EP2920955B1 - Steuerung eines formgedächtnislegierungsaktuators - Google Patents

Steuerung eines formgedächtnislegierungsaktuators Download PDF

Info

Publication number
EP2920955B1
EP2920955B1 EP13789893.8A EP13789893A EP2920955B1 EP 2920955 B1 EP2920955 B1 EP 2920955B1 EP 13789893 A EP13789893 A EP 13789893A EP 2920955 B1 EP2920955 B1 EP 2920955B1
Authority
EP
European Patent Office
Prior art keywords
sma actuator
actuator wires
sma
predetermined axis
movable element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13789893.8A
Other languages
English (en)
French (fr)
Other versions
EP2920955A1 (de
Inventor
Andrew Benjamin David Brown
Thomas Matthew Gregory
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cambridge Mechatronics Ltd
Original Assignee
Cambridge Mechatronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cambridge Mechatronics Ltd filed Critical Cambridge Mechatronics Ltd
Publication of EP2920955A1 publication Critical patent/EP2920955A1/de
Application granted granted Critical
Publication of EP2920955B1 publication Critical patent/EP2920955B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0076Driving means for the movement of one or more optical element using shape memory alloys

Definitions

  • the present invention relates to the control of SMA (shape memory alloy) actuator wires in an SMA actuation apparatus wherein the SMA actuator wires provide positional control of a movable element relative to a support structure.
  • SMA shape memory alloy
  • SMA actuation apparatus there are a variety of types of SMA actuation apparatus in which it is desired to provide positional control of a movable element.
  • the SMA actuator wires are connected in tension between a movable element and a support structure.
  • SMA actuator wire is advantageous as an actuator in such an apparatus, in particular due to its high energy density which means that the SMA actuator required to apply a given force is of relatively small size.
  • One type of apparatus in which SMA actuator wire is known for use as an actuator is a camera, particularly a miniature camera. Some examples are as follows.
  • WO-2007/113478 discloses an SMA actuation apparatus in which SMA actuator wire is used to drive movement of a camera lens element along the optical axis, for example for the purpose of focussing an image formed by the camera lens element on an image sensor.
  • WO-2010/029316 and WO-2010/089529 each disclose an SMA actuation apparatus in which SMA actuator wire is used to provide optical image stabilisation (OIS) in a camera by driving tilting of a camera unit including a camera lens element and an image sensor.
  • the tilting is controlled to stabilise the image formed by the camera lens element on an image sensor against vibration, typically caused by user hand movement, that degrades the quality of the image captured by the image sensor.
  • WO-2011/104518 discloses an SMA actuation apparatus in which SMA actuator wire is used to provide OIS in a camera by driving tilting of a camera unit, but with additional degrees of freedom.
  • WO-2012/066285 describes the control of an SMA actuator by means of its electrical resistance as a feedback parameter.
  • an SMA actuator wire can be controlled based on a measure of its resistance.
  • a measure of the resistance of the SMA actuator wire is detected and used as a feedback parameter by controlling the power of the drive signal supplied to the SMA actuator wire to reduce the difference between the measure of resistance and a target resistance.
  • Feedback control using a measure of resistance may also be applied to an SMA actuation apparatus wherein the SMA actuator wires are in an arrangement in which the SMA actuator wires apply forces to the movable element in opposed directions.
  • each SMA actuator wire has a target resistance selected to drive the wire to the desired position.
  • a measure of the resistance of each SMA actuator wire is detected and used as a feedback parameter by controlling the power of the drive signal supplied to the SMA actuator wire to reduce the difference between the measure of resistance and a target resistance.
  • both SMA actuator wires are controlled independently based on their respective resistances in this way, then there is a risk that power supplied to an individual SMA actuator wire and the resultant temperature of the SMA actuator wire can reach values that may damage the SMA actuator wire.
  • control requires the resistance to decrease as the power delivered to an SMA actuator wire is increased. Accordingly, the control will not work at resistances of the SMA actuator wire near to the maximum and minimum resistance along its resistance versus temperature curve, that are observed as an SMA actuator wire is heated against a constant tension.
  • a method of controlling SMA actuator wires in an SMA actuation apparatus wherein the SMA actuator wires are connected in tension between a movable element and a support structure in an arrangement in which the SMA actuator wires apply forces to the movable element in opposed directions being a method of controlling the SMA actuator wires to drive movement of the movable element relative to the support structure along a predetermined axis, the method comprising:
  • control of movement along a predetermined axis is performed using a feedback difference measure.
  • This is a sum of the measures of resistance of the SMA actuator wires, scaled relative to each other by factors. The factors depend on the direction in which the SMA actuator wires apply force to the movable element relative to the movable element.
  • the feedback difference measure is effectively a difference measure as between any SMA actuator wires that apply force in one direction along the predetermined axis and any SMA actuator wires that apply force in the opposite direction along the predetermined axis.
  • the magnitude of the factors represents a component along the predetermined axis of a force applied by the SMA actuator wire to the movable element. This is to take account of the angles in which the SMA actuator wires apply force to the movable element.
  • the SMA actuator wires include aligned SMA actuator wires that apply forces to the movable element in opposed directions along the predetermined axis.
  • the feedback difference measure in respect of the predetermined axis may be the difference between the total resistance of any aligned SMA actuator wire that applies a force in a first one of said opposed directions and the total resistance of any aligned SMA actuator wire that applies a force in a second one of said opposed directions.
  • the SMA actuator wires include non-aligned SMA actuator wires that apply force to the movable element at an acute angle to the predetermined axis.
  • the factors in respect of such non-aligned SMA actuator wire may have a magnitude less than one relative to the factor for an aligned SMA actuator wire.
  • the feedback difference measure is used to control the powers of drive signals supplied to the SMA actuator wires that apply a component of force to the movable element along the predetermined axis.
  • the control is performed in response to the feedback difference measure having regard to a target difference measure in respect of the predetermined axis.
  • the control is performed in a manner that reduces the difference between the feedback difference measure in respect of the predetermined axis and a target difference measure in respect of the predetermined axis.
  • Such feedback control allows the position of the movable element to be controlled without excessive application of power and resultant high temperatures in the SMA actuator wires. This is because the control of position using the feedback difference parameter may be controlled independently of the average power applied. As such, the risk of excessive powers and temperatures that may damage the SMA actuator wire is reduced.
  • Such feedback control similarly allows closed loop control close to the maximum and minimum resistance of the SMA actuator wire, along its resistance versus temperature curve. This increases the stroke of the actuator.
  • the average power may be kept constant during an actuation operation but may be varied between actuations, for example in response to measure of the ambient temperature.
  • the average power may be controlled to decrease as the ambient temperature increases.
  • the average power may be controlled to decrease by a smaller amount or to remain constant with further ambient temperature increases.
  • the method of control may be extended to control the SMA actuator wires to drive movement of the movable element relative to the support structure along a further axis orthogonal to the predetermined axis, in addition to said predetermined axis.
  • the method derives and uses an equivalent feedback difference measure in respect of the further axis that is equivalent to the feedback difference measure in respect of the predetermined axis, being the sum of the measures of resistance of the SMA actuator wires, scaled relative to each other by ratios, in respect of the corresponding SMA actuator wires, of (a) the component of the force applied by the SMA actuator wire to the movable element along the further axis to (b) the total force applied by the SMA actuator wire to the movable element, wherein the ratio has opposite signs for respective ones of said opposed directions.
  • the present invention may be applied to a range of types of SMA actuation apparatus.
  • the SMA actuation apparatus is a camera apparatus further comprising an image sensor fixed to the support structure, and the movable element comprises a camera lens element comprising one or more lenses arranged to focus an image on the image sensor.
  • the predetermined axis and the further axis both may be orthogonal to the optical axis of the camera lens element, in which case the movement may provide optical image stabilisation (OIS).
  • OIS optical image stabilisation
  • Each of the hereinafter described embodiments is a camera apparatus that is an example of an SMA actuation apparatus in which the movable element is a lens elements.
  • Each camera apparatus is to be incorporated in a portable electronic device such as a mobile telephone, media player or portable digital assistant.
  • miniaturisation is an important design criterion.
  • the same type of SMA actuation apparatus may in general be applied to any type of movable element including ones other than a lens element.
  • a first camera apparatus 1 is shown in Fig. 1 in cross-section taken along the optical axis O.
  • the first camera apparatus 1 comprises a lens element 2 supported on a support structure 3 by a suspension system 4 that takes the form of a flexure extending between the lens element 2 and the support structure 3.
  • the suspension system 4 allows movement of the lens element 2 relative to the support structure 3 along the optical axis O.
  • the lens element 2 is a movable element.
  • the support structure 3 is a camera support that supports an image sensor 5 arranged along the optical axis O behind the lens element 2.
  • the lens element 2 supports a lens 8 arranged along the optical axis O, although in general any number of lenses may be provided.
  • the first camera apparatus 1 is a miniature camera in which the lens 8 (or the lenses if more than one is provided) has a diameter of at most 10 mm.
  • the lens element 2 is arranged to focus an image onto the image sensor 5.
  • the image sensor 5 captures the image and may be of any suitable type, for example a CCD (charge-coupled device) or a CMOS (complimentary metal-oxide-semiconductor) device.
