EP2984432B1 - Gas slide heat exchanger - Google Patents

Gas slide heat exchanger Download PDF

Info

Publication number
EP2984432B1
EP2984432B1 EP13715969.5A EP13715969A EP2984432B1 EP 2984432 B1 EP2984432 B1 EP 2984432B1 EP 13715969 A EP13715969 A EP 13715969A EP 2984432 B1 EP2984432 B1 EP 2984432B1
Authority
EP
European Patent Office
Prior art keywords
pipe
heat exchanger
bulk material
nozzles
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13715969.5A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2984432A1 (en
Inventor
Dirk Lohrberg
Andreas Orth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outotec Finland Oy
Original Assignee
Outotec Finland Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outotec Finland Oy filed Critical Outotec Finland Oy
Priority to RS20170843A priority Critical patent/RS56234B1/sr
Publication of EP2984432A1 publication Critical patent/EP2984432A1/en
Application granted granted Critical
Publication of EP2984432B1 publication Critical patent/EP2984432B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/14Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material moving by gravity, e.g. down a tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • F28C3/16Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid the particulate material forming a bed, e.g. fluidised, on vibratory sieves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0041Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having parts touching each other or tubes assembled in panel form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Definitions

  • the invention relates to a gas slide heat exchanger for treating bulk material comprising an elongated pipe having an inlet for introducing the bulk material at one end and an outlet for withdrawing the bulk material at the other end.
  • Such a heat exchanger comprises a stationary elongated housing having an inlet for the material to be treated at one end and an outlet at the other end as well as one or more screw rotors provided in the housing and extending along the length thereof.
  • the rotor comprises a central shaft and a worm gear provided on the outer surface of the shaft.
  • Within the shaft a conduit is provided which is connected to a steam supply.
  • the bulk material is introduced through the inlet into the housing and conveyed therethrough by the rotating movement of the screw conveyor. At the same time the bulk material is heated by the steam flowing in the central conduit of the shaft as well as by steam flowing in the double wall of the housing.
  • Another heat exchanger comprising a screw conveyor is known from document DE 534 988 , wherein a heating or cooling medium flows through the hollow screw conveyor to heat or cool the bulk material transported through the housing.
  • Other screw conveying heat exchangers are known from documents DE 17 51 961 or DD 288 663 A5 .
  • Document AT 507 100 B1 describes a process and apparatus for heat exchange wherein a bulk material is fluidized by introducing a fluidizing gas and wherein the bulk material is additionally agitated by a stirrer. Stirring arms are rotated between layers of heat exchange tubes provided in horizontal planes within the housing.
  • Document DE 10 2011 078 954 A1 describes another bulk heat exchange apparatus having a feed section, a heat exchanger section and a bulk material discharge section.
  • the bulk material feed section is divided by a bulk partition in a conveyor flow supply chamber and a counter flow supply chamber.
  • the bulk material partition continues to the bulk heat exchanger section. Thereby, a conveyor flow region and a counter flow region are formed of the heat exchanger section.
  • the heated particles After passing through the heat exchanging section, the heated particles are circulated within an upper chamber of the apparatus and fall back into an annular bed to be withdrawn.
  • This system also is quite complex and requires a specific regulation of the fluidization air.
  • fluidizing gas is injected via nozzles or membranes at the lower part of the gas slide.
  • the amount of injected gas is kept in a range that the bulk material is flowing but not expanding or circulating as it is desired for example in a fluidized bed cooler.
  • Document EP 0 694 749 A1 discloses a heat exchanger for treating bulk material according to the preamble of claim 1 comprising an elongated pipe having an inlet for introducing the bulk material at one end and an outlet for withdrawing the bulk material at the other end, and a plurality of heat exchange tubes extending along the longitudinal direction of the pipe, wherein a plurality of aeration nozzles for introducing an aeration gas is provided at the bottom of the pipe.
