EP2906369B1 - Breitenbeeinflussung eines bandförmigen walzguts - Google Patents

Breitenbeeinflussung eines bandförmigen walzguts Download PDF

Info

Publication number
EP2906369B1
EP2906369B1 EP13765985.0A EP13765985A EP2906369B1 EP 2906369 B1 EP2906369 B1 EP 2906369B1 EP 13765985 A EP13765985 A EP 13765985A EP 2906369 B1 EP2906369 B1 EP 2906369B1
Authority
EP
European Patent Office
Prior art keywords
width
unit
rolled material
crown
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13765985.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2906369A1 (de
Inventor
Ansgar GRÜSS
Andreas Jungbauer
Robert Linsbod
Rainer Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Publication of EP2906369A1 publication Critical patent/EP2906369A1/de
Application granted granted Critical
Publication of EP2906369B1 publication Critical patent/EP2906369B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/22Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories for rolling metal immediately subsequent to continuous casting, i.e. in-line rolling of steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B31/00Rolling stand structures; Mounting, adjusting, or interchanging rolls, roll mountings, or stand frames
    • B21B31/16Adjusting or positioning rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/18Roll crown; roll profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates

Definitions

  • the present invention relates to a method for influencing the width of a strip-shaped rolling stock, in particular before hot rolling, during hot rolling or after hot rolling of the rolled stock in a hot rolling mill.
  • a metallic rolling stock for example a strip-shaped rolling stock made of steel or aluminum, is plastically deformed warm in a rolling nip of a roll stand.
  • a rolling stock with a different width with a cast-rolling composite plant.
  • the width of the slab strand is changed in the mold, whereby a tapered or wider slab piece (also called transition piece or wedge-shaped transition piece) with a certain length (depending on the casting speed and the travel speed of the narrow side wall) is produced.
  • the slab with the transition piece is then rolled in the rolling mill of the composite plant, which in any case a slowly tapered or slowly wider rolled strip is produced.
  • the band can not be sold directly with the rolled transition piece. Consequently It is desired to keep the length of the transition piece as short as possible. This can be done either by cutting out the transition piece from the slab or from the rolled strip, which in any case considerable Verlbringtlere arise. Furthermore, the transition piece can be trimmed or trimmed, whereby the Ausbringtlere can be reduced slightly. A very fast adjustment of the narrow side walls in the mold is also eliminated, since this can easily lead to breakthroughs in the thin strand shell of the slab strand.
  • the object of the invention is to overcome the disadvantages of the prior art and to provide a method for influencing the width of a strip-shaped rolling stock, with which the length of a rolled transition piece, which is outside the width tolerances, can be reduced. This should reduce the Ausbringpolee.
  • the crowning of a working or support roller of the rolling stand can be adjusted depending on the width error e additionally or alternatively to influence the train of the rolling stock, wherein at e> 0 increases the crown of the roller and e ⁇ 0 the crown of the roller is reduced.
  • the central crown (engl. Central crown) is to be understood here as the thickness of the rolled material is reduced in a central area with an increase of the crown, so that the widening of the rolled material is increased during rolling.
  • the central crown is reduced, so that the spread during rolling is reduced.
  • the adjustment of the crown of a roll can be done eg via roll bending actuators or via a thermal influence (eg a zone-dependent cooling) of the roll. If, in the case of thermal influence, an increase in crowning is desired, the cooling of the edge regions of the roll is increased more than the central regions. As a result, the central area of the roller expands more than the edge areas, whereby the crown is increased. On the other side is the crown reduced when the cooling in the central region of the roller is increased more than in the edge regions.
  • both units have a roll stand, and a change in the crown of a roll takes place mainly in the first unit. This ensures that the rolled product after rolling in the second unit has a desired geometry.
  • the adjustment of the crown as a function of the width of the error e can be carried out either controlled or regulated, ie taking into account the measured width B of the rolled material, for example, at the exit from the second unit or later at an additional location.
  • the crown when setting the crown, it is very advantageous to take into account the transport time of the rolling stock from the first unit or from a measuring device for detecting the actual width B actual to the rolling stand. As a result, the width in the transition piece in the rolling stand of the second unit is compensated in the correct time.
  • the consideration of the transport time can also be used when setting the train for width control.
  • the desired width B Soll is a jump function H (t) from B 1 to B 2 or from B 2 to B 1 .
  • the desired width B Soll may also be a ramp function R (t) from B 1 to B 2 or from B 2 to B 1 .
  • other functions are possible.
  • the first aggregate is a mold of a casting machine, e.g. a continuous arc casting machine or a two-roll casting machine, or a rolling stand, e.g. a rolling stand of a roughing mill.
  • a casting machine e.g. a continuous arc casting machine or a two-roll casting machine
  • a rolling stand e.g. a rolling stand of a roughing mill.
  • the rolling stock is expedient to transport the rolling stock from the first unit on a roller table to the second unit.
  • the invention is by no means limited thereto, but operates e.g. also for freely suspended loops between two aggregates.
