EP2907175A1 - Verfahren zum bedrucken optoelektronischer bauelemente mit busbars - Google Patents
Verfahren zum bedrucken optoelektronischer bauelemente mit busbarsInfo
- Publication number
- EP2907175A1 EP2907175A1 EP13821152.9A EP13821152A EP2907175A1 EP 2907175 A1 EP2907175 A1 EP 2907175A1 EP 13821152 A EP13821152 A EP 13821152A EP 2907175 A1 EP2907175 A1 EP 2907175A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- busbar
- module
- printing
- structuring
- conductive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 14
- 238000007639 printing Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 9
- 238000007650 screen-printing Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 238000007641 inkjet printing Methods 0.000 claims description 2
- 238000013086 organic photovoltaic Methods 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
- H10K71/611—Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
- H10K30/83—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/814—Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/824—Cathodes combined with auxiliary electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/86—Series electrical configurations of multiple OLEDs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a method for printing optoelectronic components having at least one busbar, wherein the busbar follows the shape of the optoelectronic component and allows a homogeneous color impression on the back of the component.
- Optoelectronics is made up of optics and semiconductor electronics. It includes systems and procedures that enable the conversion of electronically generated data and energy into light emission or convert light emissions into energy.
- Optoelectronic components in particular organic photovoltaic modules (PV module) and organic light-emitting diodes (OLED), referred to below as OPV modules, generate electrical energy or convert electrical energy into light emissions, which are used later in the module led out or must be led into it.
- PV module organic photovoltaic modules
- OLED organic light-emitting diodes
- Stromomsammeiene is variable and minimizes the order volume of silver paste, thereby reducing manufacturing costs.
- a disadvantage is the shadow of Strommasischienen, which arises in the paste printing on the front of a photovoltaic module.
- Electricity bus bars printed with pastes have a defined height and width which, when exposed to sunlight, cast a shadow over the photovoltaic module and thus adversely affect the efficiency of the module.
- bus bars are applied to the photovoltaic module in the form of metal strips.
- the shadow is minimized, but the solution for transparent PV modules proves to be unsatisfactory.
- the lower area of the busbar is not coated with absorber material, which does not produce a homogeneous color impression since the current busbar remains visible from the back of the PV module.
- these metal bands can be applied only with disproportionate effort in non-linear geometries.
- the object of the present invention is to provide a method for applying current busbars, which overcomes the disadvantages mentioned above.
- a method has to be provided so that current busbars can be produced over the entire width of the PV module, adapt to any forms of the PV module, which are also curvilinear, and ensure a homogeneous color impression of the PV module.
- a method for applying a current busbar to an optoelectronic component in which at least one current busbar is applied by means of printing process before deposition of the photoactive layer, whereby a homogeneous color impression is formed on the back of the module.
- a base material consisting of a substrate and a conductive layer.
- a transparent film, glass or other materials are conceivable, which allow the desired light spectra (transparency, semitransparency, opaque).
- TCO 's Transparent Conductive Oxides
- ITO, ZnO: AL, SnÜ 2 : F Recent developments such as DMD, nano-wire, Ag or graphene.
- At least one active layer e.g. an absorber layer is deposited on the structured conductive layer consisting of at least one current busbar.
- this process is done by vacuum evaporation.
- a counter electrode which comprises, for example, Al (aluminum) or Ag (silver).
- the application of the current busbars takes place directly on the base material before the deposition of a conductive transparent layer.
- the layout of the conductive layer depends on the imprint of the current busbars.
- the printing process for applying at least one bus bar comprises screen printing, inkjet printing and / or another method based on printing. Following a scientific publication on screen printing technology (Hübner, Erath, Mette, Horizonte 29, New Screen Printing Technology Increases the Efficiency of Solar Cells, Reutlingen 2006, p. 6), conventional screen printing technology is carried out using high-viscosity solvent-based printing pastes.
- the printer is based on the structures of the substrate. In the first printing process, the alignment preferably takes place at the corners of the substrate. Other printing methods are preferably arranged on the already printed structures.
- the ink-jet method follows the method of a commercial printer, which, however, applies the conductive medium in the liquid state as ink to the solar cell.
- the ink comprises liquid Al, Ag or other substrate which serves as a transfer medium and is applied to the PV module in the form of a current bus bar.
- the application of the current busbars takes place after the structuring of the conductive layer on the substrate.
- the current busbar as a free form, comprising rectilinear, rectangular, bent realized.
- An advantage of the formation of free forms is the high variability and adaptability of the PV module to its environment. For example, integration into automotive glass requires PV modules that adapt to the automotive glass. They therefore have a curved and not straight shape. Only the high degree of variability of printed bus bars makes it possible to use PV modules in and / or on differently shaped objects.
