EP2914587A1 - Neue heterocylische verbindungen als schädlingsbekämpfungsmittel - Google Patents

Neue heterocylische verbindungen als schädlingsbekämpfungsmittel

Info

Publication number
EP2914587A1
EP2914587A1 EP13783606.0A EP13783606A EP2914587A1 EP 2914587 A1 EP2914587 A1 EP 2914587A1 EP 13783606 A EP13783606 A EP 13783606A EP 2914587 A1 EP2914587 A1 EP 2914587A1
Authority
EP
European Patent Office
Prior art keywords
spp
alkyl
optionally substituted
oxygen
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13783606.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Adeline KÖHLER
Thomas Bretschneider
Friedrich August MÜHLTHAU
Martin FÜSSLEIN
Peter Jeschke
Reiner Fischer
Arnd Voerste
Olga Malsam
Kerstin Ilg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Priority to EP13783606.0A priority Critical patent/EP2914587A1/de
Publication of EP2914587A1 publication Critical patent/EP2914587A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/581,2-Diazines; Hydrogenated 1,2-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/601,4-Diazines; Hydrogenated 1,4-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/80Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present application relates to novel heterocyclic compounds, to processes for their preparation and to their use for controlling animal pests, which also include arthropods and in particular insects.
  • WO 2008/028903 A2 disclose heterocyclic compounds for which pharmaceutical uses are described.
  • WO 2003/077918 A1 and WO 2003/029210 A2 disclose heterocyclic compounds for which pharmaceutical uses are described.
  • the object of the present invention was to provide compounds which broaden the spectrum of pesticides from various aspects.
  • R is hydrogen or alkyl, a radical from the series (Y-1) to (Y-4)
  • G is a radical from the series (G1) to (G-30)
  • X is oxygen or sulfur, n is 1 or 2,
  • R 8 is a radical from the group consisting of hydrogen, alkyl, haloalkyl, cyanoalkyl, alkoxy, haloalkoxy, alkenyl, alkoxyalkyl, in each case optionally halogen-substituted alkylcarbonyl and alkylsulfonyl, optionally halogen-substituted alkoxycarbonyl, if appropriate by halogen, alkyl, alkoxy, haloalkyl and cyano is substituted cycloalkylcarbonyl, or is a cation, such as a mono- or divalent metal ion or an optionally substituted by alkyl or arylalkyl ammonium ion,
  • R 9 and R 15 independently of one another from the series each optionally substituted alkyl, alkenyl and alkynyl, each optionally substituted cycloalkyl, cycloalkylalkyl and cycloalkenyl, in which the rings at least one heteroatom selected from the group sulfur, oxygen (oxygen atoms not immediately adjacent may each contain) and nitrogen, each optionally substituted aryl, heteroaryl, arylalkyl and heteroarylalkyl and an optionally substituted amino group, R 8 and R 15 , together with the NS (0) n group to which they are attached, may also form a saturated or unsaturated and optionally substituted 4- to 8-membered ring containing one or more further heteroatoms selected from the group consisting of sulfur, Oxygen (wherein oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group, a radical from the series each optionally substituted alkyl, alkoxy, alkenyl and alkynyl,
  • R 8 and R 17 may also together with the NC (X) group to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring containing one or more further heteroatoms selected from sulfur, oxygen (where oxygen atoms are not allowed to be immediately adjacent) and may contain nitrogen and / or at least one carbonyl group,
  • R 10 is hydrogen or alkyl
  • R 8 and R 10 may also together with the N atoms to which they are bonded, be a saturated or unsaturated and optionally substituted 4- to 8-membered ring, the at least one further heteroatom selected from the group sulfur, oxygen (wherein oxygen atoms not immediately adjacent) and may contain nitrogen and / or at least one carbonyl group,
  • R and R in the radical (B1) together with the NS (0) n group to which they are attached can form a saturated or unsaturated and optionally substituted 4- to 8-membered ring which comprises one or more further heteroatoms the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group
  • R and R may also together with the NS (0) n group to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring containing one or more further heteroatoms selected from the group consisting of sulfur, oxygen ( where oxygen atoms are not allowed to be immediately adjacent) and may contain nitrogen and / or at least one carbonyl group,
  • R 8 and R 16 may also together with the N-atom to which they are attached form a saturated or unsaturated and optionally substituted 4- to 8-membered ring containing one or more further heteroatoms selected from the group consisting of sulfur and oxygen (where Oxygen atoms may not be immediately adjacent) and may contain nitrogen and / or at least one carbonyl group,
  • L is oxygen or sulfur
  • R and R independently of one another are each an optionally substituted radical from the series alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkynyloxy, cycloalkyl, cycloalkyloxy, cycloalkenyloxy, cycloalkylalkoxy, alkylthio, alkenylthio, phenoxy, phenylthio, benzyloxy, benzylthio, heteroaryloxy, heteroarylthio, Heteroarylalkoxy and heteroarylalkylthio,
  • R and R may also together with the phosphorus atom to which they are attached form a saturated or unsaturated and optionally substituted 5- to 7-membered ring containing one or two heteroatoms selected from oxygen (oxygen atoms may not be immediately adjacent) and may contain sulfur and
  • R and R independently of one another each represent an optionally substituted radical from the group consisting of alkyl, alkenyl, alkynyl, phenyl and phenylalkyl,
  • R is a radical from the series hydrogen, methyl and ethyl.
  • Y is a radical from the series (Yl) to (Y-4)
  • R 1 is a radical from the series of hydrogen and methyl. is a radical from the series (G-1) to (G-30)
  • R 8 is a radical from the series consisting of hydrogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, cyano-C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 2 -C 6 -alkenyl, C 1 -Ce-alkoxy-Ci-Ce-alkyl, optionally substituted by halogen Ci-Cö-alkylcarbonyl and Ci-Cö-alkylsulfonyl, optionally substituted by halogen Ci-C6-alkoxycarbonyl, optionally by
  • Halogen C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkyl and cyano-substituted C 3 -C 6 -cycloalkylcarbonyl, or a cation, for example a monovalent or divalent metal ion or an optionally C 1 -C 6 -alkyl or aryl-Ci-Cö-alkyl substituted ammonium ion.
  • R 9 and R 15 independently of one another are each, where appropriate, halogen, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 6 -alkoxy,
  • Oxygen atoms may not be immediately adjacent) and nitrogen may be replaced (and in particular for wherein the arrow in each case marks the bond to the S atom in the radicals (B1), (B-2) and (B-6)), in each case optionally by halogen, cyano (also in the alkyl part), nitro, C1-C6-alkyl , C 1 -C 6 -haloalkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 6 -alkylsulfinyl, C 1 -C 6 -haloalkylsulfinyl, C 1 -C 4 -alkyl C6-alkylsulfonyl, CI-C ⁇ - haloalkylsul
  • R 15 can also be used together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally halogen, Ci-Cö-alkyl, Ci-C6-haloalkyl, CI-C ⁇ -alkoxy, ci C6-haloalkoxy-substituted 5- to 7-membered ring, which may contain one or two further heteroatoms from the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one carbonyl group, in particular R 8 and R 15 together with the NS (0) n group to which they are bound for a remainder of the series
  • R 17 can also be used together with the NC (X) group to which they are attached, a saturated or unsaturated and optionally halogen, Ci-Cö-alkyl, Ci-C6-haloalkyl, CI-C ⁇ -alkoxy, Ci-C6 Haloalkoxy-substituted 5- to 7-membered ring form one or two other heteroatoms from the series sulfur, oxygen (where oxygen atoms are not may be immediately adjacent) and may contain nitrogen and / or a carbonyl group, in particular R 8 and R 17 may together with the NC (X) group to which they are attached, stand for a residue from the series
  • R 10 is hydrogen or C 1 -C 6 -alkyl.
  • R 8 and R 10 may also be used together with the N atoms to which they are attached, for a saturated or unsaturated and optionally halogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 Haloalkoxy-substituted 5- to 7-membered ring, which may contain one or two further heteroatoms from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or a carbonyl group, in particular R 8 and R 10 along with the NN group to which they are attached, for a rest of the series
  • R 8 and R 9 in the radical (B1) can also be used together with the NS (0) n group to which they are attached to form a saturated or unsaturated radical which is unsubstituted or halogen, C 1 -C 6 -alkyl, C 1 -C 6 -alkyl, or Haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy substituted 5- to 7-membered ring forming one or two heteroatoms selected from sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one and preferably may contain a carbonyl group, in particular R 8 and R 9 together with the NS (0) n group to which they are attached may be a member of the series
  • R 9 and R 10 may also together with the NS (0) n group to which they are attached, a saturated or unsaturated and optionally halogen, Ci-Cö-alkyl, Ci-Cö-haloalkyl, CI-C ⁇ - alkoxy , Ci-C6-haloalkoxy-substituted 5- to 7-membered ring, which may contain one or more further heteroatoms from the group sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one and preferably a carbonyl group
  • R 9 and R 10 may be taken together with the NS (0) n group to which they are attached and the NR 8 group of a residue from the series
  • R 8 and R 16 can also be used together with the N-atom to which they are attached, a saturated or unsaturated and optionally halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, CI-C ⁇ - Alkoxy, Ci-C6-haloalkoxy-substituted 5- to 7-membered ring containing one or more other heteroatoms from the series sulfur, oxygen (oxygen atoms may not be immediately adjacent) and nitrogen and / or at least one and preferably contain a carbonyl group
  • R 8 and R 16 may be taken together with the N-atom to which they are attached for a residue from the series
  • L stands for oxygen or sulfur.
  • R 11 and R 12 are each independently a radical which is optionally substituted by halogen from the group consisting of C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 2 -C 6 -alkyl, Alkenyloxy, C 2 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkyloxy, C 3 -C 6 -cycloalkenyloxy, C 3 -C 6 -cycloalkyl-C 1 -C 6 -alkoxy, C 1 -C 6 -alkylthio, C 2 -C 6 -alkenylthio, Phenoxy, phenylthio, benzyloxy, benzylthio, heteroaryloxy, heteroarylthio, heteroaryl-C 1 -
  • R 11 and R 12 can also be used together with the phosphorus atom to which they are attached, a saturated or unsaturated and optionally halogen, Ci-Cö-alkyl, CI-C ⁇ -haloalkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy form a substituted 5- to 7-membered ring which may contain one or two heteroatoms selected from oxygen (oxygen atoms may not be immediately adjacent) and sulfur, in particular R 11 and R 12 together with the P atom to which they are attached are bound for the rest
  • R 13 and R 14 are each independently of the other a radical optionally substituted by halogen, C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -haloalkoxy and from the series consisting of C 1 -C 6 -alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, phenyl and phenyl-C 1 -C 6 -alkyl.
  • m is 1, 2, 3 or 4.
  • Y is a residue from the series (Y-1) to (Y-4)
  • R 1 is a radical from the series of hydrogen and methyl.
  • G is a radical from the series (G1) to (G-30)
  • R 8 is a radical from the series consisting of hydrogen, C 1 -C -alkyl and C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, optionally C 1 -C -alkylcarbonyl which is substituted by halogen or C 1 -C -alkylsulfonyl, optionally substituted by halogen Ci-Ci-alkoxycarbonyl, optionally substituted by halogen, Ci-C / i-alkyl, Ci-C i-alkoxy, Ci-C4-haloalkyl and cyano-substituted C3-C6-cycloalkylcarbonyl, or a cation, such as for example, a mono- or divalent metal ion or an optionally substituted by Ci-C4-alkyl or aryl-Ci-C4-alkyl-substituted ammonium ion.
  • R 17 is a radical from the series in each case optionally substituted by halogen, C 1 -C 4 -alkoxy, C 1 -C 4 -haloalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, C 1 -C 4 -alkylsulfonyl and C 1 -C 4 -haloalkylsulfonyl-substituted C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, in each case optionally by halogen, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkyl -C4-alkoxy, C
  • R is a radical from the series in each case optionally substituted by halogen, Ci-C4-alkoxy, C1-C4-haloalkoxy, Ci-C4-alkylthio, Ci-C4-haloalkylthio, Ci-C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, Ci C 4 alkylsulfonyl and C 1 -C 4 -haloalkylsulfonyl-substituted C 1 -C 4 -alkyl, C 2 -C 4 -alkenyl and C 2 -C 4 -alkynyl, each optionally substituted by halogen, C 1 -C 4 -alkyl, C i -haloalkyl, C 1 -C -alkoxy, C 1 -C 4 -haloalkoxy-substituted C 3 -C 6 -cycloalkyl, C
  • each case denotes the bond to the S atom in the radical (B1)), in each case optionally by halogen, cyano (also in the alkyl part), nitro, C 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl, C 3 -C 6 -cycloalkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -haloalkoxy, C 1 -C 4 -alkylthio, C 1 -C 4 -haloalkylthio, C 1 -C 4 -alkylsulfinyl, C 1 -C 4 -haloalkylsulfinyl, C 1 -C 4 -alkylsulfonyl, C 1 -C 4 -haloalkylsulfonyl, amino, C 1 -C 4 -alkylamino, di (C 1 -C 4 -alkyl) amino, C
  • R is hydrogen or methyl. stands out for a rest
  • G stands for wherein the dashed line marks the bond to Y
  • pyrimidyl in particular 2-pyrimidyl
  • n stands for 2.
  • Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably again from the series fluorine, chlorine and bromine,
  • Aryl also as part of a larger unit, such as, for example, arylalkyl selected from the group consisting of phenyl, naphthyl, anthryl, phenanthrenyl and in turn preferably represents phenyl,
  • Hetaryl (equivalent to heteroaryl, also as part of a larger unit such as hetarylalkyl) selected from the series furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1, 2,4-triazolyl, oxazolyl, isoxazolyl , Thiazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1, 2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1, 2,4 Thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1, 2,4-triazinyl, 1,3,5-triazinyl , Benz
  • Halogen selected from the group fluorine, chlorine, bromine and iodine, preferably in turn from the series fluorine, chlorine and bromine, aryl (also part of a larger unit such as arylalkyl) selected from the series phenyl, naphthyl, anthryl, phenanthrenyl and stands again preferred for phenyl,
  • Hetaryl (also as part of a larger moiety such as hetarylalkyl) selected from the series furyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,3-triazolyl, 1, 2,4-triazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl , 1,2,3-oxadiazolyl, 1, 2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,2,3-thiadiazolyl, 1, 2,4-thiadiazolyl, 1 , 3,4-thiadiazolyl, 1,2,5-thiadiazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, 1,2,3-triazinyl, 1, 2,4-triazinyl, 1,3,5-triazinyl.
  • Optionally substituted radicals may be monosubstituted or polysubstituted, with multiple substituents the substituents may be the same or different.
  • Suitable metal ions in the radical R 8 are, for example, alkali metal ions such as Li + , Na + , Cs + and K + and alkaline earth metal ions such as Mg ++ and Ca ++ .
  • the invention relates to compounds of the formula (I-la)
  • the invention relates to compounds of the formula (I-2a)
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula (I-4b)
  • the invention relates to compounds of the formula (I-1c)
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula (I-6a)
  • the invention relates to compounds of the formula (I-6b)
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula (I-8a)
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • the invention relates to compounds of the formula
  • G is the radical G-
  • G is the radical G-19 and G 3 is the radical Bl.
  • G is the radical G-19 and G3 is pyrimidyl, in particular 2-pyrimidyl.
  • the compounds of the formula (I) according to the invention and their acid addition salts and metal salt complexes have good activity, in particular for controlling animal pests, which include arthropods and in particular insects.
  • the compounds of formula (I) may also be optionally substituted as stereoisomers, i.e., depending on the nature of the substituents. as geometric and / or as optical isomers or mixtures of isomers are present in different compositions. Both the pure stereoisomers and any mixtures of these isomers are the subject of this invention, although in general only compounds of the formula (I) are mentioned here.
  • optically active stereoisomeric forms of the compounds of the formula (I) and salts thereof are used according to the invention.
  • the invention therefore relates to both the pure enantiomers and diastereomers, as well as their mixtures for controlling animal pests, which include arthropods and in particular insects.
  • Suitable salts of the compounds of the general formula (I) may be customary non-toxic salts, ie salts with corresponding bases and salts with added acids.
  • salts with inorganic bases such as alkali metal salts, for example sodium, potassium or cesium salts, alkaline earth metal salts, for example calcium or magnesium salts, ammonium salts, salts with organic bases and with inorganic amines, for example triethylammonium, dicyclohexylammonium, ⁇ , ⁇ '- Dibenzylethylenediammonium, pyridinium, picolinium or ethanolammonium salts, salts with inorganic acids, for example hydrochlorides, hydrobromides, Dihydrosulfates, trihydrosulfates, or phosphates, salts with organic carboxylic acids or organic sulfonic acid, for example formates, acetates, trifluoroacetates, maleates, tartrates, methanesul
  • the compounds of the formula (A-1) can be obtained by production methods known in principle, cf.
  • the compounds of the formula (A-3) can be obtained by known preparation methods, cf. for example, A. Dondoni et al., Synthesis 2, 185-186, 1987 for 2,5'-bithiazoles ((Q1) - (Y1)); US Pat. 2003/0236413 AI for 1-methyl-4- (1H-pyrazol-1-yl) -1H-pyrazole ((Q-3) - (Y-2)); M.
  • Compounds of formula (A-1) are known in part or can be obtained according to the preparation processes described above.
  • the compounds of the formula (A-5) used for the route A are partly known or can be obtained by known methods.
  • Compounds of the formula (A-5) correspond to the abovementioned radicals G which carry a substituent X in the position which in the compounds of the formula (I) is linked to Y.
  • Compounds of formula (A-6) are partially known or can be obtained by known methods, cf.
  • WO 2008/144767 for 2-chloro-5- (1-methyl-1H-pyrazol-4-yl) -1,3,4-thiadiazole ((Q-3) - (Y-3)); (5-bromo-l, 3,4-thiadiazol-2-yl) -pyridine ((Q-5) - (Y-3), commercially available); WO 2005/005435 Al for 4- (5-bromo-l, 3,4-thiadiazol-yl) -pyridine ((Q-6) - (Y-3)), WO 2007/046809 Al for (5-chloro-1-ol) l, 3,4-thiadiazol-yl) pyridine; 4- (4,5-dibromo-2-thiazolyl) -pyridine ((Q-6) - (YI) commercially available), KJ Hodgetts, MT Kershaw Organic Lett.
  • the compounds of the formula (A-7) required for the route B are in some cases known or can be obtained by known processes.
  • the compounds of the formula (A-7) correspond to the abovementioned radicals G which carry a substituent M in the position which is linked to Y in the compounds of the formula (I), cf.
  • WO 2010/075270 for 1-ethyl-3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1H-pyrazole (G-2); JP 2005/223238 for (4-octyl-2-oxazolyl) boronic acid (G-3); JP 2007/145806 for 2-phenyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -oxazole (G-4); M.
  • Coupling reactions of this type are described, for example, for the following combinations of Q and Y and a radical G or can be carried out in an analogous manner: D. Nanuta et al., Bioorg. Med. Chem. 18 (10), 3551-3558, 2010 for (Q-7) - (Y-1) with G-30; WO 2004/089303 A2, WO 2007/027842 Al, J. Roppe, et al., J. Med. Chem. 47 (19), 4645-4648, 2004 for (Q-7) - (Y-2) with G -20, G-29 or G-30 and WO 2012/003405 Al for (Q-7) - (Y-4) with Gl, G-8 or G-30.
  • Compounds of formula (A-6) are in part known or can be obtained by known preparation methods.
  • Compounds of formula (A-8) are known in part or can be obtained by known methods.
  • Examples of compounds of the formula (A-8) are ethyl 2,3-dihydro-2-oxo-1H-imidazole-1-carboxylate having the radical G-27 (compare NJ Leonard, DF Wiemer, J. Amer. Chem 1976, 98, 8218-8221) and 1- (4-chlorophenyl) -2-imidazolidinone with the radical G-28 (compare JP 07138258).
  • X halo substituent
  • X O-SO 2 CF 3, O-SO 2 CH 3
  • compounds of the formula (A-12) are reacted with compounds of the formula (A-13) according to a Ciaisen condensation reaction (route A, see CR Hauser, BE Hudson, Org. Reactions 1942, 1, 266) ) according to methods known per se (cf., WO 2007/67836) in the presence of basic reaction auxiliaries to give compounds of the formula (A-16).
  • compounds (A-16) may also be prepared by the base-induced reaction of compounds of formula (A-15) with compounds of formula (A-14) (Route B, see, for example, WO2008 / 4117).
  • the compounds of the formula (Ie) can be prepared by reacting compounds of the formula (A-16) with Z> z ' -functionalized reagents, for example hydroxylamine (compare E. Belgodere et al, Heterocycles 1983, 20, 501-504) or hydrazine Derivatives (see MRI Giudice et al., Arch. Pharm., 2003, 336, 143-154), optionally in the presence of a suitable acidic reaction auxiliary in a suitable solvent.
  • Z> z ' -functionalized reagents for example hydroxylamine (compare E. Belgodere et al, Heterocycles 1983, 20, 501-504) or hydrazine Derivatives (see MRI Giudice et al., Arch. Pharm., 2003, 336, 143-154), optionally in the presence of a suitable acidic reaction auxiliary in a suitable solvent.
  • Suitable acidic reaction auxiliaries are virtually all mineral acids, organic acids or Lewis acids.
  • the mineral acids include preferably hydrohalic acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or hydriodic acid and sulfuric acid, phosphoric acid, phosphorous acid, nitric acid and the Lewis acid preferably include aluminum (III) chloride, boron trifluoride or its etherate, titanium (V) chloride and Tin (V) chloride.
  • the organic acids include formic acid, acetic acid, propionic acid, malonic acid, lactic acid, oxalic acid, fumaric acid, adipic acid, stearic acid, tartaric acid, oleic acid, methanesulfonic acid, benzoic acid, benzenesulfonic acid or / jara-toluenesulfonic acid.
  • Acid reaction auxiliaries used are preferably organic acids, for example acetic acid.
  • Compounds of formula (A-12) are known in part or can be obtained by known methods, cf. WO 2008/004117 A1 for 1- (5-thiazolyl) ethanone (Q1); BE 632394 for 1- (4-isothiazolyl) -ethanone (Q-2); WO 2012/075683 A1 for 1- (1-methyl-1H-pyrazol-4-yl) -ethanone (Q-3); JP 57077681 A for 1- (4-isoxazolyl) ethanone (Q-4); WO 2009/077365 A1 for 1- (2-pyrazinyl) ethanone (Q-5); 1- (4-pyridinyl) ethanone (Q-6, commercially available); 1- (2-pyridinyl) ethanone (Q-7, commercially available) and WO 2010/126104 for 1- (4-pyridazinyl) ethanone (Q-8).
  • hydroxides of lithium, potassium and sodium are used.
  • insects, arachnids, helminths, nematodes and molluscs which are found in agriculture, horticulture, in animal breeding, in forests, in gardens and recreational facilities, in storage and material protection and in the hygiene sector.
  • insects in particular insects, arachnids, helminths, nematodes and molluscs, which are found in agriculture, horticulture, in animal breeding, in forests, in gardens and recreational facilities, in storage and material protection and in the hygiene sector.
  • nematodes in particular insects, arachnids, helminths, nematodes and molluscs, which are found in agriculture, horticulture, in animal breeding, in forests, in gardens and recreational facilities, in storage and material protection and in the hygiene sector.
  • molluscs which are found in agriculture, horticulture, in animal breeding, in forests, in gardens and recreational facilities, in storage and material protection and in the hygiene sector.
  • They can preferably be used as crop
  • Pests of the genus Arthropoda in particular of the class Arachnida eg Acarus spp., Aceria sheldoni, Aculops spp., Aculus spp., Amblyomma spp., Amphitetranychus viennensis, Argas spp., Boophilus spp., Brevipalpus spp., Bryobia graminum , Bryobia praetiosa, Centruroides spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides pteronyssinus, Dermatophagoides farinae, Dermacentor spp., Eotetranychus spp., Epitrimerus pyri, Eutetranychus spp., Eriophyes spp., Glycyphagus domesticus, Halotydeus destructor, Hemitarsonemus spp
  • Hyalomma spp. Ixodes spp., Latrodectus spp., Loxosceles spp., Metatetranychus spp., Neutrombicula autumnalis, Nuphersa spp., Oligonychus spp., Ornithodorus spp., Ornithonyssus spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes Spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Scorpio maurus, Steneotarsonemus spp., Steneotarsonemus spinki, Tarsonemus spp., Tetranychus spp., Trombicula alfreddugesi, Vaejo vis spp., Vasates lycopersici .; from the
  • Curculio spp. Cryptolestes ferruginus, Cryptorhynchus lapathi, Cylindrocopturus spp., Dermestes spp., Diabrotica spp., Dichocrocis spp., Dicladispa armigera, Diloboderus spp., Epilachna spp., Epitrix spp., Faustinus spp., Gibbium psylloides, Gnathocerus cornutus , Hellula and alis, Heteronychus arator, Heteronyx spp., Hylamorpha elegans, Hylotrupes bajulus, Hypera postica, Hypomeces squamosus, Hypothenemus spp., Lachnosterna consanguinea, Lasioderma serricorne, Latheticus oryzae, Lathridius spp., Lema spp., Leptinotarsa decem
  • Zabras spp . from the order of Diptera eg Aedes spp., Agromyza spp., Anastrepha spp., Anopheles spp., Asphondylia spp., Bactrocera spp., Bibio hortulanus, Calliphora erythrocephala, Calliphora vicina, Ceratitis capitata, Chironomus spp., Chrysomyia spp.