  • the Fig. 1 shows a part of a cast-rolling composite plant with a sheet continuous casting machine 1 for the continuous casting of molten steel into thin slabs and a subsequent, in-line, rolling mill. From the rolling mill, only a rolling stand 7 of the roughing mill was shown; on the presentation of the other parts of the system has been omitted.
  • the casting speed 11 is 5 m / min; the metallurgical length of the continuous casting machine 1 from the mold 8 to the two driving rollers 10 is 15 m.
  • the strand guide 9 is indicated by two strand guide rollers.
  • the solidified thin slab strand exits via the drive rollers 10 from the continuous casting machine 1 and represents the rolling stock 5.
  • the pair of drive rollers 10 forms the first unit 2.
  • the rolling stock 5 is in the transport direction 6 from the first unit 2 uncut on the roller table 3 to the second unit 4 out, wherein the second unit 4 by a rolling stand. 7 the roughing line is formed.
  • Rolled product 5 rolled in the rolling stand is also referred to as rolled product 12.
  • the width B mold of the thin slab strand at the exit from the mold 8 or at the exit of the rolling stock 5 from the first unit 2 B drive roller are in Fig. 2 shown in solid lines. Due to the length of the continuous casting machine, the head of the transition piece emerges from the first unit 2 with a delay of 3 minutes from the mold 8.
  • the jump function is known from http://mathworld.wolfram.com/HeavisideStepFunction.html.
  • the rolling stock 5 is constricted by the train, whereby the width of the rolling stock 5 and the rolled product 12 is reduced.
  • the width error e is in Fig. 3 shown. On the representation of the width error e for the in Fig. 2 dash-dotted widths was waived.
  • a control scheme for implementing the method according to the invention is in Fig. 4a shown.
  • the width error e is determined by the difference between the target value for the width B desired and the width B, wherein B is determined by the width of the thin slab strand at the exit of the mold 8, taking into account a dead time of 3 min by the dead time member 13.
  • the width error is then amplified by an amplifier member 14 and held by the limiting member 15 within allowable minimum and maximum limits.
  • the result ⁇ Soll is fed to a tension regulator R ⁇ for the rolling stand 7, which adjusts the tension ⁇ to the rolling stock 5 accordingly.
  • the manipulated variable u is switched to the controlled system G, wherein the controlled system G as output an actual width B actual of the rolled product 12 at the exit from the second unit 4 supplies.
  • the main difference between the control scheme in Fig. 4a and the control scheme in 4b is that the actual width B actual of the rolled product 12 is measured immediately after exiting the second unit 4 by the width measuring device 16 (see Fig. 1 ) and the control loop is returned, so that the accuracy of the width control can be significantly increased.
  • the actual width B actual of the rolled product 12 is held closer to the desired width B desired by the inventive method, so that the width tolerances can be better met.
  • the control scheme after Fig. 7 used.
  • the difference to the scheme 4b consists in that the width error e is additionally fed to a controller R Balligk for influencing the crowning of a working and / or support roller of the roll stand 7, which influences the crowning of the roll via the manipulated variable u 2 .
  • the controlled system G by two manipulated variables u 1 , u 2 influenced, wherein the controlled variable is the width B is the rolling stock 5 after the second unit 4 (specifically, the roll stand 7).
  • the manipulated variable u 1 corresponding to the manipulated variable u from the 4b ,
  • the actual width B is measured by the width measuring device 16 at the output of the second unit 4 and the control loop are fed.
  • the Fig. 8 shows like that Fig. 1 a part of a cast-rolling composite plant with a continuous casting machine 1, a first unit 2 in the form of a pair of drive rollers 10, a second unit 4 in the form of a rolling stand 7 and in addition a third unit 17 in the form of another rolling stand 7.
  • the first unit 2 could of course also include several drive rollers 10.
  • the second unit 4 together with the third unit 17 forms the rough rolling of the cast-rolling composite system.
  • the rolling stock 5 is discharged from the drive rollers 10 from the continuous casting machine 1 with a thickness of 90mm, then rolled in the second unit 4 to a thickness of 50mm, and finally reduced in the third unit 17 to a thickness of 30mm.
  • the width of the strand after the mold 8 B mold , the width of the strand in the drive roller 10 B drive roller , the target width B target and the width of the strand after exiting the second unit 4 - once without B aggregate 2 and once at application of B according to the invention is process - are in FIG. 9 shown.
  • the actual width of the rolling stock 5 or of the rolled product 12 is in turn measured immediately after the second unit 4 by the width measuring device 16. From the FIG. 9 shows that the actual width B actual of the rolled product 12 remains much longer within the width tolerance by the application, so that the Ausbringhine be reduced.
  • the rule scheme for the Fig. 8 and 9 is in FIG. 10 shown.
  • the width error e B Soll -B Ist is used to control a first train ⁇ 1 between the first 2 and the second unit 4 and to control a second train ⁇ 2 between the second 4 and the third unit 17, the resulting manipulated variables u 1 , u 2 interact with each other on the controlled system G.
  • both the gain factors K 1 and K 2 of the reinforcing members 14, the boundaries of the limiting members 15 and the controller R ⁇ for the first branch for influencing the train ⁇ 1 and for the second branch for influencing the train ⁇ 2 can be chosen differently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)
EP13765985.0A 2012-10-09 2013-09-17 Breitenbeeinflussung eines bandförmigen walzguts Active EP2906369B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012218353.1A DE102012218353A1 (de) 2012-10-09 2012-10-09 Breitenbeeinflussung eines bandförmigen Walzguts
PCT/EP2013/069240 WO2014056681A1 (de) 2012-10-09 2013-09-17 Breitenbeeinflussung eines bandförmigen walzguts

