EP2920515B1 - Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile - Google Patents

Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile Download PDF

Info

Publication number
EP2920515B1
EP2920515B1 EP13798930.7A EP13798930A EP2920515B1 EP 2920515 B1 EP2920515 B1 EP 2920515B1 EP 13798930 A EP13798930 A EP 13798930A EP 2920515 B1 EP2920515 B1 EP 2920515B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion
air
burner
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13798930.7A
Other languages
English (en)
French (fr)
Other versions
EP2920515A1 (de
Inventor
Thomas Merklein
Bastian MERKLEIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2920515A1 publication Critical patent/EP2920515A1/de
Application granted granted Critical
Publication of EP2920515B1 publication Critical patent/EP2920515B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/40Simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/20Camera viewing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2900/00Special features of, or arrangements for controlling combustion
    • F23N2900/05006Controlling systems using neuronal networks

Definitions

  • the invention relates to a method for improving the combustion in a furnace, in particular a power plant or an industrial plant, wherein a plurality of burners are arranged in a burner layer and wherein at least a portion of the burner, a fuel and / or air mass flow can be adjusted. It may alternatively be arranged in the combustion chamber, even a single burner. There may also be multiple fuel and air inlets in a burner layer or in other geometry, e.g. vertical or spiral.
  • a local distribution of a parameter characterizing the combustion quality is determined by measurement in an overlying ignition / burnout region. Based on the local distribution, at least one area is identified with an unfavorable parameter with regard to the quality of the combustion.
  • the invention further relates to the use, i. the use of such a method of improving combustion in a fossil, i. fossil-fueled, thermal power plant or in an industrial plant.
  • the invention relates to a device for carrying out such a method.
  • Fire chambers are known in the art, e.g. Firebreaks in a fossil thermal power plant, in a rotary kiln or in any other thermal plant having a plurality of burners, e.g. eight, ten, 16 or 20.
  • the firebox typically has a rectangular or square cross section or the shape of a pipe.
  • the dimensions, such as the edge length of such a firebox can be in the range of 5 to 25m or even 5 to 50m.
  • the height of such a combustion chamber can even be in the range of 10 to 100 m, measured from the horizontal burner level, in which the burners are arranged circumferentially around the combustion chamber.
  • fire chambers with other, for example overlying burner areas in which more burners are arranged as a kind of fire ring, so to speak.
  • fire chambers with a further, overlying burner level in which more burners are arranged, so to speak, as another fire ring.
  • each burner air and the fossil fuel such as coal dust from lignite and / or hard coal, or natural gas, slightly offset from the geometric center blow (see FIG. 3 ).
  • the injection of the air / fuel mixture is additionally carried out at a small angle "down" in the range of 10 ° to 20 °, measured from the horizontal plane. This leaves even more time for the mixing of the air / fuel mixture.
  • the fuel and the air is usually preheated injected into the furnace, wherein the fuel temperature is preferably in a range of 150 ° C - 200 ° C and the air temperature around 300 ° C.
  • the whole, not yet ignited air / fuel mixture is e.g. In coal dust-fired power plants to the furnace center thermally torn up.
  • this pyrolysis area which lies above the firing layer or burner layer, the entire not yet ignited air / fuel mixture is decomposed into its volatile combustible fractions by endothermic reactions.
  • the water still bound in the fuel evaporates.
  • the entire mixture ignites spontaneously from a temperature of about 600 °. Above a temperature of 750 ° C, the mixture even burns explosively.
  • coke i. E. quasi-pure carbon
  • This oxygen may e.g. be added in the form of air via additional fans in this Ausbrandebene to avoid the emission of unburned and carbon monoxide.
  • a ratio of 1 means that there is sufficient air and consequently also oxygen in order to completely and thus optimally burn the fuel fraction present there.
  • Combustion unfavorable areas are consequently areas with an air / fuel ratio of greater than 1, such as 1.2, which would correspond to a so-called "lean" air / fuel mixture.
  • Analog would correspond to an air / fuel ratio of less than 1, such as 0.8, a "rich” air / fuel mixture. Consequently, there is too little air for combustion.
  • the local temperature distribution is another important factor, which mainly determines the speed of the combustion process.
  • rotary kilns which have a furnace.
  • Such an O-fen is used for continuous processes in process engineering. It has a rotary tube which is slightly inclined in the longitudinal direction, so that feed material introduced from an inlet side is transported longitudinally along the circulating furnace tube to an outlet side. From the outlet side, the ignition of the fuel is achieved with burners, and set a suitable temperature profile in the oven via the burner. The heat is thus supplied from within the furnace, wherein the feedstock is in direct contact with the resulting flue gas.
  • the fuel and / or air mass flow can be adjusted to improve the quality of the combustion.
  • the final temperature for the quality of the finished goods is an important parameter.
  • the rotary kiln has proven its worth from the stone and earth industry, the basic materials industry and the chemical and disposal sectors.
  • the products used for the thermal treatment of the rotary kiln are various bulk materials such as cement clinker, lime, dolomite, magnesite, chamotte, titanium dioxide, barium sulfate, strontium and barium carbonate, kaolin, iron ore, quartz sand, petroleum coke, gypsum and many more ,
  • measuring devices are known from the prior art by means of which a local distribution of the air / fuel ratio in the ignition / burnout region can be determined by measurement.
  • these measuring devices allow a preferably horizontal section through the combustion chamber in the ignition / burnout area.
  • This cut or cut area can also be referred to as a measurement plane or measurement plane layer. Consequently, a two-dimensional distribution of the prevailing air / fuel ratio can be determined for the combustion-relevant area in the ignition / burnout area.
  • this may e.g. accomplished by a horizontally movable lambda probe, by means of which measurements are made at a plurality of measuring points in the ignition / burnout.
  • measuring devices are known from the prior art, such as eg laser grids or pyrometers, by means of which a local distribution of the temperature in the ignition / burnout region can be determined by measurement.
  • the temperature is another parameter characterizing the combustion quality. It mainly determines how fast the air / fuel mixture explodes more or less. The temperature develops with the available fuel and the air. The temperature should not be too high (typically below about 1400 ° C), otherwise the ash "soft" and the boiler is dirty. In addition, environmentally harmful, so-called "thermal" NO x is disadvantageously formed.
  • laser grids are known from the prior art as measuring devices by means of which a local distribution of the CO, NO x , O 2 , CO 2 fractions or concentration values in the flue gas can be measured.
  • the respective share value is another parameter characterizing the combustion quality. The measurement typically takes place where the combustion is virtually complete and where only slight absorption is present, ie in the ignition / burnout region and in particular in the burnout region.
  • the aforementioned measuring devices may also be combined with each other, e.g. for reasons of plausibility of the acquired measured values and / or for reasons of increasing the measuring accuracy.
  • an optical measuring method is used, e.g. a camera-based measuring method.
  • a method and apparatus for combustion analysis and flame monitoring in a combustion chamber is known.
  • an image of a flame is taken and a spatial distribution of a parameter characterizing the combustion process is determined from spatially resolved intensities of the image for at least one predeterminable spectral range.
  • An optical system of the device comprises a lens for detecting the flame and three downstream beam splitters. The bundle beams detected by the lens are divided by the beam splitters into a total of four spectral ranges and are each fed to a CCD image sensor.
  • EP 1091175 A2 is a method and a corresponding device for determining the excess air in a combustion process known by the rates of formation of the reaction products formed CN and CO are determined. Subsequently, the ratio of the determined formation rates is formed as a quantity representing the excess air in the sense of an air / fuel ratio. At least four special cameras are provided for detecting the radiation intensities.
  • areas with a combustion-technically unfavorable air / fuel ratio can be determined, such as, for example, of areas with ratios greater than 1.2 or less than 0.8.
  • the mass air flow or fuel e.g. the fan speed of one of the fans is increased or decreased or by the injected fuel quantity is increased or decreased at a burner.
  • the combustion process is also not very stable.
  • different fuel qualities cause the entire combustion process to change and in turn change to a stationary level.
  • a part of the combustion chamber which is essential for a flow, pyrolysis and combustion simulation is imaged in a numerical simulation model, divided into a multiplicity of volume elements.
  • the source of the fuel and air fractions originating from the respective burners is taken into account continuously and separately.
  • One of the metrologically determined local distribution is determined in the simulation model spatially appropriate distribution of the fuel and air fractions.
  • At least one burner is determined for the respective identified area of the relevant fuel and air fractions in order to improve combustion by correcting the respective fuel and / or air mass flow.
  • the air mass flow of the determined relevant responsible burner can be increased, such as by 5%.
  • the air mass flow can be corrected the more, the greater the measured air / fuel ratio is away from the optimal ratio 1.0.
  • the mass air flow of the determined authoritative burner can be reduced, such as at 10%.
  • the fuel mass flow can also be increased or decreased. From a technical point of view, it is in most cases advantageous to correct the air mass flow by changing the fan speed or suitable adjustable fan flaps. The fuel mass flow remains unchanged. If the respective burner has a fuel injection device for the fuel mass flow and at least one associated, separate fan for the air mass flow, then it is advantageous to change only the air mass flow of the fan.
  • the core idea of the invention is that in the numerical flow pyrolysis and combustion simulation for each "simulated" volume element, the respective burner-related origin of the injected fuel and the injected air are carried and transferred to the next adjacent volume elements during the simulation.
  • a volume element such as e.g. with the dimensions 10cm x 10cm x 10cm, a fuel content of 5% of burner 1, 80% of burner 2.10% of burner 4, etc. and have an air content of 60% from the burner 3, 30% of burner 6 etc.
  • this volume element on the basis of the aforementioned origin-related components as well as further existing boundary conditions, such as e.g.
  • Air temperature, fuel temperature, flow rates and pressures, pyrolysis and combustion are calculated stepwise.
  • a substance is admixed to the fuel and / or the air for a respective burner.
  • the substance may e.g. be introduced at the input side of the respective burner, as e.g. in powder or in the form of granules. It can be input side, e.g. be introduced by means of a screw conveyor or blown there. Alternatively, the substance may also be at the exit side of the burner, i. be introduced into the air outlet of a fan of the respective burner or in the outlet of a fuel injector of the respective burner. It can also be blown there in powder form or in the form of granules or introduced by means of a screw conveyor. The substance can also be sprayed there in liquid form. In other words, the substance is introduced into the fuel and / or air mass flow of the respective burner. Alternatively or additionally, the substance can be injected in the gaseous state into the outlet of a fuel injector of the respective burner.
  • the substance leaves an (optically significant) trace of light during combustion in the furnace, whereby the local and temporal propagation of the substance is detected by means of an optical measuring system that is spectrally matched to the trace of light.
  • the propagation of the substance in the furnace is detected temporally and / or spatially by the optical measuring system.
  • An actual propagation of the fuel originating from the respective burner and the air originating from the respective burner in the numerical simulation model, which accompanies the actual propagation of the substance, is assumed as a boundary condition.
  • the data recorded by the optical measuring system of the individual traces of light for the respective fuel and / or air mass flows can be converted separately into spatial distributions and their propagation speed, divided into a multiplicity of volume elements.
  • the calculated traces of light of various fuel and / or air mass flows can then be stored in a tracer model.
  • the prevailing there Flow rate and direction of the combustion gases and how allocation to the fuel and / or air mass flows with respect to the various fuel and / or air inlets can be specified.
  • the substance is added not only to the fuel and / or the air for a single burner but for a plurality of burners.
  • This can e.g. cyclic for a selection from all burners, e.g. every other or every third burner, or for all burners, e.g. turn.
  • the local and temporal propagation of the luminous substance in the furnace can be detected by means of the optical measuring system, i. be tracked. Since the timings of the admixture of the substance for the respective burners are known, the different sources of fuel and / or air can be assigned to the respective burners.
  • the conformity of the numerical simulation model with the actual flow conditions in the combustion chamber is thereby further advantageously increased. As a result, the sought-after areas with the insufficient air / fuel ratio can be determined even more reliably and even more targeted corrections can be made to the fuel mass flow and / or air mass flow of the at least one authoritative burner for optimizing the combustion.
