EP3214370B1 - Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen - Google Patents

Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen Download PDF

Info

Publication number
EP3214370B1
EP3214370B1 EP17157320.7A EP17157320A EP3214370B1 EP 3214370 B1 EP3214370 B1 EP 3214370B1 EP 17157320 A EP17157320 A EP 17157320A EP 3214370 B1 EP3214370 B1 EP 3214370B1
Authority
EP
European Patent Office
Prior art keywords
combustion
sensors
exhaust gas
temperature
air feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17157320.7A
Other languages
English (en)
French (fr)
Other versions
EP3214370A1 (de
Inventor
Heinz Kohler
Jens Knoblauch
Simon BRUNNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochschule Karlsruhe Technik und Wirtschaft
Original Assignee
Hochschule Karlsruhe Technik und Wirtschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochschule Karlsruhe Technik und Wirtschaft filed Critical Hochschule Karlsruhe Technik und Wirtschaft
Publication of EP3214370A1 publication Critical patent/EP3214370A1/de
Application granted granted Critical
Publication of EP3214370B1 publication Critical patent/EP3214370B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/44Optimum control

Definitions

  • the invention relates to a method and a device for its implementation for the combustion of solid organic fuels in a domestic combustion system, wherein the combustion process is controlled by sensors at different combustion phases by means of a control of at least one air supply device depending on a composition of the exhaust gas of the house heating system.
  • Furnace systems especially domestic combustion systems are used for heat generation for heating, hot water preparation and the like in buildings by means of solid organic fuels such as logs, pellets, wood chips and the like.
  • the ignition takes place as the ignition of the fuel at the beginning of supply of air by means of an air supply.
  • the combustion temperature increases within the ignition phase.
  • the ignition phase goes into a high-temperature phase, which merges with discontinuous feeding a home heating system, for example in a log wood stove after burning of the combustible material in a burn-out.
  • there are different combustion conditions for the fuel which each lead to a different energy yield and exhaust gas composition.
  • the pollutant emission can serve as a control parameter for the control of the domestic heating system.
  • the first supply device is controlled in the ignition phase as a function of the combustion temperature and in the high-temperature phase as a function of the temperature and a content of oxygen in the exhaust gas.
  • the second air supply device is controlled by the temperature and the content of afterburnable reaction products in the exhaust gas.
  • a single sensor is used, which forms a sum signal for all nachverbrennbaren gases, ie carbon monoxide, oxidizable hydrocarbons and the like.
  • the DE 44 36 085 A1 describes a control method for optimizing the pollutant emission of an incinerator.
  • the EP 2 246 624 A2 describes a domestic combustion plant with continuous solid combustion and a method for their operation.
  • the EP 0 697 565 A1 describes a method and apparatus for controlling and monitoring a solid and flowing fuel firing plant.
  • the DE 102011 005 525 B3 describes a method for treating gases containing refrigerant and / or propellant by means of at least one combustion chamber, wherein the gas containing refrigerant and / or propellant gas is supplied from at least a first source of refrigeration unit recycling plant.
  • the DE 10 2008 028 099 A1 describes a combustion apparatus, in particular special boiler, for solid fuels, comprising a fuel chamber with a combustion grate.
  • the object of the invention is the advantageous development of a method and a device for burning solid organic fuels.
  • the object of the invention is to reduce the emission of pollutants of a furnace, in particular a domestic heating system.
  • the proposed method is for the combustion of solid organic fuels in a furnace, in particular a domestic heating system.
  • Furnace systems may be burners or furnaces such as tiled stoves, so-called Swedish stoves or the like.
  • the fuel may occasionally be provided as firewood, for example for batch charging or as pellets, wood chips or the like for continuous charging.
  • the combustion process can be controlled by means of the control device during different firing phases by means of a controlled by a composition of the exhaust gas and the furnace and optionally the combustion temperature air supply.
  • at least two exhaust gas sensors detecting sensors for detecting components of the exhaust gas in the exhaust stream and at least one temperature sensor are provided, wherein the residual oxygen present in the exhaust gas can be determined by means of an oxygen sensor.
  • a temperature sensor may be provided for detecting the combustion temperature. This one can be arranged directly on the fuel bed or in the exhaust gas space, for example in a secondary combustion chamber of a domestic combustion system with afterburning of the exhaust gases. Alternatively, the combustion temperature can be deduced, for example, from empirically determined properties of the combustion chamber from measured values of a remote temperature sensor arranged, for example, in the exhaust gas space.
  • Semiconductor sensors for example, tin dioxide sensors, high-temperature gas sensors such as, for example, mixed potential sensors operating according to the mixed potential principle, calorimetric sensors and / or the like may be provided as sensors for determining contents of different components of the exhaust gas composition.
  • the Sensors can be operated continuously or with clocked measuring. For example, one or more sensors can be operated during a single measurement with a temperature profile.
