EP2870659A1 - Système d'antennes pour communication satellite large bande, doté de cornets d'émission diélectriquement remplis - Google Patents
Système d'antennes pour communication satellite large bande, doté de cornets d'émission diélectriquement remplisInfo
- Publication number
- EP2870659A1 EP2870659A1 EP13734661.5A EP13734661A EP2870659A1 EP 2870659 A1 EP2870659 A1 EP 2870659A1 EP 13734661 A EP13734661 A EP 13734661A EP 2870659 A1 EP2870659 A1 EP 2870659A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- antenna system
- horns
- waveguide
- networks
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/025—Multimode horn antennas; Horns using higher mode of propagation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0275—Ridged horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/02—Refracting or diffracting devices, e.g. lens, prism
- H01Q15/08—Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/24—Polarising devices; Polarisation filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/06—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
- H01Q19/08—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0025—Modular arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
Definitions
- the invention relates to an antenna system for broadband communication between earth stations and satellites,
- the problem therefore is to provide antenna systems that are as small and lightweight as possible, which nevertheless satisfy the regulatory requirements for transmitting and receiving operation when operating on mobile carriers.
- the regulatory requirements for the transmission operation arise e.g. from the standards 47 CFR 25.209, 47 CFR 25.222, 47 CFR 25.138, ITU-R .1643, ITU-R p.524-7, ETSI EN 302 186 or ETSI EN 301 459. All of these regulatory requirements are designed to ensure that Transmission mode of a mobile satellite antenna no interference may occur adjacent satellites. These are typically envelopes
- Airplanes, parabolic mirrors are very poorly suited because of their size and because of their circular aperture. In commercial aircraft, for example, the
- Antennas mounted on the fuselage may therefore have only the lowest possible height because of the additional air resistance.
- Antenna fields are realized very low altitude.
- the problem lies in the fact that the individual radiators of the fields must support a very large bandwidth.
- horns can be designed broadband.
- the horns are designed for regulatory reasons according to the minimum useful wavelength of the transmission band, then the horns are regularly so small that the receiving band can no longer be supported by them.
- the minimum useful wavelength is only about learning. So that the beam elements of the antenna array are tight, so no parasitic side lobes
- quadratic horn only amount to approx.
- conventional horns of this size have only a very low performance in the reception band at approx. 18 GHz - 21 GHz, since they have to be operated close to the cut-off frequency because of the finite aperture angle.
- the Ka-band can no longer support such horns or their efficiency decreases very much in this band.
- the horns generally have to support two orthogonal polarizations, which further restricts the geometrical margin, since an orthomode signal converter, so-called transducers, becomes necessary at the horn output.
- An embodiment of the orthomode signal converter in waveguide technology fails regularly because at higher GHz frequencies not enough space is available.
- Horn radiators which are implemented in high-power technology, only very small dissipative losses.
- Waveguide components fed and the entire food network is also made of waveguide components.
- reception and the transmission band are far apart in frequency, however, the problem arises that conventional
- Waveguides can then no longer support the required frequency bandwidth.
- the required bandwidth is more than 13 GHz (18 GHz - 31 GHz).
- Rectangular waveguides can not support such a large bandwidth efficiently.
- Phase centers of the individual emitters are less than a wavelength of maximum useful frequency apart.
- the side lobes of the antenna diagram are due to parabolic amplitude assignments of such antenna fields
- Amplitude assignments can be optimally adapted to the regulatory mask for a given antenna size
- Antenna diagram (e.g., DE 10 2010 019 081 AI, Seifried, Wenzel et al.).
- the object of the invention is to provide a broadband antenna system in the GHz frequency range, in particular for aeronautical applications, which provides a regulatory compliant transmission mode over a large transmission range
- the antenna system consists of at least four horns, which are at least partially filled with a dielectric. According to the dielectric properties of the filling then increases the effective wavelength in the Horns and these are able to support much larger bandwidths than would be the case without filling. Although dielectric fillings lead to parasitic
- the dielectric constant (permittivity number) of the dielectric with which the horn radiators are filled is selected such that the frequency-filled horn radiators are frequency-wise
- the dimension of the aperture of the horns is smaller in at least one direction
- a horn only works satisfactorily if at least one aperture dimension is close to the wavelength of the lowest useful frequency, because only then does a regular antenna pattern of the single radiator result.
- condition (3) applies to individual insulated horns and is too strict for antenna systems which are composed of multiple horns, since the mutual
- the individual radiators support a first and a second polarization and the two polarizations are mutually orthogonal.
- the first and second polarization are linear
- the signals of the two orthogonal polarizations are carried in separate feed networks, which has the advantage that with the aid of corresponding components, such as e.g. Polarizers or 90 ° hybrid couplers, both linearly polarized signals and circularly polarized signals sent, or
- the antennas may have the smallest possible size and nevertheless a regulatory compliant transmission mode with maximum spectral power density is possible, is also in accordance with an advantageous development of the
- Single radiator is dimensioned so that for direct
- At least four adjacent individual radiators are also located in different directly adjacent modules, then at least one direction is defined by the antenna field, so that for this direction the distance of the phase centers of the Single radiator is less than or equal to the wavelength of the highest transmission frequency, at which no parasitic
- support in question. These are e.g. rectangular or
- Such rectangular modules can be assembled in a space-saving manner to antenna fields.
- the rectangular modules can be fed in a relatively simple manner with binary microstrip networks.
- horn horns which are among the lowest loss antennas. Both horns with a rectangular and a round aperture opening can be used. If grating-lobes are not to occur in any section through the antenna pattern, horns are square
- the apertures of the horns and the steps are designed such that the horns function optimally both in the receiver and in the transmission band of the antenna.
- dielectric filling This ensures that the lowest usable frequency (typically the
- the horns also have at a deeper point over another rectangular cross section for the longer edge k T applies
- ⁇ ⁇ denotes the free space wavelength of the highest useful frequency. This is the highest at Hornende
- Usable frequency of the antenna typically the maximum
- the individual radiators are designed as horn radiators in such a way that in the two polarization planes with symmetrical geometrical constrictions, i.
- Constrictions are equipped and fed separately at its output for each of the two orthogonal polarizations on the belonging to the respective polarization direction geometric constriction.
- the antenna can be optimally adapted to the respective usable frequency bands.
- the horns are designed so that they support two orthogonal linear polarizations. With such horns, insulations far exceeding 40 dB can be achieved. Especially with signal codings with high spectral efficiency are such isolation values
- a further improvement in the reception power, especially in the case of very small horn radiators, can be achieved by providing the individual horn radiators with a dielectric
- Cross-septum or a dielectric lens can be equipped.
- the insertion loss (Sn) in the reception band can be significantly reduced by such structures, even if the aperture areas of the individual radiators are already so small that a free-space wave without these additional dielectric structures would already be almost completely reflected.
- Total number of individual radiators N and any values of the number of individual radiators in a module Ni is so minimal.
- the binary trees are in the general case neither
- Antenna system can be designed as complete and fully symmetrical binary trees and all individual radiators can equal length feeder lines, i. also similar
- microstrip lines are located on a thin substrate and are guided in closed metallic cavities, wherein the cavities are typically filled with air.
- a substrate becomes typically referred to as thin when its thickness is smaller than the width of the microstrip lines.
