EP2991159B1 - Réseau d'alimentation pour systèmes d'antennes - Google Patents

Réseau d'alimentation pour systèmes d'antennes Download PDF

Info

Publication number
EP2991159B1
EP2991159B1 EP15169109.4A EP15169109A EP2991159B1 EP 2991159 B1 EP2991159 B1 EP 2991159B1 EP 15169109 A EP15169109 A EP 15169109A EP 2991159 B1 EP2991159 B1 EP 2991159B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
feed network
microstrip
network according
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15169109.4A
Other languages
German (de)
English (en)
Other versions
EP2991159A1 (fr
Inventor
Thomas Merk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lisa Draexlmaier GmbH
Original Assignee
Lisa Draexlmaier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lisa Draexlmaier GmbH filed Critical Lisa Draexlmaier GmbH
Publication of EP2991159A1 publication Critical patent/EP2991159A1/fr
Application granted granted Critical
Publication of EP2991159B1 publication Critical patent/EP2991159B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/085Coaxial-line/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns

Definitions

  • the invention relates to feed network with waveguide and two microstrip conductors for antenna systems, in particular for the bidirectional, in the Ka, Ku or X-band operated satellite communication for mobile and aeronautical applications.
  • antennas In order to connect aircraft for the transmission of multimedia data to a satellite network, it requires wireless broadband channels for data transmission at very high data rates.
  • antennas must be installed on the aircraft, which are small in size to be installed under a radome and yet for a directed wireless data communication with the satellite (eg in Ku-, Ka- or X-band) extreme requirements on the transmission characteristics meet, as a disturbance of adjacent satellites must be reliably excluded.
  • the antenna continues to be movable below the radome to track the satellite's orientation as the aircraft moves.
  • the antenna must be made compact in order to remain mobile under the radome.
  • antennas consist of antenna fields, which are constructed from single radiators and have suitable feed networks. They can be run in any geometry and any length to aspect ratio without sacrificing antenna efficiency. In particular, antenna fields can be realized with low height.
  • feed networks can be represented by a combination of waveguides and microstrip lines, but the number of power dividers needed is high. Power dividers in the waveguide area of the feed network require installation space that is available only to a limited extent.
  • JP 2010 028345 A is the feeding of an antenna by means of capacitive coupling by microstrip lines known.
  • the US Pat. No. 6,201,453 B1 shows a conductor loop for a probe on a transition conductor, which cooperates with a loop conductor for impedance matching without decoupling.
  • feed networks allow to distribute a sum signal amplitude and phase correct to the individual emitters in the transmission case or vice versa in the case of reception to correctly add the signals of the individual emitters to a sum signal.
  • the feed network consists of microstrip conductors which combine the first single emitter groups (eg NxN or NxM elements) and a waveguide network to again combine several N * N or N * M groups.
  • Motomi Abe et al "A waveguide-based power divider using H-plane probes short-circuited with substrate metallization patterns", Microwave Symposium Digest, 2008 IEEE MTT-S International, IEEE, Piscataway, NJ, USA, June 15, 2008 (2008-06-15), pages 1003-1006, XP031441274, DOI: 10.1109 / MWSYM.2008.4633004 ISBN: 978-1-4244-1780- 3 shows a power divider for coaxial lines, which in a closed hollow cuboid as H-sample, which are short-circuited via a substrate, coupled together. Thus, even large ratios such as 1: 8 can be realized.
  • Microstrip conductors have the advantage of a small footprint and thus enable a high integration density.
  • the disadvantage is higher electrical losses compared to waveguides, which, however, require a significantly larger volume compared to microstrip conductors.
  • the feed network includes a waveguide with broad sides and narrow sides, and two microstrip conductors, each containing a conductor loop.
  • the conductor loops each project from one of the narrow sides into the waveguide and are galvanically connected to a broad side of the waveguide, ie are short-circuited to the waveguide at the broad side.
