EP2913399B1 - Rna-aufbereitungsverfahren - Google Patents
Rna-aufbereitungsverfahren Download PDFInfo
- Publication number
- EP2913399B1 EP2913399B1 EP13848975.2A EP13848975A EP2913399B1 EP 2913399 B1 EP2913399 B1 EP 2913399B1 EP 13848975 A EP13848975 A EP 13848975A EP 2913399 B1 EP2913399 B1 EP 2913399B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rna
- reagent
- rna extraction
- extraction
- pcr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 62
- 238000002123 RNA extraction Methods 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 42
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 30
- 239000012472 biological sample Substances 0.000 claims description 28
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 26
- 238000006911 enzymatic reaction Methods 0.000 claims description 25
- 239000004094 surface-active agent Substances 0.000 claims description 25
- -1 alkali metal salt Chemical class 0.000 claims description 24
- 229910052783 alkali metal Inorganic materials 0.000 claims description 23
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 claims description 15
- 229960003964 deoxycholic acid Drugs 0.000 claims description 13
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 7
- 238000000746 purification Methods 0.000 claims description 5
- 229910001508 alkali metal halide Inorganic materials 0.000 claims description 4
- 150000008045 alkali metal halides Chemical class 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000010790 dilution Methods 0.000 claims description 3
- 239000012895 dilution Substances 0.000 claims description 3
- 230000000977 initiatory effect Effects 0.000 claims description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 82
- 238000003757 reverse transcription PCR Methods 0.000 description 33
- 235000002639 sodium chloride Nutrition 0.000 description 30
- 150000007523 nucleic acids Chemical class 0.000 description 25
- 108020004707 nucleic acids Proteins 0.000 description 19
- 102000039446 nucleic acids Human genes 0.000 description 19
- 239000012634 fragment Substances 0.000 description 18
- 230000003321 amplification Effects 0.000 description 15
- 238000003199 nucleic acid amplification method Methods 0.000 description 15
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 12
- 238000000246 agarose gel electrophoresis Methods 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 10
- 239000008280 blood Substances 0.000 description 10
- 230000003196 chaotropic effect Effects 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000013614 RNA sample Substances 0.000 description 7
- 102000006382 Ribonucleases Human genes 0.000 description 7
- 108010083644 Ribonucleases Proteins 0.000 description 7
- 208000034953 Twin anemia-polycythemia sequence Diseases 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 239000001110 calcium chloride Substances 0.000 description 6
- 229910001628 calcium chloride Inorganic materials 0.000 description 6
- 229910001629 magnesium chloride Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 6
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 6
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 5
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 239000013504 Triton X-100 Substances 0.000 description 5
- 229920004890 Triton X-100 Polymers 0.000 description 5
- 239000012491 analyte Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Chemical compound [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 239000003223 protective agent Substances 0.000 description 4
- 238000010839 reverse transcription Methods 0.000 description 4
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 102100034343 Integrase Human genes 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 102000035195 Peptidases Human genes 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000012800 visualization Methods 0.000 description 3
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 239000004380 Cholic acid Substances 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000006173 Good's buffer Substances 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 2
- 235000019416 cholic acid Nutrition 0.000 description 2
- 229960002471 cholic acid Drugs 0.000 description 2
- 238000004440 column chromatography Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- 235000019797 dipotassium phosphate Nutrition 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000001215 fluorescent labelling Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000007834 ligase chain reaction Methods 0.000 description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 2
- 235000019799 monosodium phosphate Nutrition 0.000 description 2
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 235000007715 potassium iodide Nutrition 0.000 description 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 2
- 229910052939 potassium sulfate Inorganic materials 0.000 description 2
- 235000011151 potassium sulphates Nutrition 0.000 description 2
- 235000019833 protease Nutrition 0.000 description 2
- 230000002633 protecting effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- 229940102127 rubidium chloride Drugs 0.000 description 2
- AHLATJUETSFVIM-UHFFFAOYSA-M rubidium fluoride Chemical compound [F-].[Rb+] AHLATJUETSFVIM-UHFFFAOYSA-M 0.000 description 2
- WFUBYPSJBBQSOU-UHFFFAOYSA-M rubidium iodide Chemical compound [Rb+].[I-] WFUBYPSJBBQSOU-UHFFFAOYSA-M 0.000 description 2
- 229940016590 sarkosyl Drugs 0.000 description 2