- Frequencies are only about a factor of 5 to 10 higher than the losses of waveguides. Since these lines are used only for relatively short distances, the absolute losses remain relatively small. Also the
- the microstrip line lies together with its
- Substrate in a cavity which consists of two half-shells.
- the walls of the cavity can be electrically closed by the substrate with electrical
- constrictions geometric constrictions (constrictions).
- the useful bandwidth can be greatly increased.
- the number and arrangement of constrictions depend on the design of the antenna system. For very large useful bandwidths so-called double-ridged waveguides are advantageous, which is a significantly larger
- dielectrically filled waveguides are used for the waveguide supply networks.
- Waveguides require much less space than
- air-filled waveguide can also be a part or a whole
- Waveguide network consist of dielectric filled waveguides. Also a partial filling is possible.
- LNA low-noise amplifier
- Equip food networks with frequency diplexers separate the reception from the transmission band.
- waveguide diplexers are advantageous because they can achieve a very high isolation and are also very low attenuation.
- each module of the antenna array is equipped with a diplexer directly at its output or input.
- At the input and output of these diplexers are then all signal combinations in pure form: polarization 1 in the receiving band, polarization 2 in the receiving band, polarization 1 in the transmission band and polarization 2 in the transmission band.
- the modules can then be interconnected by four corresponding waveguide feed networks.
- Embodiment has the advantage that the waveguide feed networks frequency must not be very broadband, because they must be suitable only for signals of Empfangsl, the transmission band.
- Microstrip line networks as well as the inter-modular waveguide networks are designed so that they can simultaneously support the transmitting and the receiving band.
- the antenna is provided with frequency diplexers connected to a suitable radio frequency switching matrix, then dynamic switching between the orthogonal polarizations is possible
- Such embodiments are particularly advantageous if the antenna is to be used in satellite services which work with the so-called “spot beam” technology.
- spot beam technology is produced on the earth's surface
- the antenna is used in satellite services in which the polarization of the received or transmitted signal is fixed and changes neither temporally nor geographically, then it is advantageous if the first intra-modular
- Microstrip line network and the associated inter-modular waveguide network on the receiving band of the Antennne, and the second intra-modular microstrip line network and the associated inter-modular waveguide network are designed for the transmission band of the antenna system.
- 90 ° hybrid couplers are four-ports which convert two orthogonal linearly polarized signals into two orthogonal circularly polarized signals and vice versa. With such Arrangements it is then possible to send or receive circularly polarized signals.
- the antenna array for receiving and transmitting circularly polarized signals with a
- the polarizer advantageously consists of several layers, which are mounted at a certain distance (typically in the region of a quarter wavelength) from each other.
- a particularly suitable embodiment of the polarizer is a multi-layer meander polarizer.
- Here are the usual patterning metallic
- foams are e.g. low-loss closed-cell foams such as Rohacell or XPS in question.
- the typical distance of the polarizer to the aperture surface of the antenna array is in the range of a wavelength of the useful frequency and the tilt angle
- Antenna system in the transmission band under a regulatory given small mask size, and small antennas can only be transmitted with high spectral power densities if the diagram is as close as possible to the mask, it may be advantageous to use the antenna system with amplitude amplitude tapering
- Parabole amplitude assignments of the aperture are particularly suitable in the case of flat aperture openings for this purpose. Parabole amplitude assignments are thereby
- the amplitude occupancy of the antenna system is preferably designed so that they at least along the direction through the antenna system in which the
- Radiation elements in the direction dense in which the distance of the phase centers of the individual radiators is less than or equal to the wavelength of the highest transmission frequency at which no significant parasitic side lobes (grating lobes) may occur.
- Fig. La-b show schematically an inventive
- Antenna module which consists of a field of 8 x 8
- FIG. 2a-b show exemplary
- FIG. 3a-d illustrate schematically the exemplary structure of an antenna according to the invention from antenna modules and the
- 4a-d show the detailed structure of a single quadruple toothed horn radiator
- FIG. 5 schematically illustrate the detailed structure of a 2 x 2
- Antenna module of four-toothed (“quad-ridged")
- Figures 6a-b show an exemplary 8x8 antenna module consisting of dielectrically filled horns
- FIGS. 7a-d illustrate the exemplary detailed construction of a single dielectrically filled horn radiator
- Fig. 8 shows schematically the detailed structure of a 2 x 2 module of dielectrically filled horns
- Fig. 9 shows a module according to the invention which is provided with a dielectric grid for improving the impedance matching
- Figures lla-d show the detailed structure of a module according to the invention in layering technology
- Fig. 12 shows schematically the vacuum model of a
- FIG. 13 shows the exemplary construction of a waveguide power splitter composed of double-ridged waveguides
- Fig. 14 schematically shows a position of a polarizer
- Fig. 15a-b show an example of a schematic
- Fig. 16 shows a possible construction of a fixed polarization antenna system according to the invention of the transmitting and receiving signals in the form of a block diagram
- Fig. 17 shows a possible construction of a variable polarization antenna system according to the invention of the transmitted and received signals using 90 ° hybrid couplers in the form of a block diagram
- Fig. 18 schematically shows the construction of a variable polarization antenna system of the transmission and reception signals of the present invention using a polarizer in the form of a block diagram.
- Fig. 1 illustrates an exemplary embodiment of a
- Antenna module of an antenna according to the invention.
- Single emitters 1 are here designed as rectangular horns, which can support two orthogonal polarizations.
- the antenna module consists of a total of 64 primary
- N 64.
- the dimensions of the individual radiators and the size of their aperture surfaces are chosen so that the distance of the phase centers of the individual beam elements along both major axes is less than X m i n , where A min denotes the wavelength of the highest useful frequency. This distance ensures that parasitic sidelobes, so-called “grating lobes", can not occur in any direction in the antenna diagram up to the highest usable frequency (reference frequency).
- both microstrip line networks set a 64: 1
- the modules comprise a smaller or larger number of horns.
- K / Ka band antennas e.g. 4 x 4 modules are optimal.
- the microstrip networks then represent a 16: 1 power divider that receives the signals from 16
- microstrip lines in this case are relatively short and their noise contribution therefore remains small.
- an antenna with optimum performance parameters can be constructed by appropriate design of the module sizes.
- the modules are only made as big as necessary to feed them with waveguides. The parasitic noise contribution of
- Microstrip lines are thereby minimized.
- the two microstrip line networks 2, 3 couple the merged signals, each separated by polarization, into microstrip-to-waveguide couplings 4, 5, as shown in FIG. 1b.
- This waveguide couplings 4, 5 can be any number of modules with the help of
- Waveguide networks are coupled efficiently and low attenuation to an antenna system according to the invention.
- FIG. 2 shows two exemplary microstrip line networks 2, 3 for feeding the individual radiators 1 of the 8 ⁇ 8
- the sum signal is sent to the
- waveguide feedthroughs 4b and 5b are also located on the corresponding board in order to create an opening and the connection to the waveguide couplings 4a and 5a, respectively.
- the microstrip line networks 2, 3 can be made by any known method. Whereby low-loss substrates for antennas are particularly suitable.
- FIG. 3 shows by way of example how different antenna modules 8 can be coupled to antenna systems according to the invention.
- Antenna systems according to the invention consist of a number M of modules, where M must be at least two.
- M must be at least two.
- modules may e.g. also be arranged in a circle. Also, not all modules must have the same size (number of individual emitters).