Publications (2)

Publication Number Publication Date
EP2906369A1 EP2906369A1 (de) 2015-08-19
EP2906369B1 true EP2906369B1 (de) 2016-11-02

Family

ID=49230717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13765985.0A Active EP2906369B1 (de) 2012-10-09 2013-09-17 Breitenbeeinflussung eines bandförmigen walzguts

Country Status (8)

Country Link
US (1) US9764367B2 (enrdf_load_stackoverflow)
EP (1) EP2906369B1 (enrdf_load_stackoverflow)
KR (1) KR102131182B1 (enrdf_load_stackoverflow)
CN (1) CN104837574B (enrdf_load_stackoverflow)
DE (1) DE102012218353A1 (enrdf_load_stackoverflow)
IN (1) IN2015DN02529A (enrdf_load_stackoverflow)
RU (1) RU2643002C2 (enrdf_load_stackoverflow)
WO (1) WO2014056681A1 (enrdf_load_stackoverflow)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3000539B1 (de) * 2014-09-24 2016-11-16 SMS group GmbH VERFAHREN ZUM GIEßEN UND WALZEN EINES ENDLOSEN STRANGGUTES
IT201700028768A1 (it) * 2017-03-15 2018-09-15 Danieli Off Mecc Impianto combinato di colata continua e laminazione di nastri metallici a caldo
CN112496085B (zh) * 2020-11-06 2023-04-28 邯郸钢铁集团有限责任公司 改善1500MPa级热轧超高强钢边浪缺陷的生产方法
CN112845615B (zh) * 2020-12-29 2022-09-30 中铝西南铝板带有限公司 一种铝合金带材轧制板形的宽度补偿方法
CN115608788B (zh) * 2022-08-23 2025-08-19 日照钢铁控股集团有限公司 无头连铸连轧带钢生产线控制方法、系统、介质、设备

