EP2954088A1 - Verfahren zum schmelztauchbeschichten von metallband, insbesondere stahlband - Google Patents
Verfahren zum schmelztauchbeschichten von metallband, insbesondere stahlbandInfo
- Publication number
- EP2954088A1 EP2954088A1 EP14700598.7A EP14700598A EP2954088A1 EP 2954088 A1 EP2954088 A1 EP 2954088A1 EP 14700598 A EP14700598 A EP 14700598A EP 2954088 A1 EP2954088 A1 EP 2954088A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- melt
- trunk
- molten bath
- strip
- zinc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 31
- 239000002184 metal Substances 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 22
- 239000010959 steel Substances 0.000 title claims abstract description 22
- 238000003618 dip coating Methods 0.000 title claims abstract description 12
- 239000000155 melt Substances 0.000 claims abstract description 60
- 239000000203 mixture Substances 0.000 claims abstract description 26
- 239000000126 substance Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 241001474791 Proboscis Species 0.000 claims description 13
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 claims description 8
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 7
- PGTXKIZLOWULDJ-UHFFFAOYSA-N [Mg].[Zn] Chemical compound [Mg].[Zn] PGTXKIZLOWULDJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000000470 constituent Substances 0.000 claims description 2
- 238000005260 corrosion Methods 0.000 abstract description 12
- 238000005336 cracking Methods 0.000 abstract 1
- 239000011248 coating agent Substances 0.000 description 22
- 238000000576 coating method Methods 0.000 description 22
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 10
- 239000004606 Fillers/Extenders Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 210000004894 snout Anatomy 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000000844 transformation Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
- C23C28/025—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/028—Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F17/00—Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
Definitions
- the invention relates to a process for hot dip coating of metal strip, in particular steel strip, in a metallic molten bath, in which the metal strip to be coated is heated in a continuous furnace and heated by an on
- Hot dip coating of metal strip, in particular steel strip is a process known for many years for the surface refinement of sheet steel strip in order to protect it from corrosion.
- Fig. 3 is a vertical sectional view
- Coating material for the belt 1 is used, for example, zinc, zinc alloys, pure aluminum or aluminum alloys.
- the continuous furnace 2 typically comprises a directly heated preheater and indirectly heated reduction and holding zones and subsequent cooling zones. At the end of the cooling zone, the furnace 2 is connected to the molten bath 3 via a lock (trunk) 6.
- a deflection roller (pot roller) 7 arranged in the molten bath 3 effects the deflection of the belt 1 entering from the trunk 6 into the molten bath in a substantially vertical direction.
- the layer thickness of the metal layer serving as corrosion protection is usually adjusted by means of stripping nozzles 5.
- an alloy layer of iron and the coating metal is formed on the strip surface.
- the metal layer is formed, the composition of which corresponds to the chemical analysis of the molten metal vessel 4 located in the molten metal.
- the coating has
- composition of the melt also influences the process reliability with regard to the surface quality of the coated strip.
- a suitable composition of the metallic molten bath is selected depending on the desired property, i. it always comes with a compromise solution
- the present invention has the object to improve a method of the type mentioned in that with him the demands made on the coated tape requirements for good formability of the strip or a board made therefrom as possible without cracks and deletions and in terms of high corrosion protection better and reliable can be met.
- a method with the features of claim 1 is proposed. Preferred and advantageous embodiments of the method according to the invention are specified in the subclaims.
- the inventive method is characterized in that in the area bounded by the trunk, a melt is used, which in their chemical composition specifically different from the chemical composition of the is set in the molten bath melt or is.
- the invention thus proposes to use in the area bounded by the trunk and in the rest of the molten bath melts of different composition (analysis). In this way, certain desired alloy layer properties can be set very variable and reliable.
- the melt in the trunk has a composition (analysis), which allows a good mechanical workability, while the melt in the rest of the molten bath vessel has a composition (analysis), which gives a good corrosion-resistant top layer.
- Another advantage of the invention is that due to the relatively small volume of the melt in the trunk and the process-related consumption of this volume, the composition of the melt in the trunk can be adjusted or varied within a very short reaction time.
- Monitoring is adjusted to a setpoint of the chemical composition.
- this monitoring and the adaptation of the chemical composition of the melt are carried out automatically by means of a suitable
- a further advantageous embodiment of the method according to the invention is characterized in that a prolonged trunk is used as the trunk, the relative to the lateral surface of a deflection roller arranged in the molten bath, which causes the deflection of the entering from the trunk into the molten bath belt in a substantially vertical direction, at a distance in the range of 100 mm to 400 mm, preferably 100 mm to 300 mm ends.