  • the waveguide On the narrow side, the waveguide has a small opening through which the microstrip conductor is guided without being electrically in contact with the waveguide itself.
  • the conductor loops protrude from opposite narrow sides into the waveguide.
  • the microstrip conductors can connect a large number of antenna elements, if necessary via further microstrip power dividers, in the sense of their own feed networks and with low-loss short paths.
  • the H-field coupling of the waveguide and two microstrip conductors advantageously produces a power divider, the signals arriving via the waveguide. So you get a kind of "hybrid” power divider, which distributes the signal from a waveguide gate on 2 microstrip gates.
  • the conductor loops have an equal length within the waveguide.
  • the signals on both microstrip lines have the same phase position and in the control of the following antenna elements, no further phase compensation is required.
  • the conductor loops are also advantageous to arrange the conductor loops so that they project centrally from the narrow sides into the waveguide.
  • a maximum of power can be coupled into the microstrip line and the adaptation to the transition optimized.
  • the arrangement of the microstrip conductors in the waveguide advantageously takes place approximately ⁇ / 4 away from one end of the short-circuited waveguide.
  • divider ratios of 50:50 to 80:20 can be set in a broad range, as a result of which desired aperture tolerances of the antenna can be easily implemented.
  • one of the microstrip lines of the feed network can have a phase compensation arc which adapts the length of this microstrip line to the length of the other microstrip line and thus produces an equal microstrip line length and thus equal phase position of the signals of both microstrip lines despite asymmetry in the conductor loop shape.
  • phase compensation arc is assigned to the microstrip conductor which is electrically connected to the waveguide at a greater distance from the center of the broadside than the other microstrip conductor.
  • the conductor loops are advantageously not straight, but include width jumps and set pieces. By specifying the position and size of stride jumps and set pieces, the reflections are reduced for the desired frequency range.
  • the microstrip conductors consist of a board with a dielectric having a thickness of 0.1 to 1 mm, preferably 0.127 mm, and a copper strip arranged on the board with a thickness of 15 to 50 ⁇ m, preferably 17.5 ⁇ m.
  • the width of the copper strip is 0.2 to 3 mm, preferably 0.5 mm.
  • the waveguide or the waveguide network is performed according to an advantageous embodiment of the invention, at least in sections as ridge waveguide.
  • the ridge waveguide allows a wider band frequency range than a "normal” rectangular waveguide, particularly interesting for the Ka band.
  • a ridge waveguide allows more compact designs (reduction of the broad side) compared to a "normal” rectangular waveguide at the same cutoff frequency (interesting even at lower frequencies (X-band and Ku-band), in which the waveguide dimensions would otherwise be larger.
  • a distance between one end of the waveguide and the microstrip conductor is advantageously only ⁇ / 8 to ⁇ / 12, ie significantly less than ⁇ / 4, for which a maximum of the field strength would exist. It has been shown that with reasonable losses, the size of the feed network can be reduced once again.
  • the waveguide of the feed network may contain restrictions whereby a ridge waveguide is formed.
  • the galvanic connection of the conductor loops to the broad side of the waveguide does not interfere, but takes place in a rectilinear section.
  • the conductor loop with the larger power output advantageously has the width of the microstrip line larger than in the conductor loop with the lower power output.
  • the antenna comprising a plurality of horn radiators as antenna elements, which are connected via microstrip conductors with a waveguide having broad sides and narrow sides.
  • the microstrip conductors each consist of a conductor loop which protrudes from one of the narrow sides into the waveguide and is electrically connected to a broad side of the waveguide.
  • Horn radiators are very efficient single radiators, which are arranged in antenna fields. In addition, horns can be designed broadband.