  • Such sensors usually have cross-sensitivities between the exhaust gases of the combustion plant such as carbon monoxide and hydrocarbon, for example saturated hydrocarbons such as methane, unsaturated hydrocarbons such as ethene and other partially oxidized hydrocarbons having functional groups such as alcohols, aldehydes, ketones and the like , If a single sensor is used, a sum signal results over all components in each firing phase, so that a regulation for exhaust minimization is relatively inaccurate. Furthermore, it has been found that the exhaust gas composition varies in a characteristic manner over the firing phases. It is therefore proposed to use a plurality, preferably two, sensors and to combine their measuring signals into a manipulated variable of the at least one air supply device.
  • Combination here means any mathematical combination such as addition, product formation and the like.
  • the cross-sensitivity of the sensors is exploited in such a way that sensors are used which have a different cross-sensitivity to carbon monoxide and the hydrocarbons occurring in the exhaust gas.
  • one sensor is weighted with respect to the one or more other sensors in the formation of the manipulated variable which has the greater sensitivity in the corresponding combustion phase, ie the greater sensitivity to the gas components frequently occurring in this combustion phase.
  • a control variable for the at least one air supply device is formed from a combination of measurement signals of at least two sensors, for example carbon monoxide and hydrocarbons or two or more different hydrocarbons of different cross-sensitive sensors, wherein the measurement signals of the individual sensors are weighted differently depending on the firing phase.
  • phase-selective weighting factors can take place over the intended firing phases.
  • the ignition phase preferably readily volatile, preferably nachverbrennbare, for example unsaturated hydrocarbons such as ethene and the like, aldehydes, alcohols and the like arise during combustion, while in the high-temperature phase mainly carbon monoxide and methane.
  • the second sensor with higher weighting and in the high-temperature phase with lower weighting with respect to the first sensor and the first sensor in the high-temperature phase is advantageously in a continuous fuel-fired furnace with two divided into an ignition phase and a high-temperature phase combustion phases in the ignition phase higher and in the ignition phase with a lower weighting compared to the second sensor to form in combination the manipulated variable.
  • the signals of the at least two sensors in each combustion phase can be weighted differently, that is to say phase-specifically for forming the manipulated variable.
  • the transition of the individual combustion phases into one another are determined system-specifically, for example on the basis of fixed or combustion-dependent measured variables.
  • the course of a time interval started on ignition can be provided.
  • a temperature threshold above or below the combustion temperature or exhaust gas temperature can be provided as a parameter for establishing a transition between the ignition phase and the high-temperature phase and / or between the high-temperature phase and / or the burn-out phase.
  • a temperature gradient below a temperature gradient for determining a transition between the ignition phase and the high-temperature phase can be provided as the measured variable, while a transition from the high-temperature phase into the burn-out phase can be detected by means of a temperature gradient exceeding a temperature gradient threshold.
  • a transition between the different firing phases can be detected by means of the measuring signals of the sensors themselves, for example by evaluating absolute values of these.
  • a measuring signal of a sensor that is more sensitive to carbon monoxide falls below a predefined threshold and / or if a measuring signal of a sensor that is more sensitive to unsaturated hydrocarbons, alcohols, aldehydes or the like falls below a predetermined threshold, then Transition from the ignition phase are detected in the high-temperature phase and a change in the weighting of the manipulated variable of the at least one air supply means combined measurement signals of the individual sensors are made.
  • the latter may have a primary combustion chamber with a first air supply device and a secondary combustion chamber connected thereto with a second air supply device, wherein the first air supply device depends on the combustion temperature and the second air supply device at least in the ignition phase by means of the proposed manipulated variable is controlled from the at least two sensors with depending on the focal phase weighted measurement signals.
  • the first air supply device in the high-temperature phase and in the burn-out phase can be regulated as a function of the combustion temperature and depending on the oxygen content of the exhaust gas.
  • an oxygen sensor for example a potentiometrically operated sensor, for example a lambda probe, an amperometrically operated electrochemical sensor, a paramagnetically measuring sensor or an optical, fluorescence quenching or absorption-measuring oxygen sensor
  • the manipulated variable can be formed as a function of further parameters, for example an oxygen content in the exhaust gas, the combustion temperature, the temperature in the secondary combustion chamber and / or the like. It is understood that other, technically trained combustion systems are included, for example, with three or more combustion air streams of the invention.
  • the proposed device is used to carry out the proposed method and includes a furnace, in particular a domestic furnace with at least one feed opening for supplying solid, isolated organic fuel to a fuel bed such as a grate, at least one air supply, an exhaust area for the removal of combustion gas and at least two to various exhaust gas components, for example to carbon monoxide and hydrocarbon cross-sensitive sensors.