- the melt supplied to the proboscis or the melt used therein can be more reliably decoupled from the melt used in the remainder of the molten bath vessel, so that at least a sufficiently large volume range results in the proboscis, in which the melt supplied or used there does not cohere the different melt used in the rest of the molten bath vessel mixed.
- a further advantageous embodiment of the method according to the invention provides that a proboscis is used as the trunk, whose immersed portion is provided with a constriction and / or whose inner width or inner height tapers in the direction of the outlet opening at least over a partial length.
- the melt used in the trunk can be decoupled from the melt used in the rest of the molten bath vessel, so that at least a sufficiently large volume range of the melt added to the trunk does not or largely not mixed with the different melt used in the rest of the molten bath vessel.
- the extended, towards the outlet opening at least over a partial length tapered trunk causes in particular an increase in the swirling of the melt on and near the metal strip. This turbulence is the
- a proboscis is used as a proboscis whose immersed portion with a
- Separating device or seal is provided which a mixing of the im Snout located melt and the melt contained in the molten bath prevented.
- melt of pure aluminum is used.
- the pure aluminum in the molten bath is, apart from unavoidable impurities, free from silicon. In this way, a hot-dip coated product, in particular
- Another advantageous embodiment of the inventive method is that in the area bounded by the trunk of a silicon-containing
- Aluminum-zinc alloy is used as a melt, while in the molten bath, an aluminum-zinc alloy is used with the opposite reduced silicon content or without silicon as a melt. Also in this way can be
- hot dip coated product in particular steel strip, which has a relatively thin alloy layer due to the addition of silicon and is therefore sufficiently ductile for larger transformations, and which has excellent corrosion resistance due to the covering layer formed from a reduced or non-siliconized aluminum-zinc alloy. If, in this case, an aluminum-zinc alloy without silicon is used as the melt in the molten bath, it is understood that this melt is free of silicon except for unavoidable impurities.
- a further advantageous embodiment of the inventive method is characterized in that in the molten bath, a zinc-magnesium alloy is used as a melt, while in the area bounded by the trunk of a zinc Magnesium alloy is used in contrast with reduced zinc, aluminum and / or magnesium content as a melt.
- a hot-dip coated metal strip, in particular steel strip can be achieved, which is characterized by a particularly high surface quality and a good mechanical
- Formability is characterized.
- FIG. 1 shows a vertical sectional view of a molten bath vessel with a
- Fig. 2 shows another embodiment of an inventive
- Fig. 3 shows a device for hot dip coating of metal strip of
- FIG. 4 shows a partial region of a molten bath in which flow conditions in a device according to the invention in the region of the trunk elongation piece are illustrated;
- Fig. 5 is a molten bath of a device for hot dip coating of
- Fig. 6 is a molten bath of a device according to the invention for
- Fig. 7 is a cross-sectional view of a portion of a by dipping in one
- Fig. 8 is a cross-sectional view of a portion of a by dipping in one
- FIG. 9 is a cross-sectional view of a portion of a metal strip coated by dipping into two different metallic melts.
- the trunk 6 is a generic
- Coating plant which may substantially correspond to or corresponds to the coating system according to FIG. 3, designed such that coating material B and / or at least one alloying additive LZ can be added separately to the submerged portion of the trench 6.
- the device according to the invention is thus prepared in such a way that a melt can be adjusted or used in the region delimited by the proboscis 6, which in its chemical composition is set or becomes deliberately different from the chemical composition of the melt used in the molten bath 3.
- the trunk 6 is for this purpose with a shaft-shaped
- the trunk extension piece 6.1 provided to increase the Rouvreleintauchianae.
- the trunk extension piece 6.1 has a connection section 6.11 into which the lower end of the trunk 6 protrudes.
- the connecting section 6.11 has a basin or trough-shaped receiving space 6.12, the circumferential
- the trunk 6 or the trunk extension piece 6.1 is preferably designed so that its clear inner width or clear internal height to the outlet opening 6.15 out at least over a partial length rejuvenated. The rejuvenation of the inner width or
- Inner height results from the fact that the top and bottom of the band 1 facing walls 6.16 ; 6.17 of the trunk 6 or trunk extension piece 6.1 in the direction of exit opening 6.15 converge.
