EP2907175A1 - Verfahren zum bedrucken optoelektronischer bauelemente mit busbars - Google Patents

Verfahren zum bedrucken optoelektronischer bauelemente mit busbars

Info

Publication number
EP2907175A1
EP2907175A1 EP13821152.9A EP13821152A EP2907175A1 EP 2907175 A1 EP2907175 A1 EP 2907175A1 EP 13821152 A EP13821152 A EP 13821152A EP 2907175 A1 EP2907175 A1 EP 2907175A1
Authority
EP
European Patent Office
Prior art keywords
busbar
module
printing
structuring
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP13821152.9A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ralph Wichtendahl
Andreas Borkert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliatek GmbH
Original Assignee
Heliatek GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliatek GmbH filed Critical Heliatek GmbH
Publication of EP2907175A1 publication Critical patent/EP2907175A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/86Series electrical configurations of multiple OLEDs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for printing optoelectronic components having at least one busbar, wherein the busbar follows the shape of the optoelectronic component and allows a homogeneous color impression on the back of the component.
  • Optoelectronics is made up of optics and semiconductor electronics. It includes systems and procedures that enable the conversion of electronically generated data and energy into light emission or convert light emissions into energy.
  • Optoelectronic components in particular organic photovoltaic modules (PV module) and organic light-emitting diodes (OLED), referred to below as OPV modules, generate electrical energy or convert electrical energy into light emissions, which are used later in the module led out or must be led into it.
  • PV module organic photovoltaic modules
  • OLED organic light-emitting diodes
  • Stromomsammeiene is variable and minimizes the order volume of silver paste, thereby reducing manufacturing costs.
  • a disadvantage is the shadow of Strommasischienen, which arises in the paste printing on the front of a photovoltaic module.
  • Electricity bus bars printed with pastes have a defined height and width which, when exposed to sunlight, cast a shadow over the photovoltaic module and thus adversely affect the efficiency of the module.
  • bus bars are applied to the photovoltaic module in the form of metal strips.
  • the shadow is minimized, but the solution for transparent PV modules proves to be unsatisfactory.
  • the lower area of the busbar is not coated with absorber material, which does not produce a homogeneous color impression since the current busbar remains visible from the back of the PV module.
  • these metal bands can be applied only with disproportionate effort in non-linear geometries.
  • the object of the present invention is to provide a method for applying current busbars, which overcomes the disadvantages mentioned above.
  • a method has to be provided so that current busbars can be produced over the entire width of the PV module, adapt to any forms of the PV module, which are also curvilinear, and ensure a homogeneous color impression of the PV module.
  • a method for applying a current busbar to an optoelectronic component in which at least one current busbar is applied by means of printing process before deposition of the photoactive layer, whereby a homogeneous color impression is formed on the back of the module.
  • a base material consisting of a substrate and a conductive layer.
  • a transparent film, glass or other materials are conceivable, which allow the desired light spectra (transparency, semitransparency, opaque).
  • TCO 's Transparent Conductive Oxides
  • ITO, ZnO: AL, SnÜ 2 : F Recent developments such as DMD, nano-wire, Ag or graphene.
  • At least one active layer e.g. an absorber layer is deposited on the structured conductive layer consisting of at least one current busbar.
  • this process is done by vacuum evaporation.
  • a counter electrode which comprises, for example, Al (aluminum) or Ag (silver).
  • the application of the current busbars takes place directly on the base material before the deposition of a conductive transparent layer.
  • the layout of the conductive layer depends on the imprint of the current busbars.
  • the printing process for applying at least one bus bar comprises screen printing, inkjet printing and / or another method based on printing. Following a scientific publication on screen printing technology (Hübner, Erath, Mette, Horizonte 29, New Screen Printing Technology Increases the Efficiency of Solar Cells, Reutlingen 2006, p. 6), conventional screen printing technology is carried out using high-viscosity solvent-based printing pastes.
  • the printer is based on the structures of the substrate. In the first printing process, the alignment preferably takes place at the corners of the substrate. Other printing methods are preferably arranged on the already printed structures.
  • the ink-jet method follows the method of a commercial printer, which, however, applies the conductive medium in the liquid state as ink to the solar cell.