  • the lens element 2 is moved along the optical axis O to change the focus and/or magnification.
  • the first camera apparatus 1 further comprises two SMA actuator wires 9a and 9b each connected in tension between the lens element 2 and the support structure 3.
  • the SMA actuator wires 9a and 9b have an arrangement in which they are each aligned with the optical axis O but opposed to one another so that they apply forces to the lens element 2 in opposed directions (up and down in Fig. 1 ).
  • SMA material has the property that on heating it undergoes a solid-state phase change which causes the SMA material to contract. At low temperatures the SMA material enters the Martensite phase. At high temperatures the SMA enters the Austenite phase which induces a deformation causing the SMA material to contract. The phase change occurs over a range of temperature due to the statistical spread of transition temperature in the SMA crystal structure. Thus heating of the SMA actuator wires 9a and 9b causes them to decrease in length.
  • the SMA actuator wires 9a and 9b may be made of any suitable SMA material, for example Nitinol or another Titanium-alloy SMA material.
  • the material composition and pre-treatment of the SMA actuator wires 9a and 9b is chosen to provide phase change over a range of temperature that is above the expected ambient temperature during normal operation and as wide as possible to maximise the degree of positional control.
  • the two SMA actuator wires 9a and 9b apply forces to the lens element 2 in opposed directions along the optical axis O and therefore apply a stress to each other.
  • the stress therein increases and it contracts. This causes movement of the lens element 2.
  • a range of movement occurs as the temperature of the SMA increases over the range of temperature in which there occurs the transition of the SMA material from the Martensite phase to the Austenite phase.
  • the stress therein decreases, it expands under the force from the opposed one of the SMA actuator wires 9a and 9b. This allows the lens element 2 to move in the opposite direction.
  • the SMA actuator wires 9a and 9b are each aligned with the optical axis O, movement occurs along the optical axis O which is the predetermined axis in this example.
  • the control of the SMA actuator wires 9a and 9b is effected by the control system 11 shown in Fig. 2 (excluding the components in dotted outline) which generates drive signals for each of the SMA actuator wires 9a and 9b.
  • the position of the lens element 2 relative to the support structure 3 is controlled by selectively varying the temperature of the SMA actuator wires 9a and 9b using selective drive signals. Heating is provided directly by the drive signals. Cooling is provided by reducing or ceasing the power of the drive signals to allow the SMA actuator wires 9a and 9b to cool by conduction, convection and radiation to its surroundings.
  • the control system 11 has the following arrangement and operation.
  • the control system 11 comprises an SMA circuit 12 connected to each SMA actuator wire 9.
  • Each SMA circuit 12 has the same construction as follows, although for clarity Fig. 2 shows the internal arrangement of only a single one of the SMA circuits.
  • the SMA circuit 12 comprises a drive circuit 13 and a detection circuit 14 each connected across the SMA actuator wire 9. Thus, each SMA circuit 12 is separately connected to its respective SMA actuator wire 9.
  • the drive circuit 13 is connected to the SMA actuator wire 9 and supplies a drive signal through the SMA actuator wire 9.
  • the drive circuit 13 may be a constant-voltage current source or a constant-current current source.
  • the constant current might be of the order of 120mA.
  • the drive circuit 13 receives power from a power source 15 that is common to each SMA circuit 12.
  • the drive signal generated by the drive circuit 13 is a pulse-width modulation (PWM) signal.
  • PWM pulse-width modulation
  • the PWM duty cycle of the drive signal is varied by the drive circuit 13 to vary the power in accordance with a control signal supplied thereto, as discussed further below.
  • the detection circuit 14 is connected across the SMA actuator wire 9 and is arranged to detect a measure of the resistance of the SMA actuator wire 9.
  • the detection circuit 14 may be a voltage detection circuit operable to detect the voltage across the SMA actuator wire 9 which is a measure of the resistance of the SMA actuator wire 9.
  • the detection circuit 13 may be a current detection circuit.
  • the detection circuit 13 may comprise a voltage detection circuit and a current detection circuit operable to detect both the voltage and current across the SMA actuator and to derive a measure of resistance as the ratio thereof.
  • the measures of resistance of each SMA actuator wire 9a and 9b derived by the detection circuits 14 of each SMA circuit 12 are supplied to a difference measure circuit 16 which derives a feedback difference measure ⁇ Ract.
  • the feedback difference measure ⁇ Ract is the sum of the measures of resistance of each SMA actuator wire 9a and 9b scaled relative to each other by factors.
  • the magnitude of the factors represents the component along the optical axis O of the force applied to the lens element 2.
  • the SMA actuator wires 9a and 9b are each aligned with the optical axis O so the factors are of equal magnitude.
  • the sign of the factors represents the direction along the optical axis O in which the respective SMA actuator wire 9a or 9b applies said component of force.
  • the SMA actuator wires 9a and 9b each apply a force to the lens element 2 in opposed directions along the optical axis O and so the factors are of opposite sign.
  • the feedback difference measure ⁇ Ract is simply the difference of the resistance of the two SMA actuator wires 9a and 9b.
  • the feedback difference measure ⁇ Ract is used as a feedback signal in closed-loop control of the SMA actuator wires 9a and 9b as follows.
  • a position signal S represents the desired position of the lens element 2 and is supplied to an offset subtractor 19 that subtracts an offset ⁇ Roff to derive a target difference measure ⁇ Rtarg.
  • the offset ⁇ Roff has a fixed value and represents a difference between characteristic resistances for the SMA actuator wires 9a and 9b. These characteristic resistances could be measured, calculated or stored on the controller 18.
  • each SMA actuator wire 9a and 9b could be (a) the resistance of the respective SMA actuator wire 9a or 9b when an equal power is applied to all the SMA actuator wires 9a and 9b, (b) a resistance associated with a position at the centre of the range of movement of the lens element 2, or (c) related to the maximum resistance of the SMA actuator wire 9a or 9b when changing length under a fixed tension.
  • the offset ⁇ Roff may arise due to differences in the environment of the first camera apparatus 1 or properties of the SMA actuator wires 9a and 9b.
  • the offset ⁇ Roff is optional but when used gives improved control where the change in resistance with power applied to a wire approaches zero (i.e.
  • the feedback difference measure ⁇ Ract and the target difference measure ⁇ Rtarg are supplied to an error detector 17 which derives an error signal E representing the difference therebetween.
  • the error signal E is supplied to a controller 18.
  • the controller 18 may be implemented in a processor. Although the difference measure circuit 16, error detector 17 and controller 18 are illustrated as separate components for ease of understanding, they together constitute a control circuit and may be implemented in a common processor.
  • the controller 18 generates a control signal for each of the SMA actuator wires 9a and 9b on the basis of the error signal E using a closed-loop control algorithm that reduces the error signal E, i.e. reduces the difference between the feedback difference measure ⁇ Ract and the target difference measure ⁇ Rtarg.
  • the closed-loop control may be proportional, or may include differential and/or integral terms.
  • the controller 18 supplies the control signals to the drive circuits 13 of each SMA circuit 12 where they are used to control the generated drive signals, as discussed above.
  • the tension and temperature of the SMA actuator wires 9a and 9b may be performed independently of the positional control by varying the average power supplied to the SMA actuator wires 9a and 9b.
  • the control signals for each of the SMA actuator wires 9a and 9b may represent the relative power of the respective drive signal and are selected so as to reduce the error signal E.
  • the drive circuits 13 then supply a drive signal that has a power equal to the average power supplied to each of the SMA actuator wires 9a and 9b multiplied by the relative power represented by the control signal. This has the effect of adjusting the relative amounts by which the powers of the drive signals vary from an average power in accordance with the control signals.
  • the controller 18 may control the average power by controlling the power source 15 to vary the power supplied to each drive circuit 13. In this way, the controller 18 controls the average power of the drive signals to achieve predetermined tensions in the SMA actuator wires 9a and 9b.
  • the average power may be kept constant during an actuation operation but may be varied between actuations, for example in response to a measure of the ambient temperature.
  • the measure of ambient temperature may be determined by a temperature sensor 19. Alternatively, if the temperature sensor is omitted, the measure of ambient temperature may be a measure of an electrical characteristic of the SMA actuators 9a and 9b that is representative of ambient temperature, for example determined as disclosed in WO 2009/071898 .
  • the average power is controlled to decrease as the ambient temperature increases, although at relatively high ambient temperatures, the average power is controlled to decrease by a smaller amount or to remain constant with further ambient temperature increases.
  • the average power may be controlled to remain constant above a threshold of say 50°C.
  • the difference measure circuit 16 derives a feedback difference measure ⁇ Ract that is the sum of the measures of resistance of each SMA actuator wire 9a to 9n scaled relative to each other by factors.
  • the magnitude of the factors represents the component along the optical axis O of the force applied to the lens element 2. If all the SMA actuator wires 9a to 9n are aligned with the optical axis O, then the factors are of equal magnitude.
  • the sign of the factors represents the direction along the optical axis O in which the respective SMA actuator wire 9a to 9n applies said component of force.
  • the feedback difference measure ⁇ Ract is the difference between the total resistance of any aligned SMA actuator wire that applies a force in a first one of the directions along the optical axis O and the total resistance of any aligned SMA actuator wire that applies a force in the opposite, second one of the directions along the optical axis.
  • Fig. 3 is a cross-sectional view taken along the optical axis O which is a notional, primary axis.
  • the SMA actuator wires 9 are not shown in Fig. 3 , but subsequently described with reference to Figs. 5 and 6
  • the second camera apparatus 20 comprises a lens element 2 supported on a support structure 3 by a suspension system 4, described in detail below.