  • Pentomidae Piesma quadrata, Piezodorus spp., Psallus spp., Pseudacysta persea, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophora spp., Stephanitis nashi, Tibraca spp., Triatoma spp .; from the order of Homoptera eg Acizzia acaciaebaileyanae, Acizzia dodonaeae, Acizzia uncatoides, Acrida turrita, Acyrthosipon spp., Acrogonia spp., Aeneolamia spp., Agonoscena spp., Aleyrodes proletella, Aleurolobus barodensis, Aleurothrixus floccosus, Allocaridara malayensis, Amrasca spp.
  • Hymenoptera eg Acromyrmex spp., Athalia spp., Atta spp., Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Sirex spp., Solenopsis invicta, Tapinoma spp., Urocerus spp., Vespa spp ., Xeris spp .; from the order of Isopoda, for example, Armadillidium vulgare, Oniscus asellus, Porcellio scaber; from the order of Isoptera eg Coptotermes spp., Cornitermes cumulans, Cryptotermes spp., Incisitermes spp., Microtermes obesi, Odontotermes spp., Reticulitermes spp .; from the order of the Lepidoptera eg Achroia grisella, Acronica major, A
  • Hofmannophila pseudospretella Homoeosoma spp., Homona spp., Hyponomeuta padella, Kakivoria flavofasciata, Laphygma spp., Laspeyresia molesta, Leucinodes orbonalis, Leucoptera spp., Lithocolletis spp., Lithophane antennata, Lobesia spp., Loxagrotis albicosta, Lymantria spp., Lyonetia Spp., Malacosoma neustria, Maruca testulalis, Mamstra brassicae, Melanitis leda, Mocis spp., Monopis obviella, Mythimna separata, Nemapogon cloacellus, Nymphula spp., Oiketicus spp., Oria spp., Orthaga spp., Ostrinia
  • Pests of the Mollusca strain in particular of the bivalve class, e.g. Dreissena spp., As well as from the class Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Gastropoda e.g. Arion spp., Biomphalaria spp., Bulinus spp., Deroceras spp., Galba spp., Lymnaea spp., Oncomelania spp., Pomacea spp., Succinea spp .;
  • Animal parasites from the strains of Plathelminthes and Nematoda eg Ancylostoma duodenale, Ancylostoma ceylanicum, Acylostoma braziliensis, Ancylostoma spp., Ascaris spp., Brugia malayi, Brugia timori, Bunostomum spp., Chabertia spp., Clonorchis spp., Cooperia spp., Dicrocoelium spp., Dictyocaulus filaria, Diphyllobothrium latum, Dracunculus medinensis, Echinococcus granulosus, Echinococcus multilocularis, Enterobius vermicularis, Faciola spp., Haemonchus spp., Heterakis Spp., Hymenolepis nana, Hyostrongulus spp., Loa Loa,
  • Taenia saginata Taenia solium, Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella nelsoni, Trichinella pseudopsiralis, Trichostrongulus spp., Trichuris trichuria, Wuchereria bancrofti;
  • Plant pests from the strain of Nematoda i. plant parasitic nematodes, especially Aphelenchoides spp., Bursaphelenchus spp., Ditylenchus spp., Globodera spp., Heterodera spp., Longidorus spp., Meloidogyne spp., Pratylenchus spp., Radopholus spp., Trichodorus spp., Tylenchulus spp., Xiphinema spp , Helicotylenchus spp., Tylenchorhynchus spp., Scutellonema spp., Paratrichodorus spp., Meloinema spp., Paraphelenchus spp., Aglenchus spp., Belonolaimus spp., Nacobbus spp., Rotylenchulus spp., Rot
  • the order of coccidia can be determined, e.g. Eimeria spp. fight.
  • the present invention further relates to formulations and application forms prepared therefrom as crop protection agents and / or pesticides such. B. drench, drip and spray, comprising at least one of the active compounds according to the invention. If appropriate, the use forms contain other crop protection agents and / or pesticides and / or the effect of improving adjuvants such as penetration enhancers, eg.
  • vegetative oils such as rapeseed oil, sunflower oil, mineral oils such as paraffin oils, alkyl esters of vegetal fatty acids such as rapeseed oil or soybean oil methyl ester or alkanol alkoxylates and / or spreading agents such as alkyl siloxanes and / or salts, e.g. organic or inorganic ammonium or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate and / or retention-promoting agents such.
  • Typical formulations are, for example, water-soluble liquids (SL), emulsion concentrates (EC), emulsions in water (EW), suspension concentrates (SC, SE, FS, OD), water-dispersible granules (WG), granules (GR) and capsule concentrates (CS). ; these and other possible formulation types are described, for example, by Crop Life International and in Pesticide Specifications, Manual on development and use of FAO and WHO specifications for pesticides, FAO Plant Production and Protection Papers - 173, prepared by the FAO / WHO Joint Meeting on Pesticide Specifications, 2004, ISBN: 9251048576. If appropriate, the formulations contain, in addition to one or more active compounds according to the invention, further agrochemical active substances.
  • adjuvants such as extenders, solvents, spontaneity promoters, carriers, emulsifiers, dispersants, antifreeze agents, biocides, thickeners and / or further adjuvants such as adjuvants.
  • An adjuvant in this context is a component that enhances the biological effect of the formulation without the component itself having a biological effect.
  • adjuvants are agents that promote retention, spreading behavior, adherence to the leaf surface, or penetration.
  • formulations are prepared in a known manner, e.g. by mixing the active ingredients with excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surfactants.
  • excipients such as extenders, solvents and / or solid carriers and / or other excipients such as surfactants.
  • the preparation of the formulations is carried out either in suitable systems or before or during use.
  • Excipients which can be used are those which are suitable for imparting special properties, such as physical, technical and / or biological properties, to the formulation of the active substance or to the forms of use prepared from these formulations (for example usable plant protection agents such as spray mixtures or seed dressing).
  • extender e.g. Water, polar and non-polar organic chemical liquids e.g.
  • aromatic and non-aromatic hydrocarbons such as paraffins, alkylbenzenes, alkylnaphthalenes, chlorobenzenes
  • alcohols and polyols which may also be substituted, etherified and / or esterified
  • ketones such as acetone, cyclohexanone
  • Esters including fats and oils
  • poly) ethers simple and substituted amines, amides, lactams (such as N-alkylpyrrolidones) and lactones, sulfones and sulfoxides (such as dimethylsulfoxide).
  • Suitable liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide and water.
  • Suitable solvents are for example, aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes, chlorinated aromatic or aliphatic hydrocarbons such as chlorobenzene, chloroethylene, or methylene chloride, aliphatic hydrocarbons such as cyclohexane, paraffins, petroleum fractions, mineral and vegetable oils, alcohols such as methanol, ethanol, isopropanol , Butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl sulfoxide and water.
  • aromatic hydrocarbons such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatic or aliphatic hydrocarbons such as chlorobenzene, chloroethylene, or methylene chloride
  • Suitable carriers are, in particular: Ammonium salts and ground natural minerals such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour, such as finely divided silica, alumina and natural or synthetic silicates, resins, waxes and / or solid fertilizers. Mixtures of such carriers can also be used.
  • Suitable carriers for granules are: e.g.
  • Cracked and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, paper, coconut shells, corn cobs and tobacco stems.
  • liquefied gaseous diluents or solvents can be used.
  • Examples of emulsifying and / or foaming agents, dispersants or wetting agents having ionic or non-ionic properties or mixtures of these surfactants are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, with substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyl taurates), phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols and derivatives of the compounds containing sulphates, sulphonates and phosphates, eg Alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, arylsulfonates, protein hydro
  • dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and nutrient and trace nutrients such as salts of iron, manganese, boron, copper, can be used in the formulations and the use forms derived therefrom. Cobalt, molybdenum and zinc. Stabilizers such as cold stabilizers, preservatives, antioxidants, light stabilizers or other chemical and / or physical stability-improving agents may also be present. It may also contain foam-forming agents or defoamers.
  • formulations and the use forms derived therefrom may also contain, as additional auxiliaries, adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-containing polymers such as gum arabic, polyvinyl alcohol, polyvinyl acetate and natural phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • additional auxiliaries may be mineral and vegetable oils.
  • auxiliaries may be present in the formulations and in the use forms derived therefrom.
  • additives are, for example, fragrances, protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, retention promoters, stabilizers, sequestrants, complexing agents, humectants, spreading agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • retention promoters are all those substances which reduce the dynamic surface tension such as dioctylsulfosuccinate or increase the visco-elasticity such as hydroxypropyl guar polymers.
  • Suitable penetration promoters in the present context are all those substances which are usually used to improve the penetration of agrochemical active substances into plants.
  • Penetration promoters are in this context defined by the fact that they can penetrate from the (usually aqueous) application broth and / or from the spray coating into the cuticle of the plant and thereby increase the material mobility (mobility) of the active ingredients in the cuticle.
  • the method described in the literature can be used to determine this property.
  • Examples include alcohol alkoxylates such as coconut oil ethoxylate (10) or Isotridecylethoxylat (12), fatty acid esters such as rapeseed oil or soybean oil, fatty amine alkoxylates such as Tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • alcohol alkoxylates such as coconut oil ethoxylate (10) or Isotridecylethoxylat (12)
  • fatty acid esters such as rapeseed oil or soybean oil
  • fatty amine alkoxylates such as Tallowamine ethoxylate (15) or ammonium and / or phosphonium salts such as ammonium sulfate or diammonium hydrogen phosphate.
  • the formulations preferably contain between 0.00000001 and 98 wt .-% of active ingredient or, more preferably between 0.01 and 95 wt .-% active ingredient, more preferably between 0.5 and 90 wt .-% active ingredient, based on the weight of Formulation.
  • the active substance content of the application forms (pesticides) prepared from the formulations can vary within wide ranges.
  • the active ingredient concentration of the application forms can usually be between 0.00000001 and 95% by weight of active compound, preferably between 0.00001 and 1 Wt .-%, based on the weight of the application form lie.
  • the application is done in a custom forms adapted to the application.
  • the active substances to be used according to the invention or according to the invention can also be used as such or in their formulations in admixture with one or more suitable fungicides, bactericides, acaricides, molluscicides, nematicides, insecticides, microbiologicals, beneficial insects, fertilizers, bird repellents, phytotonics, sterilants, synergists, Safeners, semiochemicals and / or plant growth regulators may be used, for example to widen the spectrum of action, to extend the duration of action, to increase the speed of action, to prevent re-exposure or to prevent the development of resistance. Furthermore, such drug combinations plant growth and / or tolerance to abiotic factors such.
  • Acetylcholinesterase (AChE) inhibitors such as carbamates, e.g. Alanycarb, Aldicarb, Bendiocarb, Benfuracarb, Butocarboxime, Butoxycarboxime, Carbaryl, Carbofuran, Carbosulfan, Ethiofencarb, Fenobucarb, Formetanate, Furathiocarb, Isoprocarb, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Trimethacarb, XMC and xylylcarb; or
  • AChE Acetylcholinesterase
  • Organophosphates eg, acephates, azamethiphos, azinphos-ethyl, azinphos-methyl, cadusafos, chloroethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos / DDVP, dicrotophos, dimethoates, dimethylvinphos , Disulfoton, EPN, Ethion, Ethoprophos, Famphur, Fenamiphos, Fenitrothion, Fenthion, Fosthiazate, Heptenophos, Imicyafos, Isofenphos, Isopropyl O- (methoxyaminothio-phosphoryl) salicylate, Isoxathion, Malathion, Mecarbam, Methamidophos, Methidathione,
  • Cyclodiene organochlorines e.g. Chlordane and endosulfan
  • Phenylpyrazoles e.g. Ethiprole and fipronil.
  • Pyrethroids e.g. Acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cyclopentenyl isomer, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alpha- Cypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin [(lR) trans isomers], deltamethrin, empenthrin [(EZ) (lR) isomers], esfenvalerates, etofenprox, f
  • nAChR nicotinergic acetylcholine receptor
  • Neonicotinoids e.g. Acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, thiacloprid and thiamethoxam; or
  • nicotinergic acetylcholine receptor (nAChR) allosteric activators such as spinosines, e.g. Spinetoram and spinosad.
  • chloride channel activators such as
  • Avermectins / milbemycins e.g. Abamectin, Emamectin benzoate, Lepimectin and Milbemectin.