- the modules 8 are now connected to each other by means of the waveguide networks 9, 10.
- the waveguide networks 9, 10 themselves each represent an M: 1 power divider, so that the two orthogonally polarized signals are fed to the sum ports 13, 14 in the
- Waveguide network which connects directly to the waveguide coupling 4, 5, to fill with a dielectric.
- the dimensions of the dielectrically filled waveguides are then significantly reduced, so that their space requirement is minimal.
- the antenna shown in Fig. 3 is thus constructed according to claim 1:
- the individual radiators 1 are dimensioned (see Fig. 1), that for at least one direction through the antenna field of the
- Distance of the phase centers of the horns is less than or equal to the wavelength of the highest transmission frequency at which no grating lobes may occur.
- the individual radiators 1 are supplied separately by microstrip lines for each of the two orthogonal polarizations (see Fig. 2, microstrip-to-waveguide couplings 6, 7).
- the microstrip lines of one orthogonal polarization are the first intra-modular
- Microstrip line network 2 connected and the
- Microstrip lines of the other orthogonal polarization are to the second intra-modular
- Microstrip line network 3 connected.
- the first micro-strip intra-modular network 2 is coupled to the first inter-modular waveguide network 9 and the second micro-strip intra-modular network 3 is coupled to the second inter-modular waveguide network 10 such that the first inter-modular waveguide network 9 receives all of the one orthogonal signals Polarization at the first sum port 13 merges and the second inter-modular waveguide network 10 all signals of the other orthogonal polarization at the second summing port 14 merges.
- microstrip line networks 2, 3 and the waveguide networks 9, 10 are here as complete and
- FIGS. 3c and 3d show a physical realization of a corresponding antenna system.
- the modules 8 consist of single radiators 1 and have two different sizes, i. the number of individual radiators 1 per module 8 is not the same for all modules 8.
- the middle four modules 8 each have 8 individual emitters 1 more than the other four modules 8.
- the height of the antenna system at the left and right edges is less than in the central area.
- Such embodiments are particularly advantageous when the antenna system must be optimally adapted to an aerodynamic radome.
- the modules 8 are fed separately with two waveguide networks 9 and 10 for each polarization.
- the waveguide networks 9, 10 are located in two separate layers behind the modules and the modules are connected to the waveguide networks 9, 10 through the coupling points 11, 12, which are coupled to the waveguide couplings of the modules 4, 5 ,. Both waveguide networks 9, 10 are realized here as cutouts.
- the aperture of the single emitters 1 may be at most learning x learning large (A m in is learning).
- Such horns can greatly extended compared to conventional horns
- the impedance matching of such toothed horns to the free space then takes place according to the method of antenna physics.
- the toothed horns can be designed so that they have two
- Microstrip line networks 2, 3 supplied and removed.
- FIG. 4 a schematically shows the detailed construction of a horn radiator equipped with symmetrical geometric constrictions using the example of a four-toothed tooth
- the Horn 1 consists of three segments (layers), with the two between the segments
- Microstrip networks 2,3 are located.
- the horns 1 are symmetrical with geometric
- Polarization directions are provided, which extend along the propagation direction of the electromagnetic wave.
- Such horns are referred to as "toothed" horns.
- Fig. 4a Shown in Fig. 4a is an exemplary quadruple
- horns 1 can be realized, which also
- Frequency-wise far-reaching transmit and receive tapes can support without substantial losses in the efficiency.
- An example of this are K / Ka band satellite antennas.
- the reception band lies at 18 GHz - 21 GHz and the transmission band at 28 GHz - 31 GHz.
- the depth, width and length of the steps depend on the desired frequency bands and can be numerical
- Microstrip line networks 2, 3 typically occur at the narrowest point of the constrictions 15, 16 for the respective polarization direction, which is a very broadband
- Fig. 4d shows schematically a part of the longitudinal section through a toothed horn at the location of two opposing constrictions 16.
- the constrictions 16 are stepped
- Microstrip line networks 2, 3, and outcoupling of the microstrip line networks 2, 3 on the waveguide coupling 4, 5 has.
- the constrictions as symmetrical teeth 15, 16 of the horns 1 are also shown.
- Microstrip line network 2, 3 is fed or extracted from this.
- microstrip line networks 2, 3 are designed as a binary: 1 power divider and couple the
- grating lobes unwanted parasitic side lobes
- phase centers of the horns 1 coincide with the beam centers of the horns 1. In general, however, this is not
- microstrip lines For the coupling and decoupling of the signals supported by the toothed horns 1 microstrip lines are due to their known broadband in a special way. In addition, microstrip lines require very little space, so that high-efficiency, broadband horn antenna systems whose antenna patterns have no parasitic side lobes ("grating lobes"), even for very high frequencies (for example, 30 GHz - 40 GHz) can be realized.
- grating lobes parasitic side lobes
- the antenna modules of dielectric filled horns 18 are constructed.
- the with a dielectric 19 filled horns 18 are here exemplified in an 8 x 8 antenna array and are on the
- Microstrip line networks 2 and 3 coupled together.
- the microstrip line networks 2, 3 couple the
- FIGS. 7a-c show the internal structure of a single horn radiator 18 completely filled with a dielectric.
- the dielectric packing (dielectric) 19 also consists of three segments, each defined by the microstrip line networks 2, 3.
- the individual radiators 1 can support two widely spaced frequency bands, they are designed stepped in their interior, as shown in the sections Fig. 7b-c is exemplified.
- the extraction or coupling of the highest frequency band is typically carried out at the narrowest or lowest point by the
- Microstrip line network 3 which is furthest away from the aperture opening of the single radiator 1.
- the lower frequency band is switched on or coupled in at a further point to the aperture opening, by a microstrip line network 2.
- the depth, width and length of the steps depends on the desired frequency bands and can also be used here
- the dielectric filling body 19 is also designed to match exactly stepped.
- the shape of the filling body 19 on the aperture surface depends on the
- the filler 19 can be performed flat as shown at the aperture opening. However, others, e.g. curved inwards or outwards, versions possible.
- dielectrically filled horns The advantage of using dielectrically filled horns is that the grains themselves have a much less complex internal structure than in the case of toothed horns.
- the horn is now designed so that a first
- Antenna system is located, then the horn can the
- edge k s chosen so that the associated lower limit frequency of a dielectric filled waveguide with a long edge k s is below the lowest useful frequency of the transmission band of the antenna system
- edge k s is orthogonal to the edge k E
- two orthogonal are simultaneously produced by such a horn supports linear polarizations, since the corresponding waveguide modes are linearly polarized and orthogonal to each other.
- Such horns running in such a stepped manner can also be operated correspondingly without or only with partial dielectric filling, and that the embodiment shown in FIG. 7 d can be adapted to any number of rectangular horn cross sections and thus to any number of
- the edge lengths ki and k 2 of the rectangular aperture of the horns so
- both ki and k 2 are smaller or highest equal to the wavelength of the reference frequency, which is in the transmission band of the antenna.
- the available space is then optimally utilized and a maximum antenna gain is achieved.
- the module is equipped with a dielectric grid 20 extending over the entire aperture opening.
- Such dielectric gratings 20 can greatly improve the impedance matching, in particular at the lower frequency band of the individual radiators 1, by virtue of their close proximity to the aperture openings of the individual radiators 1
- the dielectric grid 20 need not be regular or periodic. For example, e.g.