- 108700004121 sarkosyl Proteins 0.000 description 2
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 235000009518 sodium iodide Nutrition 0.000 description 2
- KSAVQLQVUXSOCR-UHFFFAOYSA-M sodium lauroyl sarcosinate Chemical compound [Na+].CCCCCCCCCCCC(=O)N(C)CC([O-])=O KSAVQLQVUXSOCR-UHFFFAOYSA-M 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000001433 sodium tartrate Substances 0.000 description 2
- 229960002167 sodium tartrate Drugs 0.000 description 2
- 235000011004 sodium tartrates Nutrition 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 1
- QZTKDVCDBIDYMD-UHFFFAOYSA-N 2,2'-[(2-amino-2-oxoethyl)imino]diacetic acid Chemical compound NC(=O)CN(CC(O)=O)CC(O)=O QZTKDVCDBIDYMD-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- IDOQDZANRZQBTP-UHFFFAOYSA-N 2-[2-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=CC=C1OCCO IDOQDZANRZQBTP-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- AJTVSSFTXWNIRG-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid Chemical compound OCC[NH+](CCO)CCS([O-])(=O)=O AJTVSSFTXWNIRG-UHFFFAOYSA-N 0.000 description 1
- LVQFQZZGTZFUNF-UHFFFAOYSA-N 2-hydroxy-3-[4-(2-hydroxy-3-sulfonatopropyl)piperazine-1,4-diium-1-yl]propane-1-sulfonate Chemical compound OS(=O)(=O)CC(O)CN1CCN(CC(O)CS(O)(=O)=O)CC1 LVQFQZZGTZFUNF-UHFFFAOYSA-N 0.000 description 1
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 1
- INEWUCPYEUEQTN-UHFFFAOYSA-N 3-(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(O)CNC1CCCCC1 INEWUCPYEUEQTN-UHFFFAOYSA-N 0.000 description 1
- NUFBIAUZAMHTSP-UHFFFAOYSA-N 3-(n-morpholino)-2-hydroxypropanesulfonic acid Chemical compound OS(=O)(=O)CC(O)CN1CCOCC1 NUFBIAUZAMHTSP-UHFFFAOYSA-N 0.000 description 1
- RZQXOGQSPBYUKH-UHFFFAOYSA-N 3-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound OCC(CO)(CO)NCC(O)CS(O)(=O)=O RZQXOGQSPBYUKH-UHFFFAOYSA-N 0.000 description 1
- XCBLFURAFHFFJF-UHFFFAOYSA-N 3-[bis(2-hydroxyethyl)azaniumyl]-2-hydroxypropane-1-sulfonate Chemical compound OCCN(CCO)CC(O)CS(O)(=O)=O XCBLFURAFHFFJF-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- BJGIDOPGWGEGSI-UHFFFAOYSA-N 8-ethoxyoctan-1-ol;methane Chemical compound C.C.CCOCCCCCCCCO BJGIDOPGWGEGSI-UHFFFAOYSA-N 0.000 description 1
- 239000007991 ACES buffer Substances 0.000 description 1
- 239000007988 ADA buffer Substances 0.000 description 1
- 102100027211 Albumin Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 108700016232 Arg(2)-Sar(4)- dermorphin (1-4) Proteins 0.000 description 1
- 239000007992 BES buffer Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000008000 CHES buffer Substances 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108091059596 H3F3A Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 1
- GIZQLVPDAOBAFN-UHFFFAOYSA-N HEPPSO Chemical compound OCCN1CCN(CC(O)CS(O)(=O)=O)CC1 GIZQLVPDAOBAFN-UHFFFAOYSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 102100039236 Histone H3.3 Human genes 0.000 description 1
- 238000007397 LAMP assay Methods 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- FSVCELGFZIQNCK-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)glycine Chemical compound OCCN(CCO)CC(O)=O FSVCELGFZIQNCK-UHFFFAOYSA-N 0.000 description 1
- DBXNUXBLKRLWFA-UHFFFAOYSA-N N-(2-acetamido)-2-aminoethanesulfonic acid Chemical compound NC(=O)CNCCS(O)(=O)=O DBXNUXBLKRLWFA-UHFFFAOYSA-N 0.000 description 1
- MKWKNSIESPFAQN-UHFFFAOYSA-N N-cyclohexyl-2-aminoethanesulfonic acid Chemical compound OS(=O)(=O)CCNC1CCCCC1 MKWKNSIESPFAQN-UHFFFAOYSA-N 0.000 description 1
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 229940122426 Nuclease inhibitor Drugs 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 102000018120 Recombinases Human genes 0.000 description 1
- 108010091086 Recombinases Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101710088729 Single-stranded nucleic acid-binding protein Proteins 0.000 description 1
- 102000039471 Small Nuclear RNA Human genes 0.000 description 1
- 102000042773 Small Nucleolar RNA Human genes 0.000 description 1
- 108020003224 Small Nucleolar RNA Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 239000007994 TES buffer Substances 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004929 Triton X-114 Polymers 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 239000007998 bicine buffer Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- ZOAIGCHJWKDIPJ-UHFFFAOYSA-M caesium acetate Chemical compound [Cs+].CC([O-])=O ZOAIGCHJWKDIPJ-UHFFFAOYSA-M 0.000 description 1
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 159000000006 cesium salts Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 229940119679 deoxyribonucleases Drugs 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108020004418 ribosomal RNA Proteins 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 159000000005 rubidium salts Chemical class 0.000 description 1
- FOGKDYADEBOSPL-UHFFFAOYSA-M rubidium(1+);acetate Chemical compound [Rb+].CC([O-])=O FOGKDYADEBOSPL-UHFFFAOYSA-M 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical class [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
- C07H1/06—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
- C07H1/06—Separation; Purification
- C07H1/08—Separation; Purification from natural products
Definitions
- the present invention relates to a method for extracting undegraded RNA from a biological sample, which makes use of a reagent for RNA extraction containing an alkali metal salt and a surfactant, as further defined in the claims.