  • Other metrologically detected quantities e.g. the temperature distribution, the distribution of the air / fuel ratio in the furnace and the mass flows are additionally deposited at the burners in the light track model. It is also possible for a plurality of spectrally different luminous substances to be mixed simultaneously with the fuel and / or the air of different burners, so that the substances leave different optically significant traces of light during combustion in the combustion chamber, such as, for example, red, blue or green.
  • the local and temporal propagation of the substances can then be detected by means of an optical measuring system that is spectrally matched to the tracer tracks.
  • the optical measuring system can be used e.g. have a series of spectral filters which are tuned to the dominant emitted spectral line of the respective substance.
  • discoloration of a flame can be achieved with some substances.
  • lithium causes a red discoloration, sodium a yellow, barium a green and copper chloride a blue discoloration.
  • one or more spectral lines are generated in the spectrum.
  • substances are used which radiate with thermal excitation in the green or blue with high intensity, since they can then be separated and distinguished from the intense thermal radiation in the red and infrared spectral range with optical filters.
  • the characteristics characterizing the combustion quality can not be measured in all areas of the combustion chamber and the tracer analysis can not be evaluated for all areas. Therefore, alternatively or additionally, with a combustion calculation and / or with a flow model, it is also possible to calculate the parameters for the combustion quality for areas which could not be detected metrologically and / or for which no tracer analysis could be carried out. With such a luminous trace model or such an expanded CFD simulation model, at least one burner can be determined for the respective identified region in order to improve combustion by correcting the respective fuel and / or air mass flow.
  • the at least one authoritative burner is repeatedly and preferably cyclically determined and the respective fuel and / or air mass flow is corrected automatically.
  • a largely optimal combustion in the furnace can be accomplished automatically without human intervention.
  • the firebox, the geometrical arrangement and orientation of the burners in the firebox, their currently predefined velocity injection vector, their current actual value for the fuel and air mass flow and / or the current predetermined temperature of the respective fuel and air mass flow in the numerical simulation model displayed.
  • the simulated conditions in the firebox due to the large number of predetermined or measurable boundary conditions at least qualitatively agree with the actually prevailing real conditions in the firebox.
  • the flow, pyrolysis and combustion simulation model is a Computational Fluid Dynamics Simulation Model (CFD), which simulates the dynamic flow, pyrolysis and combustion processes in the combustion chamber through fluid mechanical model equations such as Navier-Stokes, Euler or potential equations describes.
  • CFD Computational Fluid Dynamics Simulation Model
  • the use of such models has long been known and mature in fluid mechanics, such as in the engine area in aircraft or gas turbines in the power plant area. Due to the computing power available today, accurate and fast modeling and simulation are possible.
  • a finite-volume method is used for the approximate solution of the Navier-Stokes, Euler or potential equations of the computational fluid dynamics simulation model. Such a method is also widespread and recognized.
  • the parameter characterizing the quality of the combustion is an air / fuel ratio.
  • the parameter may alternatively be the reciprocal, ie be a fuel / air ratio.
  • the parameter may be a temperature which is detected by means of a pyrometer, a laser grating or by means of a horizontally movable temperature sensor.
  • the parameter may alternatively or additionally be the CO, NO x , O 2 or CO 2 content or concentration value of the flue gas present in the ignition / burnout region. From these respective proportions or concentration values, it is finally possible to derive a value that represents the fuel / air ratio or air / fuel ratio.
  • a camera-supported method is used for the metrological determination of the local distribution of the air / fuel ratio in the ignition / burnout region.
  • the rates of formation of the chemical reaction products CN (cyanide) and CO (carbon monoxide) formed during combustion are determined, the ratio of the determined formation rates being formed as a variable representing the air / fuel ratio.
  • CN is even more present in the combustion process, the more excess air is present during combustion. In contrast to this, the more CO is present, the more lack of air there is in combustion.
  • the chemical reaction products are gaseous radicals that typically occur during a high-temperature process of more than 1000 ° C in the combustion of hydrocarbons.
  • CN and CO another suitable pairing for the representation of the air / fuel ratio can be used, such as from the amount of C 2 -, CH, CHOH, CHO, NH, OH or O 2 - Radical.
  • the acquisition rates can be determined, for example, by means of special cameras, to which an optical cut-off filter with a predefinable pass-wave range for a characteristic transmission filter Spectral line of the respective reaction product upstream.
  • an optical cut-off filter with a predefinable pass-wave range for a characteristic transmission filter Spectral line of the respective reaction product upstream As a result, a particularly high selectivity is possible with regard to the emission of a chemical reaction product.
  • a notch filter has a passband range in the range of about 5 to 20 nm.
  • the specific frequency band of one of the spectral lines for CO (carbon monoxide) in the range of 445 to 455 nm and for the reaction product CN (for cyanide) in the range of 415 to 425 nm.
  • the barrier filters can also be an IR filter, that is an infrared filter, upstream, to filter out a large part of the incoming heat radiation. Both filters can also be integrated in a single blocking filter.
  • the two formation rates such as preferably for CO and CN, are formed from the difference of a respective band radiation value and a respective thermal radiation value, the latter preferably by means of ratio pyrometry.
  • a common camera-aided method is used for the metrological determination of the local distribution of the air / fuel ratio in the ignition / burnout region and for the optical detection of the light path emitted during the propagation of the substance.
  • a camera-based method is for example from the European patent application EP 1091175 A2 known.
  • copper chloride is used in combination with the measurement system disclosed therein to obtain the spatial association with the fuel and / or air outlets. On the temporal behavior of the tracer traces of copper chloride in the combustion chamber, the flow rate can also be estimated.
  • EP 1091 175 A2 described camera system can be used on a laser measuring grid.
  • This measuring grid can thus be used both for the metrological determination of the local distribution of the air / fuel ratio in the ignition / burnout area and for detecting the light path and / or absorption track emitted during the propagation of the substance likewise in the ignition / burnout area.
  • the device comprises means for detecting an actual value of at least the current fuel and / or air mass flow of a respective burner.
  • she includes means for outputting a setpoint to an actuator for the fuel and / or air mass flow of a respective burner. Furthermore, it has measuring means for determining a local distribution in the ignition / burnout region of a parameter characterizing the combustion quality, in particular of the air / fuel ratio.
  • the device comprises computer-aided means for simulating reacting flows in a combustion chamber by means of a numerical flow, pyrolysis and combustion simulation model for determining a spatially corresponding distribution of the fuel and air fractions spatially corresponding in the simulation model for identification of at least one local distribution Area with an unfavorable in terms of combustion quality characteristic, in particular with a combustion technically unfavorable air / fuel ratio, for determining the relevant at least one burner with respect to the simulated fuel and air fractions and for outputting a corrected setpoint for the fuel and / or air mass flow to the actuator a respective burner.
  • the actual value of the actual fuel mass flow may be e.g. indirectly derived from the speed of a burner upstream coal mill or directly from a gas meter with natural gas as fuel.
  • the air mass flow may e.g. derived from the fan speed of a fan as a separate part of a burner based on the technical characteristics of the fan.
  • the temperature values for the fuel mass flow and air mass flow may e.g. be detected by a temperature sensor.
  • the respective setpoint may be a numerical value, such as a percentage ranging from 0% to 100%.
  • a percentage of 0 may e.g. a set fuel mass flow of 0, i. in this case, the fuel supply of a burner is switched off. 100%, however, correspond to a maximum possible flow rate of the burner or the fuel injection device.
  • a computer-aided means is preferably a computer, such as an industrial PC in question, can be run on the multiple programs.
  • the simulation of reacting flows in the combustion chamber by means of the numerical flow, pyrolysis and combustion simulation model, the determination of one of the metrologically determined local distribution in the simulation model spatially corresponding distribution of fuel and air fractions, the identification of at least one local area with a combustion technically unfavorable air / Fuel ratio, the determination of the relevant at least one burner with respect to the simulated fuel and air fractions and the output of a corrected setpoint for the fuel and / or air mass flow to the actuator of a particular burner is preferably carried out in the form of executable software programs and stored in the form of model data be executed or processed by a microprocessor of the computer-aided means.
  • the device has the means for detecting an actual value of at least the current fuel and / or air mass flow of a respective burner. It has the means for outputting a desired value to an adjusting device for the fuel and / or air mass flow of a respective burner. It also has means for individually controlling an admixer for admixing a substance in the fuel and / or in the air of a respective burner, wherein the substance leaves a trail of light during combustion in the furnace.
  • the respective admixer is preferably electrically actuatable via the means.
  • the admixer may e.g. be a screw conveyor. It can e.g. a druc K Kunststoffgeconcentre blowing device, via which the substance can be injected via an electrically controllable compressed air valve.
  • the device furthermore has a camera-supported measuring system for determining a local distribution of a quality characterizing the combustion quality in the ignition / burnout region and for the optical detection of a spectrally significant and spatially and temporally propagating tracer trace.
  • the device has computer-aided means. They are provided for simulating reacting flows in a combustion chamber by means of a numerical flow, pyrolysis and combustion simulation model and for taking over the actual propagation of the fuel originating from the respective burner and the air originating from the respective burner on the basis of the detected propagation of the tracer track as boundary condition in the numerical simulation model.
  • the computer-aided means are further provided for determining one of the metrologically determined
  • the computer-aided means are also provided for the identification of at least one local area with an unfavorable with regard to the combustion quality parameter.
  • the computer-aided means are further provided for determining the relevant at least one burner with regard to the simulated fuel and air fractions.
  • the computer-aided means are provided for outputting a corrected setpoint value for the fuel and / or air mass flow to the adjusting device of a respective burner.
  • the computer-aided means are adapted to repeatedly, preferably cyclically, determine the at least one authoritative burner and automatically output a corrected setpoint value for the fuel and / or air mass flow to the adjusting device of a respective burner.
  • the determination of the at least one authoritative burner can e.g. be carried out by the fact that the determined by means of the simulation model fuel and air fractions are examined by the respective burners in the volume elements in the ignition / burnout area to maximum share values out. This is preferably done only with the volume elements which correspond to the local distribution of unfavorable air / fuel ratios.
  • the firebox on the basis of which the reacting flows in a firebox are simulated by the computerized means, the firebox, the geometrical arrangement and orientation of the burners in the firebox, their currently given velocity injection vector respective current predetermined value for the fuel and air mass flow and / or the current predetermined temperature of the respective fuel and air mass flow shown.
  • the flow, pyrolysis and combustion simulation model is a computational fluid dynamics simulation model.
  • a model is intended for the description of dynamic flow, pyrolysis and combustion processes in the combustion chamber through fluid-mechanical model equations such as Navier-Stokes, Euler or potential equations.
  • the measuring means for the metrological determination of the local distribution of the air / fuel ratio in the ignition / burnout region is realized as a camera-supported measuring system in which the formation rates of the chemical reaction products formed during combustion, such as CN and CO, can be determined.
  • the ratio of the determined formation rates can represent the air / fuel ratio.
  • the measuring means may also comprise the movable lambda probe described above.
  • the respective burner is a concentrically constructed round burner.
  • the respective burner may also include a fuel injector as well as an underlying and / or overlying fan.
  • the object of the invention is further achieved by a device corresponding to the method according to the invention.
  • FIG. 1 shows an example of a combustion chamber 1 of a power plant with eight burners 2 in a firing layer E.
  • the furnace 1 has a rectangular cross-section.
  • eight burners 2 are arranged in a common horizontal focal plane BE, in which air and fuel are blown through the burners 2.
  • P is an overlying pyrolysis B and ZA with a firing / burnout üherender Designated area.