  • All aeration nozzles are provided at the bottom of the pipe and introduce the aeration gas below the heat exchange tubes.
  • a heat exchanger comprising the features of claim 1.
  • a plurality of heat exchange tubes extends along the longitudinal direction of the pipe, wherein a plurality of fluidization nozzles for introducing a fluidizing gas is provided at the bottom of the pipe.
  • the bulk material is fluidized and slowly flows along the elongated pipe.
  • heat is exchanged with the heat exchange medium flowing through the heat exchanging tubes.
  • the heat exchanger elements of the gas slide heat exchanger according to the present invention can be designed with a greater surface/volume ratio.
  • Multiple single heat exchange tubes can be integrated to a bundle with a much greater surface than the cylindrical surface of the screw shaft and the screw conveyor casing used in the prior art.
  • the heat exchange is promoted by the expanded surface of the bulk material fluidized by the fluidizing gas.
  • This is not possible in the standard screw conveyor.
  • the fluidization nozzles extend from the bottom of the pipe into the upper region of the pipe, it is possible to ensure the expansion and conveying of the material also in cases of bulk material that tends to generate holes rather than expand when fluidized. This happens in particular if the bulk material is very fine.
  • the fluidization nozzles are directed perpendicular to the conveying direction of the bulk material. Thereby, it is ensured that the bulk material is sufficiently fluidized when passing the nozzles.
  • Perfectdicular in the context of the present invention refers to an orientation of the fluidization nozzles within a range of 85 to 95°, in particular about 90°, relative to the major conveying direction of the bulk material along the pipe.
  • the pipe is tilted downwards in the conveying direction of the bulk material, preferably at an angle of 5 to 10 degrees or more preferably at an angle of 6 to 8 degrees.
  • the fluidized bulk material automatically flows down the pipe towards the outlet.
  • the pipe preferably comprises a double wall for receiving a heat exchange medium. Accordingly, heat is exchanged not only between the longitudinal heat exchange tubes within the fluidized material but also from the outer wall.
  • the pipe wall may be formed from a plurality of smaller pipes for receiving a heat exchange medium.
  • the heat exchange surface is increased.
  • a plurality of smaller pipes may be provided within the pipe for receiving the heat exchange medium.
  • transport nozzles which enter into the pipe at a location distanced from the bottom of the pipe to introduce additional transport gas.
  • the openings of the transport nozzles are located in a region extending between about 25 and 75% of the height of the pipe.
  • the transport nozzles are inclined downwards at an angle of 30 to 60°, preferably 40 to 50° and in particular about 45°.
  • the invention provides that the transport nozzles are inclined in the conveying direction of the bulk material in order to promote the conveyance of the material.
  • the transport nozzles are inclined at an angle of 30 to 60°, preferably 40 to 50° and in particular about 45°.
  • the fluidization and/or transport nozzles are located in respective rows along the longitudinal direction of the pipe, wherein preferably common supply pipes are provided for supplying fluidizing gas to each row of nozzles.
  • the flow rate of the fluidization and/or transport nozzles can be regulated, wherein preferably the fluidizing gas is injected through the transport nozzles with a low velocity in conveying direction to ensure just a proper bulk material flow.
  • the other part of the fluidizing gas can instead be injected perpendicular to the conveying direction through the fluidization nozzles with a comparatively higher velocity obtaining an expansion of the bulk material and hence a great material surface and improved heat exchange.
  • the heat exchange medium may be directed counter-currently or co-currently to the conveying direction of the bulk material depending on the specific needs of the process and material.
  • a gas slide heat exchanger 1 according to the present invention as shown in Fig. 1 includes a pipe 2 having an inlet 3 for introducing a bulk material at a first end, and an outlet 4 for withdrawing the bulk material at the other end of pipe 2.