- FIG. 10a-b illustrates an exemplary module that is incorporated in FIG.
- modules according to the invention can be produced particularly cost-effectively.
- Horn radiators of the module can be received lossless.
- the linearly polarized signals radiated from the horns are converted into circularly polarized signals and then radiated into the clearance.
- the following layers 23a, 2 and 23b form the input or
- microstrip line network 2 of the first polarization and its substrate are embedded in metallic carriers (layers) 23a, 23b.
- the carriers 23a, 23b have recesses (notches) at the locations where a microstrip line runs (see also FIG.
- microstrip line network 3 of the second, orthogonal polarization with its substrate is embedded in the carriers 23b, 23c.
- Waveguide terminations 24 are electrically conductive and can be inexpensively with the known methods of
- Metalworking e.g. made of aluminum (e.g., milling, laser cutting, water jet cutting, electroerodizing).
- Antenna module provided.
- the postage technique described can be used both for
- Figs. 11a-d show the detailed structure of the microstrip line networks 2, 3 embedded in the metallic carriers.
- the recesses (notches) 25 are made such that the
- Microstrip lines 26 of the microstrip network 2, 3 run in closed metallic cavities. The microwave losses are thereby minimized.
- Microstrip lines 26 between the metallic layers remains a gap through which microwave power could escape, is also provided to provide the substrates with metallic vias 27 at the edges of the notches, so that the metallic supports are galvanically connected, and so the cavities be completely closed electrically. Are the vias 27 along the
- the plated-through holes 27 are flush with the metallic walls of the cavity 25.
- the electromagnetic properties of such a structure are similar to those of an air-filled coaxial line.
- Waveguide couplings 4, 5 A dielectric grating 20 is mounted in front of the aperture plane.
- Waveguide networks which couple the modules together made up of toothed waveguides. This has the advantage that toothed waveguide a much larger
- Frequency bandwidth can have as conventional
- Waveguide or can be designed specifically for different utility bands.
- Waveguides are provided with symmetrical geometric constrictions 29, which are supplemented at the location of the power divider by vertical constrictions 30.
- the design of the toothed waveguide and the corresponding power divider can be done with the methods of numerical
- Waveguides of the inter-modular waveguide networks completely or partially filled with a dielectric. Such fillings can with the same frequency use the space requirement in
- a low-loss layer of foam material e.g., Rohacell, XPS
- a thickness in the region of one quarter of a wavelength With lower axle ratio requirements, however, fewer layers may be used. Likewise, more layers can be used if the axis ratio requirements are high.
- An advantageous arrangement is a 4-layer meander polarizer with the axial ratios of less than 1 dB can be achieved, which is usually sufficient in practice.
- the design of the meander polarizers depends on the useful frequency bands of the antenna system and can be done with methods of numerical simulation of such structures.
- the meandering lines 31 are in the embodiment of FIG. 14 at an angle of about 45 ° to the main axes of the antenna. This leads to incident, linearly polarized along a major axis signals are converted into circularly polarized signals. Depending on which main axis the
- Signals are polarized linearly produces a left circularly polarized or a right circularly polarized signal.
- the polarizer 21 may be placed in front of
- Aperture opening can be installed. This makes it possible in a relatively simple manner, the antenna for both linear
- Antenna equipped with a parabolic amplitude assignment which is realized by a corresponding design of the power dividers of feed networks. Since the antenna pattern must be below a mask prescribed by regulations, such amplitude assignments can achieve much higher maximum permitted spectral EIRP densities in the transmit mode than without such assignments. This is especially important for antennas with a small aperture area
- Fig. 15a such an amplitude assignment is shown schematically.
- the power contributions of the individual horns fall from the center of the aperture to the edge.
- this is exemplified by different degrees of blackening (dark: high power contribution, bright: low power contribution).
- the contributions to performance fall in both main axis directions (azimuth and elevation). This results in an approximately optimally matched to the regulatory mask antenna pattern for all angles of rotation ("skew").
- EIRP SD spectral EIRP density
- the antenna system is particularly suitable for applications in the K / Ka band (reception band about 19.2 GHz -20.2 GHz, transmission band about 29 GHz -30 GHz), in which the polarizations of the transmitting and the Received signal are fixed and orthogonal to each other (ie, the polarization direction of the signals does not change).
- a polarizer 21 is initially provided. This is followed by an antenna field 32, which is constructed either of four-toothed ("quad-ridged”) horn radiators or of dielectrically filled horn radiators
- Aperture openings of the individual horns typically have dimensions less than 1 cm in this frequency range.
- the antenna array 32 is according to the invention in modules
- Polarizations has separate microstrip line couplings 33, which in turn after
- Microstrip network 36 are connected.
- the microstrip line network 36 Since the polarization of the transmit and receive signals is fixed and is typically orthogonal to one another, it is provided here that the microstrip line network 36 has one polarization on the transmit band and the
- the G / T of the antenna becomes optimal.
- different waveguide cross sections can be used for the receive band waveguide network and the transmit band waveguide network.
- enlarged waveguide cross sections can be used, which greatly reduce the dissipative losses in the waveguide networks and thus can significantly increase the efficiency of the antennas.
- a receive band frequency filter 39 is provided to protect the low noise receive amplifier, which is typically mounted directly on the receive band output of the antenna, from being overdriven by the strong transmit signals.
- Transmission band filter 40 is provided. This is e.g. then
- FIG. 16 of an antenna system according to the invention has a further, in particular for
- Satellite antennas very important advantage. Since the transmit band feed network and the receive band feed network are completely separated both at the microstrip line level and at the waveguide level, it becomes possible to use different amplitude assignments for the two networks.
- the receive band feed network is homozygously occupied, i. the power contributions of all horns of the antenna are equal in the receiving band and all power dividers both at the level of the receiving band
- Microstrip line network as well as at the level of the receive waveguide network are symmetrical 3dB power dividers when the feed network is constructed as a complete and fully symmetric binary tree.
- Antenna gain is achieved so that the antenna in the receiving band is maximally efficient and the ratio of antenna gain and noise G / T of the antenna is maximum.
- the transmit band feed network can thus be parabolic regardless of the receive band feed network
- Amplitude assignment are provided that the regulatory compliant spectral EIRP density is maximum.
- Amplitude assignments of the antenna gain are not critical, because this is due to the design limited only to the transmission band and does not affect the receiving band.
- the essential features of satellite antennas are the G / T and the maximum regulatory compliant spectral EIRP density.
- the G / T is directly proportional to the data rate that can be received via the antenna.
- the maximum regulatory EIRP spectral density is directly proportional to the data rate that can be transmitted with the antenna.
- Hyperbolic amplitude assignments are characterized by the fact that the power contributions of the individual radiators of the antenna field increase from the middle to the edge.
- the antenna system initially consists of an antenna array 41 of broadband, dual polarized horns, e.g. fourfold toothed horns, which are organized according to the invention in modules.
- each horn emits two orthogonal linear polarized signals, which however, when operating with circularly polarized signals, will also be the complete one
- the essential difference from the embodiment in FIG. 16 consists in the fact that at the level of the feed networks, it is not separated into a receive band and a transmit band feed network, but the signals are separated only according to their different polarization.