  • the sensors can be accommodated individually, that is to say in each case housed in a separate housing in the exhaust gas space.
  • at least the at least two sensors can be combined to form a sensor array. This means that the individual sensory-active surface layers can be accommodated in a single common housing or in each case a sensor with a surface layer is accommodated in a separate housing and the housings are accommodated in a surrounding housing.
  • the sensor array is housed in the exhaust chamber.
  • the sensors are integrated in parallel or serially in a line system, transported via which line system exhaust gas, for example sucked or pumped through, the sensors and then is discharged into the open or in the exhaust stream.
  • the proposed device contains at least one sensor with a higher cross-sensitivity to carbon monoxide as compared to the other combustion gases and another sensor with a higher cross-sensitivity to hydrocarbons than carbon monoxide.
  • the regulation of the air supply device for a supply of air for example, in a primary combustion chamber and / or secondary combustion chamber, for example by means of a control of a valve for supplying air, a flow control of the supply air or the like may be provided.
  • This shows a sequence routine for determining the manipulated variable for a furnace on the basis of a domestic heating system.
  • the sequence routine 1 is used to determine the manipulated variable SG from two measurement signals M (S1), M (S2) depending on two combustion phases of a domestic combustion system based on the temperature T, for example, the combustion temperature or the exhaust gas temperature in a secondary combustion chamber.
  • the manipulated variable SG is used in the illustrated embodiment, the regulation of the air supply in the secondary combustion chamber of the house heating system.
  • the sequence routine 1 is started with the block 2 and terminated with the block 3 after a corresponding interrupt.
  • the measurement signals M (S1), M (S2) of two with respect to the exhaust gas components to be detected house heating system cross-sensitive sensors, such as a carbon monoxide sensor with the measurement signal M (S1) and a hydrocarbon sensor with the measurement signal M (S2) and the temperature T, for example, detects the combustion temperature.
  • the temperature T for example the combustion temperature or the temperature in the secondary combustion chamber is queried, for example, based on under- or exceeded temperature thresholds, as to whether the combustion phase BP is the ignition phase ZP. If this is not the case, it is the high-temperature phase and block 6 is selected. It is known in advance, for example from the empirically determined behavior of the domestic combustion plant, that in the high-temperature phase the content of carbon monoxide is of overriding importance and the content of hydrocarbons is insignificant.
  • the weighting factor K (S1) for the measurement signal M (S1) is therefore chosen larger than the weighting factor K (S2) for the measurement signal M (S2).
  • the weighting factor K (S1) is made smaller than the weighting factor K (S2), since for the composition of the exhaust gas the content of hydrocarbons in the ignition phase ZP has the greater importance. It should be noted that in the ignition phase already contents of carbon monoxide can occur, which are greater than the contents of hydrocarbons, so that a corresponding weighting of the measurement signal M (S2) of the hydrocarbon sensor is of particular advantage for the determination of the exhaust gas quality.
  • the determined measurement signals M (S1), M (S2), the determined weighting factors K (S1), K (S2) and the temperature T are combined to the control signal SG in a mathematical combination.
  • the manipulated variable SG is output to the device for controlling the domestic heating system and the sequence routine 1 is restarted in the absence of an interrupt with block 4.
  • the manipulated variable SG can be adapted to the combustion process and to the domestic combustion system by means of further parameters, for example calibration parameters, shape parameters and / or the like, as well as application-specific parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Incineration Of Waste (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zu dessen Durchführung zur Verbrennung von festen organischen Brennstoffen in einer Hausfeuerungsanlage, wobei der Verbrennungsvorgang während verschiedener Brennphasen mittels einer Steuerung zumindest einer Luftzufuhreinrichtung abhängig von einer Zusammensetzung des Abgases der Hausfeuerungsanlage mittels Sensoren geregelt wird.
  • Feuerungsanlagen, insbesondere Hausfeuerungsanlagen dienen der Wärmegewinnung für Heizung, Warmwasserzubereitung und dergleichen in Gebäuden mittels organischer fester Brennstoffe wie beispielsweise Stückholz, Pellets, Hackschnitzeln und dergleichen. Zu Beginn des Verbrennungsprozesses erfolgt die Entzündung wie Anzünden des Brennstoffs bei beginnender Zufuhr von Luft mittels einer Luftzufuhreinrichtung. Nach dem Zünden des Brennstoffs erhöht sich die Verbrennungstemperatur innerhalb der Zündphase. Bei oder kurz vor Erreichen einer Maximaltemperatur geht die Zündphase in eine Hochtemperaturphase über, die bei diskontinuierlicher Beschickung einer Hausfeuerungsanlage, beispielsweise bei einem Stückholzofen nach Abbrand des Brennguts in eine Ausbrandphase übergeht. In den einzelnen Brennphasen liegen unterschiedliche Verbrennungsbedingungen für den Brennstoff vor, die jeweils zu einer unterschiedlichen Energieausbeute und Abgaszusammensetzung führen.