- RNA which is one of the targets for genetic testing in these applications, is more unstable than DNA and can be easily degraded by endogenous ribonucleases contained in biological samples or when subjected to high-temperature/alkali treatment.
- high technologies, multi-step procedures, and expensive dedicated devices and reagents for preventing degradation of RNA have been required to prepare RNA.
- Non Patent Literature 1 the acid guanidium-phenol-chloroform (AGPC) method
- Non Patent Literature 2 the hot phenol method
- both the methods are not only risky because of the use of an organic solvent and a high concentration of denaturing agent for inhibiting enzymatic reactions such as nucleic acid amplification, but also require a long-term, multi-step procedures to remove these materials, which is disadvantageous in terms of cost and ease of implementation.
- RNA Some techniques for easily preparing RNA have also been developed in which a strong chaotropic substance and a surfactant as protein denaturing agents are used to extract RNA, without using organic solvents, which extract is then directly subjected to an enzymatic reaction.
- a method is known in which a biological sample is dissolved using guanidine thiocyanate and sarkosyl as denaturing agents, and then RNA is extracted while protecting RNA from degradation by endogenous ribonucleases (Patent Literature 1).
- Patent Literature 1 a method is known in which a biological sample is dissolved using guanidine thiocyanate and sarkosyl as denaturing agents, and then RNA is extracted while protecting RNA from degradation by endogenous ribonucleases.
- Patent Literature 1 a method is known in which a biological sample is dissolved using guanidine thiocyanate and sarkosyl as denaturing agents, and then RNA is extracted while protecting
- Patent Literature 2 a nucleic acid extraction method that uses cholic acid or glycolic acid in order not to inhibit a subsequent enzymatic reaction.
- This technique eliminates the need of steps for purifying or diluting the nucleic acid extracted from a biological sample, and the nucleic acid can be directly subjected to an enzymatic reaction such as nucleic acid amplification.
- this technique cannot prevent RNA degradation by endogenous ribonucleases and thus does not allow undegraded RNA to be extracted.
- nucleic acid extraction reagents and methods have further been described in US 2004/019196 , US 2006/105372 , US 2008/003575 , WO 2007/049326 , WO 2010/083844 , WO 2012/108471 , and Shirzadegan M et al., 1991, Nucleic Acids Research, 19(21): 6055 .
- An object of the present invention is to provide a technique for preparing RNA ready for an enzymatic reaction more easily than conventional techniques.
- the present invention relates to a reagent for RNA extraction from a biological sample, containing an alkali metal salt and a surfactant, wherein the alkali metal salt is lithium chloride, and wherein the surfactant comprises glycolic acid and deoxycholic acid.
- the present invention also relates to a kit for RNA extraction, including the reagent.
- the present invention further relates to a method for RNA extraction from a biological sample, including mixing the biological sample with the reagent or the kit for RNA extraction, and extracting the RNA from the biological sample.
- the present invention furthermore relates to a method of initiating an enzymatic reaction on RNA from a biological sample, comprising the following steps: (a) performing RNA extraction from the biological sample using a reagent for RNA extraction, wherein the reagent contains an alkali metal salt and a surfactant, wherein the surfactant comprises glycolic acid and deoxycholic acid; and (b) directly mixing the RNA extract obtained in step (a), without performing further purification or dilution, as a substrate with an enzymatic reaction solution to initiate the enzymatic reaction.
- the alkali metal salt contained in the reagent for RNA extraction to be used in this method is preferably an alkali metal halide, more preferably lithium chloride.
- undegraded RNA that is ready for an enzymatic or chemical reaction or the like can be more easily prepared than by conventional methods.
- Fig. 1 shows the results of RT-PCR of the RNAs extracted from cell samples.
- an alkali metal salt and a surfactant are used to prepare undegraded RNA from a biological sample, as defined in the claims. This allows RNA ready for a subsequent enzymatic reaction to be prepared while preventing degradation of RNA by endogenous ribonucleases in the sample.
- the biological sample used in the present invention may be anything that contains a nucleic acid and examples include, but are not limited to, animal and plant cells and tissues, biological fluids, e.g., whole blood, serum, lymph, tissue fluid, urine, semen, vaginal secretions, amniotic fluid, tears, saliva, and sweat, cell-derived vesicles such as exosomes, stool, sputum, bacteria, and viruses.
- biological fluids e.g., whole blood, serum, lymph, tissue fluid, urine, semen, vaginal secretions, amniotic fluid, tears, saliva, and sweat
- cell-derived vesicles such as exosomes, stool, sputum, bacteria, and viruses.
- RNA used in the present invention may be any RNA that contains a ribonucleotide polymer and examples include, but are not limited to, messenger RNA and non-translatable RNA such as transfer RNA, ribosomal RNA, small nuclear RNA, small nucleolar RNA, and micro RNA.
- messenger RNA and non-translatable RNA such as transfer RNA, ribosomal RNA, small nuclear RNA, small nucleolar RNA, and micro RNA.
- RNA is prepared by a method that is based on adsorption of RNA on a solid phase carrier, or a method that is based on addition of an organic solvent, water-soluble polymer, or surfactant to insolubilize RNA.