  • the antenna is suitable for bidirectional operation in vehicle-based satellite communication in a frequency band of 7.25-8.4 GHz (X-band), 12-18 GHz (Ku-band) and 27-40 GHz (Ka-band).
  • X-band 7.25-8.4 GHz
  • Ku-band 12-18 GHz
  • Ka-band 27-40 GHz
  • FIG. 1 shows a waveguide HL, which is filled with air and has the dimensions 16 x 6 mm for the Ku band or 7 x 2.5 mm for the Ka band.
  • the termination at the end AB of the waveguide HL is about A / 4 of a coupling of two microstrip MS1, MS2 away.
  • the microstrip conductors MS1, MS2 protrude from a narrow side b1, b2 into the waveguide HL.
  • the microstrip lines MS1, MS2 consist of a Suspended Strip Line (SSL), which consists of a circuit board on which a copper strip, a copper layer, is applied.
  • SSL Suspended Strip Line
  • the board itself consists of a dielectric with a thickness of 0.1 to 1 mm, preferably 0.127 mm.
  • the copper strip thereon has a width of 0.2 to 3 mm, preferably 0.5 mm, and a thickness of 15 to 50 microns, preferably 17.5 pm. So that the microstrip conductors MS1, MS2 can protrude into the waveguide HL, the narrow sides b1, b2 at the level of the coupling have a narrow slot, which is adapted to the shape of the microstrip line MS1 and MS2.
  • the SSL is surrounded by metal, so there are no power losses from radiation out of the structure and through the passage at the slots. By appropriate dimensioning of the slot and the interference on the field of the waveguide HL is negligible.
  • both microstrip conductors MS1, MS2 are galvanically connected to the waveguide HL.
  • This connection in each case represents a short circuit 1 of the respective microstrip line MS1, MS2 with the waveguide HL.
  • the inductive H-field coupling is in FIG. 2 shown again. On a sectional plane through the coupling can be seen at the locations near the short circuits 1 as the H-field coupled as TE mode from the waveguide HL in the two microstrip lines MS1, MS2 as TEM mode.
  • the feeding network according to the invention consisting of the two microstrip conductors MS1, MS2 and the waveguide HL, will now be described with reference to FIGS. 3 to 5 further explained.
  • the conductor loops l1, l2 within the waveguide HL form two loops of equal size, which extend from the narrow sides b1 or b2 to the broadside a1. These equal areas of the conductor loops l1, l2 mean a symmetrical power division.
  • the conductor loops l1, l2 also contain set pieces and width jumps, which favor the adaptation of the microstrip conductor MS1 or MS2 to the conditions of the waveguide HL.
  • a conductor loop piece, which in each case adjoins the broad side a1 is narrowest and a conductor loop piece which represents the transition to the microstrip conductor MS1 or MS2 outside the waveguide HL is widest. Size and position of the wide jumps or set pieces are optimized accordingly for the desired frequency band.
  • microstrip conductors MS1, MS2 continue after the slot in the narrow side b1, b2 of the waveguide HL and form microstrip conductor networks, with which, as shown later, antenna elements are supplied.
  • FIG. 4 shows in comparison to FIG. 3 a variant in which a phase shift of the signals between the microstrip conductors MS1, MS2 is effected in that the electrical connection of the conductor loops l1, l2 takes place on opposite broad sides a1 and a2 of the waveguide HL.
  • the positioning of the conductor loops l1 and l2 is here again symmetrical, but with respect to the top and bottom of the waveguide HL mirror image. This means that once again a balanced power line is achieved, but the signals on one microstrip line MS1 are 180 ° out of phase with respect to the other microstrip line MS2.
  • a center M of the broad sides of the waveguide is located.
  • the conductor loop l1 on the left side of the waveguide has a larger flooded area than the conductor loop l2 on the right side.
  • the lengths of the conductor loops l1 and l2 within the waveguide differ with it.
  • the microstrip conductor MS2 with the lower power output contains an additional phase arc P, which brings about a length compensation of the microstrip line MS2 and an adjustment to the length of the other microstrip line MS1.
  • divider ratios can be set from 50:50 to 80:20 become. This allows multiple aperture assignments for the antenna driven by the feed network. Due to a set phase shift between the two microstrip lines MS1, MS2, see FIG. 4 , geometrically mirrored antenna elements or possible phase shifts can be compensated by subsequent waveguide networks.