- the current busbars are not arranged in a straight line and / or parallel to one another.
- At least one current busbar in the embodiment, comprising cross connections can be produced across the module width, which leads the two poles comprising the minus and plus pole of the module to a connection point.
- PV modules particularly flexible PV modules, in particular flexible organic PV modules, are variable in their dimensions, as a result of which small and large modules up to several meters in length and width can be produced.
- the advantage of the present printing method is that it can be varied to suit the dimensions and shape of the PV module.
- Another advantage is that a separate separation process, such as occurs in Stromgemischienen in metal strip form does not occur, whereby a cost savings in manufacturing occurs.
- the optoelectronic component is a flexible organic PV module or an organic light-emitting diode.
- a flexible organic PV module is designed with active layers.
- the active layers of polymers (eg US7825326 B2) or small molecules (eg EP 2385556 AI) be constructed. While polymers are characterized by the fact that they can not be vaporized and therefore can only be applied from solutions, small molecules are usually vaporizable and can be applied either as a solution or as a different evaporation technique.
- the advantage compared to conventional components on an inorganic basis semiconductor are the sometimes extremely high optical absorption coefficients (up to 2 ⁇ 10 5 cm -1 ).
- Another advantage is the ability to produce flexible large-area components on plastic films, which offer almost unlimited variations.
- Another technical aspect is the production of transparent components which can be integrated into glass elements, in which the homogeneous color impression due to the integrated current busbars particularly advantageous compared to conventional solar modules.
- Organic light emitting diodes consist of at least one organic semiconductor layer, which is embedded between two electrodes and emits light when current flows (electroluminescence).
- the active layers are composed of polymers (GB2487342A) or small molecules (EP2395571A1), as in the case of an organic PV module.
- the very flat design, the high flexibility, the possibility of production on plastic films and the low energy requirement allow the use of OLEDs in a variety of applications (eg displays for mobile phones, televisions, radios, etc.). Due to the mentioned properties and fields of application, the printed bus bars have an advantageous effect in the Production and application areas, as a homogeneous
- FIG. 1 shows a schematic structure of an organic solar cell in plan view, on whose sides in each case a current busbar runs and in
- Fig. 2 shows a schematic structure of an organic solar cell in cross section.
- Fig. 1 illustrates the shape-free design of the current busbars. Depending on the application, they can follow the shape of the PV module. In the present case, an oblique and angled current busbar 1 is visible. These follow the layout of the conductive layer 3 which has been patterned by means of laser cutting, scribing or lithographic processes.
- Fig. 2 illustrates the structure of an organic PV module in cross-section 4, in which on the back of the module, a homogeneous color impression is generated.
- the base material used is a substrate film 6.
- the front electrode 7 can be structured before or after the application of the busbars.
- the current busbars 1 are applied to the front electrode 7 by means of printing processes.
- the further process draws is characterized by the vapor deposition of the active layer 3, for example a general absorber layer in a vacuum. This is followed by the application of a counter electrode
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Printing Methods (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102012109777.1A DE102012109777A1 (de) | 2012-10-15 | 2012-10-15 | Verfahren zum Bedrucken optoelektronischer Bauelemente mit Stromsammelschienen |
| PCT/IB2013/059257 WO2014060912A1 (de) | 2012-10-15 | 2013-10-10 | Verfahren zum bedrucken optoelektronischer bauelemente mit busbars |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2907175A1 true EP2907175A1 (de) | 2015-08-19 |