  • juvenile hormone mimics such as Juvenile hormone analogs, eg hydroprene, kinoprene and methoprene; or fenoxycarb; or pyriproxyfen.
  • agents with unknown or nonspecific modes of action such as alkyl halides, e.g. Methyl bromide and other alkyl halides; or chloropicrin; or sulfuryl fluoride; or borax; or tartar emetic.
  • alkyl halides e.g. Methyl bromide and other alkyl halides; or chloropicrin; or sulfuryl fluoride; or borax; or tartar emetic.
  • mite growth inhibitors e.g. Clofentezine, hexythiazox and diflovidazine; or Etoxazole.
  • Insect intestinal membrane microbial disruptors e.g. Bacillus thuringiensis subspecies israelensis, Bacillus thuringiensis subspecies aizawai, Bacillus thuringiensis subspecies kurstaki, Bacillus thuringiensis subspecies tenebrionis and B.t. Plant proteins: CrylAb, CrylAc, CrylFa, CrylA.105, Cry2Ab, Vip3A, mCry3A, Cry3Ab, Cry3Bb, Cry34 Abl / 35Abl; or
  • Bacillus sphaericus Bacillus sphaericus.
  • inhibitors of oxidative phosphorylation, ATP disruptors such as diafenthiuron; or
  • Organotin compounds e.g. Azocyclotine, cyhexatin and fenbutatin oxide; or propargite; or tetradifon.
  • Nicotinergic acetylcholine receptor antagonists such as Bensultap, Cartap hydrochloride, thiocyclam and thiosultap sodium.
  • Type 0 inhibitors of chitin biosynthesis such as bistrifluron, chlorofluorazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron and triflumuron.
  • inhibitors of chitin biosynthesis type 1, such as Bupro fezin.
  • Moulting agents dipteran, such as cyromazine.
  • ecdysone receptor agonists such as chromafenozides, halofenozides, methoxyfenozides, and tebufenozides.
  • Octopaminergic agonists such as amitraz.
  • complex III electron transport inhibitors such as hydramethylnone; or acequinocyl; or fluacrypyrim.
  • METI acaricides e.g. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad and Tolfenpyrad; or
  • Rotenone (Derris). (22) voltage dependent sodium channel blockers, e.g. indoxacarb; or metaflumizone.
  • Tetronic and tetramic acid derivatives e.g. Spirodiclofen, spiromesifen and spirotetramat.
  • Phosphines e.g. Aluminum phosphide, calcium phosphide, phosphine and zinc phosphide; or cyanide.
  • Diamides e.g. Chlorantraniliprole, Cyantraniliprole and Flubendiamide.
  • agents such as amidoflumet, azadirachtin, benclothiaz, benzoximate, bifenazate, bromopropylate, quinomethionate, cryolite, dicofol, diflovidazine, fluensulfone, flufenerim, flufiprole, fluopyram, fufenocide, imidaclothiz, iprodione, meperfluthrin, pyralidyl, pyrifluquinazone, tetramethylfluthrin and iodomethane; furthermore preparations based on Bacillus firmus (in particular strain CNCM 1-1582, for example VOTiVO TM, BioNem) and the following compounds:
  • Fungicides suitable as mixing partners are:
  • inhibitors of ergosterol biosynthesis such as aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamide, fenpropidin, fenpropimorph, Fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole cis, Hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifm, nuarimol, oxpoconazole, paclobutrazole, pefur
  • inhibitors of respiration such as bixafen, boscalid, carboxin, diflumetorim, fenfuram, fluopyram, flutolanil, fluxapyroxad, furametpyr, furmecyclox, isopyrazam mixture of the syn-epimeric racemate 1RS, 4SR, 9RS and the anti- more reactive racemate 1RS, 4SR, 9SR, isopyrazam (anti-epimeric racemate), isopyrazam (anti-epimeric enantiomer 1R, 4S, 9S), isopyrazam (anti-epimeric enantiomer 1S, 4R, 9R), isopyrazam (syn-epimeric racemate 1RS, 4SR, 9RS), isopyrazam (syn-epimeric enantiomer 1R, 4S, 9R), isopyrazam (syn-epimeric enantiomer 1S, 4S, 9R), iso
  • inhibitors of respiration at the complex III of the respiratory chain, such as ametoctradine, amisulbrom, azoxystrobin, cyazofamide, coumethoxystrobin, coumoxystrobin, dimoxystrobin, enestroburin, famoxadone, fenamidone, fenoxystrobin, fluoxastrobin, kresoxim-methyl, metominostrobin, orysastrobin , Picoxystrobin, Pyraclostrobin, Pyrametostrobin, Pyraoxystrobin, Pyribencarb, Triclopyricarb, Trifloxystrobin, (2E) -2- (2- ⁇ [6- (3-chloro-2-methylphenoxy) -5-fluoropyrimidin-4-yl] oxy ⁇ phenyl) -2- (methoxyimino) -N-methylethaneamide, (2E) -2- (methoxyimino) -N-
  • Mitosis and cell division inhibitors such as benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fluopicolide, fuberidazole, pencycuron, thiabendazole, thiophanate-methyl, thiophanate, zoxamide, 5-chloro-7- (4-methylpiperidin-1 - yl) -6- (2,4,6-trifluorophenyl) [1,2,4] triazolo [1,5-ajpyrimidine and 3-chloro-5- (6-chloropyridin-3-yl) -6-methyl-4 - (2,4,6-trifluorophenyl) pyridazine.
  • Compounds with multisite activity such as Bordeaux mixture, captafol, captan, chlorothalonil, copper preparations such as copper hydroxide, copper naphthenate, copper oxide, copper oxychloride, copper sulfate, dichlofluanid, dithianon, dodine, dodine free base, Ferbam, Fluorofolpet, Folpet, Guazatin, Guazatin acetate , Iminoctadine, iminoctadinal besylate, iminoctadine triacetate, mancopper, mancozeb, maneb, metiram, zinc metiram, copper oxine, propamidine, propineb, sulfur and sulfur preparations such as calcium polysulfide, thiram, tolylfluanid, zineb and ziram.
  • copper preparations such as copper hydroxide, copper naphthenate, copper oxide, copper oxychloride, copper sulfate, dichlofluanid,
  • resistance inducers such as acibenzolar-S-methyl, isotianil, probenazole and tiadinil.
  • Inhibitors of amino acid and protein biosynthesis such as andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim, pyrimethanil and 3- (5-fluoro-3,3,4,4-tetramethyl-3 , 4-dihydroisoquinoline-l-yl) quinoline.
  • inhibitors of ATP production such as fentin acetate, fentin chloride, fentin hydroxide and silthiofam.
  • inhibitors of cell wall synthesis such as benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamide, polyoxins, polyoxorim, validamycin A, and valifenalate.
  • inhibitors of lipid and membrane synthesis such as biphenyl, chloroneb, dicloran, edifenphos, etridiazole, iodocarb, Iprobenfos, isoprothiolane, propamocarb, propamocarb hydrochloride, prothiocarb, pyrazophos, quintozene, tecnazene, and tolclofos-methyl.
  • Inhibitors of melanin biosynthesis such as carpropamide, diclocymet, fenoxanil, fthalide, pyroquilone, tricyclazole and 2,2,2-trifluoroethyl ⁇ 3-methyl-1 - [(4-methylbenzoyl) amino] butan-2-yl carbamate
  • inhibitors of nucleic acid synthesis such as benalaxyl, benalaxyl-M (kiralaxyl), bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazole, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl and oxolic acid.
  • signal transduction inhibitors such as chlozolinate, fenpiclonil, fludioxonil, iprodione, procymidone, quinoxyfen and vinclozolin.
  • Decouplers such as binapacryl, dinocap, ferimzone, fluazinam and meptyldinocap.
  • plants and parts of plants can be treated.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are understood to mean all aboveground and subterranean parts and organs of plants such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds.
  • plants and their parts can be treated.
  • wild-type or plant species and plant varieties obtained by conventional biological breeding methods such as crossing or protoplast fusion and parts thereof are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “parts of plants” has been explained above.
  • Propes of the respective commercially available or in use plant varieties are particularly preferably treated according to the invention.
  • PV plants are understood as meaning plants with new properties ("traits”) have been bred either by conventional breeding, by mutagenesis or by recombinant DNA techniques. These may be varieties, breeds, biotypes and genotypes.
  • a preferred direct treatment of the plants is foliar application, i. the active compounds, active ingredient combinations or agents are applied to the foliage, wherein the treatment frequency and the application rate can be adapted to the infestation pressure of the respective pathogen, pest or weed.
  • the active ingredients, active ingredient combinations or agents reach the plants via the root system.
  • the treatment of the plants is then carried out by the action of the active ingredients, drug combinations or agents on the habitat of the plant.
  • This may be, for example, by drenching, mixing into the soil or the nutrient solution, i. the location of the plant (e.g., soil or hydroponic systems) is impregnated with a liquid form of the active ingredients, active agent combinations, or by the soil application, i. the active compounds, active ingredient combinations or compositions according to the invention are introduced in solid form (for example in the form of granules) into the location of the plants. In water rice crops this may also be by metering the invention in a solid application form (e.g., as granules) into a flooded paddy field.
  • seed treatment methods should also include the intrinsic insecticidal or nematicidal properties of pest-resistant transgenic plants in order to achieve optimum protection of the seed and of the germinating plant with a minimum of pesticide use.
  • the present invention therefore also relates in particular to a method for protecting seed and germinating plants from attack by pests by treating the seed with an active substance according to the invention or to be used according to the invention.
  • the method according to the invention for the protection of seeds and germinating plants from infestation by pests comprises a method in which the seed is treated simultaneously in one operation with an active compound of the formula I and mixing partner. It also includes a procedure in which the seed is treated at different times with an active ingredient of formula I and mixing partners.
  • the invention also relates to the use of the active ingredients according to the invention for the treatment of seed for the protection of the seed and the resulting plant from animal pests.
  • the invention relates to seed which has been treated with an active ingredient according to the invention for protection against animal pests.
  • the invention also relates to seed which has been treated at the same time with an active compound of the formula I and mixing partner.
  • the invention further relates to seed which has been treated at different times with an active compound of the formula I and mixing partner.
  • the individual active compounds of the agent according to the invention may be present in different layers on the seed.
  • the layers which contain an active compound of the formula I and mixing partners may optionally be separated by an intermediate layer.
  • the invention also relates to seed in which an active compound of the formula I and mixing partner are applied as a constituent of a coating or as a further layer or further layers in addition to a coating.
  • the invention relates to seed, which after the treatment with the active ingredient of the formula (I) or an active ingredient combination containing it has been subjected to a film coating process in order to avoid dust abrasion on the seed.
  • One of the advantages of the present invention is that because of the particular systemic properties of the agents of the invention, the treatment of the seed with these agents not only protects the seed itself, but also the resulting plants after emergence from animal pests. In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • Another advantage is the fact that by the treatment of the seed with active ingredient of the formula (I) or combination of active substances containing germination and emergence of the treated seed can be promoted.
  • active compounds of the formula (I) and the named active substance combinations can be used in particular also in the case of transgenic seed.
  • active compounds of the formula (I) can be used in combination with signal technology agents, by way of example a better colonization with symbionts, such as rhizobia, mycorrhiza and / or endophytic bacteria, taking place and / or optimizing them Nitrogen fixation is coming.
  • the compositions according to the invention are suitable for the protection of seeds of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture.
  • these are seeds of cereals eg wheat, barley, rye, millet and oats
  • corn eg wheat, barley, rye, millet and oats
  • corn cotton, soy, rice, potatoes, sunflower, coffee
  • tobacco canola
  • oilseed rape turnip (eg sugar beet and Fodder beet)
  • peanut eg tomato, cucumber, bean, cabbage, onions and lettuce
  • fruit plants turf and ornamental plants.
  • seeds of cereals such as wheat, barley, rye and oats
  • corn soya, cotton, canola, oilseed rape and rice.
  • transgenic seed with active ingredients of the formula (I) or a combination of active substances is of particular importance.
  • These are the seeds of plants, which as a rule contain at least one heterologous gene which controls the expression of a polypeptide with in particular insecticidal or nematicidal properties.
  • the heterologous genes in transgenic seed can come from microorganisms such as Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • the present invention is particularly useful for the treatment of transgenic seed containing at least one heterologous gene derived from Bacillus sp. comes. Most preferably, this is a heterologous gene derived from Bacillus thuringiensis.
  • the active ingredient of the formula (I) is applied to the seed alone (or as active ingredient combination) or in a suitable formulation.
  • the seed is treated in a state where it is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used which has been harvested, cleaned and dried to a moisture content below 15% by weight.
  • seed may also be used which, after drying, e.g. treated with water and then dried again.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted.
  • suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents No. 4,272,417 A, US Pat. No. 4,245,432 A, US Pat. No. 4,808,430 A, US Pat. No. 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds / active substance combinations that can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, and also ULV formulations.
  • These formulations are prepared in a known manner by mixing the active compounds / active ingredient combinations with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably used are alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates.
  • Suitable dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active compounds.
  • Preferably usable are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • Particularly suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds.
  • the concentrates or the preparations obtainable therefrom by dilution with water can be used for dressing the seeds of cereals such as wheat, barley, rye, oats and triticale, as well as the seeds of corn, rice, rape, peas, beans, cotton, sunflowers and beets or even vegetable seeds of various nature.
  • the seed dressing formulations which can be used according to the invention or their diluted preparations can also be used for pickling seeds of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the seed dressing formulations which can be used according to the invention or the preparations prepared therefrom by the addition of water
  • all mixing devices customarily usable for the dressing can be considered.
  • the seed is placed in a mixer which adds either desired amount of seed dressing formulations either as such or after prior dilution with water and mixes until evenly distributed the formulation on the seed.
  • a drying process follows.
  • the application rate of the seed dressing formulations which can be used according to the invention can be varied within a relatively wide range. It depends on the respective content $ of the active substance (s) in the formulations and on the seed.
  • the application rates for active compounds / active substance combinations are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 15 g per kilogram of seed. It is not known from the prior art that the active compounds of the formula (I) have an effect against biotic stress factors and / or abiotic stress of plants or with regard to plant growth.
  • the active compounds of the formula (I) according to the invention are suitable for increasing the plant's own defenses (pathogen defense in plants).
  • These may be, for example, (a) low molecular weight substances, e.g. Phytoalexins, (b) non-enzymatic proteins, such as. (C) enzymatic proteins such as chitinases, glucanases, or (d) specific inhibitors of essential proteins, such as protease inhibitors, xylanase inhibitors attack the pathogen directly or impede its proliferation (Dangl and Jones, Nature 411, 826-833, 2001; Kessler and Baldwin, Annual Review of Plant Biology, 53, 299-328, 2003).
  • HR hypersensitive reaction
  • SAR systemic acquired resistance
  • the salicylate-mediated defense is particularly directed against phytopathogenic fungi, bacteria and viruses (Ryals et al., The Plant Cell 8, 1809-1819, 1996).
  • a known synthetic product which assumes one of the salicylic acid similar function and can provide a protective effect against phytopathogenic fungi, bacteria and viruses, is benzothiadiazole (CGA 245704; Common name: acibenzolar-S-methyl; trade name: Bion ®) (Achuo et al. , Plant Pathology 53 (1), 65-72, 2004, Tamblyn et al., Pesticide Science 55 (6), 676-677, 1999, EP-OS 0 313 512).
  • Other compounds belonging to the group of oxylipins, such as jasmonic acid, and the protective mechanisms triggered by them are particularly effective against noxious insects (Walling, J. Plant Growth Regul. 19, 195-216, 2000).
  • pathogenesis-related proteins which primarily support plants in the defense against biotic stressors, such as phytopathogens Fungi, Bacteria and Viruses (DE 10 2005 045 174 A; DE 10 2005 022 994 A and WO 2006/122662 A; Thielert Maischutz-Nachzin Bayer, 59 (1), 73-86, 2006; Francis et al., European Journal of Plant Pathology, publ. online 23.1.2009).
  • plants have a number of endogenous reaction mechanisms that can effect effective defense against various harmful organisms (biotic stress) and / or abiotic stress.
  • the cultivation of healthy and uniformly grown seedlings is an essential prerequisite for the large-scale cultivation and economic management of agricultural, horticultural and forestry crops.
  • the seed is sown in special containers, eg Styrofoam perforated trays, in special potting soil based on peat culture substrate and then cultivated in containers with suitable nutrient solution until the desired transplant size is reached (Figure 1). It is allowed to drive the containers on the nutrient solution, from which derives the name of the culture method (Leal, 2001, supra).
  • Floating processes have been using insecticides from the class of neonicotiniodes (chlornicotinyls) for the control of sucking pests for several years.
  • the plants are sprayed with neonicotinoid (chloronicotinyl) insecticides in the float process shortly before transplanting or are infused with neonicotinoid (chloronicotinyl) insecticides immediately before or during transplantation, which is termed "drenching" (Leal, 2001, supra; and Rogers, 2001, supra) Both methods of application are technically relatively complex.
  • Fungicides and insecticides are used to protect the crops of seed or plant material from fungal pathogens and pests until they are transplanted.
  • the choice of pesticides, the place and time of application and the application rate of the funds depend here mainly on the type of fungal diseases and pests occurring, the specific mode of action and duration of action of the agents and their plant compatibility, and thus directly to the specific requirements of different Adapted to crops and regions.
  • the active ingredients of the formula (I) thereby lead to a good protection of the plant from damage by fungal, bacterial or viral pathogens, independently of an insect control. Without wishing to be bound by theory, it is currently believed that defense of the pathogens by induction of PR proteins occurs as a result of treatment with at least one drug of formula (I).
  • the use according to the invention in seed treatment, in soil treatment, in special cultivation and cultivation methods e.g., Floating Box, Rockwool, Hydroponic
  • stem and foliar treatment has the advantages described.
  • Combinations of an active compound of the formula (I), inter alia, with insecticides, fungicides and bactericides have a synergistic effect in the control of plant diseases.
  • the combined use of the active ingredients of the formula (I) with genetically modified varieties with respect to increased abiotic stress tolerance also leads to a synergistic improvement in growth.
  • the active compounds of the formula (I) not only increase the pathogen defense in plants, but also improve plant growth and / or increase the resistance of plants to plant diseases caused by fungi, bacteria, viruses, MLO (Mycoplasma -like organisms) and / or RLO (Rickettsia-like organisms) are caused, especially against soil-borne fungal diseases, and / or are suitable for increasing the resistance of plants to abiotic stress factors.
  • Abiotic stress conditions may include, for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salinity, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
  • the present invention is thus first of all the use of at least one active compound of the formula (I) for increasing the plant's Ab defense powers and / or improving plant growth and / or increasing the resistance of plants to plant diseases caused by fungi, bacteria, viruses , MLO (mycoplasma-like organisms) and / or RLO (Rickettsia-like organisms), in particular against soil-borne fungal diseases, and / or for increasing the resistance of plants to abiotic stresses.
  • the term plant growth is understood to mean various advantages for plants which are not directly related to the known pesticidal activity, preferably to the insecticidal activity of the active compounds of the formula (I).
  • Such advantageous properties include, for example, the following improved plant characteristics: accelerated germination and emergence of seed and plant matter, improved surface and depth root growth, increased lagging or stocking, stronger and more productive shoots and tillers, improvement in shoot growth, increased sturdiness, increased shoot base diameter, increased leaf area, greener leaf color, higher yields of nutrients and ingredients, such as carbohydrates, fats, oils, proteins, vitamins, minerals, essential oils, dyes, fibers, better fiber quality, earlier flowering, increased number of flowers, reduced level of toxic products such as mycotoxins, reduced levels of residues or unfavorable ingredients of any kind or better digestibility, improved storage stability of the crop, improved tolerance to unfavorable temperatures, improved tolerance to drought and dryness as well as lack of oxygen due to excess water, improved tolerance to increased salt levels in Soils and water,
  • Soche terms are, for example, the following: phytotonic effect, resistance to stressors, less plant stress, plant health, healthy plants, Plant Fitness, Plant Wellness, Plant Concept, Vigor Effect, Stress Shield "Crop Health Properties”, “Crop Health Products”, “Crop Health Management”, “Crop Health Therapy”, “Plant Health”, “Plant Health Properties”, “Plant Health Products”, “Plant Health Management”, “Plant Health Therapy”, “Greening Effect” or “Re-greening Effect”), "Freshness” or other terms that are well known to a person skilled in the art.
  • active compounds of the formula (I) lead to an increased expression of genes from the series of "pathogenesis-related proteins" (PR proteins) .
  • PRO proteins primarily support the plants in the defense against biotic stressors, such as phytopathogenic fungi, bacteria and viruses, which means that plants are better protected against infections of phytopathogenic fungi, bacteria and viruses by the use of active ingredients of formula (I)
  • the use of the active compounds of the formula (I) in combination with a fertilizer as defined below on plants or in their environment has a synergistic growth-increasing effect causes.
  • Fertilizers which can be used according to the invention together with the active ingredients or agents explained in more detail above are in general organic and inorganic nitrogen-containing compounds such as, for example, ureas, urea-formaldehyde condensation products, Amino acids, ammonium salts and nitrates, potassium salts (preferably chlorides, sulfates, nitrates), phosphoric acid salts and / or salts of phosphorous acid (preferably potassium salts and ammonium salts).
  • NPK fertilizers ie fertilizers containing nitrogen, phosphorus and potassium, calcium ammonium nitrate, ie fertilizers that still contain calcium, ammonium sulfate nitrate (General formula NH4NO3), ammonium phosphate and ammonium sulfate.
  • These fertilizers are well known to those skilled in the art, see also, for example, Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, Vol. A 10, pages 323 to 431, Verlagsgesellschaft, Weinheim, 1987.
  • the fertilizers may also contain salts of micronutrients (preferably calcium, sulfur, boron, manganese, magnesium, iron, boron, copper, zinc, molybdenum and cobalt) and phytohormones (eg, vitamin B1 and indol-3-ylacetic acid (IAA)). or mixtures thereof.
  • Fertilizers used according to the invention may also contain other salts such as monoammonium phosphate (MAP), diammonium phosphate (DAP), potassium sulfate, potassium chloride or magnesium sulfate.
  • Suitable amounts for the secondary nutrients or trace elements are amounts of 0.5 to 5 wt .-%, based on the total fertilizer.
  • Further possible ingredients are crop protection agents, insecticides or fungicides, growth regulators or mixtures thereof. Further explanations follow below.
  • the fertilizers can be used, for example, in the form of powders, granules, prills or compactates. However, the fertilizers can also be used in liquid form dissolved in an aqueous medium. In this case, dilute aqueous ammonia can be used as nitrogen fertilizer. Further possible ingredients for fertilizers are described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, 1987, Volume A 10, pages 363 to 401, DE-A 41 28 828, DE-A 19 05 834 and DE-A 196 31 764 ,
  • the general composition of the fertilizers which in the context of the present invention may be single nutrient and / or multi-nutrient fertilizers, for example nitrogen, potassium or phosphorus, may vary within a wide range.
  • a content of 1 to 30 wt .-% of nitrogen preferably 5 to 20 wt .-%), from 1 to 20 wt .-% potassium (preferably 3 to 15 wt .-%) and a content of 1 to 20% by weight of phosphorus (preferably 3 to 10% by weight) is advantageous.
  • the content of microelements is usually in the ppm range, preferably in the range of 1 to 1000 ppm.
  • the fertilizer and the active ingredient of the formula (I) can be administered simultaneously, ie synchronously. However, it is also possible first to apply the fertilizer and then the active ingredient of the formula (I) or first the active ingredient of the formula (I) and then the fertilizer. In the case of non-simultaneous application of the active ingredient of the formula (I) and of the fertilizer, however, the application in functional is carried out in the context of the present invention Context, in particular within a period of generally 24 hours, preferably 18 hours, more preferably 12 hours, especially 6 hours, even more specifically 4 hours, even more particularly within 2 hours. In very particular embodiments of the present invention, the active compounds of the general formula (I) and of the fertilizer according to the invention are used in a time frame of less than 1 hour, preferably less than 30 minutes, more preferably less than 15 minutes.
  • dimensionally stable mixtures for example in the form of rods, granules, tablets, etc., starting from at least one active ingredient to be used according to the invention and at least one fertilizer.
  • the corresponding constituents can be mixed with one another and optionally extruded or the at least one active compound of the formula (I) to be used according to the invention can be applied to the fertilizer.
  • formulation aids may also be used in the dimensionally stable mixtures, such as extenders or pressure-sensitive adhesives, to achieve dimensional stability of the resulting mixture.
  • corresponding mixtures are suitable, in particular for use in the "Home & Garden” sector, ie for a private user or home gardener, who can use the dimensionally stable mixture or the constituents contained therein with a predetermined, clearly defined amount and without special aids ,
  • the mixtures of at least one of the active ingredients to be used according to the invention and the at least one fertilizer may also be liquid, so that-for example, in the case of a professional user in the field of agriculture-the resulting mixture can be applied as a so-called tank solution.
  • the active compounds to be used according to the invention can, if appropriate in combination with fertilizers, preferably be applied to the following plants, the following listing not being restrictive.
  • the forest stock includes trees for the production of wood, pulp, paper and products made from parts of the trees.
  • crops as used herein refers to crops used as plants for the production of food, feed, fuel or for technical purposes.