  • Z itself an ignition area and A denotes a burn-out area. The boundaries between the respective areas are flowing and serve in this representation only for better understanding.
  • reference numbers 5 designate measuring cameras which are arranged in a measuring plane M for the metrological detection of the ignition / burnout region ZA and, as it were, look into the combustion chamber 1.
  • the measuring cameras 5 are part of a camera-supported measuring system, which is provided for the metrological detection of a local distribution of the prevailing in the ignition / burnout ZA air / fuel ratio.
  • X, y, z are the axes of a Cartesian coordinate system.
  • the focal plane BE and the measuring plane M are thus in an xy plane. Each perpendicular to it is the z-axis.
  • FIG. 2 shows an exemplary embodiment of the burner 2 in the combustion chamber 1, each with a Brennscherinblasvorraum 3 and each with two associated fans 4. It is in each case a fan 4 directly above and another fan 4 arranged directly below the associated Brennscherinblas owned 3. Of the fans 4, only the quadrangular air inlet window and of the fuel injection direction 3 only a round, concentric opening in the combustion chamber 1 can be seen.
  • the Brennscherinblas driven 3 is also shown symbolized by a flame, even if in this firing layer E still no open combustion takes place. This takes place only in the ignition / burnout area.
  • FIG. 3 shows a plan view of the burner according to FIG. 2 with seven of the eight burners 2 1 -2 8 in operation.
  • air and fuel are injected slightly offset from the geometric center in order to achieve a targeted turbulence and mixing of the air / fuel mixture.
  • ⁇ B 1 - ⁇ B 8 the fuel mass flow injected by the respective burner 2 1 -2 8 and with ⁇ L 1 - ⁇ L 8 the air mass flow injected by the respective burner 2 1 -2 8 is designated.
  • These physical quantities are time-dependent quantities with the unit kilogram per second (kg / s), symbolized by the point above the physical designation of the mass m.
  • v 1 -v 8 the respective velocity injection vector is designated for both the air and the fuel.
  • the velocity injection vector v 1 -v 8 itself has three Cartesian scalar velocity values v x , v y , v z , not further shown, which are based on the FIG. 1 based coordinate system x, y, z are related.
  • a common fuel temperature T B was entered for the injected fuel and a common air temperature T L for the air.
  • the current temperature and separatereliseinblasvektoren are specified or detected for the air from the respective fan 4 and for the fuel from the respective fuel injector 3.
  • FIG. 4 shows an example of a metrologically determined local distribution V R one in an ignition / burnout ZA according to FIG. 1 prevailing air / fuel ratio with four areas G1-G4 with combustion technically unfavorable air / fuel ratio.
  • the shown two-dimensional representation in the xy plane shows areas G1-G4 with a combustion-technically unfavorable air / fuel ratio.
  • the hatched areas G1, G2 show an air / fuel ratio of less than 0.8.
  • the air / fuel ratio in the sense of contour lines decreases still further, for example in the area center to a value of 0.6.
  • the unshaded areas G3, G4 show an air / fuel ratio of more than 1.2.
  • the air / fuel ratio in the sense of contour lines increases even further, for example in the area center to a value of 1.4.
  • FIG. 5 shows one of the local distribution V R according to FIG. 4 locally corresponding distribution V S of the burner originated fuel and air components A B1 -A B8 , A L1 -A L8 based on a numerical flow, pyrolysis and combustion simulation model according to the invention.
  • regions G1-G4 which extend in the grid of a volume element dV of the simulation model, correspond approximately to the areas G1-G4 in FIG. 4 with the extreme values for the air / fuel ratio there.
  • combustion technically unfavorable areas G1-G4 will now be examined with regard to their fuel and air shares A B1 -A B8 , A L1 -A L8 . More specifically, the respective volume elements dV associated with the identified areas G1-G4 are examined.
  • G1 can now be determined for each area.
  • G4 the relevant burner 2 are determined. This is typically the burner 2, whose fuel or air content A B1 -A B8 , A L1 -A L8 in comparison to the fuel and air portions A B1 -A B8 , A L1 -A L8 of the other burner 2 is maximum.
  • the area G1 in FIG. 5 which according to FIG.
  • FIG. 6 shows an example of an apparatus 10 for carrying out the method according to the invention for correcting the fuel and / or air mass flow m B 1 -M B 8, M L 1 - M L 8 of the respective burners 2 1 -2 8 in a combustion chamber 1.
  • reference numeral 11 denotes means for detecting an actual value IW, with 12 means for outputting a setpoint SW, with 13 measuring means and with 14 computer-aided means, such as a computer.
  • the detected actual values IW are current air mass flow values ⁇ L 1 - ⁇ L 8 , fuel mass flow values ⁇ B 1 - ⁇ B 8 and temperature measured values T B , T L received, for example via a power plant control system.
  • the measuring means 13 are realized in the present example by a camera-based measuring system with four cameras 5. On the output side, this system provides a local distribution V R of the measured air / fuel ratio ⁇ in the ignition / burnout region ZA, eg as a two-dimensional data field ⁇ xy corresponding to the xy plane of the measurement plane M.
  • the computer-aided means 14 exemplarily have a data model numerical simulation model CFD for the flow, pyrolysis and combustion simulation of the combustion chamber 1 on.
  • the numerical simulation model CFD outputs the fuel and air components A B1 -A B8 , A L1 -A L8 that can be assigned to the respective burners 2.
  • the computerized means 14 comprise an identification block ID to identify corresponding areas G1-G4 from the local distribution V R of the air / fuel ratio values ⁇ xy provided by the measuring system 13.
  • a comparison block CMP of the computer-aided means 14 now compares fuel and air portions A B1 -A B8 , A L1 -A L8 in volume elements dV locally corresponding to the identified areas G1-G4 with each other for maximum and minimum proportion values around the relevant burner 2 or determine the relevant Brennscherinblasvorraumtage 3 or the relevant fan 4.
  • a modified desired value .DELTA.SW is output to the means 12 for outputting a desired value SW, such as again via the power plant control system, to the combustion by correcting the respective fuel and / or air mass flow ⁇ B , ⁇ L improve.
  • a predetermined waiting time such as 10 minutes
  • a check is made as to whether the output of the changed setpoint SW has led to an improvement of the combustion. This can be done iteratively until an optimum for the combustion has been found. Subsequently, the next identified area G1-G4 can be iteratively optimized in the same way.
  • the inventive method and the corresponding device 10 is particularly advantageous for cases in which one or more burners 2 have failed or deliberately not operated in the partial load range.
  • optimal combustion can be accomplished.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Verbesserung der Verbrennung in einem Feuerraum, insbesondere eines Kraftwerks oder einer Industrieanlage, wobei mehrere Brenner in einer Brennerschicht angeordnet sind und wobei bei zumindest einem Teil der Brenner ein Brennstoff- und/oder Luftmassenstrom eingestellt werden kann. Es kann alternativ im Feuerraum auch nur ein einziger Brenner angeordnet sein. Es können auch mehrere Brennstoff- und Lufteinlässe in einer Brennerschicht oder in einer anderen Geometrie, wie z.B. vertikal oder spiralförmig, angeordnet sein. Es wird in einem darüberliegenden Zünd-/Ausbrandbereich eine örtliche Verteilung einer die Verbrennungsqualität charakterisierenden Kenngröße messtechnisch ermittelt. Es wird basierend auf der örtlichen Verteilung zumindest ein Gebiet mit einer hinsichtlich der Verbrennungsqualität ungünstigen Kenngröße identifiziert.
  • Die Erfindung betrifft weiterhin die Verwendung, d.h. die Anwendung eines derartigen Verfahrens zur Verbesserung der Verbrennung in einem fossilen, d.h. fossil befeuerten, thermischen Kraftwerk oder in einer Industrieanlage.
  • Schließlich betrifft die Erfindung eine Vorrichtung zur Durchführung eines derartigen Verfahrens.
  • Aus der Veröffentlichung der US-Patentanmeldung 2011/0056416A1 sind ein Verfahren sowie ein System zur Verbesserung der Verbrennung in einem Feuerraum eines thermischen Kraftwerks bekannt. Auch dort sind mehrere Brenner in einer Brennerschicht angeordnet, und es kann bei den Brennern ein Brennstoff- und/oder Luftmassenstrom eingestellt werden. Es wird vorgeschlagen, oberhalb der Brenner bzw. Nachbrenner mehrere Betriebsbedingungen wie Temperatur- und CO-Konzentrationswerte in einer gemeinsamen Bereichsebene zu erfassen. Werden Anomalien bei der Verbrennung festgestellt, so sollen diese basierend auf einem mathematischen Modell strömungsdynamisch auf den verursachenden Brenner zurückverfolgt werden können, um dann die Verbrennung durch Änderung des Brennstoff- und/oder Luftmassenstroms zu optimieren. Die örtliche Verteilung der CO-Konzentrationswerte als Maß für die Verbrennungsqualität kann an der Auslassöffnung des Feuerraums, welche den Brennern stromabwärts gegenüberliegt, überprüft werden (siehe FIG. 4A bis 4D).
  • Aus dem Stand der Technik sind Feuerräume bekannt, wie z.B. Feuerräume in einem fossilen thermischen Kraftwerk, in einem Drehrohrofen oder in einer anderen thermischen Anlage, die eine Vielzahl von Brennern aufweisen, wie z.B. acht, zehn, 16 oder 20. Der Feuerraum weist typischerweise einen rechteckigen oder quadratischen Querschnitt oder die Form eines Rohres auf.
  • Die Maße, wie z.B. die Kantenlänge, eines derartigen Feuerraums kann dabei in einem Bereich von 5 bis 25m oder sogar von 5 bis 50m liegen. Die Höhe eines derartigen Feuerraums kann sogar im Bereich von 10 bis 100m liegen, gemessen von der horizontalen Brennerebene, in der die Brenner umlaufend um den Feuerraum angeordnet sind. Bekannt sind auch Feuerräume mit weiteren, z.B. darüber liegenden Brennerbereichen, in der weitere Brenner sozusagen als weiterer Feuerkranz angeordnet sind. Bekannt sind auch Feuerräume mit einer weiteren, darüberliegenden Brennerebene, in der weitere Brenner sozusagen als weiterer Feuerkranz angeordnet sind. Bekannt ist auch, dass die jeweiligen Brenner Luft und den fossilen Brennstoff, wie z.B. Kohlestaub aus Braunkohle und/oder Steinkohle, oder Erdgas, leicht versetzt zum geometrischen Zentrum hin einblasen (siehe FIG 3). Dadurch wird eine verbrennungstechnisch günstigere Verwirbelung und Durchmischung des Luft-/Brennstoffsgemischs erreicht. Typischerweise erfolgt die Einblasung des Luft-/Brennstoffsgemischs zusätzlich unter einem kleinen Winkel nach "unten" im Bereich von 10° bis 20°, gemessen von der Horizontalebene. Dadurch verbleibt noch mehr Zeit für die Durchmischung des Luft-/Brennstoffgemischs. Der Brennstoff und die Luft wird üblicherweise vorgeheizt in den Feuerraum eingeblasen, wobei die Brennstofftemperatur vorzugsweise in einem Bereich von 150°C - 200°C und die Lufttemperatur um 300°C liegt.
  • Das gesamte, noch nicht gezündete Luft-/Brennstoffgemisch wird z.B. bei Kohlestaub befeuerten Kraftwerken zum Feuerraumzentrum hin thermisch mit hochgerissen. In diesem über der Brennschicht bzw. Brennerschicht liegenden Pyrolysebereich wird das gesamte noch nicht gezündete Luft-/Brennstoffgemisch durch endotherme Reaktionen in seine flüchtigen brennbaren Anteile zerlegt wird. Zugleich verdampft das noch im Brennstoff gebundene Wasser. Mit dem weiteren Aufsteigen des pyrolysierenden Gemischs bei zugleich weiter steigender Temperatur zündet letztendlich das gesamte Gemisch ab einer Temperatur von ca. 600° spontan. Oberhalb einer Temperatur von 750°C verbrennt das Gemisch sogar explosionsartig. Zum Schluss verbrennt bzw. verglüht in einem darüberliegenden, in einen Ausbrandbereich übergehenden Bereich noch Koks, d.h. quasi reiner Kohlenstoff, sofern noch ausreichend Sauerstoff vorhanden ist. Dieser Sauerstoff kann z.B. in Form von Luft über weitere Lüfter in dieser Ausbrandebene zugegeben werden, um den Ausstoß von Unverbranntem und von Kohlenmonoxid zu vermeiden.
  • Bekannt ist auch, den Zündbereich oder den Ausbrandbereich, bzw. den gesamten Zünd-/Ausbrandbereich dahingehend zu analysieren, wo sich Gebiete mit zu viel Sauerstoff respektive sich Gebiete mit zu viel Brennstoff befinden, typischerweise repräsentiert durch das sogenannte Luft-/Brennstoffverhältnis. Ein Verhältnis von 1 bedeutet, dass ausreichend Luft und folglich auch Sauerstoff vorhanden ist, um den dort vorliegenden Brennstoffanteil vollständig und somit optimal zu verbrennen. Verbrennungstechnisch ungünstige Gebiete sind folglich Gebiete mit einem Luft-/Brennstoffverhältnis von größer als 1, wie z.B. 1.2, was einem sogenannten "mageren" Luft-/Brennstoffgemisch entsprechen würde. Analoge würde ein Luft-/Brennstoffverhältnis von kleiner als 1, wie z.B. 0.8, einem "fetten" Luft-/Brennstoffgemisch entsprechen. Es ist folglich zu wenig Luft für die Verbrennung vorhanden. Die lokale Temperaturverteilung ist ein weiterer wichtiger Faktor, der vor allem die Geschwindigkeit des Verbrennungsprozesses mitbestimmt. Bekannt sind weiterhin Drehrohröfen, die einen Feuerraum aufweisen. Ein derartiger O-fen wird für kontinuierliche Prozesse in der Verfahrenstechnik eingesetzt. Er weist ein Drehrohr auf, das in Längsrichtung leicht geneigt ist, sodass von einer Einlaufseite her eingebrachtes Aufgabegut innen längs entlang des umlaufenden Ofenrohrs zu einer Auslaufseite hin transportiert wird. Von der Auslaufseite her wird mit Brennern das Zünden des Brennstoffs erreicht, und über die Brenner ein geeignetes Temperaturprofil im Ofen eingestellt. Die Wärmezufuhr erfolgt somit von innerhalb des Ofens, wobei das Aufgabegut hierbei im direkten Kontakt mit dem entstehenden Rauchgas steht. Es kann bei zumindest einem Teil der Brenner der Brennstoff- und/oder Luftmassenstrom eingestellt werden, um die Qualität der Verbrennung zu verbessern. Dabei ist neben den Brennstoff- und Luftmengen und deren Durchmischung vor allem die Endtemperatur für die Qualität des Fertigguts eine wichtige Kenngröße.
  • Bewährt hat sich der Drehrohrofen von der Steine- und Erden-Industrie über die Grundstoffindustrie bis in den Chemie- und Entsorgungsbereich. Die Produkte, zu deren thermischer Behandlung der Drehrohrofen genutzt wird, sind vielfältige Massenschüttgüter wie zum Beispiel Zementklinker, Kalk, Dolomit, Magnesit, Schamotte, Titandioxid, Bariumsulfat, Strontium- und Bariumcarbonat, Kaolin, Eisenerz, Quarzsand, Petrolkoks, Gips und viele andere mehr.
  • Aus dem Stand der Technik sind weiterhin Messvorrichtungen bekannt, mittels derer eine örtliche Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich messtechnisch ermittelbar ist. Mit anderen Worten erlauben diese Messvorrichtungen einen vorzugsweise horizontalen Schnitt durch den Feuerraum im Zünd-/Ausbrandbereich. Dieser Schnitt bzw. Schnittbereich kann auch als Messebene oder Messebenenschicht bezeichnet werden. Es ist folglich für den verbrennungsrelevanten Bereich im Zünd-/Ausbrandbereich eine zweidimensionale Verteilung des dort vorherrschenden Luft-/Brennstoffverhältnisses ermittelbar. Technisch kann dies z.B. durch eine horizontal verfahrbare Lambdasonde bewerkstelligt, mittels welcher Messungen an einer Vielzahl von Messpunkten im Zünd-/Ausbrandbereich vorgenommen werden.
