umfasst, wovon die eine eine Mitteldruck-Teilturbine 3 und die andere eine Niederdruck- Teilturbine 4 ist. Wohingegen die in der in FIG 2 darge¬ stellte Teilturbine 3' sowohl die Mitteldruck- als auch die Niederdruck-Teilturbine in einem einzigen Gehäuse umfasst. Steam turbine shown. The steam turbine 1 'comprises a high-pressure turbine section 2' and a medium-pressure and low-pressure turbine section 3 'constructed as a compact unit. The medium-pressure and low-pressure turbine section is also known as the E-turbine part. An essential difference to the embodiment of the steam turbine shown in FIG. 1 is that the steam turbine 1 'shown in FIG. 2 does not comprise an overflow line 11. The operation of the procedural ¬ Rens, based on the embodiment shown in FIG 2 the steam turbine is in this case almost identical to the nen to the descriptions in FIG 1 ¬ steam turbine. One difference is that the steam turbine 1 in FIG. 1 comprises two sub-turbines, one of which has a medium-pressure turbine section 3 and the other a low-pressure turbine section. Partial turbine 4 is. Whereas in the illustrated in Figure 2 Darge ¬ sub-turbine 3 'includes both the medium-pressure and the low-pressure turbine section in a single housing.

Claims

Patentansprüche claims
1. Verfahren zum Aufwärmen einer Dampfturbine (1), wobei die Dampfturbine (1) eine Hochdruck-Teilturbine (2) und eine Mitteldruck- und/oder Niederdruck-Teilturbine (3,4) umfasst , wobei die Hochdruck-Teilturbine (2) eingangsseitig über eine Frischdampfleitung (5) an einem Dampferzeuger strö- mungstechnisch angekoppelt wird, wobei zwischen der Hochdruck-Teilturbine (2) und der Mit¬ teldruck-Teilturbine (3) ein Dampf-Ventil (14) angeordnet wird, wobei die Hochdruck-Teilturbine (2) die Frischdampfleitung (5) und der Dampferzeuger zeitgleich aufgewärmt werden, gekennzeichnet durch folgende Schritte:1. A method for warming up a steam turbine (1), wherein the steam turbine (1) comprises a high-pressure turbine part (2) and a medium-pressure and / or low-pressure turbine part (3,4), wherein the high-pressure turbine part (2) on the input side via a live steam line (5) to a steam generator is coupled flow technology, wherein between the high-pressure turbine section (2) and with ¬ teldruck part turbine (3) a steam valve (14) is arranged, wherein the high-pressure turbine part ( 2) the live steam line (5) and the steam generator are heated at the same time, characterized by the following steps:
a) Erhöhung eines ausgangsseitigen Gegendrucks der Hochdruck-Teilturbine (2), b) Öffnen eines vor dem Eingang (13) der Hochdruck- Teilturbine (2) angeordneten Ventils (6), sobald die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes einen Toleranzwert unterschreitet, c) Schließen des zwischen der Hochdruck- (2) undb) opening of a valve (6) arranged in front of the inlet (13) of the high-pressure turbine section (2) as soon as the conductivity of the steam generated in the steam generator falls below a tolerance value, c ) Close the between the high pressure (2) and
Mitteldruck-Teilturbine (3) angeordneten Dampf- Ventils (14) , d) Regeln der Umdrehungszahl des Rotors der Hochdruck- Teilturbine (2) auf einen Wert unter der Nenndrehzahl, e) Absenken des Gegendrucks, sobald die Leitfähigkeit des im Dampferzeuger erzeugten Dampfes einen Grenzwert unterschreitet, wobei der Grenzwert kleiner ist als der Toleranzwert, f) Aufwärmen der Mitteldruck- und/oder Niederdruck- Teilturbine (4) mit dem vom Dampferzeuger erzeugten Dampfes, dessen Leitfähigkeit unter dem Grenzwert liegt, durch Öffnen des Dampf-Ventils (14). D) controlling the number of revolutions of the rotor of the high-pressure turbine section (2) to a value below the rated speed, e) lowering the backpressure, as soon as the conductivity of the steam generated in the steam generator a F) warming the medium-pressure and / or low-pressure turbine section (4) with the steam generated by the steam generator whose conductivity is below the limit by opening the steam valve (14) ,
2. Verfahren nach Anspruch 1, bei dem im Schritt b) der Toleranzwert Werte zwischen 0,5 und 5 μSiemens/cm annimmt.2. The method of claim 1, wherein in step b) the tolerance value values between 0.5 and 5 μSiemens / cm assumes.
3. Verfahren nach Anspruch 1 oder 2, bei dem im Schritt d) der Wert der Umdrehungszahl des Rotors um ein Vielfaches unter der Nenndrehzahl liegt.3. The method of claim 1 or 2, wherein in step d) the value of the number of revolutions of the rotor is a multiple of the rated speed.
4. Verfahren nach Anspruch 3, bei dem der Wert der Umdrehungszahl des Rotors zwischen 100 bis 1000 Umdrehungen pro Minute liegt.4. The method of claim 3, wherein the value of the number of revolutions of the rotor is between 100 to 1000 revolutions per minute.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem im Schritt e) der Grenzwert Werte zwischen 0,2 und 0,5 μSiemens/cm annimmt. 5. The method according to any one of the preceding claims, wherein in step e) the limit value between 0.2 and 0.5 μSiemens / cm assumes.
EP06793858.9A 2005-10-12 2006-09-27 Method for warming-up a steam turbine Active EP1934434B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06793858.9A EP1934434B1 (en) 2005-10-12 2006-09-27 Method for warming-up a steam turbine
PL06793858T PL1934434T3 (en) 2005-10-12 2006-09-27 Method for warming-up a steam turbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05022278A EP1775431A1 (en) 2005-10-12 2005-10-12 Method for warming-up a steam turbine
PCT/EP2006/066794 WO2007042397A2 (en) 2005-10-12 2006-09-27 Method for heating a steam turbine
EP06793858.9A EP1934434B1 (en) 2005-10-12 2006-09-27 Method for warming-up a steam turbine