  • FIG. 6 is an alternative waveguide shape to the otherwise rectangular waveguide HL as in FIG. 1 , shown.
  • the waveguide HL is provided as a ridge waveguide, each with a restriction RI centered in the broad sides a1, a2.
  • the waveguide HL broadband.
  • the web waveguide HL has a width paragraph SP, in which the dimensions of the narrow sides b1, b2 and broad sides a1, a2 change abruptly, and a length of the restriction RI is changed. This is used to minimize the reflections.
  • the food network according to the invention is used in particular in antennas with multiple horns as antenna elements.
  • FIG. 7 shows an antenna with 16 antenna elements, a feed network is able to feed 8 antenna elements A1 to A8 alone.
  • a waveguide HL is arranged centrally within eight antenna elements A1 to A8, and on both narrow sides the signals are divided into two microstrip conductors MS1 or MS2 decoupled. These microstrip conductors MS1, MS2 in turn form microstrip conductor networks, which connect in each case 4 antenna elements A1 to A4 or A5 to A8 to the waveguide HL.
  • the waveguide HL in turn forms the conclusion of a waveguide network.
  • only one waveguide power divider is shown.
  • the waveguide network is in turn connected to a transmitting and receiving device Tx / Rx, which receives corresponding signals from the antenna or sends to the antenna.
  • the feed network shown here allows the feeding of a large number of antenna elements with a minimum of power dividers in the waveguide network.
  • lightweight compact antennas are represented, as they are needed in the aircraft-based satellite communication in the X, Ku or Ka band.
  • FIGS. 8 to 13 show alternative embodiments of the feed networks according to the invention, which except for the embodiment according to FIG. 13 Include climbing ladders with restrictions RI.
  • FIG. 8 shows a symmetrical power divider (power output 50% / 50%), in which the electrical connection of the conductor loops l1, l2 is just right and left of the restriction RI of the waveguide HL. Both conductor loops l1, l2 frame the same area and have the same widths of the conductor tracks.
  • the food network after FIG. 9 is particularly suitable for narrow frequency bands, for example in X-band.
  • a distance AB1 of one end of the waveguide HL to the microstrip conductor is only about ⁇ / 10, that is to say significantly less than ⁇ / 4 or half the length A1 of the broad side a1.
  • the size of the feed network is reduced again.
  • FIGS. 10 and 11 show asymmetrical dividers with a divider ratio of 66.7% / 33.3% and 57% / 43% respectively, which are set by the fact that the left conductor loop l1 encloses a larger area than the right conductor loop l2. Also in these feed networks, the galvanic electrical connection between the conductor loop l1, l2 and waveguide HL is done without the restriction RI is touched in a rectilinear region of the waveguide HL. In FIG. 9 this is clear. The restriction RI starts from the end of the waveguide AB only shortly after the microstrip MS2. How out FIG.
  • the width D of the left conductor loop l1 with the larger power output coupling is greater than the width of the right conductor loop l2.
  • the left conductor loop l1 is lower impedance than the right conductor loop l2 and well adapted.
  • the area to be set for the power division - essentially determined by the length of the first line section of the short circuit A and the length of the second line section in the direction of the narrow waveguide side B, which framing the respective line loop l1, l2, are for a reflection-poor adaptation of the microstrip MS1, MS2 after FIG. 12
  • the width of the first line section C, the width of the second line section D are selected according to the impedance of the conductor loop necessary for a reflection-poor matching.
  • the conductor loop with the greater power output has the designations in FIG. 12 a larger width C, D of the microstrip line than the other conductor loop with the lower power output - see FIG. 10 ,
  • the waveguide HL contains a Opening in which a circuit board PL is inserted with the conductor loops forming conductors L on the surface.
  • the interconnects L of both sides of the board PL are interconnected by means of vias V.
  • the insulation I is formed by an electrically insulating coating, eg solder resist.
  • the conductor tracks L are made of copper, the waveguide HL is made of aluminum.