- Microstrip line network merged all signals of orthogonal polarization 43 in the second
- the two microstrip line networks 36 are designed such that they both the transmission band and the
- microstrip line networks 36 of the present invention are typically already broadband by design (coaxial line like construction)
- Receive and transmit band can support simultaneously, after the transition 37 microstrip-to-waveguide waveguide networks 44, if very large bandwidths
- frequency diplexers 45, 46 For the separation of receive band and transmit band signals, two frequency diplexers 45, 46 are provided, one for each polarization.
- the frequency diplexers 45, 46 are e.g.
- Hybrid couplers 47, 48 are e.g. low-attenuation
- Waveguide coupler At the output of the two 90 ° hybrid couplers 47, 48 are then all four possible circularly polarized signals (in
- Receive 49 and transmit band 50 each right-handed and left-handed circular) simultaneously.
- the antenna system can also be used for simultaneous operation with four different linearly and four different circularly polarized signals be used. Also many other combination possibilities and the appropriate ones
- Polarized signals used a polarizer 21 instead of the 90 ° hybrid coupler 47, 48 of the structure of FIG. 17.
- the feed networks 36, 44 process again two orthogonal polarizations separated from each other (in this case left-circular and whilzikular) and are each designed correspondingly broadband for the receiving band and the transmission band.
- the frequency diplexers 45, 46 are then directly the four polarization combinations of circularly polarized signals simultaneously.
- the frequency-diplexer 45 for the first circular polarization the signal in the receive and transmit band, at
- Frequency diplexer 46 for the second (to the first orthogonal) circular polarization the signal in the receive and transmit band.
- the structure according to FIG. 18 can also be designed for the operation of linearly polarized signals, or it is possible with the corresponding circuit matrix a simultaneous operation with circular and linearly polarized signals.
- Hybrid couplers are needed. This may vary depending on the application e.g. Save space or weight. Also can be under
- the advantage of the construction according to FIG. 17, however, lies in the fact that when operating with circularly polarized signals Axial ratio of the circularly polarized signals on the respective power contributions at the input of the 90 ° hybrid coupler 47, 48 is in principle freely adjustable.
- radomes through the radome material and the radome curvature can have polarization anisotropies that cause the axis ratio of circularly polarized signals to be greatly altered as it passes through the radome.
- Cross polarization isolation can fall sharply, which can severely degrade the achievable channel separation and ultimately leads to a degradation of the achievable data rate.
- Axis ratio of the circularly polarized signals e.g. in the transmission mode, adjust so that a subsequent, caused by the Radom trimgang polarization distortion
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
L'invention concerne un système d'antennes comprenant au moins quatre cornets d'émission qui sont remplis au moins en partie d'un diélectrique. La longueur d'onde effective augmente dans les cornets en fonction des propriétés diélectriques du remplissage, et les cornets sont en mesure de supporter des largeurs de bande bien plus grandes que cela ne serait le cas sans remplissage. Des remplissages diélectriques entraînent certes des pertes parasitaires par le diélectrique, mais notamment pour de très petits cornets, les pertes demeurent comparativement faibles pour les applications dans la bande-Ka. La constante diélectrique du diélectrique est choisie de manière à ce que les cornets d'émission diélectriquement remplis peuvent encore fonctionner de manière optimale dans la bande utile, la plus faible en termes de fréquence, du système d'antennes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15178569.8A EP2955788A1 (fr) | 2012-07-03 | 2013-07-02 | Systeme d'antenne destine a la communication satellite a large bande dans une gamme de frequence ghz a l'aide d'antennes a cornet a remplissage dielectrique |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012013130 | 2012-07-03 | ||
PCT/EP2013/001925 WO2014005693A1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande, doté de cornets d'émission diélectriquement remplis |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15178569.8A Division EP2955788A1 (fr) | 2012-07-03 | 2013-07-02 | Systeme d'antenne destine a la communication satellite a large bande dans une gamme de frequence ghz a l'aide d'antennes a cornet a remplissage dielectrique |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2870659A1 true EP2870659A1 (fr) | 2015-05-13 |
Family
ID=48748151
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15178569.8A Withdrawn EP2955788A1 (fr) | 2012-07-03 | 2013-07-02 | Systeme d'antenne destine a la communication satellite a large bande dans une gamme de frequence ghz a l'aide d'antennes a cornet a remplissage dielectrique |
EP13734661.5A Withdrawn EP2870659A1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande, doté de cornets d'émission diélectriquement remplis |
EP13734662.3A Active EP2870660B1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté d'un réseau d'alimentation |
EP13734659.9A Active EP2870658B1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté de cornets d'émission de constrictions géométriques |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15178569.8A Withdrawn EP2955788A1 (fr) | 2012-07-03 | 2013-07-02 | Systeme d'antenne destine a la communication satellite a large bande dans une gamme de frequence ghz a l'aide d'antennes a cornet a remplissage dielectrique |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13734662.3A Active EP2870660B1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté d'un réseau d'alimentation |