Publications (2)

Publication Number Publication Date
EP1934434A2 true EP1934434A2 (en) 2008-06-25
EP1934434B1 EP1934434B1 (en) 2016-11-02

Family

ID=36283964

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05022278A Withdrawn EP1775431A1 (en) 2005-10-12 2005-10-12 Method for warming-up a steam turbine
EP06793858.9A Active EP1934434B1 (en) 2005-10-12 2006-09-27 Method for warming-up a steam turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP05022278A Withdrawn EP1775431A1 (en) 2005-10-12 2005-10-12 Method for warming-up a steam turbine

Country Status (10)

Country Link
US (1) US7765807B2 (en)
EP (2) EP1775431A1 (en)
JP (1) JP4869350B2 (en)
KR (1) KR101014011B1 (en)
CN (1) CN101287892B (en)
BR (1) BRPI0617305A2 (en)
CA (1) CA2625464C (en)
PL (1) PL1934434T3 (en)
RU (1) RU2389878C2 (en)
WO (1) WO2007042397A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775429A1 (en) * 2005-10-12 2007-04-18 Siemens Aktiengesellschaft Method for warming-up a steam turbine
USRE46316E1 (en) * 2007-04-17 2017-02-21 Ormat Technologies, Inc. Multi-level organic rankine cycle power system
CN102235186A (en) * 2010-05-03 2011-11-09 阿尔斯通技术有限公司 Method for cold starting a steam turbine
US8505299B2 (en) * 2010-07-14 2013-08-13 General Electric Company Steam turbine flow adjustment system
US8347598B2 (en) 2011-03-18 2013-01-08 General Electric Company Apparatus for starting up combined cycle power systems and method for assembling same
JP5674521B2 (en) * 2011-03-25 2015-02-25 株式会社東芝 Steam valve device and steam turbine plant
JP5055451B1 (en) * 2011-03-31 2012-10-24 三菱重工業株式会社 Low pressure steam turbine
EP2647802A1 (en) * 2012-04-04 2013-10-09 Siemens Aktiengesellschaft Power plant and method for operating a power plant assembly
EP2685055A1 (en) * 2012-07-12 2014-01-15 Siemens Aktiengesellschaft Method for supporting a network frequency
CN102852568A (en) * 2012-09-29 2013-01-02 忻州广宇煤电有限公司 Interlayer heating device for steam cylinder
DE102013205979A1 (en) * 2013-04-04 2014-10-09 Siemens Aktiengesellschaft Optimization of cold starts in thermal power plants, in particular in steam turbine or gas and steam turbine power plants (combined cycle power plants)
JP6178104B2 (en) 2013-04-19 2017-08-09 株式会社東芝 Steam turbine piping and piping
CN103388496A (en) * 2013-06-28 2013-11-13 云南电力试验研究院(集团)有限公司电力研究院 Parameter-variable supercritical unit warming method
EP3029280B1 (en) 2014-12-04 2023-02-08 General Electric Technology GmbH A method for starting a steam turbine
US20160169451A1 (en) * 2014-12-12 2016-06-16 Fccl Partnership Process and system for delivering steam
KR101692164B1 (en) * 2015-08-24 2017-01-02 두산중공업 주식회사 Steam turbine