Claims (20)

  1. Réseau d'alimentation pour systèmes d'antennes comportant un guide d'ondes (HL) ayant des côtés larges (a1, a2) et des côtés étroits (b1, b2),
    deux lignes à microrubans (MS1, MS2), chacune constituée d'une boucle conductrice (11, 12), qui dépasse de l'un des côtés étroits (b1, b2) dans le guide d'ondes (HL) et est reliée galvaniquement à un côté large (a1, a2) du guide d'ondes (HL), et dans lequel les boucles conductrices (11, 12) ne sont pas formées exclusivement da manière à ce qu'elles soient droites, mais contiennent des discontinuités de largeur et des pièces décalées.
  2. Réseau d'alimentation selon la revendication 1, dans lequel les boucles conductrices (11, 12) dépassent des côtés étroits opposés (b1, b2) dans le guide d'ondes (HL).
  3. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel un couplage de guides d'ondes (HL) et de lignes à microrubans (MS1, MS2) fait office de diviseur de puissance pour les signaux pénétrant par l'intermédiaire du guide d'ondes (HL) .
  4. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel les boucles conductrices (11, 12) présentent la même longueur à l'intérieur du guide d'ondes (HL).
  5. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel les boucles conductrices (11, 12) font saillie centralement dans le guide d'ondes (HL) par rapport aux côtés étroits (b1, b2).
  6. Réseau d'alimentation selon l'une des revendications 1 à 3, dans lequel les raccordements électriques des deux boucles conductrices (11, 12) au côté large (a1, a2) du guide d'ondes (HL) sont espacés différemment d'un centre (M) du côté large (a1, a2).
  7. Réseau d'alimentation selon les revendications 1 à 3, dans lequel au moins une ligne à microruban (MS2) présente un arc de compensation de phase (P) qui adapte la longueur de ladite ligne à microruban (MS2) à la longueur de l'autre ligne à microruban (MS1).
  8. Réseau d'alimentation selon la revendication précédente, dans lequel la ligne à microruban (MS2) est reliée électriquement au guide d'ondes (HL) à une plus grande distance du centre du côté large (a1, a2) que l'autre ligne à microruban (MS1) au moyen d'arcs à compensation de phase (P).
  9. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel le raccordement électrique des boucles conductrices (11, 12) s'effectue sur différents côtés larges (a1, a2) du guide d'ondes creux (HL).
  10. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel les lignes à microrubans (MS1, MS2) sont définies comme étant des SSL (suspended strip line).
  11. Réseau d'alimentation selon la revendication précédente, dans lequel les lignes à microruban (MS1, MS2) comprend une carte de circuit imprimé constituée d'un diélectrique ayant une épaisseur de 0,1 à 1 mm, de préférence 0,127 mm, et d'une bande de cuivre disposée sur la carte de circuit imprimé et ayant une épaisseur de 15 à 50 µm, de préférence 17,5 µm, et une largeur de 0,2 à 3 mm, de préférence 0,5 mm.
  12. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel le guide d'ondes (HL) peut être relié à plusieurs éléments d'antenne (A1 ... A8) au moyen des lignes à microrubans (MS1, MS2), dans lequel les éléments d'antenne Al... A8) sont des éléments rayonnants à cornet et les lignes à microrubans (MS1, MS2) sont disposées à environ λ/4 d'une extrémité (AB) du guide d'ondes (HL).
  13. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel le guide d'ondes (HL) fait partie d'un réseau d'alimentation de guide d'ondes pouvant être relié à des dispositifs d'émission et de réception (Tx/Rx).
  14. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel le guide d'ondes (HL) est conçu au moins par sections sous la forme d'un guide d'ondes à moulures.
  15. Réseau d'alimentation selon l'une des revendications 1 à 1, dans lequel une distance (AB1) entre une extrémité (AB) du guide d'ondes (HL) et la ligne à microruban (MS1, MS2) est de λ/8 à λ/12.
  16. Réseau d'alimentation selon l'une des revendications précédentes, dans lequel la liaison galvanique des boucles conductrices (11, 12) au côté large (a1, a2) du guide d'ondes (HL) s'effectue sur une section droite du guide d'ondes (HL).
  17. Réseau d'alimentation selon l'une des revendications 1 à 3, dans lequel les boucles conductrices (11, 12) encadrent une surface différente et ajustent un diviseur de puissance asymétrique.
  18. Réseau d'alimentation selon la revendication 17, dans lequel la boucle conductrice (11) présentant le couplage de sortie de puissance le plus élevé la largeur (D) de la ligne à microruban (MS1) est supérieure à celle de l'autre boucle conductrice (12).
  19. Antenne comportant plusieurs éléments rayonnants à cornet en tant qu'éléments d'antenne (Al... A8) et un réseau d'alimentation selon l'une des revendications précédentes, dans lequel les lignes à microrubans (MS1, MS2) sont reliées aux éléments d'antenne (Al... A8).
  20. Antenne selon la revendication précédente pour les communications par satellite sur véhicules dans une bande de fréquences X, Ka ou Ku, dans lequel les éléments d'antenne (A1... A8) sont conçus pour fonctionner en émission et en réception.
EP15169109.4A 2014-08-29 2015-05-26 Réseau d'alimentation pour systèmes d'antennes Active EP2991159B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014112467.7A DE102014112467B4 (de) 2014-08-29 2014-08-29 Speisenetzwerk für antennensysteme