  • Aus dem Stand der Technik sind weiterhin Messvorrichtungen bekannt, wie z.B. Lasergitter oder Pyrometer, mittels welcher eine örtliche Verteilung der Temperatur im Zünd-/Ausbrandbereich messtechnisch ermittelbar ist. Die Temperatur ist eine weitere, die Verbrennungsqualität charakterisierende Kenngröße. Sie bestimmt vorwiegend, wie schnell das Luft-/Brennstoffgemisch mehr oder weniger explodiert. Die Temperatur entwickelt sich dabei mit dem vorhandenen Brennstoff und der Luft. Die Temperatur sollte aber nicht zu hoch sein (typischerweise unterhalb ab etwa 1400°C), da sonst die Asche "weich" wird und den Kessel verschmutzt. Zudem wird nachteilig umweltschädliches, so-genanntes "thermisches" NOx gebildet.
  • Weiterhin sind aus dem Stand der Technik Lasergitter als Messvorrichtungen bekannt, mittels welcher eine örtliche Verteilung der CO-, NOx-, O2-, CO2-Anteile bzw. -Konzentrationswerte im Rauchgas gemessen werden können. Der jeweilige Anteilswert ist eine weitere, die Verbrennungsqualität charakterisierende Kenngröße. Die Messung erfolgt typischerweise dort, wo die Verbrennung quasi abgeschlossen ist und wo nur noch geringe Absorption vorhanden ist, d.h. im Zünd-/Ausbrandbereich und insbesondere im Ausbrandbereich.
  • Die zuvorgenannten Messvorrichtungen können auch miteinander kombiniert werden, wie z.B. aus Gründen der Plausibilität der erfassten Messwerte und/oder aus Gründen der Steigerung der Messgenauigkeit.
  • Vorzugsweise findet ein optisches Messverfahren Anwendung, wie z.B. ein kameragestütztes Messverfahren.
  • Aus der deutschen Offenlegungsschrift DE 197 10 206 A1 ist ein Verfahren und eine Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum bekannt. Um sowohl die Temperaturverteilung als auch die Konzentrationsverteilung von im Verbrennungsprozess entstehenden Reaktionsprodukten sowie Parameter der Flamme besonders schnell erfassen zu können, wird ein Bild einer Flamme aufgenommen und aus ortsaufgelösten Intensitäten des Bildes für mindestens einen vorgebbaren Spektralbereich eine räumliche Verteilung eines den Verbrennungsprozess charakterisierenden Parameters ermittelt. Ein optisches System der Vorrichtung weist eine Linse zur Erfassung der Flamme sowie drei nachgeschaltete Strahlteiler auf. Die von der Linse erfassten Bündelstrahlen werden durch die Strahlteiler auf insgesamt vier Spektralbereiche aufgeteilt und jeweils einem CCD-Bildsensor zugeführt.
  • Aus der europäischen Patentanmeldung EP 1091175 A2 ist ein Verfahren sowie eine dazu korrespondierende Vorrichtung zur Bestimmung des Luftüberschusses bei einem Verbrennungsprozess bekannt, indem die Bildungsraten der bei der Verbrennung gebildeten Reaktionsprodukte CN und CO ermittelt werden. Anschließend wird das Verhältnis der ermittelten Bildungsraten als eine den Luftüberschuss im Sinne eines Luft-/Brennstoffverhältnisses repräsentierende Größe gebildet. Zur Erfassung der Strahlungsintensitäten sind zumindest vier Spezialkameras vorgesehen.
  • Auf Basis der messtechnisch ermittelten örtlichen Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich können Gebiete mit verbrennungstechnisch ungünstigem Luft-/Brennstoffverhältnis ermittelt werden, wie z.B. von Gebieten mit Verhältniswerten von größer 1.2 oder kleiner als 0.8.
  • Um die Verbrennung in den identifizierten Gebieten zu verbessern ist es bekannt, den Luftmassenstrom oder den Brennstoffstoff zu verändern, indem z.B. die Lüfterdrehzahl eines der Lüfter erhöht oder erniedrigt wird oder indem die eingeblasene Brennstoffmenge bei einem Brenner erhöht oder erniedrigt ist.
  • Problem dabei ist, dass aufgrund der Verwirbelung und der Vielzahl von Brennern nicht feststellbar ist, welcher der Brenner maßgeblich für die ungünstige Verbrennung "verantwortlich" ist. Daher wird nacheinander der Luft- oder Brennstoffmassenstrom lediglich nur an einem der Brenner verändert, um dann zu überprüfen, ob sich die Verbrennung in dem betrachteten Gebiet verbessert hat. Allerdings kann es bis zu 15 min dauern, bis die Auswirkungen der Änderung des Luft- oder Brennstoffmassenstroms im gesamten Feuerraum sich stationär im Verbrennungsprozess eingependelt haben. Der zeitliche Aufwand ist folglich enorm hoch.
  • Typischerweise ist der Verbrennungsprozess auch nicht sonderlich stabil. Hier führen z.B. unterschiedliche Brennstoffqualitäten dazu, dass sich der gesamte Verbrennungsprozess ändert und wiederum geändert stationär einpendelt. Auch der häufige Ausfall von einem oder mehreren Brennern, wie z.B. durch Servicearbeiten oder technischem Ausfall, führt zu einem geänderten Verbrennungsprozess und folglich zu unterschiedlichen Gebieten mit verbrennungstechnisch ungünstigem Luft-/Brennstoffverhältnis.
  • In dem Fachbuch "Simulation von Kraftwerken und wärmetechnischen Anlagen" von Bernd Epple et al., Springer Verlag Wien, 2009, sind verschiedene Methoden einer Feuerraumsimulation bekannt, wie z.B. auf Basis eines sogenannten CFD- Simulationsmodells (CFD für Computational Fluid Dynamics) für die numerische Strömungsmechanik. Basierend auf diesem Modell ist eine Strömungs- Pyrolyse- und Verbrennungs-Simulation eines Feuerraums möglich. Zur approximativen Lösung der dynamischen strömungsmechanischen Modellgleichungen ist die Anwendung einer Finite-Volumen-Methode beschreiben. Je nach Modellierungsaufwand und Rechnerleistung kann für jedes Volumenelement im modellierten Feuerraum die dort herrschende Temperatur, der Druck, die Strömungsgeschwindigkeit und Richtung der Verbrennungsgase sowie wie deren chemische Zusammensetzung wie Sauerstoffanteil, Anteil des pyrolysierten Brennstoffs sowie Anteil des bereits verbrannten Brennstoffs angegeben werden.
  • Ausgehend von dem eingangs genannten Stand der Technik ist es eine Aufgabe der Erfindung ein Verfahren anzugeben, welches eine verbesserte Verbrennung in einem Feuerraum erlaubt.
  • Es ist eine weitere Aufgabe der Erfindung ein Verfahren anzugeben, welches eine schnelle Korrektur des jeweiligen Brennstoff- und/oder Luftmassenstroms erlaubt, um die Verbrennung im Feuerraum wieder zu verbessern.
  • Es ist eine weiteren Aufgabe der Erfindung, geeignete Anwendungen des erfindungsgemäßen Verfahrens anzugeben.
  • Schließlich ist es eine Aufgabe der Erfindung, eine zum Verfahren korrespondierende Vorrichtung anzugeben.
  • Die Aufgabe der Erfindung wird mit den Merkmalen der unabhängigen Patentansprüche gelöst. Vorteilhafte Verfahrensvarianten, eine geeignete Verwendung sowie vorteilhafte Ausführungsformen der korrespondierenden Vorrichtung sind in den abhängigen Ansprüchen angegeben.
  • Erfindungsgemäß wird ein für eine Strömungs-, Pyrolyse- und Verbrennungssimulation wesentlicher Teil des Feuerraums in einem numerischen Simulationsmodell abgebildet, aufgeteilt in eine Vielzahl von Volumenelementen. Es wird bei der numerischen Simulation eines jeden Volumenelements die Herkunft der von jeweiligen Brennern stammenden Brennstoff- und Luftanteile fortlaufend und für sich getrennt mitberücksichtigt. Es wird eine der messtechnisch ermittelten örtlichen Verteilung im Simulationsmodell örtlich entsprechende Verteilung der Brennstoff- und Luftanteile ermittelt. Es wird für das jeweilige identifizierte Gebiet der hinsichtlich der ermittelten Brennstoff- und Luftanteile maßgebliche zumindest eine Brenner ermittelt, um die Verbrennung durch eine Korrektur des jeweiligen Brennstoff- und/oder Luftmassenstroms zu verbessern.
  • Dadurch ist auf Basis der numerischen Strömungs- Pyrolyse- und Verbrennungs-Simulation für jedes messtechnisch identifizierte Gebiet, welches eine hinsichtlich der Verbrennungsqualität ungünstige Kenngröße aufweist, vorteilhaft der für die ungünstige Verbrennung maßgeblich verantwortliche Brenner ermittelbar. Durch Korrektur des zugehörigen Luft- und/oder Brennstoffmassenstroms kann dann zumindest iterativ die dortige Verbrennung verbessert werden. Liegt z.B. das gemessene Luft-/Brennstoffverhältnis im identifizierten Gebiet z.B. bei 0.75, d.h. es ist zu wenig Luft für eine optimale Verbrennung vorhanden, so kann der Luftmassenstrom des ermittelten maßgeblich verantwortlichen Brenners erhöht werden, wie z.B. um 5%. Dabei kann der Luftmassenstrom umso mehr korrigiert werden, je größer das gemessene Luft-/Brennstoffverhältnis vom optimalen Verhältnis 1.0 entfernt ist. Im umgekehrten Fall, d.h. für den Fall, dass das gemessene Luft-/Brennstoffverhältnis im identifizierten Gebiet z.B. bei 1.25 liegt, d.h. es ist zu viel Luft für eine optimale Verbrennung vorhanden, so kann der Luftmassenstrom des ermittelten maßgeblich verantwortlichen Brenners verringert werden, wie z.B. um 10%.
  • Alternativ oder zusätzlich kann auch der Brennstoffmassenstrom erhöht oder erniedrigt werden. In technischer Hinsicht ist es in den meisten Fällen vorteilhaft, den Luftmassenstrom zu korrigieren, indem die Lüfterdrehzahl oder geeignete verstellbare Lüfterklappen verändert werden. Der Brennstoffmassenstrom bleibt dabei unverändert. Weist der jeweilige Brenner eine Brennstoffeinbiasvorrichtung für den Brennstoffmassenstrom und zumindest einen zugeordneten, separaten Lüfter für den Luftmassenstrom auf, so ist es vorteilhaft, nur den Luftmassenstrom des Lüfters zu verändern.
  • Kernidee der Erfindung ist, dass bei der numerischen Strömungs- Pyrolyse- und Verbrennungs-Simulation für jedes "simulierte" Volumenelement der jeweilige brennerbezogene Ursprung des eingeblasenen Brennstoffs und der eingeblasenen Luft mitgeführt und während der Simulation auf die nächsten angrenzenden Volumenelemente übertragen werden. So kann ein Volumenelement, wie z.B. mit den Abmessungen 10cm x 10cm x 10cm, einen Brennstoffanteil von 5% von Brenner 1, 80% von Brenner 2,10% von Brenner 4 etc. aufweisen sowie einen Luftanteil von 60% vom Brenner 3, 30% von Brenner 6 etc. aufweisen. Mittels der numerischen Strömungs- Pyrolyse- und Verbrennungs-Simulation kann für dieses Volumenelement auf Basis der zuvorgenannten ursprungsbezogenen Anteile sowie weiterer vorliegenden Randbedingungen wie z.B. Lufttemperatur, Brennstofftemperatur, Strömungsgeschwindigkeiten und Drücke, die Pyrolyse sowie die Verbrennung schrittweise berechnet werden. Das Ergebnis einer Berechnung für dieses Volumenelement kann z.B. sein, dass der gesamte vorhandene Brennstoff bereits zu 95% pyrolisiert und zu 20% verbrannt ist, sowie bei einer Temperatur von 693°C bei einem Sauerstoffgehalt von 17,3% und bei einem aktuellen Strömungsvektor von Vx = 1m/s, Vy = -0,2m/s, Vz = 0,1m/s.
  • Es wird mit anderen Worten die von jeweiligen Brennern stammenden Brennstoff- und Luftanteile fortlaufend und für sich getrennt mitberücksichtigt.
  • Mittels der numerischen Strömungs- Pyrolyse- und Verbrennungs-Simulation sind zumindest die Herkünfte der Brennstoffe und Lüfte qualitativ für jedes Volumenelement ermittelbar. Dies ist aber völlig ausreichend, um die Verbrennung in den messtechnisch erfassten Gebieten mit ungenügendem Luft-/Brennstoffverhältnis gezielt korrigieren zu können.
  • Nach einer Verfahrensvariante wird dem Brennstoff und/oder der Luft für einen jeweiligen Brenner eine Substanz beigemischt.
  • Die Substanz kann z.B. an der Eingangsseite des jeweiligen Brenners eingebracht werden, wie z.B. in Pulverform oder in Form eines Granulats. Sie kann eingangsseitig z.B. mittels einer Förderschnecke eingebracht werden oder dort eingeblasen werden. Die Substanz kann alternativ auch an der Ausgangsseite des Brenners, d.h. in den Luftauslass eines Lüfters des jeweiligen Brenners oder in den Auslass einer Brennstoffeinblasvorrichtung des jeweiligen Brenners eingebracht werden. Sie kann dort gleichfalls in Pulverform oder in Form eines Granulats eingeblasen oder mittels einer Förderschnecke eingebracht werden. Die Substanz kann auch in flüssiger Form dort eingesprüht werden. Mit anderen Worten wird die Substanz in den Brennstoff- und/oder Luftmassenstrom des jeweiligen Brenners eingebracht. Alternativ oder zusätzlich kann die Substanz im gasförmigen Zustand in den Auslass einer Brennstoffeinblasvorrichtung des jeweiligen Brenners eingeblasen werden.
  • Die Substanz hinterlässt während der Verbrennung im Feuerraum eine (optisch signifikante) Leuchtspur, wobei mittels eines spektral auf die Leuchtspur abgestimmten optischen Messsystems die örtliche und zeitliche Ausbreitung der Substanz erfasst wird. Mit anderen Worten wird die Ausbreitung der Substanz im Feuerraum zeitlich und/oder räumlich durch das optische Messsystem erfasst. Es wird eine mit der tatsächlichen Ausbreitung der Substanz einhergehende tatsächliche Ausbreitung des vom jeweiligen Brenner stammenden Brennstoffs und der vom jeweiligen Brenner stammenden Luft im numerischen Simulationsmodell als Randbedingung übernommen. Durch die Anpassung des numerischen Simulationsmodells an die tatsächliche Ausbreitung sind die gesuchten Gebiete mit dem ungenügenden Luft-/Brennstoffverhältnis zuverlässiger ermittelbar.
  • Es können hierzu die von dem optischen Messsystem erfassten Daten der einzelnen Leuchtspuren für die jeweiligen Brennstoff- und/oder Luftmassenströme getrennt in räumliche Verteilungen und deren Ausbreitungsgeschwindigkeit umgerechnet werden, aufgeteilt in eine Vielzahl von Volumenelementen. Die so berechneten Leuchtspuren verschiedener Brennstoff- und/oder Luftmassenströme können dann in einem Leuchtspurmodell gespeichert werden. Je nach Modellierungsaufwand und Rechnerleistung kann, soweit messtechnisch möglich, kann für jedes Volumenelement im modellierten Feuerraum die dort herrschende Strömungsgeschwindigkeit und Richtung der Verbrennungsgase sowie wie Zuordnung zu den Brennstoff- und/oder Luftmassenströmen bezüglich der verschiedenen Brennstoff und/oder Lufteinlässen angegeben werden.
  • Vorzugsweise wird die Substanz nicht nur dem Brennstoff und/oder der Luft für einen einzigen Brenner sondern für mehrere Brenner beigemischt. Dies kann z.B. zyklisch für eine Auswahl aus allen Brennern, wie z.B. jeder zweite oder jeder dritte Brenner, oder für alle Brenner erfolgen, wie z.B. reihum. Durch die zeitlich aufeinander folgende Beimischung kann die örtliche und zeitliche Ausbreitung der leuchtenden Substanz im Feuerraum mittels des optischen Messsystems erfasst werden, d.h. nachverfolgt werden. Da die Zeitpunkte der Beimischung der Substanz für die jeweiligen Brenner bekannt sind, können die verschiedenen Herkünfte des Brennstoffs und/oder der Luft den jeweiligen Brennern zugeordnet werden. Die Übereinstimmung des numerischen Simulationsmodells mit den wirklichen Strömungsverhältnissen im Feuerraum wird dadurch weiter vorteilhaft erhöht. Dadurch können die gesuchten Gebiete mit dem ungenügenden Luft-/Brennstoffverhältnis noch zuverlässiger ermittelt werden und noch gezielter Korrekturen an dem Brennstoffmassenstrom und/oder Luftmassenstrom des zumindest einen maßgeblichen Brenners zur Optimierung der Verbrennung vorgenommen werden.