- these methods not only require a complicated process for purifying the treated solution, but also show variations in recovery efficiency depending on the molecular weight of RNA, in which a target RNA may not be obtained in some cases.
- an advantage of the RNA preparation method of the present invention is that the RNA extract can be directly subjected to a subsequent analysis, and this treated solution contains all the RNA molecules originally contained in the sample, without losses.
- the reagent for RNA extraction which is used in the method of initiating an enzymatic reaction on RNA from a biological sample (as also specified in claim 4), contains an alkali metal salt as an RNA protecting agent.
- Examples of the alkali metal salt used in this method of the present invention include lithium salts, sodium salts, potassium salts, rubidium salts, and cesium salts.
- Preferred examples include, but are not limited to, lithium chloride, lithium bromide, lithium iodide, lithium acetate, lithium hydroxide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, sodium acetate, sodium pyrophosphate, sodium thiocyanate, sodium sulfate, sodium sulfite, sodium disulfite, sodium dihydrogen phosphate, sodium hydrogen carbonate, sodium tartrate, sodium nitrate, potassium fluoride, potassium chloride, potassium bromide, potassium iodide, potassium acetate, potassium hydrogen phosphate, potassium sulfate, rubidium fluoride, rubidium chloride, rubidium bromide, rubidium iodide, rubidium acetate, cesium chloride, cesium bromide, cesium io
- the reagent for RNA extraction provided in accordance with the present invention contains an alkali metal salt which is lithium chloride.
- the alkali metal salt has the advantage that it is less likely to affect enzymatic activity than other metal salts that generate polyvalent cations which can be cofactors of nucleic acid-related enzymes because the alkali metal salt does not form such a cofactor.
- the concentration is preferably at least 0.2 M but not higher than the saturated concentration, more preferably at least 0.3 M but not higher than 5.0 M, and still more preferably at least 0.3 M but not higher than 2.5 M. If the alkali metal salt concentration is too low, RNA cannot be protected from degradation by endogenous ribonucleases; if the concentration is too high, RNA can be protected but the alkali metal salt tends to inhibit a subsequent enzymatic reaction.
- the reagent for RNA extraction contains a surfactant as an analyte solubilizer, wherein the surfactant comprises glycolic acid and deoxycholic acid.
- surfactants described herein include ionic surfactants, non-ionic surfactants, and amphoteric surfactants, particularly Tween series surfactants such as Tween 20, Tween 40, Tween 60, and Tween 80, Triton series surfactants such as Triton X-100, Triton X-114, and Triton XL-80N, Nonidet series surfactants, non-ionic surfactants such as NP-40, and anionic surfactants such as cholic acid or its derivatives, deoxycholic acid and glycolic acid Surfactants contained in the reagent for RNA extraction are deoxycholic acid, and glycolic acid, which are used in combination.
- the concentration is preferably not lower than 1 mM. If the surfactant concentration is too low, the biological sample tends not to be dissolvable in the reagent.
- the reagent for RNA extraction may contain a buffer.
- buffers that can be used in the present invention include phosphate buffers and Good's buffers. Preferred among these are Good's buffers such as MES, Bis-Tris, ADA, PIPES, ACES, MOPSO, BES, MOPS, TES, HEPES, DIPSO, TAPSO, POPSO, HEPPSO, EPPS, Tricine, Tris, Bicine, TAPS, CHES, CAPSO, and CAPS, with TAPS being particularly preferred. These buffers may be used alone or in combination.
- the reagent for RNA extraction may contain a protein component such as albumin, or polyamine, cyclodextrin, trehalose, a water-soluble polymer such as polyvinylpyrrolidone (PVP) or polyethylene glycol, which have an effect in reducing inhibition of enzymatic reactions by unnecessary components originating from a biological sample.
- a protein component such as albumin, or polyamine, cyclodextrin, trehalose
- a water-soluble polymer such as polyvinylpyrrolidone (PVP) or polyethylene glycol
- the reagent for RNA extraction may contain an antifreeze, such as glycerol, betaine, or sucrose, to prevent freezing at sub-zero temperatures.
- an antifreeze such as glycerol, betaine, or sucrose
- the reagent for RNA extraction may contain an agent a chelating agent, a nuclease inhibitor, or a reducing agent (e.g. DTT (dithiothreitol)) for further ensuring inactivation of nucleases, and an organic solvent (e.g. DMSO or formamide) for a subsequent enzymatic reaction.
- a chelating agent e.g. DTT (dithiothreitol)
- a reducing agent e.g. DTT (dithiothreitol)
- an organic solvent e.g. DMSO or formamide
- the biological sample and the reagent for RNA extraction are preferably mixed at a ratio of 9:1 to 1:999, more preferably 4:1 to 1:499, and still more preferably 1:1 to 1:99.
- the biological sample may be physically disrupted in the RNA extraction.
- the RNA extraction may be combined with freeze-thaw disruption, physical disruption with a homogenizer, or the like.
- RNA can be extracted without the need of disruption prior to mixing the biological sample and the reagent for RNA extraction.
- heat treatment may be carried out to extract RNA from the biological sample.
- the heat treatment temperature is preferably at least 0°C but not higher than 100°C, more preferably at least 30°C but not higher than 90°C, and still more preferably at least 50°C but not higher than 80°C.