Family
ID=49956253
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13821152.9A Ceased EP2907175A1 (de) | 2012-10-15 | 2013-10-10 | Verfahren zum bedrucken optoelektronischer bauelemente mit busbars |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US9735363B2 (enExample) |
| EP (1) | EP2907175A1 (enExample) |
| JP (1) | JP2015533264A (enExample) |
| KR (2) | KR20200058610A (enExample) |
| CN (1) | CN104813503B (enExample) |
| BR (1) | BR112015008290B1 (enExample) |
| DE (1) | DE102012109777A1 (enExample) |
| WO (1) | WO2014060912A1 (enExample) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102014112204A1 (de) | 2014-08-26 | 2016-03-03 | Osram Oled Gmbh | Optoelektronische Vorrichtung |
| NL2014040B1 (en) * | 2014-12-23 | 2016-10-12 | Stichting Energieonderzoek Centrum Nederland | Method of making a curent collecting grid for solar cells. |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10324880A1 (de) * | 2003-05-30 | 2005-01-05 | Schott Ag | Verfahren zur Herstellung von OLEDs |
| US20100263719A1 (en) * | 2009-04-16 | 2010-10-21 | Applied Materials, Inc. | Thin-Film Solar Cell Module |
| US20120234372A1 (en) * | 2011-03-15 | 2012-09-20 | Kabushiki Kaisha Toshiba | Organic thin-film solar cell module and sub-module |
| DE102013106815A1 (de) * | 2013-06-28 | 2014-12-31 | Osram Oled Gmbh | Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2967315D1 (en) | 1978-09-29 | 1985-01-10 | Marconi Co Ltd | Apparatus and method using a memory for processing television picture signals and other information |
| JP2001068696A (ja) * | 1999-08-25 | 2001-03-16 | Kanegafuchi Chem Ind Co Ltd | 薄膜光電変換モジュール |
| JP2003123990A (ja) * | 2001-10-17 | 2003-04-25 | Toppan Printing Co Ltd | 有機エレクトロルミネッセンス素子 |
| EP1861881B1 (en) | 2005-03-21 | 2017-09-06 | Merck Patent GmbH | Polymer photovoltaic cell |
| JP4818095B2 (ja) * | 2006-12-22 | 2011-11-16 | 三洋電機株式会社 | 太陽電池 |
| DE102007034252B4 (de) * | 2007-07-19 | 2010-07-01 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Modul und Verfahren zu seiner Herstellung |
| JP2009130020A (ja) * | 2007-11-21 | 2009-06-11 | Mitsubishi Heavy Ind Ltd | 太陽電池パネル及び太陽電池パネルの製造方法 |
| DE102008045948A1 (de) | 2008-09-04 | 2010-03-11 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines organischen strahlungsemittierenden Bauelements und organisches strahlungsemittierendes Bauelement |
| US7795067B1 (en) | 2009-03-30 | 2010-09-14 | Solopower, Inc. | Semitransparent flexible thin film solar cells and modules |
| KR101028971B1 (ko) * | 2009-05-26 | 2011-04-19 | 한국과학기술원 | 집적형 박막 태양전지 및 그의 제조 방법 |
| US8525163B2 (en) | 2009-07-17 | 2013-09-03 | Sharp Kabushiki Kaisha | Organic EL device, method for fabricating organic EL device, and organic EL illumination system |
| JP5407681B2 (ja) * | 2009-09-10 | 2014-02-05 | 大日本印刷株式会社 | 色素増感型太陽電池用対極基板、色素増感型太陽電池素子、および色素増感型太陽電池モジュール |
| CN102549762B (zh) * | 2009-09-30 | 2015-06-03 | Lg伊诺特有限公司 | 太阳能电池设备 |
| CN101707227B (zh) | 2009-10-30 | 2011-07-20 | 无锡尚德太阳能电力有限公司 | 薄膜太阳电池组件汇流条的制造方法及薄膜太阳电池组件 |
| ES2857904T3 (es) | 2010-05-04 | 2021-09-29 | Heliatek Gmbh | Componente fotoactivo con capas orgánicas |
| GB2487342B (en) | 2010-05-14 | 2013-06-19 | Cambridge Display Tech Ltd | Host polymer comprising conjugated repeat units and non-conjugated repeat units for light-emitting compositions, and organic light-emitting devices |
| EP2395571B1 (en) | 2010-06-10 | 2013-12-04 | Novaled AG | Organic electronic device comprising an organic semiconducting material |
| WO2012002216A1 (ja) * | 2010-06-30 | 2012-01-05 | 三洋電機株式会社 | 太陽電池モジュール |
| DE102010054327A1 (de) | 2010-12-13 | 2012-06-14 | Solsol Gmbh | Verfahren zur Herstellung einer pastenauftragsselektiven Siebdrucksolarzellenmetallisierung |
| JP2012160677A (ja) * | 2011-02-03 | 2012-08-23 | Mitsubishi Chemicals Corp | 有機太陽電池の製造方法及び有機太陽電池 |
| KR101283053B1 (ko) * | 2011-10-18 | 2013-07-05 | 엘지이노텍 주식회사 | 태양광 발전장치 및 이의 제조방법 |
-
2012
- 2012-10-15 DE DE102012109777.1A patent/DE102012109777A1/de not_active Ceased
-
2013
- 2013-10-10 BR BR112015008290-4A patent/BR112015008290B1/pt active IP Right Grant
- 2013-10-10 CN CN201380053906.3A patent/CN104813503B/zh active Active