US10577962B2 (en) 2016-09-07 2020-03-03 General Electric Company Turbomachine temperature control system
US20180196894A1 (en) * 2017-01-10 2018-07-12 General Electric Company System and method for monitoring a steam turbine and producing adapted inspection intervals
CN106948890B (en) * 2017-04-10 2019-06-11 贵州电网有限责任公司电力科学研究院 A kind of method of warming up suitable for high pressure combined launch Turbo-generator Set
EP3460202A1 (en) * 2017-09-22 2019-03-27 Siemens Aktiengesellschaft Steam turbine control
CN110500148B (en) * 2019-08-23 2022-03-22 广西电网有限责任公司电力科学研究院 High-back-pressure heat supply and monitoring method and system for large steam turbine generator unit
US11428115B2 (en) 2020-09-25 2022-08-30 General Electric Company Control of rotor stress within turbomachine during startup operation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1228623B (en) * 1963-07-23 1966-11-17 Sulzer Ag Steam power plant with forced steam generator and reheater
US3550849A (en) * 1967-11-30 1970-12-29 Texaco Inc Apparatus for generating wet steam having substantially constant quality
DE2029830C3 (en) * 1970-06-18 1974-04-11 Steag Ag, 4300 Essen Procedure for heating the main steam line and the reheater line of steam turbine systems
GB1327096A (en) * 1970-07-28 1973-08-15 Ici Ltd Detection of contamination of water streams
CH561394A5 (en) * 1973-08-24 1975-04-30 Bbc Brown Boveri & Cie
US3965675A (en) * 1974-08-08 1976-06-29 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator having improved boiler feed pump flow control
US4339719A (en) * 1980-07-30 1982-07-13 Electric Power Research Institute, Inc. Conductivity sensor for monitoring corrodents being deposited in a steam turbine
JPS5810104A (en) * 1981-07-10 1983-01-20 Hitachi Ltd Turbine plant and control thereof
US4759314A (en) * 1987-12-14 1988-07-26 The Babcock & Wilcox Company Method of control of steam quality from a steam generator
US5353628A (en) * 1991-07-26 1994-10-11 Westinghouse Electric Corporation Steam purity monitor
DE19808596A1 (en) * 1998-02-28 1999-09-02 Babcock Kraftwerksrohrleitungs Preheating and drainage method for high pressure steam line of steam power station
DE50110456D1 (en) * 2000-05-31 2006-08-24 Siemens Ag METHOD AND DEVICE FOR OPERATING A STEAM TURBINE WITH MULTIPLE LEVELS IN IDLE LOADING OR DAMAGE LOAD OPERATION
EP1191192A1 (en) * 2000-09-26 2002-03-27 Siemens Aktiengesellschaft Method and apparatus for preheating and dewatering of turbine stage steam conduits
JP4509664B2 (en) * 2003-07-30 2010-07-21 株式会社東芝 Steam turbine power generation equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007042397A3 *