- the inner width or inner height of the trunk or trunk extension piece 6.1 is preferably characterized in these embodiments by a continuous taper.
- the outlet opening 6.15 or narrowest point of the trunk extender piece 6.1 preferably has a clear inner width of not more than 120 mm, more preferably not more than 100 mm. Furthermore, the trunk extension piece 6.1 is dimensioned such that it ends opposite to the lateral surface of the deflection roller 7 at a distance A in the range of 100 mm to 400 mm, preferably 100 mm to 300 mm. For example, the distance A of the lower end of the snout extender 6.1 from the lateral surface of the guide roller 7 is about 200 mm.
- the deflection roller 7 is associated with a stabilizing roller 8 in order to plan a flat, vibration-free passage of the belt 1 through the flat nozzles 5 of the nozzle scraping device arranged above the molten bath
- the support arms of the guide roller 7 and the stabilizing roller 8 are designated in Fig. 1 with 7.1 and 8.1. Furthermore, the stabilizing roller 8 can be combined with a guide roller or pressure roller 9, which is likewise arranged in a dipped manner (compare FIG. 2).
- Proboscis extender 6.1 and the trunk 6 at least one supply channel 6.18, via which in the submerged portion of the trunk 6 and / or in the
- Reed extension piece 6.1 Coating material B and / or at least one alloying additive LZ can be added separately.
- the extension of the trunk 6 according to the invention serves to decouple the melt set or used in the trunk 6 as far as possible from the melt set / used in the remainder of the melting bath vessel 4, which differs in its chemical composition from that in the trunk 6
- Aluminum melt containing about 10% by weight of silicon produces a relatively thin alloy layer 11 at the steel-coating metal interface ( Figure 7).
- the thickness of the alloy layer 11 is for example about 4 ⁇ im.
- On the alloy layer 11 follows the overlying cover layer 12 of aluminum and embedded iron silicon needles. This is known under the trade name FAL type 1
- coating Due to the thin alloy layer 11, coating is sufficiently ductile in order to be able to satisfactorily realize desired deformations of the coated steel strip 1 or steel sheet.
- the corrosion protection afforded by this coating is not as good as with a pure aluminum coating with the trade name FAL Type 2.
- Fig. 8 shows a section of a steel strip 1 coated by dipping in a pure aluminum melt in cross-section. This cover provides one
- the top layer is made of pure aluminum. Due to the lack of silicon in the melt is formed
- Interface steel coating metal a relatively thick alloy layer 11 '.
- the thickness of the brittle alloy layer 11 ' may be in this case, for example, up to 20 ⁇ .
- Alloy layer 11 similar to the alloy layer of the product FAL type 1 leads.
- an AlFeSi coating material can be added to the trunk 6 via the basin-shaped connection section 6.11 of the trunk extension piece 6.1 and to the supply channel 6.18.
- Schmelzbadgefäß 4 is preferably carried out with a pure aluminum melt, so that a
- Cover layer 12 ' is obtained from pure aluminum.
- FAL type 3 This product sketched in FIG. 9 combines the advantages of the products FAL type 1 and FAL type 2. This gives a product which is sufficiently ductile due to the thin alloy layer 11 in order to realize desired larger transformations can, and which also has excellent anti-corrosion properties by the cover layer 12 'of pure aluminum.
- An aluminum-zinc melt may be used in the molten bath vessel 4, while in the limited area of the trunk 6 a melt is used, which is also based on an aluminum-zinc melt, but in addition silicon for
- melts with different chemical compositions is the use of a zinc-magnesium melt in the molten bath vessel 4, while in the trunk 6 a melt with reduced zinc, aluminum and / or magnesium content is used. In this way, wetting errors in the coating of the tape 1 can be reduce and thus improve the surface quality of the hot dip coated tape.