- the period of the heat treatment is preferably not longer than 30 minutes, more preferably not longer than 15 minutes. If the treatment period is too short, extraction efficiency tends to be reduced; if the treatment period is too long, RNA tends to degrade.
- the RNA extract can be directly mixed as a substrate with an enzymatic reaction solution to initiate an enzymatic reaction such as nucleic acid amplification, without further performing purification, dilution or other steps.
- enzymes that can be used for the reaction include nucleases such as deoxyribonucleases, ribonucleases, exonucleases, and endonucleases; proteases such as proteinases and peptidases; polymerases such as DNA-dependent DNA polymerases, RNA-dependent DNA polymerases, DNA-dependent RNA polymerases, RNA-dependent RNA polymerases, heat resistant polymerases, strand-displacement polymerases, and terminal transferases; and ligases, recombinases, lysozymes, and cellulases.
- the RNA extract and the enzymatic reaction solution are preferably mixed at a ratio of 1:999 to 999:1, more preferably 1:99 to 99:
- the RNA extract may be mixed with a fluorescent nucleic acid labelling reagent or a fluorescent labelling probe (e.g. ethidium bromide, SYBR(R) Green, PicoGreen (R)) to detect the RNA contained therein.
- a fluorescent nucleic acid labelling reagent e.g. ethidium bromide, SYBR(R) Green, PicoGreen (R)
- the RNA extract may be subjected to a nucleic acid amplification reaction in the presence of a fluorescent labelling reagent to monitor the amplification reaction in real time.
- the RNA extract may be subjected to a sequencing reaction.
- nucleic acid amplification reaction refers to a technique for amplifying a nucleic acid sequence, as typified by PCR.
- PCR ligase chain reaction
- SDA strand displacement amplification
- RCA rolling circle amplification
- CPT cycling probe technology
- ICAN isothermal and chimeric primer-initiated amplification of nucleic acids
- LAMP loop-mediated isothermal amplification of DNA
- NASBA nucleic acid sequence-based amplification method
- TMA transcription mediated amplification method
- the target nucleic acid in the RNA extract may be mixed with a molecule having a specific binding ability, e.g. , a molecule containing a nucleic acid sequence complementary to a part of the target nucleic acid, an antibody, or a single-stranded nucleic acid-binding protein, to specifically bind to each other; in other words, the RNA extract may be used in, for example, Southern blotting, Northern blotting, real-time PCR, or specific labelling, detection, purification or isolation using a labeled nucleic acid probe or the like.
- a molecule having a specific binding ability e.g., a molecule containing a nucleic acid sequence complementary to a part of the target nucleic acid, an antibody, or a single-stranded nucleic acid-binding protein, to specifically bind to each other; in other words, the RNA extract may be used in, for example, Southern blotting, Northern blotting, real-time PCR, or specific labelling,
- the RNA extract may be subjected to various chromatography techniques such as ion exchange column chromatography or gel permeation column chromatography, centrifugation, filtration, dialysis, or adsorption on a solid phase carrier to remove unnecessary components and thereby purify the RNA in the RNA extract. These techniques may also be appropriately combined for use as a RNA purification kit.
- the kit of the present invention contains the reagent for RNA extraction.
- the kit may contain, for example, a sample washing solution, a deoxyribonuclease, a protease, a reverse transcriptase, a DNA polymerase and its substrate, and an oligonucleotide.
- the reagent and kit of the present invention can also be incorporated into a nucleic acid preparation device, a nucleic acid amplification device, a nucleic acid autoanalyzer, or the like.
- Reagents for RNA extraction having the following compositions were prepared: lithium chloride, 75 mM TAPS (pH8.0), 2.25 mM CaCl 2 , 15 mM MgCl 2 , 175 mM glycolic acid, 5 mM deoxycholic acid, 50 mM EDTA, and 0.05% Triton X-100.
- the reagents for RNA extraction were prepared to have different lithium chloride concentrations of 0 M, 0.1 M, 0.2 M, 0.5 M, 1.0 M, 2.0 M, 3.0 M, 4.0 M, 5.0 M, 6.0 M, and 7.0 M.
- Blood was collected from a mouse.
- the anticoagulant used was heparin.
- the reagents for RNA extraction (18 ⁇ l each) were individually added to 2 ⁇ l portions of the mouse blood, and incubated at 75°C for 5 minutes. After incubation, the solutions were cooled to room temperature, mixed with 2 ⁇ l (corresponding to 10 Units) of DNase I, and incubated at 42°C for 5 minutes and then at 75°C for 10 minutes.
- RNA samples prepared above were cooled to room temperature, and RT-PCR was performed using the samples as templates to obtain an amplified nucleic acid fragment derived from the analyte.
- the target of RT-PCR was H3F3A mRNA, and the primer set used was Forward Primer F1 (5'-GGCCTCACTTGCCTCCTGCAA-3'; SEQ ID NO:1) and Reverse Primer R1 (5'-GCAAGAGTGCGCCCTCTACTG-3'; SEQ ID NO: 2).