EP13734659.9A Active EP2870658B1 (fr) | 2012-07-03 | 2013-07-02 | Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté de cornets d'émission de constrictions géométriques |
Country Status (5)
Country | Link |
---|---|
US (3) | US9660352B2 (fr) |
EP (4) | EP2955788A1 (fr) |
CN (3) | CN104428949B (fr) |
ES (2) | ES2856068T3 (fr) |
WO (3) | WO2014005699A1 (fr) |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103811876B (zh) * | 2014-02-26 | 2016-08-17 | 中国工程物理研究院电子工程研究所 | 一种应用于太赫兹波段相控阵的芯片-介质填充喇叭天线 |
US9383261B2 (en) * | 2014-06-13 | 2016-07-05 | Ge Aviation Systems Llc | Method of eliminating spurious signals and a relative navigation system |
US9843108B2 (en) * | 2014-07-25 | 2017-12-12 | Futurewei Technologies, Inc. | Dual-feed dual-polarized antenna element and method for manufacturing same |
DE102014112467B4 (de) | 2014-08-29 | 2017-03-30 | Lisa Dräxlmaier GmbH | Speisenetzwerk für antennensysteme |
DE102014112487A1 (de) | 2014-08-29 | 2016-03-03 | Lisa Dräxlmaier GmbH | Gruppenantenne aus hornstrahlern mit dielektrischer abdeckung |
DE102014112485B4 (de) | 2014-08-29 | 2024-03-07 | Lisa Dräxlmaier GmbH | Hornstrahlerantenne mit verringerter verkopplung zwischen antennenelementen |
DE102014112825B4 (de) | 2014-09-05 | 2019-03-21 | Lisa Dräxlmaier GmbH | Steghornstrahler mit zusätzlicher Rille |
KR102302466B1 (ko) * | 2014-11-11 | 2021-09-16 | 주식회사 케이엠더블유 | 도파관 슬롯 어레이 안테나 |
DE102015101721A1 (de) | 2015-02-06 | 2016-08-11 | Lisa Dräxlmaier GmbH | Positionierungssystem für Antennen |
US10027031B2 (en) * | 2015-06-03 | 2018-07-17 | Mitsubishi Electric Corporation | Horn antenna device |
US10886615B2 (en) * | 2015-08-18 | 2021-01-05 | Maxlinear, Inc. | Interleaved multi-band antenna arrays |
US9559428B1 (en) | 2015-08-25 | 2017-01-31 | Viasat, Inc. | Compact waveguide power combiner/divider for dual-polarized antenna elements |
CN105098366A (zh) * | 2015-09-09 | 2015-11-25 | 西安三维通信有限责任公司 | 机械中心馈电的脊波导平板阵列天线 |
KR101698030B1 (ko) * | 2015-10-01 | 2017-01-19 | 현대자동차주식회사 | 안테나 |
CN105470651B (zh) * | 2016-01-04 | 2018-05-29 | 北京航空航天大学 | 一种基于介质加载的超宽带紧缩场馈源 |
DE102016101583B4 (de) | 2016-01-29 | 2017-09-07 | Lisa Dräxlmaier GmbH | Radom |
US10854984B2 (en) * | 2016-03-10 | 2020-12-01 | The Boeing Company | Air-filled quad-ridge radiator for AESA applications |
DE102016112581A1 (de) | 2016-07-08 | 2018-01-11 | Lisa Dräxlmaier GmbH | Phasengesteuerte Gruppenantenne |
DE102016112582A1 (de) * | 2016-07-08 | 2018-01-11 | Lisa Dräxlmaier GmbH | Phasengesteuertes Antennenelement |
BR112018016972B1 (pt) * | 2016-07-14 | 2022-11-16 | Huawei Technologies Co., Ltd | Antena, sistema que compreende uma antena e método para fabricar uma antena |
CN106129597A (zh) * | 2016-08-12 | 2016-11-16 | 南京肯微弗通信技术有限公司 | 开口波导、天线子阵、平板天线阵列及平板天线 |
EP3309897A1 (fr) * | 2016-10-12 | 2018-04-18 | VEGA Grieshaber KG | Couplage de guide d'ondes pour antenne radar |
KR102599824B1 (ko) * | 2016-12-29 | 2023-11-07 | 라드시 테크놀로지즈 엘티디 | 안테나 어레이 |
US11205847B2 (en) | 2017-02-01 | 2021-12-21 | Taoglas Group Holdings Limited | 5-6 GHz wideband dual-polarized massive MIMO antenna arrays |
DE102017112552A1 (de) * | 2017-06-07 | 2018-12-13 | Lisa Dräxlmaier GmbH | Antenne mit mehreren einzelstrahlern |
CN107342454B (zh) * | 2017-06-09 | 2020-02-21 | 宁波大学 | 一种波导缝隙阵列天线 |
US10665931B2 (en) * | 2017-08-01 | 2020-05-26 | Lockheed Martin Corporation | Waveguide aperture design for geo satellites |
JPWO2019026374A1 (ja) * | 2017-08-04 | 2020-06-18 | ソニー株式会社 | 通信装置、情報処理装置、及び情報処理方法 |
ES2886940T3 (es) * | 2017-09-25 | 2021-12-21 | Gapwaves Ab | Red de antenas en fase |
CN107658568A (zh) * | 2017-09-27 | 2018-02-02 | 北京星际安讯科技有限公司 | 双频双极化共口径波导喇叭平面阵列天线 |
US11705624B2 (en) * | 2017-11-29 | 2023-07-18 | Dai Nippon Printing Co., Ltd. | Wiring board and method for manufacturing wiring board |
CN108039587B (zh) * | 2017-12-01 | 2024-04-09 | 重庆固恒通信设备有限公司 | 用于2.2GHz到2.5GHz的信号接收的微带线 |
CN110098856B (zh) * | 2018-01-31 | 2021-06-22 | 华为技术有限公司 | 一种天线装置及相关设备 |
CN108832276A (zh) * | 2018-04-24 | 2018-11-16 | 西安红叶通讯科技有限公司 | 毫米波网格单元型平板阵列天线 |
US11071198B2 (en) | 2018-05-27 | 2021-07-20 | Vu Systems, LLC | Highly integrated miniature radiometer chip |
KR102445411B1 (ko) * | 2018-07-02 | 2022-09-20 | 씨텔, 인크. | 1차원 액티브 어레이용 개방형 도파관 안테나 |
DE102018211422A1 (de) * | 2018-07-10 | 2020-01-16 | Vega Grieshaber Kg | Füllstandradarantennenanordnung zur Messung eines Füllstandes in einem Behälter |
JP2020031426A (ja) * | 2018-08-20 | 2020-02-27 | 日本電産株式会社 | アンテナアレイ |
CN109494485B (zh) * | 2018-09-30 | 2021-01-19 | 安徽四创电子股份有限公司 | 一种宽带隔板圆极化器 |
CN109616766B (zh) * | 2018-10-25 | 2021-02-26 | 瑞声科技(新加坡)有限公司 | 天线系统及通讯终端 |
NL2022062B1 (en) * | 2018-11-23 | 2020-06-05 | Ampleon Netherlands Bv | Rf power amplifier pallet |
DE102018220967B4 (de) * | 2018-12-04 | 2020-06-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung mit einer funkerkennungsanordnung und verfahren zum bereitstellen derselben |
CN109473771B (zh) * | 2018-12-25 | 2023-12-15 | 广东交通职业技术学院 | 一种平面型全向偶极子双工天线 |
CN109860978B (zh) * | 2019-01-25 | 2020-10-16 | 东阳市川泽户外用品有限公司 | 一种电视信号接收用天线 |
US11258176B2 (en) * | 2019-04-12 | 2022-02-22 | Kymeta Corporation | Non-circular center-fed antenna and method for using the same |
CN110085993A (zh) * | 2019-05-29 | 2019-08-02 | 上海京济通信技术有限公司 | 宽带高圆极化纯度x波段天线阵面 |
CN110364799A (zh) * | 2019-07-15 | 2019-10-22 | 云南大学 | 双脊集成基片间隙波导 |
WO2021034270A1 (fr) * | 2019-08-16 | 2021-02-25 | National University Of Singapore | Polariseur linéaire à circulaire, réseau d'alimentation, antenne et ensemble antenne |
US11437732B2 (en) * | 2019-09-17 | 2022-09-06 | Raytheon Company | Modular and stackable antenna array |