  • the suspension system allows movement of the lens element 2 relative to the support structure 4 in two orthogonal directions each orthogonal to the optical axis O.
  • the lens element 2 is a movable element.
  • the support structure 3 is a camera support supporting an image sensor 5 arranged along the optical axis O behind the lens element 2.
  • the lens element 2 comprises a lens carrier 22 having supported thereon a lens 8 arranged along the optical axis O, although in general any number of lenses may be provided.
  • the second camera apparatus 20 is a miniature camera in which the lens 8 (or the lenses if more than one is provided) has a diameter of at most 10 mm.
  • the lens element 2 is arranged to focus an image onto the image sensor 5.
  • the lens 8 (or the lenses if more than one is provided) may be fixed relative to the lens carrier 22, or alternatively may be supported to be movable along the optical axis O, for example to provide focussing. Where the lens 8 is movable along the optical axis O, a suitable actuation system (not shown) may be provided, for example using a voice coil motor or SMA actuator wires, such as is described in WO-2007/113478 .
  • the lens element 2 is moved orthogonally to the optical axis O in two orthogonal directions, shown as X and Y relative to the image sensor 5, both orthogonal to the optical axis O.
  • This movement is used to provide OIS, compensating for image movement of the camera apparatus 1, caused by for example hand shake.
  • This type of OIS may be termed "shift” or "OIS-shift”.
  • the resulting image compensation does not entirely reverse the effects of user handshake, but the performance is deemed sufficiently good, given the constraints described above, and in particular allows the size of the camera apparatus 1 to be reduced as compared to an apparatus using tilt.
  • the suspension system 4 is shown in isolation in Fig. 2 and arranged as follows.
  • the suspension system 4 comprises four beams 41 connected between a support plate 42 that forms part of the support structure 4 and a lens plate 43 that forms part of the lens element 2 and is connected to the rear end of the lens carrier 22 as shown in Fig. 3 .
  • the beams 41 are equally spaced around the optical axis O, one at each corner of the camera apparatus 1.
  • the four beams 41 extend parallel to each other and to the optical axis O, and therefore extend orthogonal to the orthogonal directions in which the lens element 2 moves, although they could extend at a non-perpendicular angle, provided that they are transverse to the orthogonal directions.
  • the beams 41 are fixed to each of the support plate 42 and the lens plate 43 in a manner that the four beams 41 cannot rotate, for example by being soldered.
  • the beams 41 are positioned inside the support structure 4 and outside the lens carrier 22, the support plate 42 and the lens plate 43 having the same construction including respective apertures 44 and 45 aligned with the optical axis O to accommodate the lens element 2 and allow the passage of light to the image sensor 5.
  • the beams 41 thereby support the lens element 2 on the support structure 4 in a manner allowing movement of the lens element 2 relative to the support structure 4 in two orthogonal directions orthogonal to the optical axis O simply by means of the beams 41 bending, in particular in an S-shape. Conversely, the beams 41 resist movement along the optical axis O.
  • the beams 41 may have any construction that provides the desired compliance orthogonal to the optical axis O, typically being formed by wires, for example metal wires.
  • the suspension system 4 could have any alternative construction that allows movement of the lens element 2 relative to the support structure 4 in two orthogonal directions orthogonal to the optical axis O.
  • the suspension system 4 could employ ball bearings or flexures.
  • the second camera apparatus 20 further comprises a total of four SMA actuator wires 9a to 9d each connected between the lens element 2 and the support structure 3, in particular connected between (i) a support block 23 that forms part of the support structure 4 and (ii) a movable platform 24 that forms part of the lens element 2 and is mounted to the rear of the lens plate 43 as shown in Figs. 5 and 6 .
  • the SMA actuator wires 9a to 9d are connected at one end to the support block 23 by respective crimping members 25 and at the other end to the movable platform 24 by crimping members 26.
  • the crimping members 25 and 26 crimp the wire to hold it mechanically, optionally strengthened by the use of adhesive.
  • the crimping members 25 and 26 also provide an electrical connection to the SMA actuator wires 9a to 9d.
  • Each of the SMA actuator wires 9a to 9d is connected in tension, thereby applying a force to the lens element 2 and the support structure 3 in a direction orthogonal to the optical axis O.
  • the SMA actuator wires 9a to 9d each extend perpendicular to the optical axis O in a common plane, although this is not essential.
  • the SMA actuator wires 9a to 9d have an arrangement in which they apply forces to the lens element 2 in opposed directions orthogonal to the optical axis O. As shown in Fig. 5 , each of the SMA actuator wires 9a to 9d is arranged along one side of the lens element 2. Thus, a first pair of SMA actuator wires 9a and 9b arranged on opposite sides of the optical axis O apply force on the lens element 2 in opposed directions along a first axis X orthogonal to the optical axis O.
  • a second pair of SMA actuator wires 9c and 9d arranged on opposite sides of the optical axis O apply force on the lens element 2 in opposed directions along a second axis Y orthogonal to the first axis and to the optical axis O.
  • the first pair of SMA actuator wires 9a and 9b are capable on selective driving of moving the lens element 2 relative to the support structure 4 along the first axis
  • the second pair of SMA actuator wires 9c and 9d are capable on selective driving of moving the lens element 2 relative to the support structure 4 along the second axis. Movement in other directions may be driven by a combination of actuation of these pairs of the SMA actuator wires 9a to 9d to provide a linear combination of movements along the first and second axes X and Y.
  • the control of the SMA actuator wires 9a to 9d is effected by the control system 11 which generates drive signals for each of the SMA actuator wires 9a to 9d. Movement is driven along the first axis and the second axis which therefore are the predetermined axis and the further axis in this example.
  • the control system 11 of the second camera apparatus 20 is the same as the control system 11 of the first camera apparatus 1 as shown in Fig. 2 except for the following modifications that are shown in Fig. 7 .
  • Each one of the SMA actuator wires 9a to 9d is provided with an SMA circuit 12 that is arranged as described above, so that the difference measure circuit 16 is supplied with the measures of resistance of each SMA actuator wire 9a to 9d.
  • each SMA circuit 12 may be separately connected to its respective SMA actuator wire 9.
  • the SMA actuator wires 9a to 9d have an interconnection at the movable element that electrically connects the group of SMA actuator wires together.
  • the drive circuits 13 and detection circuits 13 of the SMA circuits 12 may be arranged to supply drive signals and to detect measures of resistance in the manner disclosed in WO-2012/066285 , for example using the time-division multiplexing techniques disclosed therein.
  • control system 11 The remainder of the control system 11 is duplicated for each of the two axes as follows.
  • the difference measure circuit 16 derives a feedback difference measures ⁇ Ractx and ⁇ Racty in respect of the two axes X and Y, each being the sum of the measures of resistance of each SMA actuator wire 9a to 9d scaled relative to each other by factors.
  • the magnitude of the factors represents the component along the axis in question of the force applied to the lens element 2, and the sign of the factors represents the direction along that axis in which the respective SMA actuator wire 9a to 9d applies that component of force.
  • the feedback difference measure ⁇ Ractx in respect of the first axis X is the difference between the resistances of first pair of SMA actuator wires 9a and 9b.
  • the feedback difference measure ⁇ Racty in respect of the second axis Y is the difference between the resistances of second pair of SMA actuator wires 9c and 9d.
  • the feedback difference measures ⁇ Ractx and ⁇ Racty in respect of the two axes X and Y are used as feedback signals in closed-loop control of the SMA actuator wires 9a to 9d as follows.
  • Two position signals Sx and Sy represent the desired position of the lens element 2 in respect of the two axes X and Y.
  • the position signals Sx and Sy are supplied to respective offset subtractors 19a and 19b that subtracts respective offsets ⁇ Roffx and ⁇ Roffy to derive target difference measures ⁇ Rtargx and ⁇ Rtargy in respect of the two axes X and Y.
  • the offsets ⁇ Roffx and ⁇ Roffy have fixed values in accordance with the same criteria as the offset ⁇ Roff in Fig. 2 .
  • Two error detectors 17a and 17b are provided.
  • One error detector 17a is supplied with the feedback difference measure ⁇ Ractx and the target difference measure ⁇ Rtargx in respect of the first axis and derives an error signal Ex in respect of the first axis X representing the difference therebetween.
  • the other error detector 17b is supplied with the feedback difference measure ⁇ Racty and the target difference measure ⁇ Rtargy in respect of the second axis Y and derives an error signal Ey in respect of the second axis Y representing the difference therebetween.
  • the error signals Ex and Ey are supplied to the controller 18 which generates a control signal for each of the SMA actuator wires 9a to 9d on the basis of the error signals Ex and Ey.
  • the closed-loop control may be proportional, or may include differential and/or integral terms.
  • the controller 18 supplies the control signals to the drive circuits 13 of each SMA circuit 12 where they are used to control the generated drive signals, as discussed above.
  • the controller 18 generates the control signals using a closed-loop control algorithm that reduces the error signals Ex and Ey.
  • the control signals applied to the first pair of SMA actuator wires 9a and 9b reduce the error signal Ex in respect of the first axis X and the control signals applied to the second pair of SMA actuator wires 9c and 9d reduce the error signal Ey in respect of the second axis Y.
  • control signals in respect of a given SMA actuator wire at an acute angle to each axis may be dependent on both error signals Ex and Ey, in particular including a component derived from each error signal Ex and Ey relatively scaled by factors whose magnitude represents the component of the force applied by the given SMA actuator wire 9 along the respective one of the axes X and Y.
  • the tension and temperature of the SMA actuator wires 9a to 9d may be performed independently of the positional control by varying the average power supplied to the SMA actuator wires 9a to 9d.
  • the control signals for each of the SMA actuator wires 9a to 9d may represent the relative power of the respective drive signal and are selected so as to reduce the error signal E.
  • the drive circuits 13 then supply a drive signal that has a power equal to the average power supplied to each of the SMA actuator wires 9a to 9d multiplied by the relative power represented by the control signal. This has the effect of adjusting the relative amounts by which the powers of the drive signals vary from an average power in accordance with the control signals.
