EP2898154B1 - Wall structure with an interior insulation systems having laid thermally insulating panels with variable gap sizes - Google Patents

Wall structure with an interior insulation systems having laid thermally insulating panels with variable gap sizes Download PDF

Info

Publication number
EP2898154B1
EP2898154B1 EP13765354.9A EP13765354A EP2898154B1 EP 2898154 B1 EP2898154 B1 EP 2898154B1 EP 13765354 A EP13765354 A EP 13765354A EP 2898154 B1 EP2898154 B1 EP 2898154B1
Authority
EP
European Patent Office
Prior art keywords
thermal insulation
wall construction
sheets
capillary
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13765354.9A
Other languages
German (de)
French (fr)
Other versions
EP2898154A1 (en
Inventor
Günter Kratel
Thomas Eyhorn
Helmut Weber
Gerd Borchert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201210018793 external-priority patent/DE102012018793A1/en
Priority claimed from DE201310006179 external-priority patent/DE102013006179A1/en
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP2898154A1 publication Critical patent/EP2898154A1/en
Application granted granted Critical
Publication of EP2898154B1 publication Critical patent/EP2898154B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/7675Insulating linings for the interior face of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab

Definitions

  • thermal insulation materials are the microporous thermal insulation materials based on pyrogenic silicas or silicic acid aerogels. In addition to their non-flammability and physiological harmlessness, these are characterized above all by a high thermal insulation effect in the range from minus 200 ° C to 1000 ° C.
  • Microporous plates based on fumed silica, such as. B. in EP-A-1988228 described and / or aerogels, opacifiers, reinforcing fibers and possibly other additives such as precipitated silicas or fly ash are considered state of the art and are successfully used in numerous applications, including as core material in vacuum insulation panels (VIP).
  • microporous insulation materials and insulation panels were developed which are hydrophobic, i.e. water-repellent. So describe for example EP-A-1988228 and DE-A-102010005800 Process for the production of hydrophobic thermal insulation boards based on fumed silica.
  • a disadvantage of these water-repellent insulation panels is that they do not have any capillary-active properties, e.g. Wall moisture (condensate) to be able to pass through the thermal insulation layer to the interior by capillary action.
  • thermal insulation panels e.g. B. after DE-A-102010044789 are designed so that between a capillary-active cover plate and a capillary-active (boundary layer) carrier plate, thermal insulation elements with a lower specific thermal conductivity are installed in free spaces in such a way that they are surrounded by capillary-active webs which connect the cover and carrier plates to one another.
  • the object of the invention is therefore to achieve a slim interior insulation with the best possible thermal insulation, which on the one hand allows room air humidity to be absorbed into the wall through capillary-active, water vapor diffusion areas and on the other hand ensures that liquid water (condensate) is returned to the room through capillarity and evaporation .
  • an uncomplicated, inexpensive production of the thermal insulation board, as well as a simple application of the insulation system on site should be given.
  • a wall structure with an interior insulation system with thermal insulation panels the thermal insulation panels with a defined Joint width are fixed on-site by means of an adhesive on the wall on an existing or newly attached capillary-active layer and the joints are filled with a capillary-active layer, and the side of the thermal insulation panels facing the inside of the room is covered with a capillary-active layer and thus surrounded on all sides by these capillary-active layers are.
  • Capillary-active layer here means a layer with a water absorption coefficient w of> 0.5 kg / m 2 h 0.5 .
  • the joints are filled without gaps with the help of capillary-active, preferably heat-insulating joint compounds, mortars or plasters.
  • capillary-active preferably heat-insulating joint compounds, mortars or plasters.
  • the thermal insulation panels are also covered with a capillary-active, preferably thermal insulation layer, so that the thermal insulation panels are surrounded on all sides by the layers described above.
  • the capillary-active layer is preferably designed as a heat-insulating layer.
  • the capillary-active layer can consist of mortar or plaster, optionally reinforced with fabric, or consist of plates.
  • the capillary-active layer comprises calcium silicate plates.
  • the calcium silicate boards used according to the invention preferably have a density of 250-380 kg / m 3 .
  • the joints are filled with a capillary-active layer.
  • the width of the joints is preferably 5 to 30 mm, particularly preferably 8 to 20 mm.
  • the material of the capillary-active layer preferably has an average porosity of 50-70% by volume.
  • the joints comprise strips of calcium silicate or consist of them.
  • the water vapor diffusion resistance of the joint material is preferably 5-20.
  • the specific thermal conductivity of the joint material is preferably ⁇ 0.25 W / mK, particularly preferably ⁇ 0.15 W / mK and very particularly preferably ⁇ 0.10 W / mK.
  • Thermal insulation panels with a low specific coefficient of thermal conductivity are preferably used. These can be organic thermal insulation panels, for example made of polyurethane, or vacuum insulation panels (VIP). In the case of polyurethane and vacuum insulation panels, it must be ensured that they are not permeable to diffusion. Inorganic thermal insulation panels based on microporous silica are preferably used. Pyrogenically produced silica is particularly advantageous here. The fumed silica is usually obtained by flame hydrolysis. In this process, a vaporized or gaseous hydrolyzable silicon halide is reacted with a flame which has been formed by the combustion of hydrogen and an oxygen-containing gas. The combustion flame provides water for the hydrolysis of the silicon halide and sufficient heat for the hydrolysis reaction.
  • a silicon dioxide produced in this way is referred to as fumed silica.
  • fumed silica A silicon dioxide produced in this way is referred to as fumed silica.
  • primary particles are initially formed that are almost free of internal pores.