  • Zur Verminderung der Abgasbelastung und Steuerung einer Energieausbeute erfolgt daher eine Steuerung der Zufuhr von Luft mittels Regelgrößen, beispielsweise der Verbrennungstemperatur und der zugeführten Luftmenge. Zusätzlich kann die Schadstoffemission als Regelparameter für die Steuerung der Hausfeuerungsanlage dienen. Beispielsweise ist aus der WO 2008/037413 A2 ein Verfahren und eine Vorrichtung zur Verbrennung von Brennstoffen in einem Ofen mit einer Primärbrennkammer und einer Sekundärbrennkammer mit jeweils einer Luftzufuhreinrichtung bekannt. Um eine verbesserte Verbrennung abhängig von den einzelnen Brennphasen zu erzielen, wird die erste Zufuhreinrichtung in der Zündphase abhängig von der Verbrennungstemperatur und in der Hochtemperaturphase abhängig von der Temperatur und einem Gehalt an Sauerstoff im Abgas geregelt. Die zweite Luftzufuhreinrichtung wird anhand der Temperatur und des Gehalts an nachverbrennbaren Reaktionsprodukten im Abgas geregelt. Hierbei wird ein einziger Sensor eingesetzt, der ein Summensignal für alle nachverbrennbaren Gase, also Kohlenmonoxid, oxidierbare Kohlenwasserstoffe und dergleichen bildet.
  • Desweiteren ist aus Henrick Petersson, Martin Holberg: "Initial studies on the possibility to use chemical sensors to monitor and control boilers", Sensors & Actuators B 111-112 (2005), 487-493 bekannt, mittels eines Sensorarrays mit Sensoren unterschiedlicher Querempfindlichkeit für unterschiedliche Komponenten eine Zusammensetzung eines Abgases aus Holzverbrennungsprozessen zu bestimmen.
  • Die DE 44 36 085 A1 beschreibt ein Regelungsverfahren zur Optimierung der Schadstoffemission einer Verbrennungsanlage. Die EP 2 246 624 A2 beschreibt eine Hausfeuerungsanlage mit kontinuierlicher Feststoffverbrennung und ein Verfahren zu deren Betrieb. Die EP 0 697 565 A1 beschreibt ein Verfahren und eine Vorrichtung zur Regelung und Überwachung einer Feuerungsanlage für feste und strömende Brennstoffe. Die DE 102011 005 525 B3 beschreibt ein Verfahren zur Behandlung von Kältemittel und/oder Treibmittel aufweisenden Gasen mittels mindestens einer Brennkammer, wobei der Brennkammer Kältemittel und/oder Treibmittel aufweisendes Gas aus mindestens einer ersten Quelle einer Kühlgeräterecyclinganlage zugeführt wird. Die DE 10 2008 028 099 A1 beschreibt eine Verbrennungsvorrichtung, insbesondere Spezialheizkessel, für feste Brennstoffe, umfassend eine Brennstoffkammer mit einem Verbrennungsglutrost.
  • Aufgabe der Erfindung ist die vorteilhafte Weiterbildung eines Verfahrens und einer Vorrichtung zur Verbrennung von festen organischen Brennstoffen. Insbesondere ist Aufgabe der Erfindung, den Schadstoffausstoß einer Feuerungsanlage, insbesondere einer Hausfeuerungsanlage zu verringern.
  • Die Aufgabe wird durch das Verfahren des Anspruchs 1 und die Vorrichtung des Anspruchs 7 gelöst. Die von dem Anspruch 1 beziehungsweise dem Anspruch 7 abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Verfahrens beziehungsweise der Vorrichtung wieder.
  • Das vorgeschlagene Verfahren dient der Verbrennung von festen organischen Brennstoffen in einer Feuerungsanlage, insbesondere einer Hausfeuerungsanlage. Feuerungsanlagen können Brennkessel oder Öfen wie beispielsweise Kachelöfen, sogenannte Schwedenöfen oder dergleichen sein. Der Brennstoff kann vereinzelt als Stückholz, beispielsweise zur diskontinuierlichen Beschickung oder als Pellets, Hackschnitzel oder dergleichen zur kontinuierlichen Beschickung vorgesehen sein. Der Verbrennungsvorgang kann mittels der Steuereinrichtung während verschiedener Brennphasen mittels einer von einer Zusammensetzung des Abgases und der Feuerungsanlage und gegebenenfalls der Verbrennungstemperatur geregelten Luftzufuhr geregelt werden. Hierzu sind zumindest zwei Abgaskomponenten erfassende Sensoren zur Ermittlung von Komponenten des Abgases im Abgasstrom und zumindest ein Temperaturfühler vorgesehen, wobei der im Abgas vorhandene Restsauerstoff mittels eines Sauerstoffsensors ermittelt werden kann. Weiterhin kann ein Temperaturfühler zur Erfassung der Verbrennungstemperatur vorgesehen sein. Dieser kann direkt am Brennbett oder im Abgasraum, beispielsweise in einer Sekundärbrennkammer einer Hausfeuerungsanlage mit Nachverbrennung der Abgase angeordnet sein. Alternativ kann aus beispielsweise empirisch ermittelten Eigenschaften des Brennraums die Verbrennungstemperatur aus Messwerten eines entfernt, beispielsweise im Abgasraum angeordneten Temperaturfühlers rückgeschlossen werden.
  • Als Sensoren zur Ermittlung von Gehalten unterschiedlicher Komponenten der Abgaszusammensetzung können beispielsweise Halbleitersensoren, beispielsweise Zinndioxidsensoren, Hochtemperaturgassensoren wie beispielsweise nach dem Mischpotentialprinzip arbeitende Mischpotentialsensoren, kalorimetrische Sensoren und/oder dergleichen vorgesehen sein. Die
    Sensoren können kontinuierlich oder getaktet messend betrieben werden. Beispielsweise können ein oder mehrere Sensoren während einzelnen Messvorgängen mit einem Temperaturprofil betrieben werden. Derartige Sensoren weisen in der Regel Querempfindlichkeiten zwischen den im Abgas der Feuerungsanlage vorkommenden Abgasen wie beispielsweise Kohlenmonoxid und Kohlenwasserstoff, beispielsweise gesättigte Kohlenwasserstoffe wie beispielsweise Methan, ungesättigte Kohlenwasserstoffe wie beispielsweise Ethen sowie weitere teiloxidierte Kohlenwasserstoffe mit funktionellen Gruppen wie beispielsweise Alkohole, Aldehyde, Ketone und dergleichen auf. Wird dabei ein einziger Sensor eingesetzt, ergibt sich ein Summensignal über alle Komponenten in jeder Brennphase, so dass eine Regelung zur Abgasminimierung relativ ungenau ist. Desweiteren hat sich gezeigt, dass die Abgaszusammensetzung über die Brennphasen in charakteristischer Art und Weise variiert. Es wird daher vorgeschlagen, mehrere, bevorzugt zwei Sensoren einzusetzen und deren Messsignale zu einer Stellgröße der zumindest einen Luftzufuhreinrichtung zu kombinieren. Unter Kombination ist hierbei jede mathematische Verknüpfung wie beispielsweise Addition, Produktbildung und dergleichen zu verstehen. In besonders vorteilhafter Weise wird dabei die Querempfindlichkeit der Sensoren in der Weise ausgenutzt, dass Sensoren verwendet werden, die eine unterschiedliche Querempfindlichkeit gegenüber Kohlenmonoxid und den im Abgas auftretenden Kohlenwasserstoffen aufweisen.