  • the controller 18 may control the average power by controlling the power source 15 to vary the power supplied to each drive circuit 13. In this way, the controller 18 controls the average power of the drive signals to achieve predetermined tensions in the SMA actuator wires 9a to 9d.
  • the rotation of the module can be controlled by controlling the average power of the first pair of wires 9a and 9b as compared to the average power of the second pair of wires 9c and 9d.
  • the first and second average powers may be different if for example the suspension system has a tendency to rotate the module in one sense or the other. In general, in the absence of external factors the same average power applied to both pairs of wires allows rotations to cancel out.
  • the movement of the lens element 2 is arranged to provide OIS using the following components that also form part of the control system 11.
  • the gyroscope sensor 21 outputs signals representative of the angular velocity of the lens element 2, thereby acting as a vibration sensor that detects the vibrations that the camera apparatus 1 is experiencing.
  • the gyroscope sensor 21 is typically a pair of miniature gyroscopes, for detecting vibration around two axes perpendicular to each other and the optical axis O, although in general larger numbers of gyroscopes or other types of vibration sensor could be used.
  • the output signals from the gyroscope sensor 21 are supplied to an OIS controller 30 that may be implemented in a processor, being the same or different processor from the controller 18.
  • the OIS controller 21 derives the position signals Sx and Sy that represent the position of the lens element 2 needed to compensate for the movement of the second camera apparatus 20 as a whole, and therefore stabilise the image sensed by the image sensor 5.
  • the output signals are representative of the vibration of the support structure 3.
  • OIS is effected by moving the lens element 2 laterally in opposition. Accordingly, the OIS controller 21 generates the position signals Sx and Sy providing a desired movement which is opposite to the actual tilt as measured by the gyroscope sensor 21.
  • the OIS controller 30 may process the output signals from the gyroscope sensor 21, for example by filtering them, prior to generating the position signals Sx and Sy.
  • a third camera apparatus 50 is shown in Fig. 8 in which a total of eight SMA actuator wires 9a to 9h are connected between the lens element 2 and the support structure 3 in an arrangement as disclosed in more detail in WO-2011/104518 to which reference is made for a detailed description thereof.
  • the SMA actuator wires 9a to 9h are inclined with respect to the optical axis O with a pair of the SMA actuator wires on each of four sides around the optical axis O arranged so that on contraction two groups of four SMA actuator wires 9a to 9d and 9e to 9h provide a force on the lens element 2 with a component in opposed directions along the optical axis O.
  • the SMA actuator wires of each group are arranged with 2-fold rotational symmetry about the primary axis so that other groups of four SMA wires provide a force on the lens element 2 with a component in opposed directions along two axes X and Y orthogonal to the optical axis O.
  • the eight SMA actuator wires 9a to 9g can provide positional control of the movable element with multiple degrees of freedom.
  • the control system 11 of the third camera apparatus 50 is the same as the control system 11 of the second camera apparatus 30 as shown in Fig. 5 except that it is modified to provide positional control additionally along the optical axis O.
  • each one of the SMA actuator wires 9a to 9h is provided with an SMA circuit 12 that is arranged as described above.
  • each SMA circuit 12 may be separately connected to its respective SMA actuator wire 9.
  • the SMA actuator wires 9a to 9h have an interconnection at the movable element that electrically connects the group of SMA actuator wires together.
  • the drive circuits 13 and detection circuits 13 of the SMA circuits 12 may be arranged to supply drive signals and to detect measures of resistance in the manner disclosed in WO-2012/066285 , for example using the time-division multiplexing techniques disclosed therein.
  • each one of the SMA actuator wires 9a to 9h is inclined at an acute angle to each of the axes O, X and Y.
  • each control signal in respect of each one of the SMA actuator wires 9a to 9h is dependent on the two of the error signals Eo, Ex and Ey in respect of the two of the axes O, X and Y along which the SMA actuator wire in question applies a component of force.
  • the SMA actuator wire 9a applies components of force along the optical axis O and the axis Y
  • the control signal in respect of the SMA actuator wire 9a is dependent the error signal Eo in respect of the optical axis O and the error signal Ey in respect of the axis Y.
  • each control signal includes components derived from the error signals Eo, Ex and Ey relatively scaled by factors whose magnitude represents the component of the force applied by the given SMA actuator wire 9 along the respective axes O, X and Y.
  • a fourth camera apparatus 60 is shown in Fig. 9 in which a total of three SMA actuator wires 9a to 9c are connected between the lens element 2 and the support structure 3 in an arrangement in which the SMA actuator wires 9a to 9c lie in a common plane orthogonal to the optical axis O and with three-fold rotational symmetry.
  • the SMA actuator wires 9a to 9c apply forces to the lens element 2 in opposed directions orthogonal to the optical axis O.
  • none of the SMA actuator wires 9a to 9c are aligned, they still apply a stress to each other.
  • One SMA actuator 9a is aligned with a first axis X perpendicular to the optical axis O.
  • the other SMA actuators 9b and 9c are at acute angles to the first axis X and a second axis Y orthogonal to the first axis X, in particular acute angles of 60° and 30° respectively.
  • the SMA actuators 9b and 9c are non-aligned actuators with respect to both axes X and Y.
  • all three SMA actuator wires 9a to 9c are capable on selective driving of moving the lens element 2 relative to the support structure 4 along the first axis X and the SMA actuator wires 9b and 9c are capable on selective driving of moving the lens element 2 relative to the support structure 4 along the second axis Y. Movement in other directions may be driven by a combination of actuation of these pairs of the SMA actuator wires 9a to 9c to provide a linear combination of movements along the first and second axes X and Y.
  • the control of the SMA actuator wires 9a to 9c is effected by the control system 11 which generates drive signals for each of the SMA actuator wires 9a to 9c. Movement is driven along the first axis X and the second axis Y which therefore are the predetermined axis and the further axis in this example.
  • the control system 11 of the fourth camera apparatus 60 is the same as the control system 11 of the second camera apparatus 20 as shown in Fig. 7 except for the following modifications.
  • the fourth SMA circuit 12 is omitted.
  • the remaining SMA circuits 12 supply the measures of resistance of each SMA actuator wire 9a to 9c to the difference measure circuit 16.
  • the difference measure circuit 16 derives a feedback difference measures ⁇ Ractx and ⁇ Racty in respect of the two axes X and Y, each being the sum of the measures of resistance of each SMA actuator wire 9a to 9c scaled relative to each other by factors.
  • the magnitude of the factors represents the component along the axis in question of the force applied to the lens element 2
  • the sign of the factors represents the direction along the axis in which the respective SMA actuator wire 9a, 9b or 9c applies that component of force.
  • the factors have different values from the second camera apparatus 20 due to the different arrangement, as follows.
  • the first axis X is considered as follows. As the SMA actuator wire 9a is aligned along the first axis X and the other SMA actuators 9b and 9c are at acute angles to the first axis X, the magnitude of the factor for the SMA actuator wire 9a is one, whereas the magnitude of the factors for the other SMA actuators 9b and 9c are less than one, in fact being cos(60) since they represent the component of force applied along the first axis X. Similarly, the sign of the factor for the SMA actuator wire 9a is opposite to the sign of the factor for the other SMA actuators 9b and 9c. Therefore, the feedback difference measure ⁇ Ractx in respect of the first axis X is a difference between the SMA actuator wire 9a and the sum of the resistances of the other SMA actuators 9b and 9c relatively scaled by cos(60).
  • the second axis Y is considered as follows. As the SMA actuator wire 9a is orthogonal to the second axis Y and the other SMA actuators 9b and 9c are at acute angles to the second axis Y, the magnitude of the factor for the SMA actuator wire 9a is zero, whereas the magnitude of the factors for the other SMA actuators 9b and 9c are less than one, in fact being cos(30) since they represent the component of force applied along the second axis Y. Similarly, the sign of the factor for the SMA actuator wire 9b is opposite to the sign of the factor for the other SMA actuators 9c. Therefore, the feedback difference measure ⁇ Racty in respect of the second axis Y is a difference between the SMA actuator wire 9b and the resistance of the other SMA actuator 9c each relatively scaled by cos(30).
  • the error signals Ex and Ey are supplied to the controller 18 which again generates a control signal for each of the SMA actuator wires 9a to 9c on the basis of the error signals Ex and Ey.
  • the closed-loop control may be proportional, or may include differential and/or integral terms.
  • the controller 18 supplies the control signals to the drive circuits 13 of each SMA circuit 12 where they are used to control the generated drive signals, as discussed above.
  • the controller 18 generates the control signals using a closed-loop control algorithm that reduces the error signals Ex and Ey.
  • the control signals in respect of a given one of the SMA actuator wires 9a to 9c includes a component derived from each error signal Ex and Ey relatively scaled by factors whose magnitude represents the component of the force applied by the given one of the SMA actuator wires 9a to 9c along the respective one of the axes X and Y.
  • the control signal applied to the SMA actuator wire 9a is dependent solely on the error signal Ex since it applies no component of force along the second axis Y.
  • control signals applied to each of the SMA actuators 9b and 9c includes a component dependent on the error signal Ex scaled by a first factor and a component dependent on the error signal Ex scaled by a second factor.
  • the first factor represents the component of force applied along the first axis X and so is cos(60) and the second factor represents the component of force applied along the second axis Y and so is cos(30).
  • control of the tension and temperature of the SMA actuator wires 9a to 9c may be performed independently of the positional control by varying the average power supplied to the SMA actuator wires 9a to 9c, for example by controlling the power source 15 to vary the power supplied to each drive circuit 13 to achieve predetermined tensions in the SMA actuator wires 9a to 9c.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Claims (15)