  • the crops include e.g. the following plant species: turf, vines, cereals, for example wheat, barley, rye, oats, triticale, rice, corn and millet; Beets, for example sugar beets and fodder beets; Fruits, such as pome fruit, stone fruit and soft fruit, such as apples, pears, plums, peaches, almonds, cherries and berries, eg.
  • Particularly suitable target crops are the following plants: bamboo wool, eggplant, turf, pome fruit, stone fruit, berry fruit, corn, wheat, barley, cucumber, tobacco, vines, rice, cereals, pear, beans, soybeans, oilseed rape, tomatoes, peppers, melons , Cabbage, potato and apple.
  • trees are: Abies sp., Eucalyptus sp., Picea sp., Pinus sp., Aesculus sp., Platanus sp., Tilia sp., Acer sp., Tsuga sp., Fraxinus sp., Sorbus sp., Betula sp., Crataegus sp., Ulmus sp., Quercus sp., Fagus sp., Salix sp., Populus sp.
  • Particularly preferred trees can be called: horse chestnut, sycamore, linden, maple tree.
  • the present invention may also be practiced on any turfgrasses, including "cool season turfgrasses” and “warm season turfgrasses.”
  • cold season turf species are blue grasses (Poa spp.), Such as “Kentucky bluegrass” (Poa pratensis L.), “rough bluegrass” (Poa trivialis L.), “Canada bluegrass” (Poa compressa L.), “annual bluegrass” (Poa annua L.), “upland bluegrass” (Poa glaucantha Gaudin), "wood bluegrass” (Poa nemoralis L.) and “bulbous bluegrass” ⁇ Poa bulbosa L.); ostrich grasses ("Bentgrass”, Agrostis spp.), such as “creeping bentgrass” (Agrostis palustris Huds.), “ colonial bentgrass "
  • Lolium ryegrasses, Lolium spp.
  • Examples of other "cool season turfgrasses” are “beachgrass” (Ammophila breviligulata Fern.), “Smooth bromegrass” (Bromus inermis leyss.), Reeds ("cattails") such as “Timothy” (Phleum pratense L.), “sand cattail “(Phleum subulatum L.),” orchardgrass “(Dactylis glomerata L.),” weeping alkaligrass “(Puccinellia distans (L.) Pari.) And” crested dog's-tail “(Cynosurus cristatus L.).
  • Examples of “warm season turfgrasses” are “Bermudagrass” (Cynodon spp., LC Rieh), “zoysiagrass” (Zoysia spp. Willd.), “St. Augustine grass” (Stenotaphrum secundatum Walt Kuntze), “centipedegrass” (Eremochloa ophiuroides Munrohack.), “Carpetgrass” (Axonopus afflinis chase), “Bahia grass” (Paspalum notatum flügge), “Kikuyugrass” (Pennisetum clandestinum detergent, ex Chiov.), “Buffalo grass” (Buchloe daetyloids (Nutt.) Engelm.) , “Blue gramma” (Bouteloua gracilis (HBK) lag.
  • the active compounds of the formula (I) and their compositions are suitable for controlling animal pests in the hygiene sector.
  • the invention can be used in household, hygiene and storage protection, especially for controlling insects, arachnids and mites, which occur in enclosed spaces, such as apartments, factory buildings, offices, vehicle cabins.
  • the active compounds or compositions are used alone or in combination with other active ingredients and / or adjuvants.
  • they are used in household insecticide products.
  • the active compounds according to the invention are active against sensitive and resistant species as well as against all stages of development.
  • pests of the class Arachnida from the orders Scorpiones, Araneae and Opiliones, from the classes Chilopoda and Diplopoda, from the class Insecta the order Blattodea, from the orders Coleoptera, Dermaptera, Diptera, Heteroptera, Hymenoptera, Isoptera, Lepidoptera, Phthiraptera, Psocoptera, Saltatoria or Orthoptera, Siphonaptera and Zygentoma and from the class Malacostraca the order Isopoda.
  • Application is for example in aerosols, non-pressurized sprays, e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cushions and moth gels, as granules or dusts, in litter or bait stations.
  • Pump and atomizer sprays e.g. Pump and atomizer sprays, fog machines, foggers, foams, gels, evaporator products with cellulose or plastic evaporator plates, liquid evaporators, gel and membrane evaporators, propeller-driven evaporators, energy-less or passive evaporation systems, moth papers, moth cushions and moth gels, as granules or dusts, in litter or bait stations.
  • the active ingredients of formula (I) may be used to combat a variety of pests including, for example, noxious sucking insects, biting insects and other plant parasitic pests, storage pests, pests that destroy industrial materials, and use and include sanitary pests including animal health parasites combat such as their extinction and eradication.
  • the present invention thus also includes a method of controlling pests.
  • the active compounds according to the invention are active against animal parasites, in particular ectoparasites or endoparasites.
  • animal parasites in particular ectoparasites or endoparasites.
  • endoparasite includes in particular helminths and protozoa such as coccidia.
  • Ectoparasites are typically and preferably arthropods, especially insects and acarids.
  • the compounds of the present invention having favorable toxicity to warm-blooded animals are useful in the control of parasites found in livestock and livestock in livestock, breeding animals, zoo animals, laboratory animals, experimental animals and domestic animals. They are effective against all or individual developmental stages of parasites.
  • Farm animals include, for example, mammals such as sheep, goats, horses, donkeys, camels, buffaloes, rabbits, reindeer, fallow deer, and especially cattle and pigs; or poultry such as turkeys, ducks, geese and, in particular, chickens; or fish or crustaceans, eg in aquaculture; or possibly insects such as bees.
  • the domestic animals include, for example, mammals such as hamsters, guinea pigs, rats, mice, chinchillas, ferrets or, in particular, dogs, cats; Caged birds; reptiles; Amphibians or aquarium fish.
  • the compounds of the invention are administered to mammals.
  • the compounds according to the invention are administered to birds, namely caged birds or, in particular, poultry.
  • control means that the agents can effectively reduce the incidence of the particular parasite in an animal infected with such parasites to a harmless extent. More specifically, “combat” in the present context means that the active ingredient can kill the respective parasite, prevent its growth or prevent its replication.
  • arthropods include, but are not limited to, the order Anoplurida, for example Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp .; from the order Mallophagida and the suborders Amblycerina and Ischnocerina, for example Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp .; from the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus
  • the following Akari are exemplary, but without limitation, from the subclass Akari (Acarina) and the order Metastigmata, for example from the family Argasidae, such as Argas spp., Omithodorus spp., Otobius spp., Off the family Ixodidae, such as Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp. Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp.
  • Argasidae such as Argas spp., Omithodorus spp., Otobius spp.
  • Ixodidae such as Ixodes spp., Amblyomma spp., Rhipicephalus (Boophilus) spp. Dermacentor spp., Haemophys
  • Examples of parasitic protozoa include, but are not limited to: Mastigophora (Flagellata), such as Trypanosomatidae, for example Trypanosoma b. brucei, T.b. gambiense, T.b. rhodesiense, T. congolense, T. cruzi, T. evansi, T. equinum, T. lewisi, T. percae, T. simiae, T. vivax, Leishmania brasiliensis, L. donovani, L. tropica, such as Trichomonadidae, for example Giardia lamblia, G. canis.
  • Mastigophora Flagellata
  • Trypanosomatidae for example Trypanosoma b. brucei, T.b. gambiense, T.b. rhodesiense, T. congolense, T. cruzi, T. evansi
  • Sarcomastigophora such as Entamoebidae, for example Entamoeba histolytica, Hartmanellidae, for example Acanthamoeba sp., Harmanella sp.
  • Apicomplexa such as Eimeridae, for example Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E. brunetti, E canis, E. chinchillae, E. clupearum, E. columbae, E. contorta, E. crandalis, E. debliecki, E. dispersa, E. ellipsoidales, E. falciformis, E. faurei, E. flavescens, E.
  • Eimeridae for example Eimeria acervulina, E. adenoides, E. alabamensis, E. anatis, E. anserina, E. arloingi, E. ashata, E. auburnensis, E. bovis, E.
  • gallopavonis E. hagani, E. intestinalis, E. iroquoina, E. irresidua, E. labbeana, E. leucarti, E. magna, E. maxima, E.media, E. meleagridis, E. meleagrimitis, E. mitis, E necatrix, E. ninakohlyakimovae, E.ovis, E.parva, E.pavonis, E. perforans, E. phasani, E. piriformis, E. praecox, E. residua, E. scabra, E.spec, E. sitesdai E. suis, E. tenella, E.
  • S. ovicanis such as S. ovifelis, S. neurona, S. spec.
  • S. suihominis such as Leucozoidae, for example Leucocytozoon simondi, such as Plasmodiidae, for example Plasmodium berghei, P. falciparum, P. malariae, P. ovale, P. vivax, P. spec., such as piroplasmea, for example Babesia argentina, B. bovis, B. canis, B. spec., Theileria parva, Theileria spec, such as Adeleina, for example Hepatozoon canis, H. spec.
  • pathogenic endoparasites examples include flatworms (e.g., Monogenea, Cestodes, and Trematodes), roundworms, Acanthocephala, and Pentastoma.
  • Other helminths include, but are not limited to: Monogenea: e.g., Gyrodactylus spp., Dactylogyrus spp., Polystoma spp.
  • Cestodes from the order Pseudophyllidea for example: Diphyllobothrium spp., Spirometra spp., Schistocephalus spp., Ligula spp., Bothridium spp., Diplogonoporus spp.
  • Taenia spp. Echinococcus spp., Hydatigera spp., Davainea spp., Raillietina spp., Hymenolepis spp., Echinolepis spp., Echinocotyle spp., Diorchis spp., Dipylidium spp., Joyeuxiella spp., Diplopylidium spp.
  • Trematodes from the genus Digenea, for example: Diplostomum spp., Posthodiplostomum spp., Schistosoma spp., Trichobilharzia spp., Ornithobilharzia spp., Austrobilharzia spp., Gigantobilharzia spp., Leucochloridium spp., Brachylaima spp., Echinostoma spp., Echinoparyphium spp., Echinochasmus spp., Hypoderaeum spp., Fasciola spp., Fasciolides spp., Fasciolopsis spp., Cyclocoelum spp., Typhlocoelum spp., Paramphistomum spp., Calicophoron spp., Cotylophoron spp., Gigantocoty
  • Roundworms Trichinellida for example: Trichuris spp., Capillaria spp., Trichomosoides spp., Trichinella spp.
  • Tylenchida Micronema spp., Strongyloides spp.
  • Rhabditina Strongylus spp., Triodontophorus spp., Oesophagodontus spp., Trichonema spp., Gyalocephalus spp., Cylindropharynx spp., Poteriostomum spp., Cyclococercus spp., Cylicostephanus spp., Oesophagostomum spp., Chabertia spp.
  • Stephanurus spp. Ancylostoma spp., Uncinaria spp., Bunostomum spp., Globocephalus spp., Syngamus spp., Cyathostoma spp., Metastrongylus spp., Dictyocaulus spp., Muellerius spp., Protostrongylus spp., Neostrongylus spp., Cystocaulus spp., Pneumostrongylus spp., Spicocaulus spp., Elaphostrongylus spp.
  • Parelaphostrongylus spp. Crenosoma spp., Paracrenosoma spp., Angiostrongylus spp., Aelurostrongylus spp., Filaroides spp., Parafilaroides spp., Trichostrongylus spp., Haemonchus spp., Ostertagia spp., Marshallagia spp. Cooperia spp., Nematodirus spp., Hyostrongylus spp., Obeliscoides spp., Amidostomum spp., Ollulanus S PP-
  • Acanthocephala from the order Oligacanthorhynchida, for example: Macracanthorhynchus spp., Prosthenorchis spp .; from the order Polymorphida for example: Filicollis spp .; from the order Moniliformida for example: Moniliformis spp.,
  • Echinorhynchida for example Acanthocephalus spp., Echinorhynchus spp., Leptorhynchoides spp.
  • Pentastoma from the order Porocephalida for example Linguatula spp.
  • the administration of the active compounds according to the invention is carried out by methods well known in the art, such as enteral, parenteral, dermal or nasal in the form of suitable preparations.
  • the administration can be prophylactic or therapeutic.
  • one embodiment of the present invention relates to compounds of the invention for use as a medicament.
  • compounds of the invention for use as antiendoparasitic agents in particular a helminthicide or antiprotozoal agent.
  • compounds of the invention for use as Antiendoparasitikum in particular a helminthicide or antiprotozoal agents, for example in livestock, in animal husbandry, in stables and in the hygiene sector.
  • compounds of the invention for use as an antiectica, in particular an arthropodicide such as an insecticide or an acaricide.
  • compounds according to the invention for use as anti-topazarasitic in particular an arthropodicide such as an insecticide or acaricide, for example in animal husbandry, in animal husbandry, in stables, in the hygiene sector.