  • Gleichzeitig wird zur besseren Steuerung der Verbrennung in den einzelnen Brennphasen jeweils ein Sensor gegenüber dem oder den anderen Sensoren bei der Bildung der Stellgröße gewichtet, der in der entsprechenden Brennphase die größere Sensitivität, also die größere Empfindlichkeit gegenüber den in dieser Brennphase gehäuft auftretenden Gaskomponenten aufweist. Dies bedeutet, dass aus einer Kombination von Messsignalen zumindest zweier beispielsweise auf Kohlenmonoxid und Kohlenwasserstoffe oder zwei oder mehrere unterschiedliche Kohlenwasserstoffe unterschiedlich querempfindlicher Sensoren eine Stellgröße für die zumindest eine Luftzufuhreinrichtung gebildet wird, wobei die Messsignale der einzelnen Sensoren abhängig von der Brennphase unterschiedlich gewichtet werden. Zur Festlegung kann beispielsweise einmalig vor einer Erstinbetriebnahme der Feuerungsanlage bei festgelegtem Brennstoff beziehungsweise bei der Auslegung einer Feuerungsanlage brennphasenspezifisch eine Abgasanalyse vorgenommen werden. Hieraus kann einerseits eine Auswahl geeigneter Sensoren und andererseits die Festlegung der phasenselektiven Wichtungsfaktoren über die vorgesehenen Brennphasen erfolgen. Beispielsweise hat sich gezeigt, dass in der Zündphase bevorzugt leicht flüchtige, bevorzugt nachverbrennbare, beispielsweise ungesättigte Kohlenwasserstoffe wie Ethen und dergleichen, Aldehyde, Alkohole und dergleichen bei der Verbrennung entstehen, während in der Hochtemperaturphase vorwiegend Kohlenmonoxid und Methan entstehen. Es wird daher vorgeschlagen, zumindest einen für Kohlenmonoxid höher sensitiven, das heißt gegenüber den anderen Komponenten weniger querempfindlichen ersten Sensor und zumindest einen insbesondere für nicht gesättigte Kohlenwasserstoffe und/oder Alkohole, Aldehyde und/oder dergleichen höher sensitiven, das heißt, gegenüber Kohlenmonoxid weniger querempfindlichen zweiten Sensor einzusetzen, um die Gehalts- wie beispielsweise Konzentrationsbestimmung der gasförmigen Abgaskomponenten in den verschiedenen Brennphasen genauer bestimmen zu können.
  • Hierbei wird in vorteilhafter Weise in einer kontinuierlich mit Brennstoff beschickten Feuerungsanlage mit zwei in eine Zündphase und eine Hochtemperaturphase gegliederten Brennphasen in der Zündphase der zweite Sensor mit höherer Wichtung und in der Hochtemperaturphase mit geringerer Wichtung gegenüber dem ersten Sensor und der erste Sensor in der Hochtemperaturphase mit höherer und in der Zündphase mit geringerer Wichtung gegenüber dem zweiten Sensor versehen, um in Kombination die Stellgröße zu bilden.
  • Entsprechend können in einer diskontinuierlich mit Brennstoff beschickten Feuerungsanlage mit drei in eine Zündphase, eine Hochtemperaturphase und eine Ausbrandphase gegliederten Brennphasen die Signale der zumindest zwei Sensoren in jeder Brennphase unterschiedlich, das heißt phasenspezifisch zur Bildung der Stellgröße gewichtet sein.
  • Der Übergang der einzelnen Brennphasen ineinander, beispielsweise der Übergang von der Zündphase in die Hochtemperaturphase und der Übergang von der Hochtemperaturphase in die Ausbrandphase werden systemspezifisch beispielsweise anhand fester oder vom Verbrennungsverlauf abhängiger Messgrößen ermittelt. Beispielsweise kann zur Ermittlung des Übergangs zwischen Zündphase und Hochtemperaturphase der Ablauf eines bei Zündung gestarteten Zeitintervalls vorgesehen sein. Weiterhin kann eine eine Temperaturschwelle über- beziehungsweise unterschreitende Verbrennungstemperatur oder Abgastemperatur als Messgröße zur Festlegung eines Übergangs zwischen Zündphase und Hochtemperaturphase und/oder zwischen Hochtemperaturphase und/oder Ausbrandphase vorgesehen werden. Weiterhin kann als Messgröße ein eine Temperaturgradientenschwelle unterschreitender Temperaturgradient zur Festlegung eines Übergangs zwischen Zündphase und Hochtemperaturphase vorgesehen sein, während ein Übergang von der Hochtemperaturphase in die Ausbrandphase mittels eines eine Temperaturgradientenschwelle überschreitenden Temperaturgradienten erkannt werden kann. Alternativ oder zusätzlich kann ein Übergang zwischen den verschiedenen Brennphasen mittels der Messsignale der Sensoren selbst erkannt werden, indem beispielsweise Absolutwerte dieser ausgewertet werden. Unterschreitet beispielsweise ein Messsignal eines auf Kohlenmonoxid höher sensitiven Sensors eine vorgegebene Schwelle und/oder unterschreitet ein Messsignal eines auf ungesättigte Kohlenwasserstoffe, Alkohole, Aldehyde oder dergleichen höher sensitiven Sensors eine vorgegebene Schwelle, kann ein Übergang von der Zündphase in die Hochtemperaturphase erkannt werden und eine Änderung der Wichtung der zu der Stellgröße der zumindest einen Luftzufuhreinrichtung kombinierten Messsignale der einzelnen Sensoren vorgenommen werden.
  • In einer vorteilhaften Ausführungsform des Verfahrens und einer zugehörigen Feuerungsanlage kann diese eine Primärbrennkammer mit einer ersten Luftzufuhreinrichtung und eine mit dieser verbundene Sekundärbrennkammer mit einer zweiten Luftzufuhreinrichtung aufweisen, wobei die erste Luftzufuhreinrichtung zumindest in der Zündphase abhängig von der Verbrennungstemperatur und die zweite Luftzufuhreinrichtung mittels der vorgeschlagenen Stellgröße aus den zumindest zwei Sensoren mit abhängig von der Brennphase gewichteten Messsignalen geregelt wird. In vorteilhafter Weise kann die erste Luftzufuhreinrichtung in der Hochtemperaturphase und in der Ausbrandphase abhängig von der Verbrennungstemperatur und abhängig von dem Sauerstoffgehalt des Abgases geregelt werden. Hierzu kann zusätzlich zu den zumindest zwei Sensoren ein Sauerstoffsensor, beispielsweise ein potentiometrisch betriebener Sensor, beispielsweise eine Lambdasonde, ein amperometrisch betriebener elektrochemischer Sensor, ein paramagnetisch messender Sensor oder ein optischer, eine Fluoreszenzlöschung oder eine Absorption messender Sauerstoffsensor vorgesehen sein. Desweiteren kann die Stellgröße zusätzlich zu den Messsignalen der beiden Sensoren abhängig von weiteren Parametern, beispielsweise einem Sauerstoffgehalt im Abgas, der Verbrennungstemperatur, der Temperatur in der Sekundärbrennkammer und/oder dergleichen abhängig gebildet sein. Es versteht sich, dass auch weitere, in anderer Weise technisch ausgebildete Feuerungsanlagen beispielsweise mit drei oder mehr Verbrennungsluftströmen von der Erfindung umfasst sind.