  1. Verfahren zum Steuern von Betätigungsdrähten (9a, 9b) einer Formgedächtnislegierung, FGL, in einer FGL-Betätigungsvorrichtung (1), wobei die FGL-Betätigungsdrähte (9a, 9b) unter Spannung zwischen einem beweglichen Element (2) und einer Trägerstruktur (3) in einer Anordnung verbunden werden, in der die FGL-Betätigungsdrähte (9a, 9b) Kräfte auf das bewegliche Element in entgegengesetzten Richtungen aufbringen, was ein Verfahren zum Steuern der FGL-Betätigungsdrähte (9a, 9b) darstellt, um eine Bewegung des beweglichen Elements bezogen auf die Trägerstruktur entlang einer vorgegebenen Achse anzutreiben, wobei das Verfahren umfasst:
    Ermitteln von Messgrößen der Widerstände der FGL-Betätigungsdrähte (9a, 9b);
    Ableiten einer Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse, die die Summe der Widerstandsmessgrößen der FGL-Betätigungsdrähte (9a, 9b) ist, die hinsichtlich der FGL-Betätigungsdrähte (9a, 9b) durch Faktoren relativ zueinander skaliert werden, wobei deren Größe eine Komponente entlang der vorgegebenen Achse einer Kraft darstellt, die durch die FGL-Betätigungsdrähte (9a, 9b) auf das bewegliche Element aufgebracht wird und deren Vorzeichen eine Richtung entlang der vorgegebenen Achse darstellt, in der die FGL-Betätigungsdrähte (9a, 9b) die Kraftkomponente aufbringen;
    Steuern der den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element entlang der vorgegebenen Achse als Reaktion auf die Feedback-Differenzmessgröße in einer Weise aufbringen, die die Differenz zwischen der Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse und einer Zieldifferenzmessgröße hinsichtlich der vorgegebenen Achse verringert.
  2. Verfahren nach Anspruch 1, wobei der Schritt zum Steuern der den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse aufbringen, in einer Weise durchgeführt wird, die die durchschnittliche Leistung dieser Antriebssignale steuert, um vorgegebene Spannungen in den FGL-Betätigungsdrähten (9a, 9b) zu erreichen.
  3. Verfahren nach Anspruch 1 oder 2, das des Weiteren ein Erhalten einer Umgebungstemperaturmessgröße umfasst, wobei der Schritt des Steuerns der den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse aufbringen, in einer Weise durchgeführt wird, die die durchschnittliche Leistung als Reaktion auf die Umgebungstemperaturmessgröße steuert.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Schritt des Steuerns der den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse aufbringen, ein Einstellen der relativen Beträge umfasst, durch die die Antriebssignalleistungen sich von einer durchschnittlichen Leistung als Reaktion auf die Feedback-Differenzmessgröße in einer Weise verändern, die die Differenz zwischen der Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse und einer Zieldifferenzmessgröße hinsichtlich der vorgegebenen Achse verringert.
  5. Steuersystem für eine Betätigungsvorrichtung einer Formgedächtnislegierung, FGL, die eine Trägerstruktur (3), ein bewegliches Element (2), das bezogen auf die Trägerstruktur (3) beweglich ist und zwischen dem beweglichen Element (2) und der Trägerstruktur (3) in einer Anordnung verbundene FGL-Betätigungsdrähte (9a, 9b) unter Spannung umfasst, in der die FGL-Betätigungsdrähte (9a, 9b) Kräfte auf das bewegliche Element (2) in entgegengesetzten Richtungen aufbringen, wobei das Steuersystem umfasst:
    eine Antriebsschaltung (13), die funktionsfähig ist, ein Antriebssignal über die FGL-Betätigungsdrähte (9a, 9b) zuzuführen;
    eine Erfassungsschaltung, die angeordnet wird, Messgrößen der Widerstände der FGL-Betätigungsdrähte (9a, 9b) zu erfassen; und
    eine Steuerschaltung (12), die konfiguriert wird, die der Antriebsschaltung (13) zugeführten Antriebssignalleistungen zu steuern, um eine Bewegung des beweglichen Elements (2) bezogen auf die Trägerstruktur (3) entlang einer vorgegebenen Achse anzutreiben;
    wobei die Steuerschaltung (12) konfiguriert wird, eine Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse abzuleiten, die die Summe der Widerstandsmessgrößen der FGL-Betätigungsdrähte ist, die hinsichtlich der FGL-Betätigungsdrähte durch Faktoren relativ zueinander skaliert werden, wobei deren Größe eine Komponente entlang der vorgegebenen Achse einer Kraft darstellt, die durch die FGL-Betätigungsdrähte (9a, 9b) auf das bewegliche Element (2) aufgebracht wird und deren Vorzeichen eine Richtung entlang der vorgegebenen Achse darstellt, in der die FGL-Betätigungsdrähte (9a, 9b) die Kraftkomponente anwenden; und
    wobei die Steuerschaltung (12) konfiguriert wird, die den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen zu steuern, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse als Reaktion auf die Feedback-Differenzmessgröße in einer Weise aufbringen, dass die Differenz zwischen der Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse und einer Zieldifferenzmessgröße hinsichtlich der vorgegebenen Achse verringert wird.
  6. Steuersystem nach Anspruch 5, wobei die Steuerschaltung (12) konfiguriert wird, die den FGL-Betätigungsdrähten (9a, 9b) zugeführten Antriebssignalleistungen zu steuern, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse in einer Weise aufbringen, dass die durchschnittliche Leistung dieser Antriebssignale gesteuert wird, um vorgegebene Spannungen in den FGL-Betätigungsdrähten (9a, 9b) zu erreichen.
  7. Steuersystem nach Anspruch 5 oder 6, wobei das Steuersystem angeordnet wird, eine Umgebungstemperaturmessgröße zu erhalten, und der Schritt des Steuerns der den FGL-Betätigungsdrähte (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse aufbringen, in einer Weise durchgeführt wird, die die durchschnittliche Leistung als Reaktion auf die Umgebungstemperaturmessgröße steuert.
  8. Steuersystem nach einem der Ansprüche 5 bis 7, wobei die Steuerschaltung (12) konfiguriert wird, die den FGL-Betätigungsdrähte (9a, 9b) zugeführten Antriebssignalleistungen, die eine Kraftkomponente auf das bewegliche Element (2) entlang der vorgegebenen Achse durch ein Einstellen der relativen Beträge aufbringen, durch die sich die Antriebssignalleistungen von einer durchschnittlichen Leistung als Reaktion auf die Feedback-Differenzmessgröße in einer Weise verändern, dass die Differenz zwischen der Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse und einer Zieldifferenzmessgröße hinsichtlich der vorgegebenen Achse verringert wird.