- the RT-PCR was carried out using PrimeScript One Step RT-PCR Kit Ver.2 (Takara Bio, Inc.), and the RNA samples prepared above were individually added in an amount of 2% by volume to a reaction solution and subjected to the RT-PCR.
- the reaction consisted of reverse transcription at 50°C for 30 minutes, and inactivation of the reverse transcriptase at 94°C for 1 minute, followed by 30 PCR cycles of: 94°C for 15 seconds; 62°C for 15 seconds; and then 72°C for 15 seconds.
- 30 PCR cycles of: 94°C for 15 seconds; 60°C for 15 seconds; and then 72°C for 15 seconds were also performed without performing reverse transcription, to confirm that the amplified fragment was not derived from DNA.
- the RT-PCR products were subjected to common agarose gel electrophoresis to visualize the amplified fragment.
- Table 1 shows the results of visualization of the amplified fragment by agarose gel electrophoresis. The results demonstrate that in the case of the reagents for RNA extraction with a lithium chloride concentration of 0.5 to 5.0 M, only the RT-PCR produced an amplified fragment. This indicates that the RNA was properly extracted.
- Concentration of LiCl (M) 0 0.1 0.2 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 RT-PCR - - - + + + + + + + + - - +: amplified -: not amplified
- Reagents for RNA extraction having the following compositions with different alkali metal salts were prepared: 0.7 M alkali metal salt, 75 mM TAPS (pH 8.0), 2.25 mM CaCl 2 , 15 mM MgCl 2 , 175 mM glycolic acid, 5 mM deoxycholic acid, 50 mM EDTA, and 0.05% Triton X-100.
- the alkali metal salts used were lithium chloride, lithium bromide, lithium iodide, sodium chloride, sodium iodide, potassium chloride, potassium iodide, rubidium chloride, cesium chloride, lithium acetate, sodium dihydrogen phosphate, sodium tartrate, sodium nitrate, potassium acetate, potassium hydrogen phosphate, and potassium sulfate.
- RNA extraction containing lithium chloride as an alkali metal salt and free from the surfactant deoxycholic acid was prepared.
- RT-PCR was performed using the RNA samples extracted above as templates to obtain an amplified nucleic acid fragment derived from the analyte.
- Table 2 shows the presence or absence of amplification visualized by agarose gel electrophoresis.
- the results demonstrate that in the case of the reagents for RNA extraction containing an alkali metal salt, only the RT-PCR produced an amplified fragment. This indicates that the RNA was properly extracted.
- the amplification efficiency of RT-PCR was high. The results further demonstrate that these reagents for RNA extraction did not inhibit the DNase I treatment, RT reaction, and PCR.
- Reagents for RNA extraction having the following compositions with different strong chaotropic substances or polyvalent metal salts or an ammonium salt were prepared: 0.7 M strong chaotropic substance, polyvalent metal salt or ammonium salt, 75 mM TAPS (pH 8.0), 2.25 mM CaCl 2 , 15 mM MgCl 2 , 175 mM glycolic acid, 5 mM deoxycholic acid, 50 mM EDTA, and 0.05% Triton X-100.
- the strong chaotropic substances used were guanidine thiocyanate, guanidine hydrochloride, and urea.
- the polyvalent metal salts used were magnesium chloride, calcium chloride, nickel chloride, and manganese chloride.
- the ammonium salt used was diammonium hydrogen phosphate. Another reagent for RNA extraction containing the surfactants alone, without the RNA protecting agent salts, was prepared.
- RT-PCR was performed using the RNA samples extracted above as templates.
- Table 2 shows the results of visualization of the amplified fragment by agarose gel electrophoresis.
- the results demonstrate that in the case of using the polyvalent metal salts, neither the RT-PCR nor PCR produced an amplified fragment. This indicates that the polyvalent metal ions did not function as RNA protecting agents, or inhibited the enzymatic reactions. Accordingly, the polyvalent cations are not preferred as additives for the reagents for RNA extraction in the present system.
- the results also demonstrate that in the case of using the strong chaotropic substances or ammonium salt, both the RT-PCR and PCR produced an amplified fragment. This indicates that the strong chaotropic substances and ammonium salt inhibited the DNase I treatment.
- the strong chaotropic substances and ammonium salt are not preferred as additives for the reagents for RNA extraction in the present system. It is demonstrated that in the case of containing no RNA protecting agent salt, RNA was degraded and neither the RT-PCR nor PCR produced an amplified fragment.
- a reagent for RNA extraction having the following composition and free from surfactants was prepared: 0.7 M lithium chloride, 75 mM TAPS (pH 8.0), 2.25 mM CaCl 2 , 15 mM MgCl 2 , and 50 mM EDTA.
- RT-PCR was performed using the RNA sample extracted above as a template.
- Table 2 shows the results of visualization of the amplified fragment by agarose gel electrophoresis. The results demonstrate that in the case of the reagent for RNA extraction free from surfactants, both the RT-PCR and PCR produced an amplified fragment. This is because the analyte was not completely dissolved because of the absence of surfactants, and the DNA could not be completely removed by DNase I.