  • Die vorgeschlagene Vorrichtung dient der Durchführung des vorgeschlagenen Verfahrens und enthält eine Feuerungsanlage, insbesondere eine Hausfeuerungsanlage mit zumindest einer Beschickungsöffnung zur Zufuhr von festem, vereinzeltem organischem Brennstoff auf ein Brennbett wie beispielsweise einem Brennrost, zumindest einer Luftzufuhreinrichtung, einem Abgasbereich zur Abfuhr von Verbrennungsgas sowie zumindest zwei gegenüber verschiedenen Abgaskomponenten, beispielsweise gegenüber Kohlenmonoxid und Kohlenwasserstoff querempfindlichen Sensoren. Die Sensoren können einzeln, das heißt jeweils in einem eigenen Gehäuse konfektioniert in dem Abgasraum untergebracht sein. Alternativ können zumindest die zumindest zwei Sensoren zu einem Sensorarray zusammengefasst sein. Dies bedeutet, dass die einzelnen sensorisch aktiven Oberflächenschichten in einem einzigen gemeinsamen Gehäuse untergebracht sein können oder jeweils ein Sensor mit Oberflächenschicht in einem eigenen Gehäuse untergebracht ist und die Gehäuse zusammengefasst in einem diese umgebenden Gehäuse untergebracht sind. Das Sensorarray ist dabei im Abgasraum untergebracht. Alternativ können beispielsweise zum Schutz der Sensoren vor hohen Temperaturen und aggressiven Bedingungen im Abgasstrom im Bypass-Verfahren betrieben werden, wobei die Sensoren parallel oder seriell in ein Leitungssystem eingebunden sind, über welches Leitungssystem Abgas transportiert, beispielsweise angesaugt oder durchgepumpt, die Sensoren passiert und anschließend ins Freie oder in den Abgasstrom abgegeben wird.
  • Die vorgeschlagene Vorrichtung enthält zumindest einen Sensor mit einer höheren Querempfindlichkeit gegenüber Kohlenmonoxid als gegenüber den übrigen Verbrennungsgasen und einen weiteren Sensor mit einer höheren Querempfindlichkeit gegenüber Kohlenwasserstoffen als gegenüber Kohlenmonoxid.
  • Die Regelung der Luftzufuhreinrichtung für eine Zufuhr von Luft beispielsweise in eine Primärbrennkammer und/oder Sekundärbrennkammer kann beispielsweise mittels einer Regelung einer Stellklappe zur Zufuhr von Luft, eine Volumenstromregelung der Zuluft oder dergleichen vorgesehen sein.
  • Die Erfindung wird anhand des in der einzigen Figur darstellten Ausführungsbeispiels näher erläutert. Diese zeigt eine Ablaufroutine zur Ermittlung der Stellgröße für eine Feuerungsanlage anhand einer Hausfeuerungsanlage.
  • Die Ablaufroutine 1 dient der Ermittlung der Stellgröße SG aus zwei Messsignalen M(S1), M(S2) abhängig von zwei Brennphasen einer Hausfeuerungsanlage anhand der Temperatur T, beispielsweise der Verbrennungstemperatur oder der Abgastemperatur in einem Sekundärbrennraum. Die Stellgröße SG dient in dem gezeigten Ausführungsbeispiel der Regelung der Luftzufuhr in den Sekundärbrennraum der Hausfeuerungsanlage. Die Ablaufroutine 1 wird mit dem Block 2 gestartet und mit dem Block 3 nach einem entsprechenden Interrupt beendet.
  • In Block 4 werden die Messsignale M(S1), M(S2) zweier zueinander bezüglich der zu erfassenden Abgaskomponenten der Hausfeuerungsanlage querempfindlicher Sensoren, beispielsweise eines Kohlenmonoxidsensors mit dem Messsignal M(S1) und eines Kohlenwasserstoffsensors mit dem Messsignal M(S2) sowie die Temperatur T, beispielsweise die Verbrennungstemperatur erfasst.
  • In der Verzweigung 5 wird beispielsweise anhand von unter- oder überschrittenen Temperaturschwellen der Temperatur T, beispielsweise der Verbrennungstemperatur oder der Temperatur im Sekundärbrennraum abgefragt, ob die Brennphase BP die Zündphase ZP ist. Ist dies nicht der Fall, handelt es sich um die Hochtemperaturphase und Block 6 wird angewählt. Aus dem beispielsweise empirisch ermittelten Verhalten der Hausfeuerungsanlage ist vorab bekannt, dass in der Hochtemperaturphase der Gehalt an Kohlenmonoxid eine übergeordnete Bedeutung aufweist und der Gehalt an Kohlenwasserstoffen unbedeutend ist. Der Wichtungsfaktor K(S1) für das Messsignal M(S1) wird deshalb größer gewählt als der Wichtungsfaktor K(S2) für das Messsignal M(S2).
  • Wird in der Verzweigung 5 erkannt, dass die Brennphase BP gleich der Zündphase ZP ist, wird in Block 7 der Wichtungsfaktor K(S1) kleiner als der Wichtungsfaktor K(S2) ausgebildet, da für die Zusammensetzung des Abgases der Gehalt an Kohlenwasserstoffen in der Zündphase ZP die größere Bedeutung aufweist. Es wird dabei darauf hingewiesen, dass in der Zündphase bereits Gehalte an Kohlenmonoxid auftreten können, die größer als die Gehalte an Kohlenwasserstoffen sind, so dass eine entsprechende Wichtung des Messsignals M(S2) des Kohlenwasserstoffsensors von besonderem Vorteil für die Bestimmung der Abgasqualität ist.
  • In Block 8 werden die ermittelten Messsignale M(S1), M(S2), die ermittelten Wichtungsfaktoren K(S1), K(S2) und die Temperatur T zu dem Stellsignal SG in einer mathematischen Verknüpfung kombiniert.
  • In Block 9 wird die Stellgröße SG an die Einrichtung zur Regelung der Hausfeuerungsanlage ausgegeben und die Ablaufroutine 1 wird bei fehlendem Interrupt mit Block 4 neu gestartet. Die Stellgröße SG kann mittels weiterer Parameter, beispielsweise Kalibrationsparametern, Formparametern und/oder dergleichen sowie anwendungsspezifischen Parametern an den Verbrennungsprozess und an die Hausfeuerungsanlage angepasst werden.