WO2021101424A1 (fr) * | 2019-11-22 | 2021-05-27 | Saab Ab | Éléments d'antenne inversés |
CN111129727B (zh) * | 2019-12-09 | 2022-07-26 | 瑞声科技(新加坡)有限公司 | 天线系统以及电子设备 |
FR3105884B1 (fr) | 2019-12-26 | 2021-12-03 | Thales Sa | Cornet pour antenne satellite bi-bande Ka à polarisation circulaire |
CN112186347B (zh) * | 2020-09-22 | 2023-01-31 | 北京子兆信息技术有限公司 | 应用于毫米波安检成像的带状线馈电喇叭天线 |
CN112186340B (zh) * | 2020-09-29 | 2023-11-07 | 京东方科技集团股份有限公司 | 天线及其制作方法 |
GB2600413A (en) * | 2020-10-27 | 2022-05-04 | Draexlmaier Lisa Gmbh | Horn antenna element |
CN112688051A (zh) * | 2020-12-16 | 2021-04-20 | 深圳市鸿陆技术有限公司 | Rfid天线和rfid读写器 |
US11527838B2 (en) * | 2020-12-31 | 2022-12-13 | Universal Microwave Technology, Inc. | Dual polarized array waveguide antenna |
US11417964B2 (en) * | 2020-12-31 | 2022-08-16 | Universal Microwave Technology, Inc. | Single polarized array waveguide antenna |
CN113206379B (zh) * | 2021-04-06 | 2022-07-05 | 浙江大学 | 一种多层悬置带线天线馈电结构 |
CN113341409A (zh) * | 2021-06-02 | 2021-09-03 | 中国人民解放军陆军工程大学 | 一种相控阵雷达探测系统 |
US11978954B2 (en) | 2021-06-02 | 2024-05-07 | The Boeing Company | Compact low-profile aperture antenna with integrated diplexer |
CN113540806B (zh) * | 2021-07-21 | 2023-06-06 | 中国电子科技集团公司第三十八研究所 | 基于3d打印的一体化太赫兹波纹喇叭天线阵列及其制作方法 |
CN113745833B (zh) * | 2021-08-23 | 2024-07-02 | 格兰康希微电子系统(上海)有限公司 | 波导天线和信号传输装置 |
CN113794058A (zh) * | 2021-09-16 | 2021-12-14 | 上海航天测控通信研究所 | 一种耦合及分离器 |
CN114024129B (zh) * | 2021-10-12 | 2023-04-07 | 中国电子科技集团公司第二十九研究所 | 一种平衡式微带串馈阵列天线 |
US11784418B2 (en) * | 2021-10-12 | 2023-10-10 | Qualcomm Incorporated | Multi-directional dual-polarized antenna system |
CN113964536B (zh) * | 2021-10-27 | 2023-08-22 | 中国电子科技集团公司第三十八研究所 | 一种圆极化两维宽角相扫天线单元及相控阵天线阵列 |
CN113904128B (zh) * | 2021-11-16 | 2023-04-14 | 中国电子科技集团公司第二十九研究所 | 一种毫米波频段矩形喇叭天线子结构及n元天线阵 |
CN114498040B (zh) * | 2022-01-19 | 2023-03-24 | 西安电子科技大学 | 基于双脊间隙波导的波束可重构的h面喇叭天线 |
CN115036679B (zh) * | 2022-07-14 | 2023-10-20 | 西安航天天绘数据技术有限公司 | 一种多子阵拼装的平板天线 |
CN115313050A (zh) * | 2022-08-09 | 2022-11-08 | 中国电子科技集团公司第二十研究所 | 一种双脊喇叭天线 |
CN116759816B (zh) * | 2023-01-13 | 2023-10-27 | 安徽大学 | 基于基片集成波导的双频双极化天线 |
GB2627947A (en) * | 2023-03-08 | 2024-09-11 | Draexlmaier Lisa Gmbh | Reduced length suspended stripline to double ridge waveguide transition |
CN117335169B (zh) * | 2023-09-07 | 2024-04-19 | 苏州欣天盛科技有限公司 | 用于5g毫米波系统的双频双圆极化透射阵天线及方法 |
CN117293520B (zh) * | 2023-09-14 | 2024-03-22 | 北京西宝电子技术有限责任公司 | 介质填充喇叭天线及通信系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811028A (en) * | 1987-01-20 | 1989-03-07 | Avco Corporation | Quadridge antenna for space vehicle |
EP1946408A2 (fr) * | 2005-10-16 | 2008-07-23 | Starling Advanced Communications Ltd. | Antenne en reseau plan bipolarisee et elements cellulaires s'y rapportant |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4274097A (en) * | 1975-03-25 | 1981-06-16 | The United States Of America As Represented By The Secretary Of The Navy | Embedded dielectric rod antenna |
US4161731A (en) * | 1977-10-31 | 1979-07-17 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Thickness measurement system |
US4626865A (en) | 1982-11-08 | 1986-12-02 | U.S. Philips Corporation | Antenna element for orthogonally-polarized high frequency signals |
FR2582865B1 (fr) * | 1985-06-04 | 1987-07-31 | Labo Electronique Physique | Modules unitaires d'antenne hyperfrequences et antenne hyperfrequences comprenant de tels modules |
FR2592233B1 (fr) | 1985-12-20 | 1988-02-12 | Radiotechnique Compelec | Antenne plane hyperfrequences recevant simultanement deux polarisations. |
US5086304A (en) * | 1986-08-13 | 1992-02-04 | Integrated Visual, Inc. | Flat phased array antenna |
US5258768A (en) * | 1990-07-26 | 1993-11-02 | Space Systems/Loral, Inc. | Dual band frequency reuse antenna |
GB2247990A (en) | 1990-08-09 | 1992-03-18 | British Satellite Broadcasting | Antennas and method of manufacturing thereof |
US5905457A (en) * | 1990-10-11 | 1999-05-18 | Rashid; Charles | Vehicle radar safety apparatus |
US5258758A (en) | 1991-01-31 | 1993-11-02 | Crystal Semiconductor Corporation | DAC shutdown for low power supply condition |
US5214394A (en) * | 1991-04-15 | 1993-05-25 | Rockwell International Corporation | High efficiency bi-directional spatial power combiner amplifier |
JPH0567912A (ja) | 1991-04-24 | 1993-03-19 | Matsushita Electric Works Ltd | 平面アンテナ |
CA2063914C (fr) * | 1991-06-12 | 2002-07-16 | George S. Cohen | Antenne a faisceaux multiples et reseau d'antennes pour l'ajustement du faisceau |
JP2945839B2 (ja) * | 1994-09-12 | 1999-09-06 | 松下電器産業株式会社 | 円一直線偏波変換器とその製造方法 |
JP3132664B2 (ja) * | 1995-04-24 | 2001-02-05 | 株式会社エヌ・ティ・ティ・ドコモ | マイクロストリップアンテナ装置 |
US6297774B1 (en) | 1997-03-12 | 2001-10-02 | Hsin- Hsien Chung | Low cost high performance portable phased array antenna system for satellite communication |
US6028562A (en) | 1997-07-31 | 2000-02-22 | Ems Technologies, Inc. | Dual polarized slotted array antenna |
SE513586C2 (sv) | 1998-05-12 | 2000-10-02 | Ericsson Telefon Ab L M | Metod för framställning av en antennstruktur och antennstruktur framställd medelst nämnda metod |
US6201508B1 (en) * | 1999-12-13 | 2001-03-13 | Space Systems/Loral, Inc. | Injection-molded phased array antenna system |
US6271799B1 (en) | 2000-02-15 | 2001-08-07 | Harris Corporation | Antenna horn and associated methods |
US7057572B2 (en) | 2002-11-02 | 2006-06-06 | Electronics And Telecommunications Research Institute | Horn antenna system having a strip line feeding structure |
US7187342B2 (en) | 2003-12-23 | 2007-03-06 | The Boeing Company | Antenna apparatus and method |
EP1782500B1 (fr) | 2004-08-18 | 2008-07-30 | Telefonaktiebolaget LM Ericsson (publ) | Antenne a fentes de guide d'onde |
JP4029217B2 (ja) | 2005-01-20 | 2008-01-09 | 株式会社村田製作所 | 導波管ホーンアレイアンテナおよびレーダ装置 |
US7287987B2 (en) | 2005-05-31 | 2007-10-30 | The Boeing Company | Electrical connector apparatus and method |