- a reagent for RNA extraction having the following composition with lithium chloride was prepared: 0.7 M lithium chloride, 75 mM TAPS (pH 8.0), 2.25 mM CaCl 2 , 15 mM MgCl 2 , 175 mM glycolic acid, 5 mM deoxycholic acid, 50 mM EDTA, and 0.05% Triton X-100.
- the cultured cells in an amount of 10 3 to 10 5 cells were centrifuged and collected as pellets.
- To the cell pellets was added 18 ⁇ l of the reagent for RNA extraction, and the resulting solution was incubated at 75°C for 5 minutes. After incubation, the solution was cooled to room temperature and mixed with 2 ⁇ l (corresponding to 10 Units) of DNase I, and the mixture was incubated at 42°C for 5 minutes and then at 75°C for 10 minutes.
- RNA samples prepared as above were cooled to room temperature, and RT-PCR was performed using the samples as templates to obtain amplified nucleic acid fragments derived from the respective cells.
- the target of RT-PCR was ACTB mRNA, and the primer set used was Forward Primer F2 (5'-AGATGGCCACGGCTGCT-3'; SEQ ID NO:3) and Reverse Primer R2 (5'-AACCGCTCATTGCCAATGG-3'; SEQ ID NO:4).
- the RT-PCR was carried out using PrimeScript One Step RT-PCR Kit Ver.2 (Takara Bio, Inc.), and the RNA samples prepared above were individually added in an amount of 2% by volume to a reaction solution and subjected to the RT-PCR.
- the reaction consisted of reverse transcription at 50°C for 30 minutes, and inactivation of the reverse transcriptase at 94°C for 1 minute, followed by 30 PCR cycles of: 94°C for 15 seconds; 60°C for 15 seconds; and then 72°C for 15 seconds.
- 30 PCR cycles of: 94°C for 15 seconds; 60°C for 15 seconds; and then 72°C for 15 seconds were performed without performing reverse transcription.
- the RT-PCR products were subjected to common agarose gel electrophoresis to visualize the amplified fragments.
- Fig. 1 shows the amplified fragments visualized by agarose gel electrophoresis. The results demonstrate that in both the case of the HEK293T cell sample and the Jurkat cell sample, a specific amplified fragment was produced. This indicates that the respective RNAs were properly extracted.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Claims (6)
- Ein Reagenz zur RNA-Extraktion aus einer biologischen Probe, umfassend:Lithiumchlorid; undein grenzflächenaktives Mittel, das Glycolsäure und Desoxycholsäure umfasst.
- Ein Kit zur RNA-Extraktion, umfassend das Reagenz gemäß Anspruch 1.
- Ein Verfahren zur RNA-Extraktion aus einer biologischen Probe, umfassend:Mischen der biologischen Probe mit dem Reagenz gemäß Anspruch 1 oder einem Kit zur RNA-Extraktion, welches das Reagenz umfasst; undExtrahieren der RNA aus der biologischen Probe.
- Ein Verfahren zum Einleiten einer enzymatischen Reaktion an RNA aus einer biologischen Probe, umfassend:(a) Durchführen einer RNA-Extraktion aus der biologischen Probe unter Verwendung eines Reagenzes zur RNA-Extraktion, wobei das Reagenz ein Alkalimetallsalz und ein grenzflächenaktives Mittel enthält, wobei das grenzflächenaktive Mittel Glycolsäure und Desoxycholsäure umfasst; und(b) direktes Mischen des in Schritt (a) erhaltenen RNA-Extrakts, ohne Durchführung weiterer Reinigung oder Verdünnung, als ein Substrat mit einer enzymatischen Reaktionslösung, um die enzymatische Reaktion einzuleiten.
- Das Verfahren gemäß Anspruch 4, wobei das im Reagenz zur RNA-Extraktion enthaltene Alkalimetallsalz ein Alkalimetallhalogenid ist.