Claims (8)

  1. Verfahren zur Verbrennung von festen organischen Brennstoffen in einer Hausfeuerungsanlage, wobei der Verbrennungsvorgang während verschiedener Brennphasen (BP) mittels einer Steuerung zumindest einer Luftzufuhreinrichtung abhängig von einer chemischen Zusammensetzung des Abgases der Hausfeuerungsanlage mittels Sensoren geregelt wird, wobei der Verbrennungsprozess in zumindest zwei Brennphasen (BP), nämlich zumindest in eine Zündphase (ZP) und eine Hochtemperaturphase unterteilt wird, dadurch gekennzeichnet, dass aus einer Kombination von Messsignalen (M(S1), M(S2)) zumindest zweier auf Abgaskomponenten unterschiedlich querempfindlicher Sensoren eine Stellgröße (SG) für die zumindest eine Luftzufuhreinrichtung gebildet wird, wobei die Messsignale (M(S1), M(S2)) der einzelnen Sensoren abhängig von der Brennphase (BP) unterschiedlich gewichtet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass vor einer Erstinbetriebnahme der Hausfeuerungsanlage die Gehalte der mittels der Sensoren zu erfassenden Abgaskomponenten abhängig von den Brennphasen (BP) ermittelt werden und abhängig davon phasenspezifische Wichtungsfaktoren (k(S1), k(S2)) für die Messsignale (M(S1), M(S2)) der einzelnen Brennphasen (BP) vorgegeben werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine mittels eines Sensors erfasste Abgaskomponente Kohlenmonoxid und zumindest eine weitere Abgaskomponente ein Kohlenwasserstoff ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Stellgröße (SG) zusätzlich abhängig von dem Gehalt an Sauerstoff im Abgas und/oder der Temperatur (T), insbesondere der Verbrennungstemperatur geregelt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein Übergang der Brennphasen (BP) anhand von Betriebszeiten, Temperaturschwellen und/oder Temperaturgradientenschwellen festgelegt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Feuerungsanlage eine Primärbrennkammer mit einer ersten Luftzufuhreinrichtung und eine mit dieser verbundene Sekundärbrennkammer mit einer zweiten Luftzufuhreinrichtung enthält, wobei die erste Luftzufuhreinrichtung zumindest in der Zündphase (ZP) abhängig von der Verbrennungstemperatur und gegebenenfalls von dem Gehalt an Sauerstoff und die zweite Luftzufuhreinrichtung mittels der Stellgröße (SG) und gegebenenfalls zusätzlich abhängig von der Temperatur im Abgas, insbesondere in der Sekundärbrennkammer geregelt wird.
  7. Vorrichtung zur Verbrennung von festen organischen Brennstoffen in einer Hausfeuerungsanlage mit:
    zumindest einer Beschickungsöffnung zur Zufuhr von festem, vereinzeltem organischem Brennstoff auf ein Brennbett;
    zumindest einer Luftzufuhreinrichtung; einem Abgasbereich zur Abfuhr von Verbrennungsgas;
    zumindest zwei gegenüber auf Abgaskomponenten querempfindlichen Sensoren sowie gegebenenfalls einem Temperatursensor, insbesondere Verbrennungstemperatursensor und/oder einem im Abgas angeordneten Sauerstoffsensor, wobei die Sensoren in einem Sensorarray zusammengefasst sind;
    einer Steuerung;
    wobei der Verbrennungsvorgang während verschiedener Brennphasen (BP) mittels der Steuerung zumindest der Luftzufuhreinrichtung abhängig von einer chemischen Zusammensetzung des Abgases der Hausfeuerungsanlage mittels Sensoren geregelt wird,
    wobei der Verbrennungsprozess in zumindest zwei Brennphasen (BP), nämlich zumindest in eine Zündphase (ZP) und eine Hochtemperaturphase unterteilt wird,
    dadurch gekennzeichnet, dass die Steuerung konfiguriert ist aus einer Kombination von Messsignalen (M(S1), M(S2)) zumindest zweier auf Abgaskomponenten unterschiedlich querempfindlicher Sensoren eine Stellgröße (SG) für die zumindest eine Luftzufuhreinrichtung gebildet wird, wobei die Messsignale (M(S1), M(S2)) der einzelnen Sensoren abhängig von der Brennphase (BP) unterschiedlich gewichtet werden.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die gegenüber den vorgesehenen Abgaskomponenten querempfindlichen Sensoren als Halbleitersensoren, kalorimetrische Sensoren und/oder Mischpotentialsensoren ausgebildet sind.
EP17157320.7A 2016-03-01 2017-02-22 Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen Active EP3214370B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016103609.9A DE102016103609A1 (de) 2016-03-01 2016-03-01 Verfahren und Vorrichtung zur Verbrennung von festen organischen Brennstoffen