  • the pipe 2 is slightly downwards tilted at an angle of 6 to 8 degrees in the direction of the outlet 4.
  • a plurality of heat exchange tubes 5 extends along the longitudinal direction of pipe 2.
  • a heating medium is introduced into the heat exchange tubes 5 via a supply port 6 and withdrawn through outlet port 7 at the other end of pipe 2.
  • the wall 2a of pipe 2 is designed as a double wall to receive additional heat exchange medium.
  • the heat exchanging medium preferably water, boiler feed water or thermo oil
  • the heat exchange medium can just as well be directed co-currently to the conveying direction of the bulk material in accordance with the specific requirements of the heat exchange process and the material to be treated.
  • a supply pipe 8 for fluidizing gas is provided below the pipe 2 .
  • a plurality of fluidization nozzles 9 extends in an upward direction towards pipe 2.
  • the fluidization nozzles 9 enter the pipe 2 at its bottom 10 at approximately the center of the bottom region of pipe 2.
  • supply pipes 11, 12 extend along the major part of the length of pipe 2 and comprise transport nozzles 13, 14 which enter into pipe 2 in a region located at 25 to 75%, in particular 30 to 40% of the height of pipe 2.
  • the transport nozzles 13, 14 are inclined downwards at an angle of approximately 45°:
  • the transport nozzles 13, 14 further are inclined in the conveying direction of the bulk material at an angle of also about 45°.
  • the fluidization gas in particular air, that is introduced (continuously or as a pulsed stream) into the pipe 2 through the fluidization nozzles 9 and the transport nozzles 13, 14 fluidizes the bulk material within pipe 2 and flows together with the bulk material along pipe 2 until it exits through a gas outlet 15 provided at the end of pipe 2.
  • the heat exchanger according to the first embodiment of the present invention as shown in Fig. 1 and 2 is basically constructed as described above. Next, its operation and advantages shall be described.
  • Bulk material such as ore fines, aluminium hydrate, ash or the like, is introduced into pipe 2 through inlet 3.
  • the bulk material is fluidized within pipe 2 by fluidization gas introduced through the fluidization nozzles 9 and the transport nozzles 13, 14 and flows along pipe 2 until it is withdrawn from pipe 2 through outlet 4.
  • a part of the fluidizing gas is injected with a low velocity in conveying direction through the transport nozzles 13, 14, while the other part of the fluidizing gas is injected with a comparatively higher velocity through the fluidization nozzles 9 in a direction perpendicular to the conveying direction of the bulk material.
  • the bulk material is fluidized and expanded to obtain a great material surface and an improved heat exchange.
  • the concept of the fluidization is illustrated in Fig. 3 wherein the bulk material is primarily transported in transport zone 20 while zone 21 indicates an area with enlarged material surface due to the expansion of the bulk material. For the sake of convenience, the heat exchanging tubes 5 are not illustrated in Fig. 3 to 5 .
  • FIG. 4 shows an embodiment, wherein the transport nozzles 13, 14 are arranged at a higher region of the pipe 2 so that an increased zone 21 with enlarged material surface is created.
  • a similar effect is achieved in the embodiment shown in Fig. 5 if some of the fluidization nozzles 9a do not open at the bottom 10 of pipe 2 but extend into the upper region of the pipe 2 to create a zone 21 with enlarged material surface.
  • the transport nozzles 13, 14 and the extended fluidization nozzles 9a may be combined in a heat exchanger 1.
  • the flow rate of the fluidization air supplied through fluidization nozzles 9, 9a and transport nozzles 13, 14 can be regulated in order to provide for adequate fluidization and transport conditions of the bulk material within pipe 2.
  • a gas slide heat exchanger according to the present invention is less complex to manufacture, provides a greater heat exchange surface at approximately same main dimensions and provides for an improved heat transfer due to an expanded bulk material surface.
  • the present invention is suitable for heating the bulk material by employing heated heat exchange media, but may also be used for cooling the bulk material with cold heat exchange media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Nozzles (AREA)
EP13715969.5A 2013-04-10 2013-04-10 Gas slide heat exchanger Active EP2984432B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RS20170843A RS56234B1 (sr) 2013-04-10 2013-04-10 Izmenjivač toplote sa strujanjem gasa