  • Es können auch andere messtechnisch erfasste Größen, wie z.B. die Temperaturverteilung, die Verteilung des Luft-/Brennstoffverhältnis im Feuerraum und die Massenströme an den Brennern im Leuchtspurmodell zusätzlich hinterlegt werden. Es können auch mehrere, spektral unterschiedlich leuchtende Substanzen zeitgleich dem Brennstoff und/oder der Luft unterschiedlicher Brenner beigemischt werden, so dass die Substanzen während der Verbrennung im Feuerraum unterschiedliche, jeweils optisch signifikante Leuchtspuren hinterlassen, wie z.B. rot, blau oder grün. Die örtliche und zeitliche Ausbreitung der Substanzen kann dann mittels eines spektral auf die Leuchtspuren abgestimmten optischen Messsystems erfasst werden. Hierzu kann das optische Messsystem z.B. eine Reihe von Spektralfiltern aufweisen, die auf die dominante emittierte Spektrallinie der jeweiligen Substanz abgestimmt sind.
  • Wie aus der Chemie bekannt ist, können mit einigen Substanzen Verfärbungen einer Flamme erreicht werden. Z.B. bewirkt Lithium eine rote Verfärbung, Natrium eine gelbe, Barium eine grüne und Kupferchlorid eine blaue Verfärbung. Dabei werden jeweils eine oder mehrere Spektrallinien im Spektrum erzeugt. Vorzugsweise werden Substanzen verwendet, die bei thermischer Anregung im grünen oder blauen mit hoher Intensität strahlen, da sie dann von der intensiven thermischen Strahlung im roten und infraroten Spektralbereich mit optischen Filtern getrennt und unterschieden werden können.
  • Unter Umständen können die die Verbrennungsqualität charakterisierenden Kenngrößen nicht in allen Bereichen des Brennraums gemessen werden und die Leuchtspuranalyse nicht für alle Bereiche ausgewertet werden. Es kann daher alternativ oder zusätzlich mit einer Verbrennungsrechnung und/oder mit einem Strömungsmodell auch für Bereiche, die nicht messtechnisch erfasst werden konnten und/oder für die keine Leuchtspuranalyse durchgeführt werden konnte, eine Berechnung der Kenngrößen für die Verbrennungsgüte erfolgen. Mit einem solchen Leuchtspurmodell bzw. um ein solches erweitertes CFD-Simulationsmodell kann für das jeweilige identifizierte Gebiet der hinsichtlich der ermittelten Kenngrößen maßgebliche zumindest eine Brenner ermittelt werden, um die Verbrennung durch eine Korrektur des jeweiligen Brennstoff- und/oder Luftmassenstroms zu verbessern.
  • Nach einer Verfahrensvariante wird wiederholt, vorzugsweise zyklisch, der zumindest eine maßgebliche Brenner ermittelt und automatisiert der jeweilige Brennstoff- und/oder Luftmassenstrom korrigiert. Dadurch ist ohne menschliches Zutun automatisiert eine weitgehend optimale Verbrennung im Feuerraum bewerkstelligbar.
  • Einer weiteren Verfahrensvariante nach werden der Feuerraum, die geometrische Anordnung und Ausrichtung der Brenner im Feuerraum, deren aktuell vorgegebener Geschwindigkeitseinblasvektor, deren jeweiliger aktuell vorgegebener Wert für den Brennstoff- und Luftmassenstrom und/oder die aktuell vorgegebene Temperatur des jeweiligen Brennstoff- und Luftmassenstroms im numerischen Simulationsmodell abgebildet. Dadurch stimmen die simulierten Bedingungen im Feuerraum aufgrund der Vielzahl vorgegebener bzw. messbarer Randbedingungen zumindest qualitativ, mit den tatsächlich vorherrschenden realen Bedingungen im Feuerraum überein.
  • Nach einer vorteilhaften Verfahrensvariante ist das Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodell ein Computational-Fluid-Dynamics-Simulationsmodell (CFD), welches die dynamischen Strömungs-, Pyrolyse- und Verbrennungsvorgänge im Feuerraum durch strömungsmechanische Modellgleichungen wie Navier-Stokes-, Euler- oder Potentialgleichungen beschreibt. Die Verwendung derartiger Modelle ist in der Strömungsmechanik, wie z.B. im Triebwerkbereich bei Flugzeugen oder bei Gasturbinen im Kraftwerksbereich, seit langem bekannt und ausgereift. Aufgrund der heute zur Verfügung stehenden Computerrechenleistung ist eine genaue und zugleich schnelle Modellierung sowie Simulation möglich.
  • Insbesondere wird zur approximativen Lösung der Navier-Stokes-, Euler- oder Potentialgleichungen des Computational-Fluid-Dynamics-Simulationsmodells eine Finite-Volumen-Methode verwendet. Eine derartige Methode ist gleichfalls weitverbreitet und anerkannt.
  • Nach einer weiteren Verfahrensvariante ist die die Verbrennungsqualität charakterisierende, messtechnisch ermittelte Kenngröße ein Luft-/Brennstoffverhältnis. Es kann selbstverständlich alternativ auch der Kehrwert sein, d.h. ein Brennstoff-/Luftverhältnis sein. Alternativ oder zusätzlich kann die Kenngröße eine Temperatur sein, welche mittels eines Pyrometers, eines Lasergitters oder mittels eines horizontal verfahrbaren Temperatursensors erfasst wird. Die Kenngröße kann alternativ oder zusätzlich der CO-, NOx-, O2- oder CO2-Anteil bzw. - Konzentrationswert dem im Zünd-/Ausbrandbereich vorliegenden Rauchgas sein. Aus diesen jeweiligen Anteils- oder Konzentrationswerten kann dann letztendlich ein das Brennstoff-/Luftverhältnis oder Luft-/Brennstoffverhältnis bzw. repräsentierender Wert abgeleitet werden. Ist z.B. die örtliche Verteilung von Sauerstoff, also von O2, ungleichmäßig, so wird in Gebieten mit zu viel Luft NOx gebildet, während in Gebieten mit zu wenig Luft wegen der dortigen unvollständigen Verbrennung CO gebildet wird. Hier sind CO und NOx quasi Gegenspieler, deren gegenläufiges Verhalten in den Anteils- bzw. Konzentrationswerten vorteilhaft verwendet werden kann, um daraus als weitere Kenngröße für die Verbrennungsqualität einen das Brennstoff-/Luftverhältnis repräsentierenden Wert abzuleiten.
  • Nach einer bevorzugten Verfahrensvariante wird zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich ein kameragestütztes Verfahren verwendet. Insbesondere werden die Bildungsraten der bei der Verbrennung gebildeten chemischen Reaktionsprodukte CN (Cyanid) und CO (Kohlenstoffmonoxid) ermittelt, wobei das Verhältnis der ermittelten Bildungsraten als eine das Luft-/Brennstoffverhältnis repräsentierende Größe gebildet wird. CN ist dabei im Verbrennungsprozess umso mehr vorhanden, je mehr Luftüberschuss bei der Verbrennung vorliegt. Gegensätzlich dazu ist umso mehr CO vorhanden, je mehr Luftmangel bei der Verbrennung vorliegt.
  • Bei den chemischen Reaktionsprodukten handelt es um gasförmige Radikale, die typischerweise bei einem Hochtemperaturprozess von mehr als 1000 °C bei der Verbrennung von Kohlenwasserstoff entstehen. Anstelle von CN und CO kann auch eine andere geeignete Paarung für die Repräsentation des Luft-/Brennstoffverhältnis herangezogen werden, wie z.B. aus der Menge der C2-, CH-, CHOH-, CHO-, NH-, OH- oder O2-Radikale.
  • Die Erfassung der Bildungsraten kann z.B. mittels Spezialkameras erfolgen, denen ein optisches Sperrfilter mit einem vorgebbaren Durchlasswellenbereich für eine charakteristische Spektrallinie des jeweiligen Reaktionsproduktes vorgeschaltet. Dadurch ist hinsichtlich der Emission eines chemischen Reaktionsproduktes eine besonders hohe Selektivität möglich. Typischerweise weist ein solches Sperrfilter einen Durchlasswellenbereich im Bereich von ca. 5 bis 20 nm auf. So liegt beispielsweise das spezifische Frequenzband einer der Spektrallinien für CO (Kohlenstoffmonoxid) im Bereich von 445 bis 455 nm und für das Reaktionsprodukt CN (für Cyanid) im Bereich von 415 bis 425 nm. Den Sperrfiltern kann darüber hinaus ein IR-Filter, das heißt ein Infrarot-Filter, vorgeschaltet sein, um einen Großteil der eintreffenden Wärmestrahlung auszufiltern. Beide Filter können auch in einem einzigen Sperrfilter integriert sein. Die beiden Bildungsraten, wie vorzugsweise für CO und CN, werden aus der Differenz eines jeweiligen Bandenstrahlungswerts und eines jeweiligen Temperaturstrahlungswerts gebildet, letzterer vorzugsweise mittels einer Verhältnispyrometrie.
  • Das zuvor beschriebene Verfahren kann vorteilhaft zur Verbesserung der Verbrennung in einem fossilen thermischen Kraftwerk oder in einem Drehrohrofen angewendet werden
  • Nach einer weiteren Verfahrensvariante wird zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich sowie zur optischen Erfassung der bei der Ausbreitung der Substanz emittierten Leuchtspur ein gemeinsames kameragestütztes Verfahren verwendet. Ein derartiges kameragestütztes Verfahren ist z.B. aus der europäischen Patentanmeldung EP 1091175 A2 bekannt. Vorzugsweise wird in diesem Fall Kupferchlorid in Kombination mit dem dort offenbarten Messsystem verwendet, um die räumliche Zuordnung zu den Brennstoff- und/oder Luftauslässen zu erhalten. Über das zeitliche Verhalten der Leuchtspuren des Kupferchlorid im Brennraum kann zusätzlich die Strömungsgeschwindigkeit abgeschätzt werden.
  • Es kann anstelle des in der europäischen Patentanmeldung EP 1091 175 A2 beschriebenen Kamerasystems auf ein Lasermessgitter verwendet werden. Dieses Messgitter kann somit sowohl zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich sowie zur Erfassung der bei der Ausbreitung der Substanz emittierten Leuchtspur und/oder Absorptionsspur gleichfalls im Zünd-/Ausbrandbereich verwendet werden.
  • Schließlich wird die Aufgabe der Erfindung durch eine zum Verfahren korrespondierende Vorrichtung gelöst.
  • Die Vorrichtung weist erfindungsgemäß Mittel zur Erfassung eines Istwertes zumindest des aktuellen Brennstoff- und/oder Luftmassenstroms eines jeweiligen Brenners auf. Sie umfasst Mittel zur Ausgabe eines Sollwertes an eine Stelleinrichtung für den Brennstoff- und/oder Luftmassenstroms eines jeweiligen Brenners auf. Weiterhin weist sie Messmittel zur Ermittlung einer im Zünd-/Ausbrandbereich vorliegenden örtlichen Verteilung einer die Verbrennungsqualität charakterisierenden Kenngröße, insbesondere des Luft-/Brennstoffverhältnisses auf. Schließlich umfasst die Vorrichtung rechnergestützte Mittel zur Simulation reagierender Strömungen in einem Feuerraum mittels eines numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells, zur Ermittlung einer der messtechnisch ermittelten örtlichen Verteilung im Simulationsmodell örtlich entsprechenden Verteilung der Brennstoff- und Luftanteile, zur Identifikation zumindest eines dortigen Gebiets mit einer hinsichtlich der Verbrennungsqualität ungünstigen Kenngröße, insbesondere mit einem verbrennungstechnisch ungünstigen Luft-/Brennstoffverhältnis, zur Ermittlung des maßgeblichen zumindest einen Brenners hinsichtlich der simulierten Brennstoff- und Luftanteile sowie zur Ausgabe eines korrigierten Sollwertes für den Brennstoff- und/oder Luftmassenstroms an die Stelleinrichtung eines jeweiligen Brenners.
  • Der Istwert des aktuellen Brennstoffmassenstroms kann z.B. mittelbar aus der Drehzahl einer dem Brenner vorgeschalteten Kohlemühle oder unmittelbar von einem Gaszähler bei Erdgas als Brennstoff abgeleitet werden. Der Luftmassenstrom kann z.B. aus der Lüfterdrehzahl eines Lüfters als separater Teil eines Brenners auf Basis der technischen Kenndaten des Lüfters abgeleitet werden. Die Temperaturwerte für den Brennstoffmassenstrom und Luftmassenstrom können z.B. mittels eines Temperatursensors erfasst werden. Der jeweilige Sollwert kann ein Zahlenwert sein, wie z.B. eine Prozentzahl im Bereich von 0% und 100% sein. Eine Prozentzahl von 0 kann z.B. einem gestellten Brennstoffmassenstrom von 0 sein, d.h. es wird in diesem Fall die Brennstoffzufuhr eines Brenners ausgeschaltet. 100% dagegen entsprechen einer maximal möglichen Fördermenge des Brenners bzw. der Brennstoffeinblasvorrichtung.
  • Als rechnergestützte Mittel kommt vorzugsweise ein Computer, wie z.B. ein industrietauglicher PC in Frage, auf dem mehrere Programme ausgeführt werden können. Die Simulation reagierender Strömungen im Feuerraum mittels des numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells, die Ermittlung einer der messtechnisch ermittelten örtlichen Verteilung im Simulationsmodell örtlich entsprechenden Verteilung der Brennstoff- und Luftanteile, die Identifikation zumindest eines dortigen Gebiets mit einem verbrennungstechnisch ungünstigen Luft-/Brennstoffverhältnis, die Ermittlung des maßgeblichen zumindest einen Brenners hinsichtlich der simulierten Brennstoff- und Luftanteile sowie die Ausgabe eines korrigierten Sollwertes für den Brennstoff- und/oder Luftmassenstroms an die Stelleinrichtung eines jeweiligen Brenners erfolgt vorzugsweise in Form ausführbarer Softwareprogramme sowie in Form hinterlegter Modelldaten, die von einem Mikroprozessor der rechnergestützten Mittel ausgeführt bzw. verarbeitet werden.
  • Nach einer alternativen Ausführungsform weist die Vorrichtung die Mittel zur Erfassung eines Istwertes zumindest des aktuellen Brennstoff- und/oder Luftmassenstroms eines jeweiligen Brenners auf. Sie weist die Mittel zur Ausgabe eines Sollwertes an eine Stelleinrichtung für den Brennstoff- und/oder Luftmassenstroms eines jeweiligen Brenners auf. Sie weist zudem Mittel zum individuellen Ansteuern eines Beimischers zum Beimischen einer Substanz in den Brennstoff und/oder in der Luft eines jeweiligen Brenners auf, wobei die Substanz während der Verbrennung im Feuerraum eine Leuchtspur hinterlässt.
  • Der jeweilige Beimischer ist vorzugsweise elektrisch über die Mittel ansteuerbar. Der Beimischer kann z.B. eine Förderschnecke sein. Es kann z.B. eine druc kluftgestützte Einblasvorrichtung, über welche die Substanz über ein elektrisch ansteuerbares Druckluftventil eingeblasen werden kann.
  • Die Vorrichtung weist weiterhin ein kameragestütztes Messsystem zur Ermittlung einer im Zünd-/Ausbrandbereich vorliegenden örtlichen Verteilung einer die Verbrennungsqualität charakterisierenden Kenngröße sowie zur optischen Erfassung einer spektral signifikanten und sich örtlich sowie zeitlich ausbreitenden Leuchtspur auf. Weiterhin weist die Vorrichtung rechnergestützte Mittel auf. Sie sind vorgesehen zur Simulation reagierender Strömungen in einem Feuerraum mittels eines numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells und zur Übernahme der tatsächlichen Ausbreitung des vom jeweiligen Brenner stammenden Brennstoffs und der vom jeweiligen Brenner stammenden Luft auf Basis der erfassten Ausbreitung der Leuchtspur als Randbedingung im numerischen Simulationsmodell. Die rechnergestützten Mittel sind weiterhin vorgesehen zur Ermittlung einer der messtechnisch ermittelten
  • örtlichen Verteilung im Simulationsmodell örtlich entsprechenden Verteilung der Brennstoff- und Luftanteile . Die rechnergestützten Mittel sind zudem vorgesehen zur Identifikation zumindest eines dortigen Gebiets mit einer hinsichtlich der Verbrennungsqualität ungünstigen Kenngröße. Die rechnergestützten Mittel sind weiterhin vorgesehen zur Ermittlung des maßgeblichen zumindest einen Brenners hinsichtlich der simulierten Brennstoff- und Luftanteile. Schließlich sind die rechnergestützten Mittel vorgesehen zur Ausgabe eines korrigierten Sollwertes für den Brennstoff- und/oder Luftmassenstroms an die Stelleinrichtung eines jeweiligen Brenners.
  • Nach einer Ausführungsform sind die rechnergestützten Mittel dazu eingerichtet, wiederholt, vorzugsweise zyklisch, den zumindest eine maßgebliche Brenner zu ermitteln und automatisiert einen korrigierten Sollwert für den Brennstoff- und/oder Luftmassenstrom an die Stelleinrichtung eines jeweiligen Brenners auszugeben. Die Ermittlung des zumindest einen maßgeblichen Brenners kann z.B. dadurch erfolgen, dass die mittels des Simulationsmodells ermittelten Brennstoff- und Luftanteile von den jeweiligen Brennern in den Volumenelementen im Zünd-/Ausbrandbereich auf maximale Anteilswerte hin untersucht werden. Vorzugsweise erfolgt dies nur bei den Volumenelementen, welche der örtlichen Verteilung ungünstiger Luft-/Brennstoffverhältnisse entsprechen.