Also Published As

Publication number Publication date
CN101287892B (en) 2011-03-09
EP1934434B1 (en) 2016-11-02
KR20080056015A (en) 2008-06-19
US20090249788A1 (en) 2009-10-08
RU2008118349A (en) 2009-11-20
WO2007042397A3 (en) 2007-09-13
CA2625464A1 (en) 2007-04-19
WO2007042397A2 (en) 2007-04-19
CA2625464C (en) 2011-01-11
PL1934434T3 (en) 2017-04-28
CN101287892A (en) 2008-10-15
EP1775431A1 (en) 2007-04-18
JP2009511809A (en) 2009-03-19
US7765807B2 (en) 2010-08-03
RU2389878C2 (en) 2010-05-20
JP4869350B2 (en) 2012-02-08
BRPI0617305A2 (en) 2011-07-19
KR101014011B1 (en) 2011-02-14

Similar Documents

Publication Publication Date Title
EP1934434B1 (en) Method for warming-up a steam turbine
DE2934340C2 (en) Procedure for switching off and restarting a combined gas / steam power plant
EP1288761B1 (en) Method for controlling a low pressure bypass system
DE10227709B4 (en) Steam turbine plant and method for its operation
DE60126721T2 (en) Combined circulation system with gas turbine
EP2326800B1 (en) Steam power assembly for creating electrical energy
CH702740B1 (en) System and method for powering up a heat recovery steam generator.
EP2129879A2 (en) Method for operating a multi-step steam turbine
EP1953350A2 (en) Turbine blade
DE3047008A1 (en) "STEAM FLOW DEVICE FOR A STEAM TURBINE WITH INTERMEDIATE HEATING AND METHOD FOR OPERATING THE SAME"
EP1368555B1 (en) Method for operating a steam power installation and corresponding steam power installation
EP2136035A1 (en) Operation of a gas and steam turbine plant using a frequency converter
EP0826096B2 (en) Process and device for degassing a condensate
DE10155508C2 (en) Method and device for generating electrical energy
EP2556218B1 (en) Method for quickly connecting a steam generator
EP2829691A1 (en) Method for operating a combined power generation system
EP2362073A1 (en) Steam power station comprising a tuning turbine
EP2216506A1 (en) Method for heating a turbine shaft
DE19944920B4 (en) Combined cycle power plant with injection device for injecting water into the live steam
EP1775429A1 (en) Method for warming-up a steam turbine
EP1953351A1 (en) Concept for pre-heating and starting of steam turbines with inlet temperatures of over 650°C
DE102015209812A1 (en) Water-steam circuit of a gas and steam turbine plant
EP1674669A1 (en) Method of cooling a steam turbine
WO2016062532A1 (en) Method for shortening the start-up process of a steam turbine
WO2015197238A1 (en) Method for starting a steam turbine system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080225

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOBRECHT, EDWIN

Inventor name: QUINKERTZ, RAINER

Inventor name: DIESTERBECK, HENRI

Inventor name: PETERS, KARSTEN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETERS, KARSTEN

Inventor name: QUINKERTZ, RAINER

Inventor name: DIESTERBECK, HENRI

Inventor name: GOBRECHT, EDWIN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160502

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 842075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015230

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015230

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

26N No opposition filed

Effective date: 20170803

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170927

Year of fee payment: 12

Ref country code: FR

Payment date: 20170918

Year of fee payment: 12

Ref country code: CZ

Payment date: 20170926

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20171207

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 842075

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180917

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006015230

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 18