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/057491 WO2014166533A1 (en) 2013-04-10 2013-04-10 Gas slide heat exchanger

Publications (2)

Publication Number Publication Date
EP2984432A1 EP2984432A1 (en) 2016-02-17
EP2984432B1 true EP2984432B1 (en) 2017-08-02

Family

ID=48092957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13715969.5A Active EP2984432B1 (en) 2013-04-10 2013-04-10 Gas slide heat exchanger

Country Status (7)

Country Link
US (1) US20160054064A1 (ko)
EP (1) EP2984432B1 (ko)
KR (1) KR20150139551A (ko)
CN (1) CN105164485B (ko)
EA (1) EA029071B1 (ko)
RS (1) RS56234B1 (ko)
WO (1) WO2014166533A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710043B2 (en) 2014-09-24 2020-07-14 Raven Sr, Llc Compact and maintainable waste reformation apparatus
CN105698561A (zh) * 2016-01-18 2016-06-22 巢湖瑞丰油脂有限公司 一种烘炒芝麻冷却设备及使用方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE534988C (de) 1929-06-23 1931-10-05 Otto Hardung Umlaufender Waermeaustauscher mit in einem Gehaeuse angeordneter doppelwandiger Hohlschnecke
DE1751961A1 (de) 1968-08-24 1971-06-16 Werner & Pfleiderer Schneckenwaermeaustauscher mit hohlen Schenckengaengen
DE1909039B2 (de) * 1969-02-22 1973-01-04 Metallgesellschaft Ag, 6000 Frankfurt Wirbelschichtkühler
US3584792A (en) * 1969-04-18 1971-06-15 Patent And Dev Of N C Inc Device for liquid atomization and fluid blending
SE339211B (ko) * 1970-01-22 1971-10-04 Stal Refrigeration Ab
RO58713A2 (ro) * 1972-04-24 1975-08-26 Inst De Proiectare Tehnologica Aparat multifunctional pentru materiale pulverulente
US4610310A (en) * 1982-09-30 1986-09-09 Miller Dennis R Fire protection system
DE3248096C2 (de) * 1982-12-24 1985-01-31 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 4200 Oberhausen Stehende Vorrichtung zum Kühlen von unter hohem Druck stehenden Gasen mit hohem Staubanteil
DE3320595A1 (de) * 1983-06-08 1984-12-13 Rheinische Braunkohlenwerke AG, 5000 Köln Schneckenfoerderer zum austragen von festen rueckstaenden aus unter hoher temperatur und ueberdruck betriebenen einrichtungen
DE3345235A1 (de) * 1983-12-14 1985-06-20 Sulzer-Escher Wyss GmbH, 7980 Ravensburg Fliessbett mit einer waermetauscher-anordnung
DD288663A5 (de) 1989-10-18 1991-04-04 Veb Volkswerft Stralsund,De Waermetauschende foerderschnecke
FR2653544B1 (fr) * 1989-10-24 1992-02-14 Gaz De France Pompe a vapeur a echangeur air-produits de combustion a contre-courant sans fluide intermediaire.
CA2001990C (en) * 1989-11-01 1999-08-17 Gordon M. Cameron Electrostatic gas cleaning
US5190415A (en) * 1991-09-03 1993-03-02 Ingersoll-Rand Company Flow induced feed collector and transporter apparatus
US5329886A (en) * 1993-08-02 1994-07-19 Westinghouse Electric Corporation Steam generator
US6106789A (en) * 1993-12-30 2000-08-22 Phillips Petroleum Company Alkylation reactor with internal acid cooling zones
FR2723186B1 (fr) * 1994-07-28 1996-09-13 Gec Alsthom Stein Ind Dispositif de refroidissement de particules solides en sortie d'un agencement de traitement
US5836257A (en) * 1996-12-03 1998-11-17 Mcdermott Technology, Inc. Circulating fluidized bed furnace/reactor with an integral secondary air plenum
US5894883A (en) * 1998-03-25 1999-04-20 Phillips Petroleum Company Shell and tube heat exchanger
JP2000314502A (ja) * 1999-04-30 2000-11-14 Miura Co Ltd 水管ボイラ
EP1313587A1 (en) * 2000-09-01 2003-05-28 FRY'S METALS, INC. d/b/a ALPHA METALS, INC. Rapid surface cooling of solder droplets by flash evaporation
EP1816095B1 (de) * 2006-02-07 2007-09-19 IBAU Hamburg Ingenieurgesellschaft Vorrichtung zum pneumatischen Fördern von partikel-und staubförmigem Schüttgut
US8048583B2 (en) * 2006-07-20 2011-11-01 Modine Manufacturing Company Compact air preheater for solid oxide fuel cell systems
CN101903714B (zh) * 2008-01-11 2012-08-15 江森自控科技公司 蒸汽压缩系统
AT507100B1 (de) 2008-07-23 2010-02-15 Andritz Tech & Asset Man Gmbh Vorrichtung und verfahren zur wärmeübertragung
DE102008048405B3 (de) * 2008-09-23 2010-04-22 Alstom Technology Ltd. Rohrbündel-Wärmetauscher zur Regelung eines breiten Leistungsbereiches
US8278363B2 (en) * 2009-03-23 2012-10-02 Thomas Charles Holcombe Fischer-tropsch reactions using heat transfer tubes with a catalyst layer on the outside surfaces
DE102009020437A1 (de) * 2009-05-08 2010-11-11 Outotec Oyj Vorrichtung zum Transportieren von Schüttgütern
US8231233B2 (en) 2009-06-17 2012-07-31 Motorola Mobility, Inc. Portable electronic device and method of power management for same to accommodate projector operation
US9010407B2 (en) * 2010-04-01 2015-04-21 Mac-Dan Innovations Llc Waste water heat recovery system
FR2973365B1 (fr) * 2011-03-31 2014-04-11 Mersen France Py Sas Installation et reacteur pour la synthese directe d'acide chlorhydrique a partir d'hydrogene et de chlore avec recuperation de chaleur
DE102011078954B4 (de) 2011-07-11 2014-05-08 Coperion Gmbh Schüttgut-Wärmetauschervorrichtung
CN202692604U (zh) * 2012-06-19 2013-01-23 常州市大江干燥设备有限公司 一种加热流化床干燥机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN105164485A (zh) 2015-12-16
EA201591777A1 (ru) 2016-03-31
US20160054064A1 (en) 2016-02-25
CN105164485B (zh) 2017-08-08
RS56234B1 (sr) 2017-11-30
EA029071B1 (ru) 2018-02-28
WO2014166533A1 (en) 2014-10-16
EP2984432A1 (en) 2016-02-17
KR20150139551A (ko) 2015-12-11