  9. Steuersystem nach einem der Ansprüche 5 bis 8, wobei die FGL-Betätigungsdrähte aus ausgerichteten FGL-Betätigungsdrähten, die Kräfte auf das bewegliche Element (2) in entgegengesetzten Richtungen entlang der vorgegebenen Achse aufbringen, und wahlweise orthogonalen FGL-Betätigungsdrähte bestehen, die Kräfte auf das bewegliche Element (2) orthogonal zu der vorgegebenen Achse aufbringen, sodass die Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse die Differenz zwischen dem Gesamtwiderstand jedes ausgerichteten FGL-Betätigungsdrahts, der eine Kraft in einer ersten der entgegengesetzten Richtungen aufbringt und dem Gesamtwiderstand jedes ausgerichteten FGL-Betätigungsdrahts ist, der eine Kraft in einer zweiten der entgegengesetzten Richtungen aufbringt.
  10. Steuersystem nach einem der Ansprüche 5 bis 8, wobei die FGL-Betätigungsdrähte mindestens einen nicht ausgerichteten FGL-Betätigungsdraht umfassen, der in einem spitzen Winkel zu der vorgegebenen Achse auf das bewegliche Element (2) Kräfte aufbringt, sodass der Faktor hinsichtlich des mindestens einen nicht ausgerichteten FGL-Betätigungsdrahts eine Größe kleiner als Eins aufweist.
  11. Steuersystem nach einem der Ansprüche 5 bis 9, wobei die Steuerschaltung (12) konfiguriert wird, die durch die Antriebsschaltung (13) zugeführten Antriebssignalleistungen zu steuern, um eine Bewegung des beweglichen Elements (2) bezogen auf die Trägerstruktur (3) entlang einer weiteren Achse, zusätzlich zu der vorgegebenen Achse, orthogonal zu der vorgegebenen Achse anzutreiben,
    wobei die Steuerschaltung (12) konfiguriert wird, eine Feedback-Differenzmessgröße hinsichtlich der weiteren Achse abzuleiten, die die Summe der Widerstandsmessgrößen der FGL-Betätigungsdrähte ist, die hinsichtlich der FGL-Betätigungsdrähte relativ zueinander durch Faktoren skaliert werden, wobei deren Größe eine Komponente entlang der weiteren Achse einer durch den FGL-Betätigungsdraht auf das bewegliche Element (2) aufgebrachten Kraft darstellt und dessen Vorzeichen eine Richtung entlang der weiteren Achse darstellt, in der der FGL-Betätigungsdraht die Kraftkomponente aufbringt, und
    wobei die Steuerschaltung (12) konfiguriert wird, die den FGL-Betätigungsdrähten zugeführte Antriebssignalleistung zu steuern, die eine Kraftkomponente auf das bewegliche Element (2) entlang der weiteren Achse als Reaktion auf die Feedback-Differenzmessgröße in einer Weise aufbringen, dass die Differenz zwischen der Feedback-Differenzmessgröße hinsichtlich der weiteren Achse und einer Zieldifferenzmessgröße hinsichtlich der weiteren Achse verringert wird.
  12. Steuersystem nach Anspruch 10, wobei die FGL-Betätigungsdrähte aus ausgerichteten FGL-Betätigungsdrähten, die entlang der vorgegebenen Achse Kräfte in entgegengesetzten Richtungen auf das bewegliche Element (2) aufbringen, und orthogonalen FGL-Betätigungsdrähten bestehen, die entlang der weiteren Achse Kräfte in entgegengesetzten Richtungen auf das bewegliche Element (2) aufbringen, sodass die Feedback-Differenzmessgröße hinsichtlich der vorgegebenen Achse die Differenz zwischen dem Gesamtwiderstand jedes ausgerichteten FGL-Betätigungsdrahts, der eine Kraft in einer ersten der entgegengesetzten Richtungen entlang der vorgegebenen Achse aufbringt und dem Gesamtwiderstand jedes ausgerichteten FGL-Betätigungsdrahts ist, der eine Kraft in einer zweiten der entgegengesetzten Richtungen entlang der vorgegebenen Achse aufbringt, und sodass die Feedback-Differenzmessgröße hinsichtlich der weiteren Achse die Differenz zwischen dem Gesamtwiderstand jedes orthogonalen FGL-Betätigungsdrahts, der eine Kraft in einer ersten der entgegengesetzten Richtungen entlang der weiteren Achse aufbringt und dem Gesamtwiderstand jedes ausgerichteten FGL-Betätigungsdrahts ist, der eine Kraft in einer zweiten der entgegengesetzten Richtungen entlang der weiteren Achse aufbringt.
  13. FGL-Betätigungsvorrichtung, die umfasst:
    eine Trägerstruktur (3);
    ein bewegliches Element (2), das bezogen auf die Trägerstruktur (3) beweglich ist und FGL-Betätigungsdrähten (9a, 9b), die unter Spannung zwischen dem beweglichen Element (2) und der Trägerstruktur (3) in einer Anordnung verbunden werden, in der die FGL-Betätigungsdrähte (9a, 9b) Kräfte auf das bewegliche Element (2) in entgegengesetzten Richtungen aufbringen; und
    ein Steuersystem nach einem der Ansprüche 5 bis 12.
  14. FGL-Betätigungsvorrichtung nach Anspruch 13, wobei die FGL-Betätigungsvorrichtung eine Kameravorrichtung (1) ist, die des Weiteren einen Bildsensor (5) umfasst, der auf der Trägerstruktur (3) befestigt wird, und das bewegliche Element (2) ein Kameralinsenelement umfasst, das eine oder mehrere Linsen umfasst, die angeordnet werden, um ein Bild auf dem Bildsensor (5) zu fokussieren, wobei die vorgegebene Achse und die weitere Achse beide orthogonal zu der optischen Achse des Kameralinsenelements sind, und wobei wahlweise die mindestens eine Linse einen Durchmesser von höchstens 10 mm aufweist.
  15. FGL-Betätigungsvorrichtung nach Anspruch 14, die des Weiteren umfasst:
    einen Vibrationssensor (21), der angeordnet wird, Vibrationssignale zu erzeugen, die repräsentativ für die Vibration der Vorrichtung sind; und
    die Steuerschaltung, die konfiguriert wird, um Zieldifferenzmessgrößen als Reaktion auf die Vibrationssignale in einer Weise abzuleiten, die die Bewegung des Kameralinsenelements antreibt, um das durch den Bildsensor (5) erfasste Bild zu stabilisieren.
EP13789893.8A 2012-11-14 2013-11-11 Steuerung eines formgedächtnislegierungsaktuators Active EP2920955B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB201220485A GB201220485D0 (en) 2012-11-14 2012-11-14 Control of an SMA actuation apparatus
PCT/GB2013/052959 WO2014076463A1 (en) 2012-11-14 2013-11-11 Control of an sma actuation apparatus