  • the ink comprises liquid Al, Ag or other substrate which serves as a transfer medium and is applied to the PV module in the form of a current bus bar.
  • the application of the current busbars takes place after the structuring of the conductive layer on the substrate.
  • the current busbar as a free form, comprising rectilinear, rectangular, bent realized.
  • An advantage of the formation of free forms is the high variability and adaptability of the PV module to its environment. For example, integration into automotive glass requires PV modules that adapt to the automotive glass. They therefore have a curved and not straight shape. Only the high degree of variability of printed bus bars makes it possible to use PV modules in and / or on differently shaped objects.
  • the current busbars are not arranged in a straight line and / or parallel to one another.
  • At least one current busbar in the embodiment, comprising cross connections can be produced across the module width, which leads the two poles comprising the minus and plus pole of the module to a connection point.
  • PV modules particularly flexible PV modules, in particular flexible organic PV modules, are variable in their dimensions, as a result of which small and large modules up to several meters in length and width can be produced.
  • the advantage of the present printing method is that it can be varied to suit the dimensions and shape of the PV module.
  • Another advantage is that a separate separation process, such as occurs in Stromgemischienen in metal strip form does not occur, whereby a cost savings in manufacturing occurs.
  • the optoelectronic component is a flexible organic PV module or an organic light-emitting diode.
  • a flexible organic PV module is designed with active layers.
  • the active layers of polymers (eg US7825326 B2) or small molecules (eg EP 2385556 AI) be constructed. While polymers are characterized by the fact that they can not be vaporized and therefore can only be applied from solutions, small molecules are usually vaporizable and can be applied either as a solution or as a different evaporation technique.
  • the advantage compared to conventional components on an inorganic basis semiconductor are the sometimes extremely high optical absorption coefficients (up to 2 ⁇ 10 5 cm -1 ).
  • Another advantage is the ability to produce flexible large-area components on plastic films, which offer almost unlimited variations.
  • Another technical aspect is the production of transparent components which can be integrated into glass elements, in which the homogeneous color impression due to the integrated current busbars particularly advantageous compared to conventional solar modules.
  • Organic light emitting diodes consist of at least one organic semiconductor layer, which is embedded between two electrodes and emits light when current flows (electroluminescence).
  • the active layers are composed of polymers (GB2487342A) or small molecules (EP2395571A1), as in the case of an organic PV module.
  • the very flat design, the high flexibility, the possibility of production on plastic films and the low energy requirement allow the use of OLEDs in a variety of applications (eg displays for mobile phones, televisions, radios, etc.). Due to the mentioned properties and fields of application, the printed bus bars have an advantageous effect in the Production and application areas, as a homogeneous
  • FIG. 1 shows a schematic structure of an organic solar cell in plan view, on whose sides in each case a current busbar runs and in
  • Fig. 2 shows a schematic structure of an organic solar cell in cross section.
  • Fig. 1 illustrates the shape-free design of the current busbars. Depending on the application, they can follow the shape of the PV module. In the present case, an oblique and angled current busbar 1 is visible. These follow the layout of the conductive layer 3 which has been patterned by means of laser cutting, scribing or lithographic processes.
  • Fig. 2 illustrates the structure of an organic PV module in cross-section 4, in which on the back of the module, a homogeneous color impression is generated.
  • the base material used is a substrate film 6.
  • the front electrode 7 can be structured before or after the application of the busbars.
  • the current busbars 1 are applied to the front electrode 7 by means of printing processes.
  • the further process draws is characterized by the vapor deposition of the active layer 3, for example a general absorber layer in a vacuum. This is followed by the application of a counter electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Printing Methods (AREA)
EP13821152.9A 2012-10-15 2013-10-10 Verfahren zum bedrucken optoelektronischer bauelemente mit busbars Ceased EP2907175A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012109777.1A DE102012109777A1 (de) 2012-10-15 2012-10-15 Verfahren zum Bedrucken optoelektronischer Bauelemente mit Stromsammelschienen
PCT/IB2013/059257 WO2014060912A1 (de) 2012-10-15 2013-10-10 Verfahren zum bedrucken optoelektronischer bauelemente mit busbars

Publications (1)