Similar Documents

Publication Publication Date Title
EP2984432B1 (en) Gas slide heat exchanger
JP2017058052A (ja) テレフタル酸の乾燥方法および横型回転式乾燥機
US8211371B2 (en) Device and process for heat transfer
US9670012B2 (en) Gas-particle processor
EP2884169A1 (en) Fluidized bed apparatus
JP2010139125A (ja) 高温粒流体の回転式冷却搬送装置
US5314012A (en) Apparatus for effecting heat exchange between a liquid and a particulate material
JP5746391B1 (ja) 横型回転式乾燥機
WO2020249864A1 (en) Rotary cooler and method for simultaneous cooling and conveyance
US4585051A (en) Heat exchange between solids
JP2014503343A5 (ko)
EP2884170A1 (en) Fluidized bed apparatus
EP2884172A1 (en) Fluidized bed syphon
EP2884162A1 (en) Fluidized bed heat exchanger
WO2010117284A1 (en) Method of processing plastics waste, especially polyolefines and a device for processing plastics waste, especially polyolefines
CN207907743U (zh) 流动固体散热装置
EP2884165A1 (en) Fluidized bed heat exchanger
CN118076716A (zh) 热加工装置及热加工方法
WO2013137305A1 (ja) セメント製造装置
AU554499B2 (en) Heat exchange between solids
US20090246354A1 (en) Method and Device for Melting Sugar
EP2884166A1 (en) Fluidized bed heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOHRBERG, DIRK

Inventor name: ORTH, ANDREAS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OUTOTEC (FINLAND) OY

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 914936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013024347

Country of ref document: DE

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E014338

Country of ref document: EE

Effective date: 20170904

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 914936

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171103

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013024347

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RS

Payment date: 20180327

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180410

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180410

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130410

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210407

Year of fee payment: 9

REG Reference to a national code

Ref country code: EE

Ref legal event code: HC1A

Ref document number: E014338

Country of ref document: EE

REG Reference to a national code

Ref country code: EE

Ref legal event code: HC1A

Ref document number: E014338

Country of ref document: EE

Ref country code: EE

Ref legal event code: GB1A

Ref document number: E014338

Country of ref document: EE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013024347

Country of ref document: DE

Owner name: METSO OUTOTEC FINLAND OY, FI

Free format text: FORMER OWNER: OUTOTEC (FINLAND) OY, ESPOO, FI

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20230414

Year of fee payment: 11

Ref country code: DE

Payment date: 20220620

Year of fee payment: 11

REG Reference to a national code

Ref country code: EE

Ref legal event code: GB1A

Ref document number: E014338

Country of ref document: EE