Publications (2)

Publication Number Publication Date
EP2920955A1 EP2920955A1 (de) 2015-09-23
EP2920955B1 true EP2920955B1 (de) 2019-01-16

Family

ID=47470588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13789893.8A Active EP2920955B1 (de) 2012-11-14 2013-11-11 Steuerung eines formgedächtnislegierungsaktuators

Country Status (7)

Country Link
US (1) US9684183B2 (de)
EP (1) EP2920955B1 (de)
JP (1) JP6423354B2 (de)
KR (1) KR101981369B1 (de)
CN (1) CN104982028B (de)
GB (1) GB201220485D0 (de)
WO (1) WO2014076463A1 (de)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201221306D0 (en) 2012-11-27 2013-01-09 Cambridge Mechatronics Ltd Suspension system for a camera lens element
JP5751374B1 (ja) * 2014-07-03 2015-07-22 Smk株式会社 衝撃発生アクチュエータおよびタッチパネル
US9366879B1 (en) * 2014-12-02 2016-06-14 Hutchinson Technology Incorporated Camera lens suspension with polymer bearings
US9454016B1 (en) * 2015-03-06 2016-09-27 Hutchinson Technology Incorporated Camera lens suspension with integrated electrical leads
JP6637516B2 (ja) 2015-04-02 2020-01-29 ハッチンソン テクノロジー インコーポレイテッドHutchinson Technology Incorporated カメラレンズサスペンション用ワイヤ供給及び取り付けシステム
US9952445B2 (en) 2015-10-22 2018-04-24 Stmicroelectronics, Inc. Optical image stabilization synchronization of gyroscope and actuator drive circuit
CN108141541A (zh) 2015-10-28 2018-06-08 剑桥机电有限公司 提供光学图像稳定的相机组件
GB201521632D0 (en) * 2015-12-08 2016-01-20 Cambridge Mechatronics Ltd Tilt compensation in an SMA actuator
US9964777B2 (en) 2015-12-21 2018-05-08 Stmicroelectronics, Inc. Optical image stabilization actuator driver power distribution control
US9964776B2 (en) 2015-12-21 2018-05-08 Stmicroelectronics, Inc. Optical image stabilization actuator driver power distribution control
US10670878B2 (en) 2016-05-19 2020-06-02 Hutchinson Technology Incorporated Camera lens suspensions
GB201610039D0 (en) * 2016-06-08 2016-07-20 Cambridge Mechatronics Ltd Dynamic centring of SMA actuator
KR20190015528A (ko) 2016-06-09 2019-02-13 허친슨 테크놀로지 인코포레이티드 현가 조립체를 위한 접착제를 갖는 형상기억합금 와이어 부착 구조물
WO2018029458A1 (en) * 2016-08-08 2018-02-15 Cambridge Mechatronics Limited Dual camera apparatus
GB2602739A (en) * 2016-09-08 2022-07-13 Cambridge Mechatronics Ltd Haptic feedback control assembly
DE102016219054A1 (de) 2016-09-30 2018-04-05 Carl Zeiss Microscopy Gmbh Stellantrieb mit Formgedächtnis-Element
WO2018073585A1 (en) 2016-10-20 2018-04-26 Cambridge Mechatronics Limited Method of assembling an sma actuator assembly
CN106990551B (zh) * 2017-04-25 2019-10-15 维沃移动通信有限公司 摄像头及摄像头的防抖方法
GB201707233D0 (en) 2017-05-05 2017-06-21 Cambridge Mechatronics Ltd SMA Actuator with position sensors
CN110692234B (zh) * 2017-06-09 2021-04-09 华为技术有限公司 具有ois和af功能的镜头致动器
KR102338925B1 (ko) * 2017-06-27 2021-12-13 엘지이노텍 주식회사 카메라 모듈
CN111132596B (zh) * 2017-07-03 2022-07-26 埃因霍温医疗机器人有限公司 过度致动迟滞系统和用于控制过度致动迟滞系统的方法
GB201713191D0 (en) 2017-08-17 2017-10-04 Cambridge Mechatronics Ltd SMA Actuator assembly
GB201716669D0 (en) 2017-10-11 2017-11-22 Cambridge Mechatronics Ltd Sma resistance measurement
CN111226152B (zh) * 2017-10-30 2022-03-29 华为技术有限公司 具有极坐标系统的镜头驱动器
CN109959999B (zh) * 2017-12-22 2021-05-18 宁波舜宇光电信息有限公司 确定sma线的驱动功率和使用sma线驱动活动部件运动的方法
CN108174104A (zh) * 2018-01-31 2018-06-15 上海信迈电子科技有限公司 防抖结构、防抖系统及具有其的摄像装置
GB201802930D0 (en) * 2018-02-23 2018-04-11 Cambridge Mechatronics Ltd Asymmetric SMA Actuator
GB2572422B (en) * 2018-03-29 2020-06-10 Cambridge Mechatronics Ltd Apparatus and methods for assembling an actuating module
GB2574869B (en) 2018-06-21 2020-11-04 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
EP3810932A1 (de) 2018-06-21 2021-04-28 Cambridge Mechatronics Limited Auslösungsvorrichtung für formgedächtnislegierung
GB2574871A (en) 2018-06-21 2019-12-25 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
EP3820136A4 (de) * 2018-08-07 2021-10-06 Ningbo Sunny Opotech Co., Ltd. Kameravorrichtung, sma-antriebsvorrichtung und herstellungsverfahren, ansteuerverfahren und verdrahtungsverfahren dafür
GB2576362A (en) 2018-08-16 2020-02-19 Cambridge Mechatronics Ltd Improved crimping
GB201815218D0 (en) 2018-09-18 2018-10-31 Cambridge Mechatronics Ltd Methods for controlling sma actuators
WO2020074914A1 (en) * 2018-10-10 2020-04-16 Cambridge Mechatronics Limited Sma actuator assemblies
GB201816544D0 (en) * 2018-10-10 2018-11-28 Cambridge Mechatronics Ltd Sma actuators for optical image stabilisation
GB201820383D0 (en) * 2018-12-14 2019-01-30 Cambridge Mechatronics Ltd Zero power hold SMA Actuator assembly
TWI693461B (zh) * 2019-04-26 2020-05-11 致能機電工業股份有限公司 鏡頭自動對焦驅動裝置
GB201906392D0 (en) 2019-05-07 2019-06-19 Cambridge Mechatronics Ltd Actuator assemblies and methods of manufacturing the same
GB201907018D0 (en) 2019-05-17 2019-07-03 Cambridge Mechatronics Ltd Actuator assembly
GB201907188D0 (en) 2019-05-21 2019-07-03 Cambridge Mechatronics Ltd Apparatus
CN110727122A (zh) * 2019-09-11 2020-01-24 瑞声科技(新加坡)有限公司 一种光学防抖组件
GB2589385B (en) 2019-12-01 2022-01-12 Cambridge Mechatronics Ltd Actuator assembly
GB201917543D0 (en) 2019-12-02 2020-01-15 Cambridge Mechatronics Ltd Actuator assembly
GB201919340D0 (en) 2019-12-26 2020-02-05 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
GB201919339D0 (en) 2019-12-26 2020-02-05 Cambridge Mechatronics Ltd An actuation apparatus
CN111443498A (zh) * 2020-04-15 2020-07-24 Oppo广东移动通信有限公司 镜头模组以及电子设备
GB2594245A (en) 2020-04-16 2021-10-27 Cambridge Mechatronics Ltd Actuator assembly
GB2594921A (en) 2020-04-16 2021-11-17 Cambridge Mechatronics Ltd Actuator assembly
EP4136351A1 (de) 2020-04-16 2023-02-22 Cambridge Mechatronics Limited Aktuatoranordnung
GB2594244A (en) 2020-04-16 2021-10-27 Cambridge Mechatronics Ltd Actuator assembly
EP4136497A1 (de) 2020-04-16 2023-02-22 Cambridge Mechatronics Limited Kameraanordnung
GB2610767A (en) 2020-05-13 2023-03-15 Cambridge Mechatronics Ltd A shape memory alloy actuator assembly and a method of manufacturing thereof
GB2611450A (en) 2020-05-19 2023-04-05 Cambridge Mechatronics Ltd A time-of-flight sensor system
EP4158191A2 (de) 2020-05-27 2023-04-05 Cambridge Mechatronics Limited Aktuatoranordnung
GB2610971A (en) 2020-05-27 2023-03-22 Cambridge Mechatronics Ltd Actuation apparatus
GB2595646A (en) 2020-05-27 2021-12-08 Cambridge Mechatronics Ltd Actuator assembly
WO2022029441A1 (en) 2020-08-05 2022-02-10 Cambridge Mechatronics Limited Actuator assembly
US20230328348A1 (en) 2020-08-31 2023-10-12 Cambridge Mechatronics Limited Actuator assembly
GB202015414D0 (en) 2020-09-29 2020-11-11 Cambridge Mechatronics Ltd Actuator assembly
GB2602626B (en) 2020-12-30 2023-07-12 Cambridge Mechatronics Ltd Actuator
GB2605640A (en) 2021-04-08 2022-10-12 Cambridge Mechatronics Ltd Actuator fabrication
CN113484969B (zh) * 2021-06-23 2022-05-20 广东海德亚科技有限公司 Sma线驱动结构及其闭环控制方法和电子设备
CN113534395B (zh) * 2021-06-23 2022-07-15 广东海德亚科技有限公司 Sma致动结构控制方法、电子设备及存储介质
CN113534570B (zh) * 2021-06-23 2022-04-26 广东海德亚科技有限公司 Sma线对的驱动方法、致动结构及存储介质
WO2023012472A1 (en) 2021-08-02 2023-02-09 Cambridge Mechatronics Limited Actuator assembly
DE102021210690B3 (de) * 2021-09-24 2022-11-10 Conti Temic Microelectronic Gmbh Verfahren zum Erkennen der Position eines Aktorelements
GB2613572B (en) 2021-12-06 2024-01-31 Cambridge Mechatronics Ltd Actuator assembly
GB202119163D0 (en) 2021-12-31 2022-02-16 Cambridge Mechatronics Ltd Actuator assembly
GB202204749D0 (en) 2022-03-31 2022-05-18 Cambridge Mechatronics Ltd Actuator assembly
GB2617179A (en) 2022-03-31 2023-10-04 Cambridge Mechatronics Ltd Actuator Assembly
GB2620614A (en) 2022-07-14 2024-01-17 Cambridge Mechatronics Ltd Actuator assembly
GB2620797A (en) 2022-07-22 2024-01-24 Cambridge Mechatronics Ltd Actuator assembly
GB2621604A (en) 2022-08-17 2024-02-21 Cambridge Mechatronics Ltd Actuator assembly and method of assembling an actuator assembly