Publication Number Publication Date
EP2907175A1 true EP2907175A1 (de) 2015-08-19

Family

ID=49956253

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13821152.9A Ceased EP2907175A1 (de) 2012-10-15 2013-10-10 Verfahren zum bedrucken optoelektronischer bauelemente mit busbars

Country Status (8)

Country Link
US (1) US9735363B2 (enExample)
EP (1) EP2907175A1 (enExample)
JP (1) JP2015533264A (enExample)
KR (2) KR20200058610A (enExample)
CN (1) CN104813503B (enExample)
BR (1) BR112015008290B1 (enExample)
DE (1) DE102012109777A1 (enExample)
WO (1) WO2014060912A1 (enExample)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014112204A1 (de) 2014-08-26 2016-03-03 Osram Oled Gmbh Optoelektronische Vorrichtung
NL2014040B1 (en) * 2014-12-23 2016-10-12 Stichting Energieonderzoek Centrum Nederland Method of making a curent collecting grid for solar cells.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324880A1 (de) * 2003-05-30 2005-01-05 Schott Ag Verfahren zur Herstellung von OLEDs
US20100263719A1 (en) * 2009-04-16 2010-10-21 Applied Materials, Inc. Thin-Film Solar Cell Module
US20120234372A1 (en) * 2011-03-15 2012-09-20 Kabushiki Kaisha Toshiba Organic thin-film solar cell module and sub-module
DE102013106815A1 (de) * 2013-06-28 2014-12-31 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2967315D1 (en) 1978-09-29 1985-01-10 Marconi Co Ltd Apparatus and method using a memory for processing television picture signals and other information
JP2001068696A (ja) * 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2003123990A (ja) * 2001-10-17 2003-04-25 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子
EP1861881B1 (en) 2005-03-21 2017-09-06 Merck Patent GmbH Polymer photovoltaic cell
JP4818095B2 (ja) * 2006-12-22 2011-11-16 三洋電機株式会社 太陽電池
DE102007034252B4 (de) * 2007-07-19 2010-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Modul und Verfahren zu seiner Herstellung
JP2009130020A (ja) * 2007-11-21 2009-06-11 Mitsubishi Heavy Ind Ltd 太陽電池パネル及び太陽電池パネルの製造方法
DE102008045948A1 (de) 2008-09-04 2010-03-11 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines organischen strahlungsemittierenden Bauelements und organisches strahlungsemittierendes Bauelement
US7795067B1 (en) 2009-03-30 2010-09-14 Solopower, Inc. Semitransparent flexible thin film solar cells and modules
KR101028971B1 (ko) * 2009-05-26 2011-04-19 한국과학기술원 집적형 박막 태양전지 및 그의 제조 방법
US8525163B2 (en) 2009-07-17 2013-09-03 Sharp Kabushiki Kaisha Organic EL device, method for fabricating organic EL device, and organic EL illumination system
JP5407681B2 (ja) * 2009-09-10 2014-02-05 大日本印刷株式会社 色素増感型太陽電池用対極基板、色素増感型太陽電池素子、および色素増感型太陽電池モジュール
CN102549762B (zh) * 2009-09-30 2015-06-03 Lg伊诺特有限公司 太阳能电池设备
CN101707227B (zh) 2009-10-30 2011-07-20 无锡尚德太阳能电力有限公司 薄膜太阳电池组件汇流条的制造方法及薄膜太阳电池组件
ES2857904T3 (es) 2010-05-04 2021-09-29 Heliatek Gmbh Componente fotoactivo con capas orgánicas
GB2487342B (en) 2010-05-14 2013-06-19 Cambridge Display Tech Ltd Host polymer comprising conjugated repeat units and non-conjugated repeat units for light-emitting compositions, and organic light-emitting devices
EP2395571B1 (en) 2010-06-10 2013-12-04 Novaled AG Organic electronic device comprising an organic semiconducting material
WO2012002216A1 (ja) * 2010-06-30 2012-01-05 三洋電機株式会社 太陽電池モジュール
DE102010054327A1 (de) 2010-12-13 2012-06-14 Solsol Gmbh Verfahren zur Herstellung einer pastenauftragsselektiven Siebdrucksolarzellenmetallisierung
JP2012160677A (ja) * 2011-02-03 2012-08-23 Mitsubishi Chemicals Corp 有機太陽電池の製造方法及び有機太陽電池
KR101283053B1 (ko) * 2011-10-18 2013-07-05 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324880A1 (de) * 2003-05-30 2005-01-05 Schott Ag Verfahren zur Herstellung von OLEDs
US20100263719A1 (en) * 2009-04-16 2010-10-21 Applied Materials, Inc. Thin-Film Solar Cell Module
US20120234372A1 (en) * 2011-03-15 2012-09-20 Kabushiki Kaisha Toshiba Organic thin-film solar cell module and sub-module
DE102013106815A1 (de) * 2013-06-28 2014-12-31 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014060912A1 *