Publications (2)

Publication Number Publication Date
EP2991159A1 EP2991159A1 (fr) 2016-03-02
EP2991159B1 true EP2991159B1 (fr) 2018-08-08

Family

ID=53191596

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15169109.4A Active EP2991159B1 (fr) 2014-08-29 2015-05-26 Réseau d'alimentation pour systèmes d'antennes

Country Status (4)

Country Link
US (1) US9761955B2 (fr)
EP (1) EP2991159B1 (fr)
CN (1) CN105390820B (fr)
DE (1) DE102014112467B4 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342459B (zh) * 2017-07-05 2020-07-28 电子科技大学 薄膜微带天线过渡探针结构
CN108400438A (zh) * 2018-03-19 2018-08-14 重庆大学 一种三阵元单极子均匀圆形天线阵列的微带去耦网络
FR3090219B1 (fr) * 2018-12-18 2022-12-30 Thales Sa Combineur hybride e/h ultracompact notamment pour antenne mfb monoreflecteur
CN110190371B (zh) * 2019-05-29 2024-03-12 中电国基南方集团有限公司 一种波导功分器
DE102020119495A1 (de) 2020-07-23 2022-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Hochfrequenz-Struktur mit substratintegriertem Wellenleiter und Rechteck-Hohlleiter
CN113612000B (zh) * 2021-07-31 2022-06-14 西南电子技术研究所(中国电子科技集团公司第十研究所) 矩形波导工字形隔离网络双微带转换器
CN114094299B (zh) * 2021-12-15 2022-10-04 成都华兴大地科技有限公司 一种基于波导-微带转换的功率分配合成网络设计方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1380714A (fr) * 1963-10-24 1964-12-04 Thomson Houston Comp Francaise Perfectionnements au couplage entre un guide d'onde et des lignes de transmission
US3432716A (en) * 1964-02-13 1969-03-11 Hitachi Ltd Microwave transducer and electron device with microwave transducer
US3389350A (en) * 1966-02-24 1968-06-18 Westinghouse Electric Corp Microwave power divider
JPH10224141A (ja) * 1997-02-10 1998-08-21 Toshiba Corp モノリシックアンテナ
US6201453B1 (en) * 1998-11-19 2001-03-13 Trw Inc. H-plane hermetic sealed waveguide probe
US7102458B2 (en) * 2002-05-23 2006-09-05 Kyocera Corporation High-frequency line-waveguide converter having the HF line terminated within an opening portion
GB0302584D0 (en) * 2003-02-05 2003-03-12 Smiths Group Plc Microwave transitions and antennas
US7170366B2 (en) * 2005-02-11 2007-01-30 Andrew Corporation Waveguide to microstrip transition with a 90° bend probe for use in a circularly polarized feed
US7436371B1 (en) * 2006-01-31 2008-10-14 Rockwell Collins, Inc. Waveguide crescent slot array for low-loss, low-profile dual-polarization antenna
CN101242020B (zh) * 2008-02-29 2011-09-14 电子科技大学 毫米波3dB功率分配/合成网络
JP4712841B2 (ja) * 2008-07-17 2011-06-29 日本ピラー工業株式会社 導波管・ストリップ線路変換器及び高周波回路
EP2870659A1 (fr) 2012-07-03 2015-05-13 Lisa Dräxlmaier GmbH Système d'antennes pour communication satellite large bande, doté de cornets d'émission diélectriquement remplis
CN102916252B (zh) * 2012-10-15 2015-05-27 北京遥测技术研究所 任意功分比波导串馈网络