- Das Verfahren gemäß Anspruch 4, wobei das Reagenz zur RNA-Extraktion das Reagenz gemäß Anspruch 1 ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012237057 | 2012-10-26 | ||
PCT/JP2013/078939 WO2014065395A1 (ja) | 2012-10-26 | 2013-10-25 | Rna調製法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2913399A1 EP2913399A1 (de) | 2015-09-02 |
EP2913399A4 EP2913399A4 (de) | 2016-07-13 |
EP2913399B1 true EP2913399B1 (de) | 2019-02-13 |
Family
ID=50544766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13848975.2A Active EP2913399B1 (de) | 2012-10-26 | 2013-10-25 | Rna-aufbereitungsverfahren |
Country Status (5)
Country | Link |
---|---|
US (1) | US9695413B2 (de) |
EP (1) | EP2913399B1 (de) |
JP (1) | JP6301260B2 (de) |
CN (1) | CN105143449B (de) |
WO (1) | WO2014065395A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107003312B (zh) * | 2014-10-08 | 2022-01-14 | 赛拉诺斯知识产权有限责任公司 | 用于埃博拉和其他传染病的实时诊断测试(rdt)的方法和装置 |
JP2016182112A (ja) * | 2015-03-25 | 2016-10-20 | 東ソー株式会社 | ウイルスからの核酸抽出試薬 |
CN112176029B (zh) * | 2020-06-12 | 2021-05-14 | 中山大学达安基因股份有限公司 | 一种拭子核酸样本释放剂及其应用 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7148343B2 (en) * | 2001-10-12 | 2006-12-12 | Gentra Systems, Inc. | Compositions and methods for using a solid support to purify RNA |
JP4228688B2 (ja) * | 2002-12-25 | 2009-02-25 | 和光純薬工業株式会社 | Dna遊離方法 |
JP2004000922A (ja) * | 2003-03-26 | 2004-01-08 | Toyobo Co Ltd | 核酸またはタンパク質抽出用シリカ粒子組成物 |
JP4836795B2 (ja) | 2003-05-19 | 2011-12-14 | ブランデイズ ユニバーシティー | 核酸プロセシング方法、キット、及び装置 |
AU2005305012C1 (en) * | 2004-11-05 | 2012-07-19 | Qiagen North American Holdings, Inc. | Compositions and methods for purifying nucleic acids from stabilization reagents |
WO2007049326A1 (ja) * | 2005-10-24 | 2007-05-03 | Wako Pure Chemical Industries, Ltd. | 核酸抽出方法および核酸抽出キット |
US20100035331A1 (en) * | 2006-02-15 | 2010-02-11 | Tosoh Corporation | Method for extracting of nucleic acid from biological material |
WO2007116450A1 (ja) | 2006-03-30 | 2007-10-18 | Biocosm Inc. | 核酸抽出方法及び核酸抽出キット |
US20080003575A1 (en) * | 2006-06-28 | 2008-01-03 | Sigma-Aldrich Co. | Methods and composition for RNA extraction |
WO2010083844A1 (en) * | 2009-01-26 | 2010-07-29 | Quantibact A/S | Methods and uses for rna extract and storage |
JP6128371B2 (ja) * | 2011-02-10 | 2017-05-17 | Biocosm株式会社 | 核酸抽出液の製造方法 |
-
2013
- 2013-10-25 CN CN201380055893.3A patent/CN105143449B/zh active Active
- 2013-10-25 US US14/437,936 patent/US9695413B2/en active Active
- 2013-10-25 EP EP13848975.2A patent/EP2913399B1/de active Active
- 2013-10-25 WO PCT/JP2013/078939 patent/WO2014065395A1/ja active Application Filing
- 2013-10-25 JP JP2014543359A patent/JP6301260B2/ja active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN105143449A (zh) | 2015-12-09 |
EP2913399A1 (de) | 2015-09-02 |
US20150376600A1 (en) | 2015-12-31 |
JPWO2014065395A1 (ja) | 2016-09-08 |
US9695413B2 (en) | 2017-07-04 |
CN105143449B (zh) | 2018-11-13 |
EP2913399A4 (de) | 2016-07-13 |
JP6301260B2 (ja) | 2018-03-28 |
WO2014065395A1 (ja) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190264284A1 (en) | METHODS AND COMPOSITIONS FOR cDNA SYNTHESIS AND SINGLE-CELL TRANSCRIPTOME PROFILING USING TEMPLATE SWITCHING REACTION | |
US20080003575A1 (en) | Methods and composition for RNA extraction | |
WO2002090539A2 (en) | Compositions, methods, and kits for isolating nucleic acids using surfactants and proteases | |
JP7163186B2 (ja) | Rnaの安定化 | |
US20190169603A1 (en) | Compositions and Methods for Labeling Target Nucleic Acid Molecules | |
WO2016135300A1 (en) | Efficiency improving methods for gene library generation | |
EP2913399B1 (de) | Rna-aufbereitungsverfahren | |
EP3307907B1 (de) | Automatisierbares verfahren zur nukleinsäureisolierung | |
US9896682B2 (en) | Stabilized RNA solutions | |
JP2006087394A (ja) | 核酸抽出方法および核酸抽出キット | |
Cheng et al. | Methods for isolation of messenger RNA from biological samples | |
US10160965B2 (en) | Method and materials for nucleic acids extraction and purification | |
US20170051333A1 (en) | Compositions for cell lysis and uses thereof | |
US20160122818A1 (en) | Gene expression analysis | |
US20220162592A1 (en) | Duplex-specific nuclease depletion for purification of nucleic acid samples | |
US20100081175A1 (en) | Enzyme-containing gels and nucleic acid amplifying kits | |
CN118159665A (zh) | 用于基于lc-ms的核酸序列映射的样品制备 | |
EP4017975A1 (de) | Schnelle zelluläre lyse durch reduktions-/oxidationsreaktion | |
JP2007151470A (ja) | 試料を用いた核酸増幅方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150526 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MIYAMOTO, SHIGEHIKO Inventor name: SANO, SOTARO Inventor name: TOMONO, JUN Inventor name: HIRATSUKA, HAJIME |
|
DAX | Request for extension of the european patent (deleted) | ||
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160610 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C12N 15/09 20060101AFI20160606BHEP Ipc: C12Q 1/68 20060101ALI20160606BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170728 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180329 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180731 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1096249 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013050837 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190513 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190513 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190514 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190613 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1096249 Country of ref document: AT Kind code of ref document: T Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013050837 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
26N | No opposition filed |
Effective date: 20191114 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191025 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191025 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131025 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190213 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230830 Year of fee payment: 11 |