Also Published As

Publication number Publication date
DE102012109777A1 (de) 2014-04-17
KR20200058610A (ko) 2020-05-27
WO2014060912A1 (de) 2014-04-24
US20150270487A1 (en) 2015-09-24
US9735363B2 (en) 2017-08-15
CN104813503A (zh) 2015-07-29
CN104813503B (zh) 2017-06-09
BR112015008290B1 (pt) 2021-02-09
KR20150066568A (ko) 2015-06-16
BR112015008290A2 (pt) 2017-07-04
JP2015533264A (ja) 2015-11-19

Similar Documents

Publication Publication Date Title
DE10324880B4 (de) Verfahren zur Herstellung von OLEDs
EP1990846A2 (de) Photovoltaisches Modul mit organischen Schichten auf Polymerbasis
EP2323191A2 (de) Organisches photoelektrisches Bauelement
WO2010051976A1 (de) Substrat für eine optoelektronische vorrichtung
DE10140991A1 (de) Organische Leuchtbiode, Herstellungsverfahren dazu und Anwendungen
DE102010047430A1 (de) Flexible, farbstoffsensibilisierte Solarzelle und Herstellungsverfahren hierfür
DE102018202513A1 (de) Verfahren zur Metallisierung eines Bauelements
DE102012024754A1 (de) Dünnschichtsolarzellenanordnung sowie Verfahren zu deren Herstellung
DE102011089013B4 (de) Farbstoff-Solarzelle
EP2907175A1 (de) Verfahren zum bedrucken optoelektronischer bauelemente mit busbars
DE102012220724B4 (de) Optoelektronisches Bauelement
DE102006023638A1 (de) Photovoltaische Zelle
EP4272258A1 (de) Photovoltaisches element mit mindestens einer photovoltaischen zelle und mindestens einer gefalteten sammelschiene
EP1442486B1 (de) Solarzelle mit organischem material in der photovoltaischen schicht sowie verfahren zu deren herstellung
EP2453498B1 (de) Strahlungsemittierende Vorrichtung und Verfahren zur Herstellung einer strahlungsemittierenden Vorrichtung
WO2016146439A1 (de) Organisches optoelektronisches bauelement und verfahren zum herstellen eines organischen optoelektronischen bauelements
DE102012206111B4 (de) Fotoelektrisches halbleiterelement mit unregelmässig verlaufenden leiterbahnen an einer oberfläche
DE102010017844A1 (de) Verfahren und Vorrichtung zur Herstellung elektronischer und/oder energieerzeugender und/oder energieumwandelnder Elemente und Komponenten
EP1638155A1 (de) Verbesserung der Leitfähigkeit einer Polymerelektrode durch Aufbringen einer darunterliegenden Metallschicht
WO1998054767A1 (de) Leitfähiges schichtsystem und dessen verwendung in elektrolumineszierenden anordnungen
DE102020131742A1 (de) Feldbreitenanpassung von Zellen in einem photovoltaischen Element
DE102012202506A1 (de) Halbleitereinrichtung und Verfahren zu deren Herstellung
DE102014213978A1 (de) Verfahren zur Herstellung eines organischen Halbleiterbauteils und organisches Halbleiterbauteil
DE102014112204A1 (de) Optoelektronische Vorrichtung
DE19757874A1 (de) Leitfähiges Schichtsystem und dessen Verwendung in elektrolumineszierenden Anordnungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190602