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930494A (en) 1988-03-09 1990-06-05 Olympus Optical Co., Ltd. Apparatus for bending an insertion section of an endoscope using a shape memory alloy
US4977886A (en) 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
JPH06230457A (ja) 1993-02-01 1994-08-19 Konica Corp カメラ
JPH09127398A (ja) 1995-10-31 1997-05-16 Kyocera Corp レンズ駆動機構
US5763979A (en) 1996-02-29 1998-06-09 The United States Of America As Represented By The Secretary Of The Navy Actuation system for the control of multiple shape memory alloy elements
US6434333B2 (en) 1997-05-01 2002-08-13 Minolta Co., Ltd. Driving mechanism using shape-memory alloy
JPH11324896A (ja) 1998-03-13 1999-11-26 Minolta Co Ltd 形状記憶合金を使用した駆動機構
JP3750416B2 (ja) 1999-05-18 2006-03-01 コニカミノルタフォトイメージング株式会社 形状記憶合金を使用したアクチエータ
WO2001012985A1 (en) 1999-08-12 2001-02-22 Nano Muscle, Inc. Shape-memory alloy actuators and control methods
JP2001142105A (ja) 1999-11-16 2001-05-25 Minolta Co Ltd 形状記憶合金を使用したアクチエータ
JP2001263221A (ja) 2000-03-22 2001-09-26 Minolta Co Ltd 形状記憶合金を含むアクチュエータを用いた制御装置
US6434932B2 (en) 2000-03-23 2002-08-20 Minolta Co., Ltd. Control mechanism with actuator employing shape memory alloy and method for adjusting servo control of the control mechanism
US6449434B1 (en) 2001-01-11 2002-09-10 Eastman Kodak Company Lens displacement or other control using shaped memory alloy driver
DE60226160T2 (de) 2001-02-22 2009-07-02 Alfmeier Präzision AG Baugruppen und Systemlösungen Stellglied aus gedächtnismetall mit verbesserter temperaturregelung
US6945045B2 (en) 2001-10-01 2005-09-20 Minolta Co., Ltd. Driving apparatus
JP3638016B2 (ja) * 2001-10-01 2005-04-13 コニカミノルタフォトイメージング株式会社 形状記憶合金を用いた駆動装置及び駆動制御方法
JP2003195382A (ja) * 2001-12-27 2003-07-09 Minolta Co Ltd 形状記憶合金を用いた駆動装置
US7307653B2 (en) 2001-10-19 2007-12-11 Nokia Corporation Image stabilizer for a microcamera module of a handheld device, and method for stabilizing a microcamera module of a handheld device
JP2004198503A (ja) 2002-12-16 2004-07-15 Fuji Electric Holdings Co Ltd 有機薄膜発光ディスプレイおよびその制御方法
JP3956877B2 (ja) 2003-03-18 2007-08-08 株式会社デンソー センサ用温度補正装置およびセンサの温度補正方法
US7561202B2 (en) 2003-08-21 2009-07-14 Konica Minolta Opto, Inc. Image device with lens adjustment for various environmental conditions
EP1676030A4 (de) 2003-09-05 2007-01-24 Alfmeier Praez Ag Vorrichtung und verfahren zur kostengünstigen steuerung von gedächtnismetalllegierungsstellgliedern
BR0305447A (pt) 2003-11-25 2005-08-09 Brasil Compressores Sa Sistema e método de ajuste de set point de temperatura de um sistema de refrigeração e medição de uma temperatura de um ambiente, conjunto sensor
US20070175213A1 (en) 2004-02-09 2007-08-02 The Australian National University Shape memory alloy actuator
DE602004005578T2 (de) 2004-06-10 2007-12-13 C.R.F. Società Consortile per Azioni, Orbassano Verfahren und System zur Regelung von Aktuatoren aus Formgedächtnislegierungen
US7295389B2 (en) 2004-11-22 2007-11-13 Konica Minolta Opto, Inc. Lens barrel, image-pickup unit having the lens barrel, and manufacturing method of the same
GB0426331D0 (en) 2004-12-01 2005-01-05 1 Ltd Suspension system
JP4857550B2 (ja) 2004-12-06 2012-01-18 コニカミノルタホールディングス株式会社 駆動装置および駆動システム
TW200700564A (en) 2005-04-04 2007-01-01 Telezygology Inc Smart memory alloy control
JP2007004121A (ja) 2005-05-27 2007-01-11 Konica Minolta Opto Inc モータ、モータ装置及びそれを用いるレンズ駆動機構
JP4747679B2 (ja) * 2005-05-30 2011-08-17 コニカミノルタホールディングス株式会社 駆動装置
JP4735060B2 (ja) 2005-06-06 2011-07-27 コニカミノルタオプト株式会社 駆動装置および手振れ補正システム
EP1914422A1 (de) 2005-08-11 2008-04-23 Konica Minolta Opto, Inc. Antriebsvorrichtung, linsentubus, abbildungsvorrichtung, linsenantriebsverfahren und verfahren zur herstellung einer formgedächtnislegierung
JP2007139965A (ja) 2005-11-16 2007-06-07 Konica Minolta Opto Inc 駆動装置
GB2451972B (en) * 2006-03-30 2010-06-30 1 Ltd Camera lens actuation apparatus
JP4775115B2 (ja) 2006-05-29 2011-09-21 コニカミノルタオプト株式会社 長さ制御装置、長さ制御プログラム及びレンズ駆動装置
EP2261507A1 (de) 2007-02-12 2010-12-15 Cambridge Mechatronics Limited Antriebsvorrichtung mit formgedächtnislegierung
US7953319B2 (en) 2007-04-04 2011-05-31 Konica Minolta Opto, Inc. Position controller, driving mechanism and image pickup system
JP4952364B2 (ja) * 2007-05-07 2012-06-13 コニカミノルタオプト株式会社 駆動ユニットおよび可動モジュール
US8347738B2 (en) 2007-05-09 2013-01-08 The Board Of Trustees Of The Leland Stanford Junior University Sensors and control for an interventional catheter
JP4957366B2 (ja) 2007-05-09 2012-06-20 コニカミノルタアドバンストレイヤー株式会社 カメラモジュールおよびカメラモジュールの駆動方法
JP4946675B2 (ja) 2007-07-05 2012-06-06 コニカミノルタオプト株式会社 形状記憶合金の駆動装置およびそれを用いる撮像装置ならびに形状記憶合金の駆動方法
US8089694B2 (en) 2007-08-24 2012-01-03 Sony Ericsson Mobile Communications Ab Optical device stabilizer
JP5029260B2 (ja) 2007-09-28 2012-09-19 コニカミノルタアドバンストレイヤー株式会社 駆動装置
DE602008006763D1 (de) 2007-10-30 2011-06-16 Cambridge Mechatronics Ltd Gedächtnislegierungsbetätigungsvorrichtung
EP2233739A1 (de) 2007-11-12 2010-09-29 Konica Minolta Opto, Inc. Formgedächtnislegierungsantriebsvorrichtung
EP2224131A1 (de) 2007-11-30 2010-09-01 Konica Minolta Opto, Inc. Formgedächtnislegierungstreiber
US20110031924A1 (en) 2007-11-30 2011-02-10 Konica Minolta Opto, Inc. Shape memory alloy driver
JP5221672B2 (ja) 2007-12-03 2013-06-26 ケンブリッジ メカトロニクス リミテッド 形状記憶合金作動構造の制御
WO2009090958A1 (ja) 2008-01-15 2009-07-23 Konica Minolta Opto, Inc. アクチュエータ駆動制御装置及びレンズユニット駆動装置
EP2246564A4 (de) 2008-01-23 2015-02-18 Konica Minolta Opto Inc Antriebseinrichtung
GB2481146B (en) 2008-07-30 2012-05-23 Cambridge Mechatronics Ltd Shape memory alloy actuation apparatus
EP2326984A2 (de) 2008-09-12 2011-06-01 Cambridge Mechatronics Limited Stabilisierung optischer bilder mit formgedächtnis-legierungsbetätigungsgliedern
WO2010049689A2 (en) * 2008-10-29 2010-05-06 Cambridge Mechatronics Limited Control of a shape memory alloy actuation arrangement
US8395855B2 (en) 2008-11-20 2013-03-12 Cambridge Mechatronics Limited Shape memory alloy actuation apparatus
KR101279702B1 (ko) 2008-12-24 2013-06-27 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 형상 기억 합금 액추에이터의 구동 장치 및 그 방법, 및 그것을 사용한 촬상 장치
JP5702735B2 (ja) 2009-02-09 2015-04-15 ケンブリッジ メカトロニクス リミテッド 光学画像安定化
GB0919640D0 (en) * 2009-11-10 2009-12-23 Cambridge Mechatronics Ltd Optical image stabilisation
KR101770856B1 (ko) 2010-02-26 2017-09-05 캠브리지 메카트로닉스 리미티드 Sma 액추에이션 장치
GB2497903B (en) 2010-09-22 2015-01-28 Cambridge Mechatronics Ltd Optical image stabilisation
GB201019532D0 (en) * 2010-11-18 2010-12-29 Cambridge Mechatronics Ltd Optical image stablisation drive

Also Published As

Publication number Publication date
EP2920955A1 (de) 2015-09-23
JP6423354B2 (ja) 2018-11-14
US20160209670A1 (en) 2016-07-21
KR20150102002A (ko) 2015-09-04
US9684183B2 (en) 2017-06-20
WO2014076463A1 (en) 2014-05-22
JP2016504517A (ja) 2016-02-12
GB201220485D0 (en) 2012-12-26
CN104982028B (zh) 2018-08-24
CN104982028A (zh) 2015-10-14
KR101981369B1 (ko) 2019-05-22

Similar Documents

Publication Publication Date Title
EP2920955B1 (de) Steuerung eines formgedächtnislegierungsaktuators
EP2732331B1 (de) Antriebsvorrichtung mit Formgedächtnislegierung
US9175671B2 (en) SMA actuation apparatus
US8830335B2 (en) SMA actuation apparatus
US9753300B2 (en) Shape memory alloy actuation apparatus
EP2394425B1 (de) Optische bildstabilisierung
CN108292074B (zh) 对sma致动装置的控制
US9137429B2 (en) Camera apparatus
US9479699B2 (en) Shape memory alloy actuation apparatus
EP4065842B1 (de) Aktuatoranordnung
JP2015207859A (ja) 撮像装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150514

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180503

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CAMBRIDGE MECHATRONICS LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602013049961

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04N0005232000

Ipc: G03B0003100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04N 5/232 20060101ALI20180903BHEP

Ipc: G03B 5/00 20060101ALI20180903BHEP

Ipc: F03G 7/06 20060101ALI20180903BHEP

Ipc: G03B 3/10 20060101AFI20180903BHEP

Ipc: G02B 27/64 20060101ALI20180903BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREGORY, THOMAS MATTHEW

Inventor name: BROWN, ANDREW BENJAMIN DAVID

INTG Intention to grant announced

Effective date: 20181001

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GREGORY, THOMAS MATTHEW

Inventor name: BROWN, ANDREW BENJAMIN DAVID

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013049961

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1090150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1090150

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190416

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013049961

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

26N No opposition filed

Effective date: 20191017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191111

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131111

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190116

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 11

Ref country code: DE

Payment date: 20231121

Year of fee payment: 11