US7135848B1 (en) * | 2005-12-12 | 2006-11-14 | Xytrans, Inc. | Highly integrated radiometer sensor cell |
CN101479887A (zh) * | 2006-05-24 | 2009-07-08 | 韦夫班德尔公司 | 集成波导管天线和阵列 |
US7884768B2 (en) * | 2006-11-08 | 2011-02-08 | The Boeing Company | Compact, dual-beam phased array antenna architecture |
WO2008069358A1 (fr) * | 2006-12-08 | 2008-06-12 | Idoit Co., Ltd. | Antenne de type en réseau à cornet |
WO2008069369A1 (fr) * | 2006-12-08 | 2008-06-12 | Idoit Co., Ltd. | Antenne du type à réseau de cornets pour polarisation rectiligne double |
EP2006956B1 (fr) | 2007-06-22 | 2017-12-13 | The Boeing Company | Système et procédé pour une conception de transmission radiofréquence (RF) pour un système d'antenne réseau à commande de phase utilisant un réseau à réalisation de faisceau |
CN101083359B (zh) * | 2007-07-10 | 2012-05-09 | 中国电子科技集团公司第五十四研究所 | 高增益双线极化或双圆极化波导阵列天线制造方法 |
WO2009031794A1 (fr) | 2007-09-03 | 2009-03-12 | Idoit Co., Ltd. | Antenne de type réseau à cornet permettant une polarisation linéaire double |
WO2009037716A2 (fr) | 2007-09-21 | 2009-03-26 | Indian Space Research Organisation | Antenne microruban plane à large bande et gain élevé pour une application spatiale embarquée |
CN201327867Y (zh) * | 2008-12-03 | 2009-10-14 | 中国航天科技集团公司第五研究院第五〇四研究所 | 一种宽带正交模耦合器 |
KR101065305B1 (ko) * | 2008-12-22 | 2011-09-16 | 한국전자통신연구원 | 모드 변환 기능이 내장된 안테나 |
CN102414922B (zh) * | 2009-04-30 | 2014-10-01 | Qest量子电子系统有限公司 | 用于卫星通信的宽带天线系统 |
US8487823B2 (en) * | 2009-11-12 | 2013-07-16 | Raytheon Company | Switchable microwave fluidic polarizer |
CN102110890B (zh) * | 2011-02-11 | 2013-10-30 | 中国科学院光电技术研究所 | 一种基于非均匀介质的高增益喇叭天线 |
US9112279B2 (en) | 2011-02-25 | 2015-08-18 | Honeywell International Inc. | Aperture mode filter |
CN102394374B (zh) * | 2011-06-29 | 2013-08-28 | 西安空间无线电技术研究所 | 一种双频馈源 |
CN202772259U (zh) * | 2012-09-27 | 2013-03-06 | 苏州博海创业微系统有限公司 | 毫米波辐射结构 |
-
2013
- 2013-07-02 ES ES13734662T patent/ES2856068T3/es active Active
- 2013-07-02 EP EP15178569.8A patent/EP2955788A1/fr not_active Withdrawn
- 2013-07-02 CN CN201380035965.8A patent/CN104428949B/zh active Active
- 2013-07-02 EP EP13734661.5A patent/EP2870659A1/fr not_active Withdrawn
- 2013-07-02 WO PCT/EP2013/001939 patent/WO2014005699A1/fr active Application Filing
- 2013-07-02 WO PCT/EP2013/001925 patent/WO2014005693A1/fr active Application Filing
- 2013-07-02 US US14/412,584 patent/US9660352B2/en active Active
- 2013-07-02 EP EP13734662.3A patent/EP2870660B1/fr active Active
- 2013-07-02 US US14/412,560 patent/US10211543B2/en active Active
- 2013-07-02 WO PCT/EP2013/001923 patent/WO2014005691A1/fr active Application Filing
- 2013-07-02 CN CN201380035959.2A patent/CN104428950B/zh active Active
- 2013-07-02 ES ES13734659T patent/ES2763866T3/es active Active
- 2013-07-02 US US14/412,626 patent/US9716321B2/en active Active
- 2013-07-02 CN CN201380035909.4A patent/CN104428948B/zh active Active
- 2013-07-02 EP EP13734659.9A patent/EP2870658B1/fr active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4811028A (en) * | 1987-01-20 | 1989-03-07 | Avco Corporation | Quadridge antenna for space vehicle |
EP1946408A2 (fr) * | 2005-10-16 | 2008-07-23 | Starling Advanced Communications Ltd. | Antenne en reseau plan bipolarisee et elements cellulaires s'y rapportant |
Non-Patent Citations (1)
Title |
---|
See also references of WO2014005693A1 * |
Also Published As
Publication number | Publication date |
---|---|
US9716321B2 (en) | 2017-07-25 |
EP2870658B1 (fr) | 2019-10-23 |
CN104428950A (zh) | 2015-03-18 |
WO2014005693A1 (fr) | 2014-01-09 |
EP2870658A1 (fr) | 2015-05-13 |
CN104428948A (zh) | 2015-03-18 |
EP2955788A1 (fr) | 2015-12-16 |
EP2870660A1 (fr) | 2015-05-13 |
ES2763866T3 (es) | 2020-06-01 |
US10211543B2 (en) | 2019-02-19 |
CN104428949B (zh) | 2017-05-24 |
US20150162668A1 (en) | 2015-06-11 |
CN104428948B (zh) | 2017-07-11 |
ES2856068T3 (es) | 2021-09-27 |
CN104428950B (zh) | 2017-04-12 |
WO2014005691A1 (fr) | 2014-01-09 |
US20150188236A1 (en) | 2015-07-02 |
WO2014005699A1 (fr) | 2014-01-09 |
US20150188238A1 (en) | 2015-07-02 |
EP2870660B1 (fr) | 2021-01-06 |
US9660352B2 (en) | 2017-05-23 |
CN104428949A (zh) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2870658B1 (fr) | Système d'antennes pour communication satellite large bande dans la plage de fréquences ghz, doté de cornets d'émission de constrictions géométriques | |
EP2425490B1 (fr) | Système d'antenne à large bande pour communication par satellite | |
DE3784569T2 (de) | Mikrowellenantenne. | |
WO2018149689A1 (fr) | Dispositif d'antenne et réseau d'antennes | |
DE202021106120U1 (de) | Strahlerelemente mit abgewinkelten Einspeiseschäften und Basisstationsantennen einschließlich derselben | |
CN114614257B (zh) | 一种平面式高隔离度K/Ka频段共口径相控阵天线 | |
WO2015010760A1 (fr) | Réseau d'antennes à large bande | |
WO2016173713A1 (fr) | Antenne | |
DE102016207434A1 (de) | Antennenvorrichtung | |
EP2991159A1 (fr) | Réseau d'alimentation pour systèmes d'antennes | |
DE102014112825A1 (de) | Steghornstrahler mit zusätzlicher Rille | |
EP2381531B1 (fr) | Antenne en réseau commandée par phases | |
EP4150708B1 (fr) | Agencement d'antenne, agencement d'émetteur-récepteur et système de communication, dispositif d'actionnement et procédé de fonctionnement d'un dispositif d'antenne | |
DE60112335T2 (de) | Phasengesteuerte gruppenantenne mit spannungsgesteuertem phasenschieber | |
DE10150086B4 (de) | Gruppenantenne mit einer regelmäßigen Anordnung von Durchbrüchen | |
DE102009034429B4 (de) | Flachantenne | |
DE102004050598A1 (de) | Dualband-Antenne für zirkulare Polarisation | |
DE102011121138B4 (de) | Breitband-Antennensystem zur Satellitenkommunikation | |
DE102012013129A1 (de) | Breitband-Antennensystem zur Satellitenkommunlkation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20181115 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200617 |