Publications (2)

Publication Number Publication Date
EP3214370A1 EP3214370A1 (de) 2017-09-06
EP3214370B1 true EP3214370B1 (de) 2019-09-25

Family

ID=58158858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17157320.7A Active EP3214370B1 (de) 2016-03-01 2017-02-22 Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen

Country Status (2)

Country Link
EP (1) EP3214370B1 (de)
DE (1) DE102016103609A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018126467A1 (de) * 2018-10-24 2020-04-30 Hochschule Karlsruhe-Technik Und Wirtschaft Verfahren und Messsystem zur Erfassung eines Teergehalts in Gasen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4428952C2 (de) * 1994-08-16 1998-07-09 Lamtec Mes Und Regeltechnik Fu Verfahren und Vorrichtung zur Regelung und Überwachung der Verbrennung einer Feuerungsanlage
DE4436085A1 (de) * 1994-10-10 1996-04-11 Daimler Benz Ag Regelungsverfahren zur Optimierung der Schadstoffemission einer Verbrennungsanlage
DE102006046599B4 (de) * 2006-09-30 2012-02-09 Hochschule Karlsruhe-Technik Und Wirtschaft Verfahren und Vorrichtung zur diskontinuierlichen Verbrennung von Brennstoffen
DE102008028099B4 (de) * 2008-06-13 2010-05-06 Diether Schlottmann Verbrennungsvorrichtung, insbesondere Spezialheizkessel, für feste Brennstoffe
DE102009019118A1 (de) * 2009-04-29 2010-11-04 Butschbach, Paul, Dipl.-Ing. (FH) Hausfeuerungsanlage mit kontinuierlicher Feststoffverbrennung und Verfahren zu deren Betrieb
DE102011005525B3 (de) * 2011-03-14 2012-04-05 Untha Recyclingtechnik Gmbh Verfahren und Anlage zur Behandlung von Kältemittel aufweisenden Fluiden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3214370A1 (de) 2017-09-06
DE102016103609A1 (de) 2017-09-07

Similar Documents

Publication Publication Date Title
DE2656840C2 (de) Verfahren und Vorrichtung zur Regelung der Energiezufuhr zu einer Heizvorrichtung für den Verbrennungsraum einer Veraschungseinheit
EP2066972B1 (de) Verfahren und vorrichtung zur verbrennung von brennstoffen
EP2920515B1 (de) Cfd-simulation eines feuerraums mit mehreren brennern mit getrennter berücksichtigung der von den jeweiligen brennern stammenden brennstoff- und luftanteile
EP2615375B1 (de) Gargerät mit Sensor für Garraum
DE3408397A1 (de) Verfahren und anordnung zur bestimmung des mischungsverhaeltnisses eines ein sauerstofftraegergas und einen brennstoff enthaltenden gemisches
DE3100267A1 (de) Verfahren und vorrichtung zur optimierung des betriebs einer viele brenner aufweisenden natuerlichen zugverbrennungszone
WO2009080282A2 (de) Optimierung des betriebs eines kraftwerks
EP2622337B1 (de) Verfahren zur kalibrierung, validierung und justierung einer lambdasonde
EP3379147B1 (de) Müllverbrennungssteuerungsverfahren und verbrennungssteuerungsvorrichtung mit verwendung davon
Ojha et al. High-temperature CO/HC gas sensors to optimize firewood combustion in low-power fireplaces
EP3214370B1 (de) Verfahren und vorrichtung zur verbrennung von festen organischen brennstoffen
EP2246624B1 (de) Hausfeuerungsanlage mit kontinuierlicher Feststoffverbrennung und Verfahren zu deren Betrieb
EP2300748B1 (de) Verfahren zur regelung der zugabe eines zusatzbrennstoffs
DE102012210749A1 (de) Gargerät mit Sensor für Garraum
Kohler et al. In situ high-temperature gas sensors: Continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process
RU2357153C2 (ru) Способ контроля и управления горением топлива
EP1051585B1 (de) Verfahren und vorrichtung zum betreiben einer verbrennungsanlage
EP1416224A1 (de) Verfahren zum Verbrennen von kleinstückeligem Brennstoff
EP2411737A1 (de) Verfahren zur dioxinminderung in verbrennungsanlagen
DE19637726A1 (de) Vorrichtung und Verfahren zur Überwachung einer Verbrennung eines Kohlenstoff enthaltenden Brennstoffs unter Bildung eines Rauchgases
Sornek The impact of micro scale combustion of biomass fuels on environment
EP1535059A1 (de) Verfahren zur bestimmung des sauerstoffbedarfs einer wässrigen lösung für einen klärprozess
DE102022126343A1 (de) Verfahren zum Bestimmen einer Durchflussmenge, Verfahren zum Betreiben eines Heizgerätes, Computerprogramm, Regel- und Steuergerät und Heizgerät
DE3337476C2 (de) Verfahren und Vorrichtung zur Bestimmung und Regelung des optimalen Brennstoff/Luft-Verhältnisses einer Feuerungsanlage
EP4174376A1 (de) Verfahren zum betreiben eines heizgerätes, computerprogramm, speichermedium, regel- und steuergerät, heizgerät und verwendung eines erfassten ionisationsstromes und einer erfassten temperatur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180302

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180803

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUNNER, SIMON

Inventor name: KOHLER, HEINZ

Inventor name: KNOBLAUCH, JENS

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1184175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002365

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191225

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191226

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002365

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200626

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220208

Year of fee payment: 6

Ref country code: CH

Payment date: 20220221

Year of fee payment: 6

Ref country code: AT

Payment date: 20220215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190925

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017002365

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1184175

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901