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2249366A1 (de) 1971-10-11 1973-04-19 Hitachi Ltd Verfahren und vorrichtung zur kontrolle und steuerung der breite eines gewalzten bandes
US4063076A (en) * 1975-12-26 1977-12-13 Hitachi, Ltd. Method of automatic width control of hot rolled strips
SU604598A1 (ru) * 1976-03-30 1978-04-30 Институт Автоматики Устройство управлени шириной полосы
SU995945A1 (ru) * 1981-07-23 1983-02-15 Донецкий научно-исследовательский институт черной металлургии Устройство регулировани ширины гор чекатанных полос на непрерывном стане
US4528830A (en) * 1982-06-30 1985-07-16 Sumitomo Metal Industries, Ltd. Method for changing widthwise distribution of thickness of metal strip
EP0121148B1 (de) * 1983-03-14 1989-02-15 Sms Schloemann-Siemag Aktiengesellschaft Verfahren zum Herstellen von Walzband mit hoher Bandprofil- und Bandplanheitsgüte
US4651550A (en) * 1983-11-28 1987-03-24 Hitachi, Ltd. Method of decreasing width of thin slab and apparatus therefor
JPS60206503A (ja) * 1984-03-30 1985-10-18 Sumitomo Metal Ind Ltd 連続圧延における圧延材の尾端制御方法
FR2613641B1 (fr) * 1987-04-09 1990-12-14 Clecim Sa Procede et installation de laminage d'un produit sous forme de bande, plus specialement une tole metallique ou un feuillard
DE3712043C2 (de) * 1987-04-09 1995-04-13 Schloemann Siemag Ag Walzgerüst mit axial verschiebbaren Walzen
JPS63309306A (ja) * 1987-06-11 1988-12-16 Hitachi Ltd 連続鋳造鋳片の圧延設備及び圧延方法
JPH01258807A (ja) * 1988-04-05 1989-10-16 Sumitomo Metal Ind Ltd タンデムミルにおける板幅制御方法
DE3843730C2 (de) * 1988-12-22 1995-06-22 Preussag Stahl Ag Verfahren und Vorrichtung zum Regeln der Bandbreite beim Warmbandwalzen
US5680784A (en) * 1994-03-11 1997-10-28 Kawasaki Steel Corporation Method of controlling form of strip in rolling mill
DE19522494C2 (de) * 1994-07-07 1997-06-19 Siemens Ag Verfahren zum Walzen eines Metallbandes
DE19844305A1 (de) * 1998-09-17 2000-03-30 Mannesmann Ag Kombiniertes Regelungssystem zur Erzeugung bestimmter Produkteigenschaften beim Walzen von Stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen Bereich
JP2000312909A (ja) * 1999-04-27 2000-11-14 Toshiba Corp 板幅制御装置
JP2003305509A (ja) * 2002-04-11 2003-10-28 Kobe Steel Ltd 熱間連続圧延における被圧延材の板幅制御装置及び板幅制御方法
JP3664151B2 (ja) * 2002-06-05 2005-06-22 住友金属工業株式会社 板幅制御方法、冷延金属板製造方法、及び、冷間圧延装置
ITMI20021996A1 (it) * 2002-09-19 2004-03-20 Giovanni Arvedi Procedimento e linea di produzione per la fabbricazione di nastro a caldo ultrasottile sulla base della tecnologia della bramma sottile
US7185519B2 (en) * 2003-09-15 2007-03-06 The Bradbury Company, Inc. Methods and apparatus for monitoring and conditioning strip material
US7181822B2 (en) * 2005-01-20 2007-02-27 Nucor Corporation Method and apparatus for controlling strip shape in hot rolling mills
WO2007095646A1 (en) * 2006-02-17 2007-08-23 Alcoa Inc. Application of induction heating to control sheet flatness in cold rolling mills
DE102006011939A1 (de) * 2006-03-15 2007-09-27 Siemens Ag Walzverfahren für ein Walzgut zum Einbringen einer Stufe in das Walzgut
DE102007022931A1 (de) * 2006-05-26 2007-11-29 Sms Demag Ag Verfahren und Vorrichtung zum Herstellen eines Metallbandes durch Stranggießen
US7823428B1 (en) * 2006-10-23 2010-11-02 Wright State University Analytical method for use in optimizing dimensional quality in hot and cold rolling mills
DE102007031333A1 (de) * 2007-07-05 2009-01-15 Siemens Ag Walzen eines Bandes in einer Walzstraße unter Nutzung des letzen Gerüsts der Walzstraße als Zugverringerer
UA90753C2 (ru) 2008-04-14 2010-05-25 Александр Владимирович Сатонин Способ прокатки листов или полос