- 2013-10-10 KR KR1020207014811A patent/KR20200058610A/ko not_active Ceased
- 2013-10-10 WO PCT/IB2013/059257 patent/WO2014060912A1/de not_active Ceased
- 2013-10-10 KR KR1020157011873A patent/KR20150066568A/ko not_active Ceased
- 2013-10-10 US US14/435,857 patent/US9735363B2/en active Active
- 2013-10-10 EP EP13821152.9A patent/EP2907175A1/de not_active Ceased
- 2013-10-10 JP JP2015536265A patent/JP2015533264A/ja active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10324880A1 (de) * | 2003-05-30 | 2005-01-05 | Schott Ag | Verfahren zur Herstellung von OLEDs |
| US20100263719A1 (en) * | 2009-04-16 | 2010-10-21 | Applied Materials, Inc. | Thin-Film Solar Cell Module |
| US20120234372A1 (en) * | 2011-03-15 | 2012-09-20 | Kabushiki Kaisha Toshiba | Organic thin-film solar cell module and sub-module |
| DE102013106815A1 (de) * | 2013-06-28 | 2014-12-31 | Osram Oled Gmbh | Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes |
Non-Patent Citations (1)
| Title |
|---|
| See also references of WO2014060912A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| DE102012109777A1 (de) | 2014-04-17 |
| KR20200058610A (ko) | 2020-05-27 |
| WO2014060912A1 (de) | 2014-04-24 |
| US20150270487A1 (en) | 2015-09-24 |
| US9735363B2 (en) | 2017-08-15 |
| CN104813503A (zh) | 2015-07-29 |
| CN104813503B (zh) | 2017-06-09 |
| BR112015008290B1 (pt) | 2021-02-09 |
| KR20150066568A (ko) | 2015-06-16 |
| BR112015008290A2 (pt) | 2017-07-04 |
| JP2015533264A (ja) | 2015-11-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE10324880B4 (de) | Verfahren zur Herstellung von OLEDs | |
| EP1990846A2 (de) | Photovoltaisches Modul mit organischen Schichten auf Polymerbasis | |
| EP2323191A2 (de) | Organisches photoelektrisches Bauelement | |
| WO2010051976A1 (de) | Substrat für eine optoelektronische vorrichtung | |
| DE10140991A1 (de) | Organische Leuchtbiode, Herstellungsverfahren dazu und Anwendungen | |
| DE102010047430A1 (de) | Flexible, farbstoffsensibilisierte Solarzelle und Herstellungsverfahren hierfür | |
| DE102018202513A1 (de) | Verfahren zur Metallisierung eines Bauelements | |
| DE102012024754A1 (de) | Dünnschichtsolarzellenanordnung sowie Verfahren zu deren Herstellung | |
| DE102011089013B4 (de) | Farbstoff-Solarzelle | |
| EP2907175A1 (de) | Verfahren zum bedrucken optoelektronischer bauelemente mit busbars | |
| DE102012220724B4 (de) | Optoelektronisches Bauelement | |
| DE102006023638A1 (de) | Photovoltaische Zelle | |
| EP4272258A1 (de) | Photovoltaisches element mit mindestens einer photovoltaischen zelle und mindestens einer gefalteten sammelschiene | |
| EP1442486B1 (de) | Solarzelle mit organischem material in der photovoltaischen schicht sowie verfahren zu deren herstellung | |
| EP2453498B1 (de) | Strahlungsemittierende Vorrichtung und Verfahren zur Herstellung einer strahlungsemittierenden Vorrichtung | |
| WO2016146439A1 (de) | Organisches optoelektronisches bauelement und verfahren zum herstellen eines organischen optoelektronischen bauelements | |
| DE102012206111B4 (de) | Fotoelektrisches halbleiterelement mit unregelmässig verlaufenden leiterbahnen an einer oberfläche | |
| DE102010017844A1 (de) | Verfahren und Vorrichtung zur Herstellung elektronischer und/oder energieerzeugender und/oder energieumwandelnder Elemente und Komponenten | |
| EP1638155A1 (de) | Verbesserung der Leitfähigkeit einer Polymerelektrode durch Aufbringen einer darunterliegenden Metallschicht | |
| WO1998054767A1 (de) | Leitfähiges schichtsystem und dessen verwendung in elektrolumineszierenden anordnungen | |
| DE102020131742A1 (de) | Feldbreitenanpassung von Zellen in einem photovoltaischen Element | |
| DE102012202506A1 (de) | Halbleitereinrichtung und Verfahren zu deren Herstellung | |
| DE102014213978A1 (de) | Verfahren zur Herstellung eines organischen Halbleiterbauteils und organisches Halbleiterbauteil | |
| DE102014112204A1 (de) | Optoelektronische Vorrichtung | |
| DE19757874A1 (de) | Leitfähiges Schichtsystem und dessen Verwendung in elektrolumineszierenden Anordnungen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20150430 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20160907 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
| 18R | Application refused |
Effective date: 20190602 |