  • Nach einer weitere Ausführungsform sind im numerischen Strömungs-, Pyrolyse- und Verbrennungsmodell, auf dessen Basis die reagierenden Strömungen in einem Feuerraum durch die rechnergestützten Mittel simuliert werden, der Feuerraum, die geometrische Anordnung und Ausrichtung der Brenner im Feuerraum , deren aktuell vorgegebener Geschwindigkeitseinblasvektor, deren jeweiliger aktuell vorgegebener Wert für den Brennstoff- und Luftmassenstrom und/oder die aktuell vorgegebene Temperatur des jeweiligen Brennstoff- und Luftmassenstroms abgebildet.
  • Nach einer weiteren Ausführungsform ist das Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodell ein Computational-Fluid-Dynamics-Simulationsmodell. Ein solches Modell ist zur Beschreibung dynamischer Strömungs-, Pyrolyse- und Verbrennungsvorgänge im Feuerraum durch strömungsmechanische Modellgleichungen wie Navier-Stokes-, Euler- oder Potentialgleichungen vorgesehen.
  • Nach einer weiteren Ausführungsform ist die Verwendung einer Finite-Volumen-Methode zur approximativen Lösung der Navier-Stokes-, Euler- oder Potentialgleichungen des Computational-Fluid-Dynamics-Simulationsmodells vorgesehen.
  • Einer weiteren Ausführungsform sind die Messmittel zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses im Zünd-/Ausbrandbereich als kameragestütztes Messsystem realisiert, bei dem die Bildungsraten der bei der Verbrennung gebildeten chemischen Reaktionsprodukte, wie z.B. von CN und CO, ermittelbar sind. Das Verhältnis der ermittelten Bildungsraten kann dabei das Luft-/Brennstoffverhältnis repräsentieren. Die Messmittel kann alternativ auch die eingangs beschriebene verfahrbare Lambdasonde umfassen.
  • Einer weiteren Ausführungsform zufolge ist der jeweilige Brenner ein konzentrisch aufgebauter Rundbrenner. Der jeweilige Brenner kann auch eine Brennstoffeinblasvorrichtung sowie einen darunterliegenden und/oder darüberliegenden Lüfter umfassen.
  • Die Aufgabe der Erfindung wird weiterhin durch eine zum erfindungsgemäßen Verfahren korrespondierende Vorrichtung gelöst.
  • Die Erfindung sowie vorteilhafte Ausführungen der Erfindung werden im Weiteren anhand der nachfolgenden Figuren näher beschrieben. Es zeigen
  • FIG 1
    ein Beispiel für einen Feuerraum eines Kraftwerks mit acht Brennern in einer Brennschicht,
    FIG 2
    eine beispielhafte Ausführungsform der Brenner im Feuerraum mit jeweils einer Brennstoffeinblasvorrichtung und jeweils zwei zugeordneten Lüftern,
    FIG 3
    eine Aufsicht auf die Brenner gemäß FIG 2 mit sieben von den acht Brennern im Betrieb,
    FIG 4
    ein Beispiel für eine messtechnisch ermittelte örtliche Verteilung eines in einem Zünd-/Ausbrandbereich gemäß FIG 1 herrschenden Luft-/Brennstoffverhältnisses mit vier Gebieten mit verbrennungstechnisch ungünstigem Luft-/Brennstoffverhältnis,
    FIG 5
    eine der örtlichen Verteilung gemäß FIG 4 örtlich entsprechende Verteilung der von den Brennern stammenden Brennstoff- und Luftanteile auf Basis eines numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells gemäß der Erfindung, und
    FIG 6
    ein Beispiel für Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur Korrektur des Brennstoff- und/oder Luftmassenstroms der jeweiligen Brenner in einem Feuerraum.
  • FIG 1 zeigt ein Beispiel für einen Feuerraum 1 eines Kraftwerks mit acht Brennern 2 in einer Brennschicht E. Der Feuerraum 1 weist einen rechteckigen Querschnitt auf. Es sind beispielhaft acht Brenner 2 in einer gemeinsamen horizontalen Brennebene BE angeordnet, in welcher Luft sowie Brennstoff durch die Brenner 2 eingeblasen wird. Mit P ist ein darüberliegender Pyrolysebereich B und mit ZA ein in einen Zünd-/Ausbrandbereich ühergehender Bereich bezeichnet. Mit Z selbst ein Zündbereich und mit A ein Ausbrandbereich bezeichnet. Die Grenzen zwischen den jeweiligen Bereichen sind dabei fließend und dienen in dieser Darstellung nur dem besseren Verständnis. Mit dem Bezugszeichen 5 sind schließlich Messkameras bezeichnet, die in einer Messebene M zur messtechnischen Erfassung des Zünd-/Ausbrandbereichs ZA angeordnet sind und sozusagen in den Feuerraum 1 hineinschauen. Die Messkameras 5 sind Teil eines kameragestützten Messsystems, welches zur messtechnischen Erfassung einer örtlichen Verteilung des im Zünd/Ausbrandbereich ZA herrschenden Luft-/Brennstoffverhältnisses vorhanden ist. Mit x,y,z sind die Achsen eines kartesischen Koordinatensystems bezeichnet. Die Brennebene BE sowie die Messebene M liegen somit in einer xy-Ebene. Jeweils senkrecht dazu ist die z-Achse.
  • FIG 2 zeigt eine beispielhafte Ausführungsform der Brenner 2 im Feuerraum 1 mit jeweils einer Brennstoffeinblasvorrichtung 3 und mit jeweils zwei zugeordneten Lüftern 4. Es ist dabei jeweils ein Lüfter 4 direkt oberhalb und ein weiterer Lüfter 4 direkt unterhalb der zugehörigen Brennstoffeinblaseinrichtung 3 angeordnet. Von den Lüftern 4 ist lediglich nur das viereckige Lufteintrittsfenster und von der Brennstoffeinblasrichtung 3 lediglich eine runde, konzentrische Öffnung im Feuerraum 1 zu sehen. Die Brennstoffeinblaseinrichtung 3 ist zudem symbolisiert durch eine Flamme dargestellt, auch wenn in dieser Brennschicht E noch keine offene Verbrennung stattfindet. Diese findet erst im Zünd-/Ausbrandbereich statt.
  • FIG 3 zeigt eine Aufsicht auf die Brenner gemäß FIG 2 mit sieben von den acht Brennern 21-28 im Betrieb. In dieser Darstellung ist erkennbar, dass Luft sowie Brennstoff leicht versetzt zum geometrischen Zentrum eingeblasen wird, um eine gezielte Verwirbelung und Durchmischung des Luft-/Brennstoffgemisches zu erzielen. Mit B1 -ṁ B8 ist der vom jeweiligen Brenner 21-28 eingeblasene Brennstoffmassenstrom und mit L1 -ṁ L8 der vom jeweiligen Brenner 21-28 eingeblasene Luftmassenstrom bezeichnet. Es handelt sich bei diesen physikalischen Größen um zeitabhängige Größen mit der Einheit Kilogramm pro Sekunde (kg/s), symbolisiert durch den Punkt über der physikalischen Bezeichnung der Masse m. Mit v1-v8 ist der jeweilige Geschwindigkeitseinblasvektor sowohl für die Luft als auch für den Brennstoff bezeichnet. Der Geschwindigkeitseinblasvektor v1-v8 selbst weist drei kartesische, nicht weiter gezeigte skalare Geschwindigkeitswerte vx, vy, vz auf, die auf das gemäß FIG 1 zugrunde gelegte Koordinatensystem x,y,z bezogen sind. Der Einfachheit halber wurde für den eingeblasenen Brennstoff eine gemeinsame Brennstofftemperatur TB und für die Luft eine gemeinsame Lufttemperatur TL eingetragen. Selbstverständlich können bei jedem Lüfter 4 und bei jeder Brennstoffeinblasvorrichtung 3 des jeweiligen Brenners 21-28 die aktuelle Temperatur sowie separate Geschwindigkeitseinblasvektoren für die Luft vom jeweiligen Lüfter 4 und für den Brennstoff von der jeweiligen Brennstoffeinblasvorrichtung 3 angegeben bzw. erfasst werden.
  • Im Beispiel der FIG 3 ist weiterhin der Brenner 24 gestrichelt dargestellt. Dies symbolisiert, dass der gezeigte Brenner 24 nicht in Betrieb ist. Gründe hierfür können ein technischer Ausfall, Revisionsarbeiten oder ein Teillastbetrieb sein.
  • FIG 4 zeigt ein Beispiel für eine messtechnisch ermittelte örtliche Verteilung VR eines in einem Zünd-/Ausbrandbereich ZA gemäß FIG 1 herrschenden Luft-/Brennstoffverhältnisses mit vier Gebieten G1-G4 mit verbrennungstechnisch ungünstigem Luft-/Brennstoffverhältnis. Die gezeigte zweidimensionale Darstellung in der xy-Ebene zeigt Gebiete G1-G4 mit einem verbrennungstechnisch ungünstigem Luft-/Brennstoffverhältnis. So zeigen die schraffierten Gebiete G1, G2 ein Luft-/Brennstoffverhältnis von weniger als 0.8. In Richtung zum Gebietsinneren nimmt dabei das Luft-/Brennstoffverhältnis im Sinne von Höhenlinien noch weiter ab, wie z.B. im Gebietszentrum auf einen Wert von 0.6. Analog zeigen die nichtschraffierten Gebiete G3, G4 ein Luft-/Brennstoffverhältnis von mehr als 1.2. In Richtung zum Gebietsinneren nimmt dabei das Luft-/Brennstoffverhältnis im Sinne von Höhenlinien noch weiter zu, wie z.B. im Gebietszentrum auf einen Wert von 1.4.
  • FIG 5 zeigt eine der örtlichen Verteilung VR gemäß FIG 4 örtlich entsprechende Verteilung VS der von den Brennern stammenden Brennstoff- und Luftanteile AB1-AB8, AL1-AL8 auf Basis eines numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells gemäß der Erfindung.
  • Die in der FIG 5 gezeigten Gebiete G1-G4, die sich im Raster eines Volumenelements dV des Simulationsmodells erstrecken, entsprechen in etwa den Gebieten G1-G4 in FIG 4 mit den dort extremen Werten für das Luft-/Brennstoffverhältnis. Diese nun identifizierten, verbrennungstechnisch ungünstigen Gebiete G1-G4 werden nun hinsichtlich ihrer Brennstoff- und Luftanteile AB1-AB8, AL1-AL8 untersucht. Genauer gesagt, werden die jeweiligen, zu den identifizierten Gebieten G1-G4 zugehörigen Volumenelemente dV untersucht. Da gemäß der Erfindung bei der numerischen Simulation eines jeden Volumenelements dV die Herkunft der von jeweiligen Brennern stammenden Brennstoff- und Luftanteile AB1-AB8, AL1-AL8 fortlaufend und bereits für sich getrennt mitberücksichtigt wurden, kann nun für jedes Gebiet G1-G4 der maßgebliche Brenner 2 ermittelt werden. Dies ist typischerweise der Brenner 2, dessen Brennstoff- oder Luftanteil AB1-AB8, AL1-AL8 im Vergleich zu den Brennstoff- und Luftanteilen AB1-AB8, AL1-AL8 der anderen Brenner 2 maximal ist. So kann z.B. für das Gebiet G1 in FIG 5, welches gemäß FIG 4 ein Luft-/Brennstoffverhältnis von 0.6 aufweist, also zu "fett" ist, 60% des Brennstoffs ausschliesslich von nur einem Brenner 2 stammen und 30% der Luft hauptsächlich von einem anderen Brenner 2 stammen. Im vorliegenden Fall ist es dann besonders geeignet, den Brennstoffmassenstrom des Brenners 2 mit dem 60%-Anteil zu reduzieren, um die Verbrennung dort zu verbessern. Es kann auch beispielsweise für dieses Gebiet G1 in FIG 5 z.B. 50% der Luft von nur einem Brenner 2 stammen und sich die Brennstoffanteile in etwa gleichmässig auf alle Brenner 2 verteilen. In diesem Fall ist es besonders geeignet, den Luftmassenstrom bei diesem maßgeblichen Brenner 2 mit dem 30%-Luftanteil zu erhöhen, um die Verbrennung dort zu verbessern. Vorzugsweise werden bei mehreren identifizierten Gebieten G1-G4 die Gebiete G1-G4 hinsichtlich des Luft- und Brennstoffmassenstroms nacheinander korrigiert.
  • FIG 6 zeigt ein Beispiel für eine Vorrichtung 10 zur Durchführung des erfindungsgemäßen Verfahrens zur Korrektur des Brennstoff- und/oder Luftmassenstroms B1 -ṁ B8, L1- L8 der jeweiligen Brenner 21-28 in einem Feuerraum 1. Mit dem Bezugszeichen 11 sind Mittel zur Erfassung eines Istwertes IW, mit 12 Mittel zur Ausgabe eines Sollwertes SW, mit 13 Messmittel und mit 14 rechnergestützte Mittel, wie z.B. ein Computer, bezeichnet. Die erfassten Istwerte IW sind dabei aktuelle, z.B. über eine Kraftwerksleittechnik empfangene Luftmassenstromwerte L1 -ṁ L8, Brennstoffmassenstromwerte B1 -ṁ B8 sowie Temperaturmesswerte TB, TL. Die Messmittel 13 sind im vorliegenden Beispiel durch ein kameragestütztes Messsystem mit vier Kameras 5 realisiert. Ausgabeseitig stellt dieses System eine örtliche Verteilung VR des gemessenen Luft-/Brennstoffverhältnisses λ im Zünd-/Ausbrandbereich ZA bereit, wie z.B. als zweidimensionales Datenfeld λxy entsprechend der xy-Ebene der Messebene M. Die rechnergestützten Mittel 14 weisen beispielhaft ein als Datenmodell hinterlegtes numerisches Simulationsmodell CFD für die Strömungs-, Pyrolyse- und Verbrennungssimulation des Feuerraums 1 auf. Ausgabeseitig gibt das numerische Simulationsmodell CFD die den jeweiligen Brennern 2 zuordenbaren Brennstoff- und Luftanteile AB1-AB8, AL1-AL8 aus. Ferner umfassen die rechnergestützten Mittel 14 einen Identifizierungsblock ID, um entsprechende Gebiete G1-G4 aus der örtlichen Verteilung VR der vom Messsystem 13 bereitgestellten Luft-/Brennstoffverhältniswerte λxy zu identifizieren. Ein Vergleichsblock CMP der rechnergestützten Mittel 14 vergleicht nun Brennstoff- und Luftanteile AB1-AB8, AL1-AL8 in Volumenelementen dV, die örtlich den identifizierten Gebieten G1-G4 entsprechen, untereinander auf maximale und minimale Anteilswerte hin, um den maßgeblichen Brenner 2 bzw. die maßgebliche Brennstoffeinblasvorrichtung 3 oder den maßgeblichen Lüfter 4 zu ermitteln. Darauf basierend wird für den betreffenden Brenner 2 ein geänderter Sollwert ΔSW an die Mittel 12 zur Ausgabe eines Sollwertes SW ausgegeben, wie z.B. wieder über die Kraftwerksleittechnik, um die Verbrennung durch eine Korrektur des jeweiligen Brennstoff- und/oder Luftmassenstroms B, ṁL zu verbessern. Nach einer vorgegebenen Wartezeit, wie z.B. von 10 Minuten, erfolgt eine Überprüfung, ob die Ausgabe des geänderten Sollwertes SW zu einer Verbesserung der Verbrennung geführt hat. Dies kann iterativ erfolgen, bis ein Optimum für die Verbrennung gefunden worden ist. Im Anschluss kann das nächste identifizierte Gebiet G1-G4 in gleicher Weise iterativ optimiert werden. Es kann auch nur ein einziges Gebiet G1-G4 mit maximal mit verbrennungstechnisch maximal ungünstigem Luft-/Brennstoffverhältnis λ, ermittelt werden und dieses Gebiet G1-G4 dann optimiert werden. Nach der iterativen Optimierung erfolgt die Identifikation eines neuen Gebiets G1-G4 mit nun verbrennungstechnisch maximal ungünstigem Luft-/Brennstoffverhältnis λ.
  • Das erfindungsgemäße Verfahren sowie die korrespondierende Vorrichtung 10 ist besonders vorteilhaft auch für Fälle, in denen ein oder mehrere Brenner 2 ausgefallen sind oder bewusst im Teillastbereich nicht betrieben werden. Hier kann durch gezielte Ansteuerung des Luft-/Brennstoffmassenstroms der anderen Brenner 2 wiederum eine optimale Verbrennung bewerkstelligt werden.
  • Bezugszeichenliste
  • 1
    Feuerraum, Brennraum, Verbrennungsraum
    2, 21-28
    Brenner
    3
    Brennstoffeinblasvorrichtung
    4
    Lüfter
    5
    Messkamera, Videokamera
    10
    Vorrichtung zur Durchführung des Verfahrens
    11
    Mittel zur Erfassung eines Istwertes
    12
    Mittel zur Ausgabe eines Sollwertes
    13
    Messmittel
    14
    rechnergestützte Mittel, Computer
    A
    Ausbrandbereich
    AB, AB1-AB8
    Brennstoffanteil
    AL, AL1-AL8
    Luftanteil
    BE
    Brennerebene
    CFD
    numerisches Simulationsmodell
    CMP
    Vergleichsblock
    dV
    Volumenelement
    E
    Brennschicht
    F
    Flamme
    G1-G4
    verbrennungstechnisch ungünstige Gebiete
    ID
    Identifizierungsblock
    IW
    Istwert
    λ
    Luft-/Brennstoffverhältnis
    λxy
    Luft-/Brennstoffverhältnis in der xy-Ebene
    M
    Messebene
    B, ṁ B1 -ṁ B8
    Brennstoffmassenstrom
    L, ṁ L1 -ṁ L8
    Luftmassenstrom
    P
    Pyrolysebereich
    SW
    Sollwert
    ΔSW
    korrigierter Sollwert
    T1-T8
    Flammentemperatur
    TB
    Brennstofftemperatur
    TL
    Lufttemperatur
    V
    Verbrennungsraumvolumen
    v, v1-v8
    Geschwindigkeitseinblasvektor
    VR
    messtechnisch ermittelte örtliche Verteilung
    VS
    örtliche Verteilung im Simulationsmodell
    x,y,z
    Bezugskoordinaten
    Z
    Zündbereich
    ZA
    Zünd-/Ausbrandbereich