  • the active compounds of the formula (I) and compositions containing them are suitable for protecting industrial materials against attack or destruction by insects, for example from the order Coleoptera, Hymenoptera, Isoptera, Lepidoptera, Psocoptera and Zygentoma.
  • Technical materials in the present context are non-living materials, such as preferably plastics, adhesives, glues, papers and cardboard, leather, wood, wood processing products and paints. The application of the invention for the protection of wood is particularly preferred.
  • the compositions or compositions according to the invention contain at least one further insecticide and / or at least one fungicide.
  • this composition of the invention is a ready-to-use composition, that is, it can be applied to the corresponding material without further changes.
  • insecticides or as fungicides the above-mentioned in question.
  • the active compounds and compositions according to the invention can be used to protect against fouling of objects, in particular hulls, sieves, nets, structures, wharfs and signal systems, which come into contact with seawater or brackish water.
  • the active compounds and compositions according to the invention can be used alone or in combinations with other active substances as antifouling agents.
  • Step 2 5- [6- (Pyrimidin-2-yl) pyridin-2-yl] -2,5'-bi-1,3-thiazole
  • reaction solution was then added to a preheated to 100 ° C reaction block and stirred for 18 hours at this temperature.
  • the reaction mixture was poured onto half-concentrated sodium bicarbonate solution and extracted twice with ethyl acetate (EtOAc). The combined organic phases were washed with saturated sodium chloride solution, dried over sodium sulfate, filtered and concentrated.
  • EtOAc ethyl acetate
  • the crude product was purified by column chromatography on silica gel (eluent: EtOAc / n-heptane). 72.2 mg (purity 91%, 11.2% of theory) of 5- [6- (pyrimidin-2-yl) pyridin-2-yl] -2,5'-bi- 1,3- isolated thiazole.
  • Example B 2- ⁇ 6- [1- (1,3-thiazol-2-yl) -1H-pyrazol-4-yl] pyridin-2-yl ⁇ pyrimidine
  • Step 3 2- [6- (1H-Pyrazol-4-yl) pyridin-2-yl] pyrimidine
  • Example C 4- ⁇ 5- [6- (Pyrimidin-2-yl) pyridin-2-yl] -1,3-thiazol-2-yl ⁇ pyridazine
  • Step 1 (E) -N, N-Dimethyl-2- (1,3-thiazol-2-yl) ethenamine
  • Step 3 2- ⁇ 6- [2- (1-Methyl-1H-pyrazol-4-yl) -1,3-thiazol-5-yl] pyridin-2-yl ⁇ pyrimidine
  • Step 2 N - [(2E) -3- (Dimethylamino) -2- ⁇ 5- [6- (pyrimidin-2-yl) pyridin-2-yl] -1,3-thiazol-2-yl ⁇ propyl 2-en-1-ylidene] -N-methylmethanaminium hexafluorophosphate
  • Step 3 2- ⁇ 6- [2- (1H-Pyrazol-4-yl) -1,3-thiazol-5-yl] pyridin-2-yl ⁇ pyrimidine
  • dimethylformamide emulsifier 1.5 parts by weight of dimethylformamide emulsifier: 0.5 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with emulsifier-containing water to the desired concentration.
  • Chinese cabbage leaf discs (Brassica pekinensis) infested with all stages of the green peach aphid ⁇ Myzus persicae) are sprayed with an active compound preparation of the desired concentration.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
EP13783606.0A 2012-10-31 2013-10-29 Neue heterocylische verbindungen als schädlingsbekämpfungsmittel Withdrawn EP2914587A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13783606.0A EP2914587A1 (de) 2012-10-31 2013-10-29 Neue heterocylische verbindungen als schädlingsbekämpfungsmittel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12190698 2012-10-31
EP13783606.0A EP2914587A1 (de) 2012-10-31 2013-10-29 Neue heterocylische verbindungen als schädlingsbekämpfungsmittel
PCT/EP2013/072636 WO2014067962A1 (de) 2012-10-31 2013-10-29 Neue heterocylische verbindungen als schädlingsbekämpfungsmittel

Publications (1)

Publication Number Publication Date
EP2914587A1 true EP2914587A1 (de) 2015-09-09

Family

ID=47172433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13783606.0A Withdrawn EP2914587A1 (de) 2012-10-31 2013-10-29 Neue heterocylische verbindungen als schädlingsbekämpfungsmittel

Country Status (6)

Country Link
US (1) US20150284380A1 (pt)
EP (1) EP2914587A1 (pt)
JP (1) JP2016503395A (pt)
CN (1) CN104884449A (pt)
BR (1) BR112015009751A2 (pt)
WO (1) WO2014067962A1 (pt)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107629020B (zh) * 2017-09-28 2020-09-04 湖北科技学院 一种4h-1,2,4-噁二嗪-5(6h)-酮类化合物及其合成方法

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403710A (en) 1944-07-21 1946-07-09 American Cyanamid Co 2-brompyrazine and method of preparing same
US2391745A (en) 1944-08-08 1945-12-25 American Cyanamid Co Chlorination of pyrazine
NL261797A (pt) * 1960-03-01
LU43648A1 (pt) 1962-05-16 1963-08-28
NL298756A (pt) * 1962-10-13
DE1905834C3 (de) 1969-02-06 1972-11-09 Basf Ag Verfahren zur Vermeidung des Staubens und Zusammenbackens von Salzen bzw.Duengemitteln
BE790569A (fr) 1971-10-27 1973-04-26 Syntex Corp Agents cardiovasculaires a base de thiazoles
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
JPS5777681A (en) 1980-10-10 1982-05-15 Suntory Ltd Plant growth regulator comprising 4-hydroxyisoxazol and its related compound
US4824859A (en) 1983-05-21 1989-04-25 Fisons Plc. Pyrazoline compounds compositions and use
AU7301587A (en) * 1986-04-30 1987-11-24 Fmc Corporation Photoactive azole pesticides
US4812464A (en) * 1986-12-18 1989-03-14 Ciba-Geigy Corporation Pesticidal 2-pyridyl-4,5-dihydro-1,3,4-thiadiazoles
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
JPH07110867B2 (ja) 1987-04-04 1995-11-29 株式会社トクヤマ ハロゲン化複素環式化合物の製造方法
EP0313512B1 (de) 1987-08-21 1992-11-25 Ciba-Geigy Ag Benzothiadiazole und ihre Verwendung in Verfahren und Mitteln gegen Pflanzenkrankheiten
US4959363A (en) 1989-06-23 1990-09-25 Sterling Drug Inc. Quinolonecarboxamide compounds, their preparation and use as antivirals.
GB9012974D0 (en) 1990-06-11 1990-08-01 Ici Plc Chemical process
WO1992000964A1 (en) 1990-07-05 1992-01-23 Nippon Soda Co., Ltd. Amine derivative
DE4128828A1 (de) 1991-08-30 1993-03-04 Basf Ag Ammonium- oder harnstoffhaltige duengemittel und verfahren zu ihrer herstellung
US5608056A (en) 1992-04-13 1997-03-04 Fujisawa Pharmaceutical Co., Ltd. Substituted 3-pyrrolidinylthio-carbapenems as antimicrobial agents
JPH07138258A (ja) 1993-11-16 1995-05-30 Taiho Yakuhin Kogyo Kk チアゾリジンジオン誘導体又はその塩
PL181323B1 (pl) 1994-02-18 2001-07-31 Boehringer Ingelheim Pharma 2-heteroarylo-5,11-dihydro-6H-dipirydo[3,2-b:2’,3'-e][1,4] diazepinyi ich zastosowanie w zapobieganiu i leczeniu zakazen HIV PL PL PL
US5789584A (en) 1994-04-01 1998-08-04 Microcide Pharmaceuticals, Inc. Substituted-pyridinyl cephalosporin antibiotics active against methicillin resistant bacteria
US5521173A (en) 1995-01-17 1996-05-28 American Home Products Corporation Tricyclic benzazepine vasopressin antagonists
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
DE19631764A1 (de) 1996-08-06 1998-02-12 Basf Ag Neue Nitrifikationsinhibitoren sowie die Verwendung von Polysäuren zur Behandlung von Mineraldüngemitteln die einen Nitrifikationsinhibitor enthalten
WO1998056785A1 (fr) * 1997-06-12 1998-12-17 Sumitomo Pharmaceuticals Co., Ltd. Derives de pyrazole
SK17482000A3 (sk) 1998-05-20 2005-03-04 Eli Lilly And Company Antivírusové zlúčeniny, spôsob inhibície vírusov a farmaceutický prípravok
BR9915534B1 (pt) * 1998-10-23 2011-04-19 1-piridil substituìdo)-1,2,4-triazóis inseticidas.
WO2000024745A1 (en) 1998-10-23 2000-05-04 Pfizer Limited PYRAZOLOPYRIMIDINONE cGMP PDE5 INHIBITORS FOR THE TREATMENT OF SEXUAL DYSFUNCTION
US6680401B1 (en) 1998-11-06 2004-01-20 Commonwealth Scientific And Industrial Research Organisation Hydroboronation process
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
US6599917B1 (en) 1999-09-28 2003-07-29 Eisai Co., Ltd. Quinuclidine compounds and drugs containing the same as the active ingredient
SK6492002A3 (en) 1999-11-11 2003-09-11 Lilly Co Eli Oncolytic combinations for the treatment of cancer
US6153752A (en) 2000-01-28 2000-11-28 Creanova, Inc. Process for preparing heterocycles
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
JP4328527B2 (ja) 2001-02-02 2009-09-09 ブリストル−マイヤーズ スクイブ カンパニー 置換アザインドールオキソアセチックピペラジン誘導体の組成物と抗ウイルス活性
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
JP2004531499A (ja) 2001-03-23 2004-10-14 メルク シャープ エンド ドーム リミテッド Gaba受容体用リガンドとしてのイミダゾ−ピリミジン誘導体
AU2002304109B2 (en) 2001-05-31 2005-07-21 Nihon Nohyaku Co., Ltd. Substituted anilide derivatives, intermediates thereof, agricultural and horticultural chemicals, and their usage
IL160327A0 (en) * 2001-08-13 2004-07-25 Janssen Pharmaceutica Nv 2,4,5-trisubstituted thiazolyl derivatives and their antiinflammatory activity
US7253190B2 (en) 2001-10-04 2007-08-07 Merck & Co., Inc. Heteroaryl substituted tetrazole modulators of metabotrophic glutamate receptor-5
AU2002359714B2 (en) * 2001-12-18 2006-12-21 Merck Sharp & Dohme Corp. Heteroaryl substituted pyrazole modulators of metabotropic glutamate receptor-5
JP4493341B2 (ja) 2002-03-12 2010-06-30 メルク・シャープ・エンド・ドーム・コーポレイション 代謝型グルタメート受容体−5の二アリール置換テトラゾールモジュレータ
IL165043A0 (en) 2002-05-17 2005-12-18 Tibotec Pharm Ltd broadspectrum substituted benzisoxazole sulfonamide hiv protease inhibitors
US7202367B2 (en) 2002-05-31 2007-04-10 Rhodia Chimie Process for arylating or vinylating or alkynating a nucleophilic compound
GB0213715D0 (en) 2002-06-14 2002-07-24 Syngenta Ltd Chemical compounds
JP2006520397A (ja) 2003-03-14 2006-09-07 アストラゼネカ アクチボラグ 新規融合トリアゾロン類及びその使用
US20060194807A1 (en) 2003-04-03 2006-08-31 Cosford Nicholas D P Di-aryl substituted pyrazole modulators of metabotropic glutamate receptor-5
TWI312272B (en) 2003-05-12 2009-07-21 Sumitomo Chemical Co Pyrimidine compound and pests controlling composition containing the same
PL1656370T3 (pl) 2003-06-03 2013-03-29 Melinta Subsidiary Corp Biarylowe związki heterocykliczne oraz sposoby ich wytwarzania i stosowania