- Proboscis extender 6.1 to the outlet opening 6.15 out at least over a partial length stepwise in the form of one or more inner width or inner heights jumps and / or in the form of different angled to each other
- the snout extender 6.1 can be
- the (continuous) inner width or inner height taper of the trunk extension 6.1 can therefore also extend over only a partial length thereof.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102013101132.2A DE102013101132A1 (de) | 2013-02-05 | 2013-02-05 | Verfahren zum Schmelztauchbeschichten von Metallband, insbesondere Stahlband |
PCT/EP2014/050474 WO2014121979A1 (de) | 2013-02-05 | 2014-01-13 | Verfahren zum schmelztauchbeschichten von metallband, insbesondere stahlband |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2954088A1 true EP2954088A1 (de) | 2015-12-16 |
EP2954088B1 EP2954088B1 (de) | 2018-06-13 |
Family
ID=49989701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14700598.7A Not-in-force EP2954088B1 (de) | 2013-02-05 | 2014-01-13 | Verfahren zum schmelztauchbeschichten von metallband, insbesondere stahlband |
Country Status (5)
Country | Link |
---|---|
US (1) | US9670573B2 (de) |
EP (1) | EP2954088B1 (de) |
DE (1) | DE102013101132A1 (de) |
ES (1) | ES2686737T3 (de) |
WO (1) | WO2014121979A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013101131A1 (de) * | 2013-02-05 | 2014-08-07 | Thyssenkrupp Steel Europe Ag | Vorrichtung zum Schmelztauchbeschichten von Metallband |
DE102015108334B3 (de) | 2015-05-27 | 2016-11-24 | Thyssenkrupp Ag | Vorrichtung und Verfahren zur verbesserten Metalldampfabsaugung bei einem kontinuierlichen Schmelztauchverfahren |
DE102015211489B3 (de) | 2015-06-22 | 2016-06-30 | Thyssenkrupp Ag | Rolle zur Umlenkung oder Führung eines zu beschichtenden Metallbandes in einem metallischen Schmelzenbad |
CN108456825B (zh) * | 2018-04-08 | 2019-12-27 | 山东四方钢管设备制造有限公司 | 一种热轧无缝钢管穿孔机用复合导板及其制造方法 |
DE102018206185A1 (de) | 2018-04-23 | 2019-10-24 | Thyssenkrupp Ag | Vorrichtung und Verfahren zum Schmelztauchbeschichten eines Metallbandes mit mindestens zwei Schichten |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1574814A (en) | 1976-12-17 | 1980-09-10 | Univ Cardiff | Hot-dip coating of steel substrates |
JPH04236754A (ja) | 1991-01-18 | 1992-08-25 | Nippon Steel Corp | Zn−Al合金めっき鋼線の製造方法 |
JPH04246158A (ja) | 1991-01-29 | 1992-09-02 | Nippon Steel Corp | 表面性状および耐食性に優れた合金めっき鋼線の製造方法 |
JPH0860329A (ja) * | 1994-08-11 | 1996-03-05 | Kobe Steel Ltd | 合金化溶融亜鉛めっき鋼板の製造方法 |
JP4236754B2 (ja) | 1999-02-19 | 2009-03-11 | 株式会社三共 | 遊技機 |
DE60335740D1 (de) | 2002-12-02 | 2011-02-24 | Sumitomo Rubber Ind | Reifen mit anzeigemarkierung für die rotationsdauer |
-
2013
- 2013-02-05 DE DE102013101132.2A patent/DE102013101132A1/de not_active Ceased
-
2014
- 2014-01-13 WO PCT/EP2014/050474 patent/WO2014121979A1/de active Application Filing
- 2014-01-13 EP EP14700598.7A patent/EP2954088B1/de not_active Not-in-force
- 2014-01-13 US US14/765,716 patent/US9670573B2/en active Active
- 2014-01-13 ES ES14700598.7T patent/ES2686737T3/es active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2014121979A1 * |
Also Published As
Publication number | Publication date |
---|---|
EP2954088B1 (de) | 2018-06-13 |
US9670573B2 (en) | 2017-06-06 |
US20150376758A1 (en) | 2015-12-31 |
DE102013101132A1 (de) | 2014-08-07 |
ES2686737T3 (es) | 2018-10-19 |
WO2014121979A1 (de) | 2014-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2954085B1 (de) | Vorrichtung zum schmelztauchbeschichten von metallband | |
EP2954087B1 (de) | Metallisches, durch schmelztauchbeschichten oberflächenveredeltes flacherzeugnis, vorzugsweise aus stahl | |
EP2954088B1 (de) | Verfahren zum schmelztauchbeschichten von metallband, insbesondere stahlband | |
EP2989226B1 (de) | Vorrichtung zum kontinuierlichen schmelztauchbeschichten von metallband | |
EP2250297B1 (de) | Metallbeschichtetes stahlband und methode zu seiner herstellung | |
EP1857566B1 (de) | Mit einem Korrosionsschutzüberzug versehenes Stahlflachprodukt und Verfahren zu seiner Herstellung | |
EP2848709A1 (de) | Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil | |
EP2976442B1 (de) | Verfahren zur verbesserung der schweissbarkeit von hochmanganhaltigen stahlbändern | |
DE3010809A1 (de) | Verfahren und vorrichtung zum kontinuierlichen feuergalvanisieren eines stahlbands | |
DE19501747A1 (de) | Beschichtetes Metallmaterial, insbesondere Baumaterial | |