Claims (14)

  1. Verfahren zur Verbesserung der Verbrennung in einem Feuerraum (1), insbesondere eines Kraftwerks, wobei mehrere Brenner (2) in einer Brennerschicht (E) oder in einer anderen Geometrie angeordnet sind und wobei bei zumindest einem Teil der Brenner (2) ein Brennstoff- und/oder Luftmassenstrom (B, ṁL ) eingestellt werden kann, wobei in einem darüberliegenden Zünd-/Ausbrandbereich (ZA) eine örtliche Verteilung (VR) einer die Verbrennungsqualität charakterisierenden Kenngröße (λ, T) messtechnisch ermittelt wird, und wobei basierend auf der örtlichen Verteilung (VR) zumindest ein Gebiet (G1-G4) mit einer hinsichtlich der Verbrennungsqualität ungünstigen Kenngröße (λ, T) identifiziert wird,
    dadurch gekennzeichnet,
    - dass ein für eine Strömungs-, Pyrolyse- und Verbrennungssimulation wesentlicher Teil des Feuerraums (1) in einem numerischen Simulationsmodell (CDF) abgebildet wird, aufgeteilt in eine Vielzahl von Volumenelementen (dV),
    - dass bei der numerischen Simulation eines jeden Volumenelements (dV) die Herkunft der von jeweiligen Brennern (2) stammenden Brennstoff- und Luftanteile (AB, AL) fortlaufend und für sich getrennt mitberücksichtigt wird,
    - dass eine der messtechnisch ermittelten örtlichen Verteilung (VR) im Simulationsmodell (CFD) örtlich entsprechende Verteilung (VS) der Brennstoff- und Luftanteile (AB, AL) ermittelt wird, und
    - dass für das jeweilige identifizierte Gebiet (G1-G4) der hinsichtlich der ermittelten Brennstoff- und Luftanteile (AB, AL) maßgebliche zumindest eine Brenner (2) ermittelt wird, um die Verbrennung durch eine Korrektur des jeweiligen Brennstoff- und/oder Luftmassenstroms (B , ṁL ) zu verbessern.
  2. Verfahren nach Anspruch 1, wobei dem Brennstoff und/oder der Luft für einen jeweiligen Brenner (2) eine Substanz beigemischt wird, wobei die Substanz während der Verbrennung im Feuerraum (1) eine Leuchtspur hinterlässt, wobei mittels eines spektral auf die Leuchtspur abgestimmten optischen Messsystems die örtliche und zeitliche Ausbreitung der Substanz erfasst wird und wobei eine mit der tatsächlichen Ausbreitung der Substanz einhergehende tatsächliche Ausbreitung des vom jeweiligen Brenner (2) stammenden Brennstoffs und der vom jeweiligen Brenner (2) stammenden Luft im numerischen Simulationsmodell (CDF) als Randbedingung übernommen wird.
  3. Verfahren nach Anspruch 2, wobei die Verfahrensschritte gemäß Anspruch 2 bei jedem einzelnen der Brenner (2) insbesondere wiederholt angewendet werden.
  4. Verfahren nach einem der vorherigen Ansprüche, wobei wiederholt, vorzugsweise zyklisch, der zumindest eine maßgebliche Brenner (2) ermittelt wird und wobei automatisiert der jeweilige Brennstoff- und/oder Luftmassenstrom (B, ṁL ) korrigiert wird.
  5. Verfahren nach einem der vorherigen Ansprüche, wobei der Feuerraum (1), die geometrische Anordnung und Ausrichtung der Brenner (2) im Feuerraum (1), deren aktuell vorgegebener Geschwindigkeitseinblasvektor (v), deren jeweiliger aktuell vorgegebener Wert für den Brennstoff- und Luftmassenstrom (B, ṁL ) und/oder die aktuell vorgegebene Temperatur (TB, TL) des jeweiligen Brennstoff- und Luftmassenstroms (B , L ) im numerischen Simulationsmodell (CFD) abgebildet werden.
  6. Verfahren nach einem der vorherigen Ansprüche, wobei das Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodell ein Computational-Fluid-Dynamics-Simulationsmodell (CFD) ist, welches die dynamischen Strömungs-, Pyrolyse- und Verbrennungsvorgänge im Feuerraum (1) durch strömungsmechanische Modellgleichungen wie Navier-Stokes-, Euler- oder Potentialgleichungen beschreibt.
  7. Verfahren nach Anspruch 6, wobei zur approximativen Lösung der Navier-Stokes-, Euler- oder Potentialgleichungen des Computational-Fluid-Dynamics-Simulationsmodells (CDF) eine Finite-Volumen-Methode verwendet wird.
  8. Verfahren nach einem der vorherigen Ansprüche, wobei die die Verbrennungsqualität charakterisierende, messtechnisch ermittelte Kenngröße (λ, T) ein Luft-/Brennstoffverhältnis (λ), eine Temperatur (T) und/oder der CO-, NOx-, O2- oder CO2-Anteil in dem im Zünd-/Ausbrandbereich (ZA) vorliegenden Rauchgas ist.
  9. Verfahren nach Anspruch 8, wobei zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses (λ) im Zünd-/Ausbrandbereich (ZA) ein kameragestütztes Verfahren verwendet wird, bei dem die Bildungsraten der bei der Verbrennung gebildeten chemischen Reaktionsprodukte CN und CO ermittelt werden, wobei das Verhältnis der ermittelten Bildungsraten als eine das Luft-/Brennstoffverhältnis (λ) repräsentierende Größe gebildet wird.
  10. Verfahren nach einem der vorherigen Ansprüche 2 bis 8, wobei zur messtechnischen Ermittlung der örtlichen Verteilung des Luft-/Brennstoffverhältnisses (λ) im Zünd-/Ausbrandbereich (ZA) sowie zur optischen Erfassung der bei der Ausbreitung der Substanz emittierten Leuchtspur ein gemeinsames kameragestütztes Verfahren verwendet wird.
  11. Verwendung des Verfahrens nach einem der vorherigen Ansprüche zur Verbesserung der Verbrennung in einem fossilen thermischen Kraftwerk oder in einer Industrieanlage.
  12. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 10, wobei die Vorrichtung hierzu aufweist
    - Mittel (11) zur Erfassung eines Istwertes (IW) zumindest des aktuellen Brennstoff- und/oder Luftmassenstroms (B, ṁL ) eines jeweiligen Brenners (2),
    - Mittel (12) zur Ausgabe eines Sollwertes (SW) an eine Stelleinrichtung für den Brennstoff- und/oder Luftmassenstroms (B, ṁL ) eines jeweiligen Brenners (2),
    - Messmittel (13) zur Ermittlung einer im Zünd-/Ausbrandbereich (ZA) vorliegenden örtlichen Verteilung (VR) einer die Verbrennungsqualität charakterisierenden Kenngröße (λ, T), und
    - rechnergestützte Mittel (14)
    - zur Simulation reagierender Strömungen in einem Feuerraum (1) mittels eines numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells (CFD),
    - zur Ermittlung einer der messtechnisch ermittelten örtlichen Verteilung (VR) im Simulationsmodell (CFD) örtlich entsprechenden Verteilung (VS) der Brennstoff- und Luftanteile (AB, AL),
    - zur Identifikation zumindest eines dortigen Gebiets (G1-G4) mit einer hinsichtlich der Verbrennungsqualität ungünstigen Kenngröße (λ, T),
    - zur Ermittlung des maßgeblichen zumindest einen Brenners (2) hinsichtlich der simulierten Brennstoff- und Luftanteile (AB, AL, sowie
    - zur Ausgabe eines korrigierten Sollwertes (SW') für den Brennstoff- und/oder Luftmassenstroms (B ,L ) an die Stelleinrichtung eines jeweiligen Brenners (2).
  13. Vorrichtung nach Anspruch 12 zur Durchführung des Verfahrens nach einem der Ansprüche 2 bis 10, wobei die Vorrichtung hierzu aufweist
    - Mittel zum individuellen Ansteuern eines Beimischers zum Beimischen einer Substanz in den Brennstoff und/oder in der Luft eines jeweiligen Brenners (2), wobei die Substanz während der Verbrennung im Feuerraum (1) eine Leuchtspur hinterlässt,
    - ein kameragestütztes Messsystem (13) zur Ermittlung einer im Zünd-/Ausbrandbereich (ZA) vorliegenden örtlichen Verteilung (VR) einer die Verbrennungsqualität charakterisierenden Kenngröße (λ, T) sowie zur optischen Erfassung einer spektral signifikanten und sich örtlich sowie zeitlich ausbreitenden Leuchtspur, und
    - die rechnergestützten Mittel (14)zur Simulation reagierender Strömungen im Feuerraum (1) mittels des numerischen Strömungs-, Pyrolyse- und Verbrennungs-Simulationsmodells (CFD) und zur Übernahme der tatsächlichen Ausbreitung des vom jeweiligen Brenner (2) stammenden Brennstoffs und der vom jeweiligen Brenner (2) stammenden Luft auf Basis der erfassten Ausbreitung der Leuchtspur als Randbedingung im numerischen Simulationsmodell (CDF).
  14. Vorrichtung nach Anspruch 12 oder 13, wobei der jeweilige Brenner (2) eine Brennstoffeinblasvorrichtung (3) sowie einen darunterliegenden und/oder darüberliegenden Lüfter (4) umfasst.
EP13798930.7A 2012-11-16 2013-11-14 Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile Not-in-force EP2920515B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012022470 2012-11-16
DE102013000058 2013-01-02
DE102013002940 2013-02-20
PCT/EP2013/003415 WO2014075795A1 (de) 2012-11-16 2013-11-14 Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile

Publications (2)

Publication Number Publication Date
EP2920515A1 EP2920515A1 (de) 2015-09-23
EP2920515B1 true EP2920515B1 (de) 2017-01-11

Family

ID=49683666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13798930.7A Not-in-force EP2920515B1 (de) 2012-11-16 2013-11-14 Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile

Country Status (2)

Country Link
EP (1) EP2920515B1 (de)
WO (1) WO2014075795A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109815594B (zh) * 2019-01-26 2022-12-27 新奥数能科技有限公司 一种确定煤改气的链条炉中燃烧器安装位置的方法和装置
US11719435B2 (en) 2019-06-21 2023-08-08 Onpoint Technologies, Llc Combustion heater control system with dynamic safety settings and associated methods
US11732891B2 (en) 2019-06-21 2023-08-22 Onpoint Technologies, Llc Combustion system with inferred fuel and associated methods
EP3948081A1 (de) * 2019-06-21 2022-02-09 OnPoint Technologies, LLC Automatische luftströmungseinstellungen in verbrennungssystemen und zugehörige verfahren
CN110645592A (zh) * 2019-10-12 2020-01-03 西安康桥能源技术有限责任公司 一种基于多相分区耦合的燃烧系统改进方法
CN110686276A (zh) * 2019-10-31 2020-01-14 兖矿集团有限公司 一种分级燃烧的常压热水炉具及其使用方法
CN113779899B (zh) * 2021-08-30 2024-03-19 南京航空航天大学 一种基于化学反应器网络方法的燃烧室贫油点火极限预测方法
CN117216900B (zh) * 2023-09-11 2024-04-02 中国人民解放军国防科技大学 一种基于irc方法的液氧煤油发动机燃烧室建模方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416270A1 (de) * 1994-05-07 1995-11-09 Peter L Prof Dr Andresen Optimierung von turbulenten Verbrennungs- und Mischprozessen durch gezielte Zugabe von Substanzen
JP3062582B2 (ja) * 1995-11-07 2000-07-10 株式会社日立製作所 微粉炭燃焼装置の炉内状態予測方法と装置
DE19710206A1 (de) 1997-03-12 1998-09-17 Siemens Ag Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum
US5899172A (en) * 1997-04-14 1999-05-04 Combustion Engineering, Inc. Separated overfire air injection for dual-chambered furnaces
DE19948377C1 (de) 1999-10-07 2001-05-23 Siemens Ag Verfahren und Vorrichtung zur Bestimmung sowie zur Regelung des Luftüberschusses bei einem Verbrennungsprozeß
DE102008056672A1 (de) * 2008-11-11 2010-05-12 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Überwachen der Verbrennung eines Kraftwerks auf der Grundlage zweier realer Konzentrationsverteilungen
US20110056416A1 (en) * 2009-09-04 2011-03-10 General Electric Company System for combustion optimization using quantum cascade lasers
US20120052450A1 (en) * 2010-08-27 2012-03-01 Alstom Technology Ltd System and method for control and optimization of a pulverized coal boiler system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014075795A1 (de) 2014-05-22
EP2920515A1 (de) 2015-09-23

Similar Documents

Publication Publication Date Title
EP2920515B1 (de) Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile
EP0696708B1 (de) Verfahren zur Regelung der Feuerung bei Verbrennungsanlagen, insbesondere Abfallverbrennungsanlagen
EP2132543B1 (de) Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung
DE10302487A1 (de) Verfahren zur Echtzeit-Bestimmung einer Brenngas-Zusammensetzung
DE4305645A1 (de) Verfahren zur Ermittlung charakteristischer Eigenschaften von Radikale bildenden Prozessen
EP1840465A2 (de) Brennersystem mit gestufter Brennstoff-Eindüsung
DE112014001000T5 (de) Gasturbinensystem, Steuer- bzw. Regelungseinrichtung und Gasturbinenbetriebsverfahren
AT515821A1 (de) Einspritzvorrichtung, System und Verfahren zur Rauchgasentstickung
EP1890207B1 (de) Verfahren zum Erstellen eines Prozessmodells
DE202014004495U1 (de) Einspritzvorrichtung und System zur Rauchgasentstickung
DE1526221A1 (de) Verfahren und Vorrichtung zum Betrieb eines Vielfachoelbrenners
EP0802372A1 (de) Verfahren und Einrichtung zur Steuerung eines Verbrennungsprozesses in einem Kessel
DE60309301T2 (de) Verfahren und vorrichtung zur regelung der primär- und sekundärlufteinspritzung einer müllverbrennungsanlage
DE102011115364A1 (de) Kraftwerk
WO2004018940A1 (de) Verfahren zur überwachung eines thermodynamischen prozesses
EP1051585B1 (de) Verfahren und vorrichtung zum betreiben einer verbrennungsanlage
EP2064490B1 (de) Verfahren zur charakterisierung der abgasausbrandqualität in verbrennungsanlagen
EP3403027B1 (de) Auswerte- und regelungsverfahren für mehrstoffbrenner
DE10347340A1 (de) Vorrichtung und Verfahren zur Optimierung des Abgasausbrandes in Verbrennungsanlagen
EP3214370B1 (de) Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen
CH638289A5 (de) Verfahren und vorrichtung zum kontinuierlichen verbrennen von brennstoff.
DE4243187C2 (de) Verfahren zur Verbrennung von Müll in einer Mittelstromfeuerung
EP3964752B1 (de) Verfahren zum betreiben einer feuerungsanlage
DE19723234C2 (de) Filter zur Herausfilterung von Spektralbereichen und optisches System zur Verbrennungsanalyse
DE102012022220B4 (de) Vorrichtung und Verfahren zur Messung eines Ausbrandgrades von Partikeln in einer Feuerungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150505

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160819

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013006105

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013006105

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171108

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181106

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 861648

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013006105

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603