AU2004255920B2 (en) 2003-07-08 2008-05-15 Astrazeneca Ab Spiro [1-azabicyclo [2.2.2] octan-3,5'-oxazolidin]-2'-one derivatives with affinity to the alpha7 nicotinic acetylcholine receptor
UA79404C2 (en) 2003-10-02 2007-06-11 Basf Ag 2-cyanobenzenesulfonamide for controlling pests
CA2550948A1 (en) 2003-12-22 2005-07-14 Sb Pharmco Puerto Rico Inc. Crf receptor antagonists and methods relating thereto
GB0329744D0 (en) 2003-12-23 2004-01-28 Koninkl Philips Electronics Nv A beverage maker incorporating multiple beverage collection chambers
JP2005223238A (ja) 2004-02-09 2005-08-18 Konica Minolta Holdings Inc 有機半導体材料及びそれを用いた有機薄膜トランジスタ、電界効果有機薄膜トランジスタ並びにそれらを用いたスイッチング素子
PL2256112T3 (pl) 2004-02-18 2016-06-30 Ishihara Sangyo Kaisha Antraniloamidy, sposób ich wytwarzania oraz pestycydy je zawierające
KR101197482B1 (ko) 2004-03-05 2012-11-09 닛산 가가쿠 고교 가부시키 가이샤 이속사졸린 치환 벤즈아미드 화합물 및 유해생물 방제제
DE102004037506A1 (de) 2004-08-03 2006-02-23 Bayer Cropscience Ag Methode zur Verbesserung der Pflanzenverträglichkeit gegenüber Glyphosate
WO2006043635A1 (ja) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-トリアゾリルフェニルスルフィド誘導体及びそれを有効成分として含有する殺虫・殺ダニ・殺線虫剤
DE102005008021A1 (de) 2005-02-22 2006-08-24 Bayer Cropscience Ag Spiroketal-substituierte cyclische Ketoenole
BRPI0607707A2 (pt) 2005-03-24 2010-03-16 Basf Ag método para a proteção de sementes contra insetos do solo e dos brotos e raìzes das mudas contra insetos do solo e foliares, uso dos compostos, e, semente
DE102005022994A1 (de) 2005-05-19 2006-11-30 Bayer Cropscience Ag Methode zur Verbesserung des Pflanzenwachstums und der Steigerung der Widerstandsfähigkeit gegen bodenbürtige Schadpilze in Pflanzen
EP1731037A1 (en) 2005-06-04 2006-12-13 Bayer CropScience AG Increase of stress tolerance by application of neonicotinoids on plants engineered to be stress tolerant
JP2009506127A (ja) 2005-08-31 2009-02-12 バイエル・ヘルスケア・エルエルシー 糖尿病の処置に有用なアニリノピラゾール誘導体
DE102005045174A1 (de) 2005-09-21 2007-03-22 Bayer Cropscience Ag Steigerung der Pathogenabwehr in Pflanzen
JP2009510198A (ja) * 2005-09-26 2009-03-12 インヴィトロジェン コーポレーション 紫色レーザー励起性色素及びその使用方法
JP2007145806A (ja) 2005-09-27 2007-06-14 Sagami Chem Res Center オキサゾール誘導体、それらの製造方法及びそれらを用いたオキサゾリル基導入方法
BRPI0616839A2 (pt) 2005-10-06 2013-01-01 Nippon Soda Co agentes para controle de praga, e, compostos de amina cìclicos
US7947707B2 (en) * 2005-10-07 2011-05-24 Kissei Pharmaceutical Co., Ltd. Nitrogenated heterocyclic compound and pharmaceutical composition comprising the same
EP1937691A1 (en) 2005-10-21 2008-07-02 Dow Agrosciences LLC Thieno-pyrimidine compounds having fungicidal activity
PE20070847A1 (es) 2005-11-21 2007-09-21 Basf Ag Compuestos derivados de 3-amino-1,2-bencisotiazol como insecticidas
WO2007067836A2 (en) 2005-12-05 2007-06-14 Boehringer Ingelheim International Gmbh Substituted pyrazole compounds useful as soluble epoxide hydrolase inhibitors
TW200803740A (en) 2005-12-16 2008-01-16 Du Pont 5-aryl isoxazolines for controlling invertebrate pests
EP1997820A4 (en) 2006-03-09 2009-03-04 Univ East China Science & Tech METHOD OF PREPARATION AND USE OF COMPOUNDS HAVING BIOCIDAL ACTION
DE102006015467A1 (de) 2006-03-31 2007-10-04 Bayer Cropscience Ag Substituierte Enaminocarbonylverbindungen
DE102006015468A1 (de) 2006-03-31 2007-10-04 Bayer Cropscience Ag Substituierte Enaminocarbonylverbindungen
DE102006015470A1 (de) 2006-03-31 2007-10-04 Bayer Cropscience Ag Substituierte Enaminocarbonylverbindungen
TWI381811B (zh) 2006-06-23 2013-01-11 Dow Agrosciences Llc 用以防治可抵抗一般殺蟲劑之昆蟲的方法
US20080090834A1 (en) 2006-07-06 2008-04-17 Pfizer Inc Selective azole pde10a inhibitor compounds
US8217177B2 (en) 2006-07-14 2012-07-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
DE102006033572A1 (de) 2006-07-20 2008-01-24 Bayer Cropscience Ag N'-Cyano-N-halogenalkyl-imidamid Derivate
WO2008028903A2 (en) 2006-09-04 2008-03-13 Neurosearch A/S Pharmaceutical combinations of a nicotine receptor modulator and a cognitive enhancer
CA2668371A1 (en) 2006-11-02 2008-05-15 Merck & Co., Inc. Heterocyclyl-substituted anti-hypercholesterolemic compounds
US8202890B2 (en) 2006-11-30 2012-06-19 Meiji Seika Pharma Co., Ltd. Pest control agent
DE102006057036A1 (de) 2006-12-04 2008-06-05 Bayer Cropscience Ag Biphenylsubstituierte spirocyclische Ketoenole
AU2008205642B2 (en) 2007-01-12 2013-06-06 Msd K.K. Spirochromanon derivatives
JP5511393B2 (ja) 2007-03-01 2014-06-04 ビーエーエスエフ ソシエタス・ヨーロピア アミノチアゾリン化合物を含む殺有害生物活性混合物
EA200971077A1 (ru) 2007-05-21 2010-04-30 ЭсДжиЭкс ФАРМАСЬЮТИКАЛЗ, ИНК. Гетероциклические модуляторы киназы
TW200914437A (en) 2007-06-20 2009-04-01 Ironwood Pharmaceuticals Inc FAAH inhibitors
GB0720126D0 (en) 2007-10-15 2007-11-28 Syngenta Participations Ag Chemical compounds
CN101903355B (zh) 2007-12-17 2014-05-14 霍夫曼-拉罗奇有限公司 咪唑取代的芳基酰胺
US8343966B2 (en) 2008-01-11 2013-01-01 Novartis Ag Organic compounds
WO2009114313A2 (en) 2008-03-14 2009-09-17 International Partnership For Microbicides Methods for synthesizing antiviral compounds
WO2009123241A1 (ja) 2008-03-31 2009-10-08 株式会社レナサイエンス プラスミノーゲンアクチベーターインヒビター-1阻害剤
EP2725023A1 (de) 2008-06-13 2014-04-30 Bayer CropScience AG Neue heteroaromatische Amide als Schädlingsbekämpfungsmittel
WO2010005692A2 (en) 2008-06-16 2010-01-14 E. I. Du Pont De Nemours And Company Insecticidal cyclic carbonyl amidines
WO2009155527A2 (en) 2008-06-19 2009-12-23 Progenics Pharmaceuticals, Inc. Phosphatidylinositol 3 kinase inhibitors
JP5268461B2 (ja) 2008-07-14 2013-08-21 Meiji Seikaファルマ株式会社 Pf1364物質、その製造方法、生産菌株、及び、それを有効成分とする農園芸用殺虫剤
EP2583557B1 (de) 2008-07-17 2016-01-13 Bayer CropScience AG Heterocyclische Verbindungen als Schädlingsbekämpfungsmittel
WO2010018481A1 (en) 2008-08-13 2010-02-18 Pfizer Inc. 2-amino pyrimidine compounds as potent hsp-90 inhibitors
CA2735392A1 (en) 2008-08-15 2010-02-18 F. Hoffmann-La Roche Ag Bi-aryl aminotetralines
KR20160148046A (ko) 2008-12-18 2016-12-23 바이엘 인텔렉쳐 프로퍼티 게엠베하 살해충제로서의 테트라졸 치환된 안트라닐산 아미드
US8436008B2 (en) 2008-12-22 2013-05-07 Incyte Corporation Substituted heterocyclic compounds
WO2010074747A1 (en) 2008-12-26 2010-07-01 Dow Agrosciences, Llc Stable insecticide compositions and methods for producing same
RU2518251C2 (ru) 2008-12-26 2014-06-10 ДАУ АГРОСАЙЕНСИЗ, ЭлЭлСи Стабильная пестицидная композиция на основе сульфоксимина и способ борьбы с насекомыми
JOP20190231A1 (ar) 2009-01-15 2017-06-16 Incyte Corp طرق لاصلاح مثبطات انزيم jak و المركبات الوسيطة المتعلقة به
ES2453474T3 (es) 2009-02-06 2014-04-07 Nippon Shinyaku Co., Ltd. Derivados de aminopirazina y medicamento correspondiente
JP2012131708A (ja) 2009-04-28 2012-07-12 Nissan Chem Ind Ltd 4位置換ピリダジノン化合物及びp2x7受容体阻害剤
EP2266973A1 (de) * 2009-05-29 2010-12-29 Bayer CropScience AG Pyrazinylpyrazole
US9040568B2 (en) 2009-05-29 2015-05-26 Abbvie Inc. Pharmaceutical compositions for the treatment of pain
US20120157451A1 (en) 2009-08-28 2012-06-21 Genentech, Inc Raf inhibitor compounds and methods of use thereof
ES2533798T3 (es) * 2009-10-12 2015-04-14 Bayer Cropscience Ag 1-(pirid-3-il)-pirazol y 1-(pirimid-5-il)- pirazol como agentes para combatir parásitos
CN102574833B (zh) 2009-10-12 2014-08-20 拜尔农作物科学股份公司 用作杀虫剂的酰胺和硫代酰胺
BR112012009374A2 (pt) 2009-10-23 2015-09-22 Sumitomo Chemical Co composição de controle de peste
JP5868957B2 (ja) * 2010-05-05 2016-02-24 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 殺虫剤としてのチアゾール誘導体
AU2011273694A1 (en) 2010-06-28 2013-02-07 Bayer Intellectual Property Gmbh Heteroaryl-substituted pyridine compounds for use as pesticides
DK2588465T3 (en) 2010-06-30 2017-05-01 Ironwood Pharmaceuticals Inc SGC stimulators
MX337711B (es) 2010-08-27 2016-03-15 Calcimedica Inc Compuestos que modulan el calcio intracelular.
CN101935291B (zh) 2010-09-13 2013-05-01 中化蓝天集团有限公司 一种含氰基的邻苯二甲酰胺类化合物、制备方法和作为农用化学品杀虫剂的用途
JP5855109B2 (ja) 2010-09-20 2016-02-09 フォーラム・ファーマシューティカルズ・インコーポレイテッドForum Pharmaceuticals Inc. イミダゾトリアジノン化合物
CN102532141A (zh) 2010-12-08 2012-07-04 中国科学院上海药物研究所 [1,2,4]三唑并[4,3-b][1,2,4]三嗪类化合物、其制备方法和用途
WO2012076704A2 (en) * 2010-12-10 2012-06-14 Basf Se Pyrazole compounds for controlling invertebrate pests
CN102057925B (zh) 2011-01-21 2013-04-10 陕西上格之路生物科学有限公司 一种含噻虫酰胺和生物源类杀虫剂的杀虫组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014067962A1 *

Also Published As

Publication number Publication date
JP2016503395A (ja) 2016-02-04
BR112015009751A2 (pt) 2017-07-11
US20150284380A1 (en) 2015-10-08
CN104884449A (zh) 2015-09-02
WO2014067962A1 (de) 2014-05-08

Similar Documents

Publication Publication Date Title
US10435374B2 (en) Heterocyclic compounds as pesticides
EP3484877B1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
US10364243B2 (en) 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
EP2999338B1 (de) Bekannte und neue heterocyclische verbindungen als schädlingsbekämpfungsmittel
EP3227274B1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
WO2016087368A1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
EP3019481B1 (de) Sechsgliedrige c-n-verknüpfte arylsulfid- und arylsulfoxid- derivate als schädlingsbekämpfungsmittel
MX2015001897A (es) Azaindolcarboxamidas y azaindoltiocarboxamidas como insecticidas y acaricidas.
WO2016087363A1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
WO2015135843A1 (de) Heterocylische verbindungen als schädlingsbekämpfungsmittel
EP3152216A1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
EP3227283A1 (de) Bicyclische verbindungen als schädlingsbekämpfungsmittel
EP3004091A1 (de) Bicyclische arylsulfid- und arylsulfoxid-derivate als schädlingsbekämpfungsmittel
WO2015107133A1 (de) Chinolinderivate als insektizide und akarizide
WO2014067962A1 (de) Neue heterocylische verbindungen als schädlingsbekämpfungsmittel
WO2014060381A1 (de) Heterocyclische verbindungen als schädlingsbekämpfungsmittel
EP3107896A1 (de) Indol- und benzimidazolcarbonsäureamide als insektizide und akarizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151222