Also Published As

Publication number Publication date
IN2015DN02529A (enrdf_load_stackoverflow) 2015-09-11
EP2906369A1 (de) 2015-08-19
WO2014056681A1 (de) 2014-04-17
CN104837574A (zh) 2015-08-12
CN104837574B (zh) 2017-05-03
KR20150065862A (ko) 2015-06-15
US9764367B2 (en) 2017-09-19
DE102012218353A1 (de) 2014-04-10
RU2015117467A (ru) 2016-12-10
US20150258592A1 (en) 2015-09-17
KR102131182B1 (ko) 2020-07-08
RU2643002C2 (ru) 2018-01-29

Similar Documents

Publication Publication Date Title
EP2603337B1 (de) Verfahren zum herstellen von walzgut mittels einer giesswalzverbundanlage, steuer- und/oder regeleinrichtung für eine giesswalzverbundanlage und giesswalzverbundanlage
EP3184202B1 (de) Verfahren zum stranggiessen eines metallstranges
EP3535069B1 (de) Verfahren zum betreiben einer giesswalzverbundanlage
EP2906369B1 (de) Breitenbeeinflussung eines bandförmigen walzguts
EP2691188B1 (de) Betriebsverfahren für eine walzstrasse
EP2346631B1 (de) Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses
EP3000539B1 (de) VERFAHREN ZUM GIEßEN UND WALZEN EINES ENDLOSEN STRANGGUTES
WO2015124363A1 (de) Einfache vorsteuerung einer keilanstellung eines vorgerüsts
AT410767B (de) Verfahren und vorrichtung zur kontinuierlichen herstellung eines gewalzten metallbandes aus einermetallschmelze
EP2340133B2 (de) Verfahren zum einstellen einer antriebslast für eine mehrzahl an antrieben einer walzstrasse zum walzen von walzgut, steuer- und/oder regeleinrichtung, speichermedium, programmcode und walzanlage
EP2864062B1 (de) Verfahren zur gezielten beeinflussung der geometrie eines walzguts
WO2013110399A1 (de) Verfahren zur bearbeitung von walzgut in einem warmwalzwerk
WO2018108652A1 (de) Verfahren und vorrichtung zum regeln einer stranggiessanlage
EP0013539B1 (de) Verfahren zur Geschwindigkeitssteuerung einer kontinuierlich arbeitenden Giessvorrichtung
EP3173166B1 (de) Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs
DE3822939C1 (en) Continuous casting method for the production of slabs with a reduced thickness relative to the cast condition
WO2022017690A1 (de) Giess-walz-verbundanlage zur herstellung eines warmgewalzten fertigbands aus einer stahlschmelze
AT518461B1 (de) Gießspiegelregelung mit Störgrößenkompensation
EP0947265A2 (de) Verfahren zum Stranggiessen und Fertigwalzen eines Giessstranges innerhalb einer vorgegebenen Fertigbreitentoleranz
EP2841215B1 (de) Angleichung von bandeigenschaften durch breitenabhängige vorbandkühlung
DE10025080A1 (de) Verfahren zum Herstellen von Metallband
DE102023211928A1 (de) Verfahren zum Betreiben eines Walzwerks
DE102021205275A1 (de) Verfahren zum Betreiben eines Walzgerüstes
EP2745946A1 (de) Betriebsverfahren für eine Walzstraße

Legal Events

Date Code Title Description
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 841289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005222

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170203

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005222

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170917

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170917

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190919

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013005222

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 841289

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200917

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240918

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240924

Year of fee payment: 12

Ref country code: SE

Payment date: 20240919

Year of fee payment: 12