DE3242625C2 (de) | Verfahren zur Herstellung von feuerverzinkten Stahlblechen und Feuerverzinkungsschmelze | |
EP2513346A2 (de) | Verfahren zum herstellen eines gut umformbaren stahlflachprodukts, stahlflachprodukt und verfahren zur herstellung eines bauteils aus einem solchen stahlflachprodukt | |
DE202018006293U1 (de) | Schmelztauchbeschichtetes Stahlblech | |
EP2776600A1 (de) | Verfahren und vorrichtung zum schmelztauchbeschichten eines metallbands mit einem metallischen überzug | |
WO2022013038A1 (de) | Verfahren zur herstellung eines schmelztauchbeschichteten stahlblechs und schmelztauchbeschichtetes stahlblech | |
DE69300964T2 (de) | Feuerverzinkte Stahlgegenstände und Verfahren zur Herstellung. | |
DE10234010B4 (de) | Vorrichtung und Verfahren zum Entfernen von Bodenschlacke einer Metallschmelze in einem Schmelztiegel insbesondere bei der Schmelztauchbeschichtung von Metallband | |
DE112016006868B4 (de) | Vorrichtung zum Bilden einer Stickstoffwolke zur Herstellung eines schmelztauchbeschichteten Stahlblechs mit hervorragender Oberflächenqualität und Verfahren zur Herstellung eines mit Zink-Aluminium schmelztauchbeschichteten Stahlblechs unter Verwendung desselben | |
EP3332048B1 (de) | Verfahren zum erzeugen eines zink-magnesium-galvannealed-schmelztauchüberzugs und mit einem solchen überzug versehenes stahlflachprodukt | |
EP0026757B1 (de) | Verfahren zum Feuerverzinken von Eisen- oder Stahlgegenständen | |
DE4208577A1 (de) | Verfahren zum mehrlagigen beschichten von strangfoermigem gut | |
EP3561133B1 (de) | Vorrichtung und verfahren zum schmelztauchbeschichten eines metallbandes mit mindestens zwei schichten | |
EP1252354B1 (de) | Verfahren zum herstellen eines mit einer zinkbeschichtung versehenen stahlbandes | |
EP1857565A1 (de) | Beschichtungsanlage für Metallbänder und Verfahren zur Herstellung einseitig beschichteter Metallbänder | |
DE69807165T2 (de) | Verfahren zum Herstellen eines legierten verzinkten Bleches ohne dzeta phase auf der Oberfläche |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150817 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 2/12 20060101ALI20180118BHEP Ipc: C23C 2/06 20060101ALI20180118BHEP Ipc: C23C 28/02 20060101ALI20180118BHEP Ipc: C23C 2/40 20060101AFI20180118BHEP Ipc: C21D 9/52 20060101ALI20180118BHEP Ipc: C23F 17/00 20060101ALI20180118BHEP Ipc: C21D 1/26 20060101ALI20180118BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180214 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: RUTHENBERG, MANUELA Inventor name: MACHEREY, FRIEDHELM Inventor name: SPELZ, FLORIAN Inventor name: BERGEN, JEGOR Inventor name: PETERS, MICHAEL Inventor name: SPELLEKEN, FRANK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1008593 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502014008535 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2686737 Country of ref document: ES Kind code of ref document: T3 Effective date: 20181019 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180913 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180913 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180914 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181013 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502014008535 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190113 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220119 Year of fee payment: 9 Ref country code: FI Payment date: 20220120 Year of fee payment: 9 Ref country code: AT Payment date: 20220120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20220119 Year of fee payment: 9 Ref country code: FR Payment date: 20220119 Year of fee payment: 9 Ref country code: ES Payment date: 20220325 Year of fee payment: 9 Ref country code: BE Payment date: 20220119 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180613 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220620 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20230201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1008593 Country of ref document: AT Kind code of ref document: T Effective date: 20230113 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230113 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230113 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230113 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230131 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230114 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502014008535 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240801 |