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOMI ABE ET AL: "A waveguide-based power divider using H-plane probes short-circuited with substrate metallization patterns", MICROWAVE SYMPOSIUM DIGEST, 2008 IEEE MTT-S INTERNATIONAL, IEEE, PISCATAWAY, NJ, USA, 15 June 2008 (2008-06-15), pages 1003 - 1006, XP031441274, ISBN: 978-1-4244-1780-3, DOI: 10.1109/MWSYM.2008.4633004 *

Also Published As

Publication number Publication date
EP2991159A1 (fr) 2016-03-02
US20160064796A1 (en) 2016-03-03
CN105390820B (zh) 2021-04-16
DE102014112467B4 (de) 2017-03-30
DE102014112467A1 (de) 2016-03-03
CN105390820A (zh) 2016-03-09
US9761955B2 (en) 2017-09-12

Similar Documents

Publication Publication Date Title
EP2991159B1 (fr) Réseau d'alimentation pour systèmes d'antennes
DE102017103161B4 (de) Antennenvorrichtung und Antennenarray
DE112016004868B4 (de) Millimeterwellenantenne und diese verwendender Millimeterwellensensor
DE69826223T2 (de) In Mikrostreifenleitungstechnik ausgeführte Antenne und diese enthaltende Vorrichtung
DE69823591T2 (de) Geschichtete Aperturantenne und mehrschichtige Leiterplatte damit
DE69936903T2 (de) Antenne für zwei Frequenzen für die Radiokommunikation in Form einer Mikrostreifenleiterantenne
DE602006000890T2 (de) Mehrlagiger planarer Balunübertrager, Mischer und Verstärker
EP1547192B1 (fr) Dispositif pour transmettre ou emettre des ondes haute frequence
DE102014112825B4 (de) Steghornstrahler mit zusätzlicher Rille
DE3013903A1 (de) Antenne fuer zwei frequenzbaender
DE102015114967A1 (de) Verteiler und Planarantenne
DE60035304T2 (de) Monopolantenne
DE112016006983T5 (de) Koaxialwellenleiter-Hohlwellenleiter-Übergangsschaltung
DE69934749T2 (de) Wandler für elektrisch transversale oder quasi-transversale Moden in Hohlleitermoden
EP2384523B1 (fr) Antenne double bande pour usage à navigation satellite
DE102010014916B4 (de) Phasengesteuerte Gruppenantenne
DE102006046728A1 (de) Richtkoppler für symmetrische Signale
DE10065510A1 (de) Resonator, Resonatorelement, Resonatorvorrichtung, Filter, Duplexer und Kommunikationsvorrichtung
EP3449528B1 (fr) Ensemble carte de circuit imprimé servant à fournir des signaux aux éléments rayonnant
DE19929879A1 (de) Spiralantenne
DE10028937A1 (de) Planarantenne mit Hohlleiteranordnung
DE112021005496T5 (de) Antennenvorrichtung und radarvorrichtung
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
EP4150708B1 (fr) Agencement d'antenne, agencement d'émetteur-récepteur et système de communication, dispositif d'actionnement et procédé de fonctionnement d'un dispositif d'antenne
EP3713009A1 (fr) Agencement de guide creux, système de guide d'ondes et utilisation d'un agencement de guide creux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20160714

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/107 20060101AFI20180312BHEP

Ipc: H01Q 13/02 20060101ALN20180312BHEP

Ipc: H01Q 21/00 20060101ALN20180312BHEP

Ipc: H01Q 21/06 20060101ALN20180312BHEP

Ipc: H01P 5/08 20060101ALI20180312BHEP

Ipc: H01P 5/19 20060101ALI20180312BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 13/02 20060101ALN20180322BHEP

Ipc: H01P 5/107 20060101AFI20180322BHEP

Ipc: H01P 5/19 20060101ALI20180322BHEP

Ipc: H01Q 21/00 20060101ALN20180322BHEP

Ipc: H01Q 21/06 20060101ALN20180322BHEP

Ipc: H01P 5/08 20060101ALI20180322BHEP

INTG Intention to grant announced

Effective date: 20180418

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1028044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180808

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181109

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1028044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20210519

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230411

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230406

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231017