  • these primary particles merge via so-called “sintered necks” to form aggregates that are macroporous due to their three-dimensional, open structure.
  • pyrogenic silicon dioxide powders are ideal thermal insulation materials, since the aggregate structure provides sufficient mechanical stability, minimizes the heat transfer through solid-state conductivity via the "sintered necks" and creates a sufficiently high porosity.
  • thermal insulation board comprises waterproofed, pyrogenic silica.
  • the thermal insulation panels contain one or more opacifiers in addition to pyrogenic silica.
  • opacifiers include carbon blacks, titanium oxides, silicon carbides, zirconium oxides, ilmenites, iron titanates, iron oxides, zirconium silicates and manganese oxides.
  • a mixture comprising pyrogenic silica and opacifier generally contains 30 to 95% by weight of pyrogenic silica and 5 to 70% by weight of opacifier, based on the sum of pyrogenic silica and opacifier.
  • the specific thermal conductivity of the thermal insulation panels is preferably less than 0.04 W / m ⁇ K, particularly preferably less than 0.025 W / m ⁇ K.
  • the thickness of the thermal insulation board is preferably 20 to 70 mm, particularly preferably 30 to 50 mm.
  • the joint mortar or plaster ensures that the thermal insulation panels are installed and stabilized firmly and without air bubbles in the composite system.
  • the mortar masses or plasters should preferably be light mortars with high porosity and thus low specific thermal conductivity. However, capillary activity must not be impaired. Therefore, the diffusion activity of the overall system is controlled by the mortar and the joint width. In addition, VIPs must not be dowelled through the core or the edge foil. Anchoring is possible via the joints with large plates.
  • thermal insulation panels In order to ensure optimal bonding of hydrophobic thermal insulation panels with the joint mortars and plasters, which are present as aqueous systems, these can be used, as in DE-A-102010046678 described, be provided with a hydrophilic surface. Likewise, a hydrophilic lamination is as in DE-A-102010046684 described possible. Alternatively, the thermal insulation panels can also be wrapped in perforated shrink films. The perforation is used, inter alia. the maintenance of diffusion openness.
  • the thermal insulation board is fixed using an adhesive.
  • This adhesive preferably has a water vapor diffusion resistance number of 10-100, particularly preferably 15-50.
  • the capillary-active layer located on the inside of the room facing side of the thermal insulation board preferably has a water vapor diffusion resistance number of 5 - 30 and comprises mortar, preferably in a thickness of 10 mm - 30 mm or calcium silicate boards with a thickness of 10 - 30 mm, preferably with a Density from 250 - 380 kg / m 3 .
  • the thermal insulation panels can be laid freely, e.g. offset against each other or as it is the respective local situation, z. B. with reveals, required.
  • the structure of the thermal insulation system on the masonry to be insulated can be done in different ways and is represented as follows:
  • the inner wall (1) to be insulated is optionally given a mineral sealing slurry (MDS).
  • MDS mineral sealing slurry
  • the first capillary-active mortar layer, which can also serve as a leveling layer, is applied to this prepared wall (2).
  • the thermal insulation panels (3) are fixed over the entire surface of the capillary-active mortar layer (2) so that individually wide joints (4) are created between the individual panels.
  • Fixed thermal insulation panels and joints are filled and covered with capillary-active, preferably heat-insulating plaster (5). It is fixed by pressing the thermal insulation board into the mortar layer that has not yet set using adhesive (7) on the set mortar layer.
  • the thermal insulation board can be fixed by anchoring it (8) in the existing wall through the mortar layer.
  • capillary-active plates preferably made of calcium silicate (9), are glued (7) and / or anchored (8) without joints.
  • thermal insulation panels (3) and plasters (5) are applied to the resulting wall surface according to variant A).
  • capillary-active plates preferably made of calcium silicate (9), are attached to the capillary-active mortar layer (2) without joints.
  • the thermal insulation panels (3) are fixed on the resulting wall surface according to variant B).
  • the resulting joints are filled flush with capillary-active, preferably heat-insulating joint mortar (10).
  • capillary-active strips that are adapted in length, width and height to the joints, preferably made of calcium silicate, are glued in.
  • Panels, preferably made of calcium silicate (9a) are in turn glued and / or anchored to the surface created in this way, and the surface on the room side is then optically designed (11).
  • the thermal insulation panels (3) are fixed over the entire surface of the capillary-active mortar layer (2) by means of an adhesive (7) so that individually wide joints (4) are created between the individual panels.
  • the resulting joints are filled flush with capillary-active, preferably heat-insulating joint mortar or strips (10); alternatively, capillary-active strips, preferably made of calcium silicate, are glued in, adapted to the joints in length, width and height. Panels, preferably made of calcium silicate (9a), are in turn glued or anchored to the surface created in this way, and the surface on the room side is then optically designed (11).
  • capillary-active plates and strips are attached to the respective sub-layer with capillary-active adhesives (7).
  • capillary-active adhesives (7) In the case of thermal insulation panels with a hygrically active, i.e. hydrophilic surface and a hydrophobic core, simple adhesives, e.g.
  • Tile adhesive can be used.
  • corresponding active adhesives can be used for fastening which contain a sufficient amount of wetting agents and thus enable the surface of the hydrophobic thermal insulation panels to be wetted.
  • the adhesives used should have slightly higher diffusion resistance than the thermal insulation panels so that they can act as a water vapor barrier. Any condensate then arises on the adhesive surface and is returned by the capillary-active systems.
  • both the hydrophobic thermal insulation panels and the capillary-active thermal insulation panels can be additionally attached to the masonry with dowels, preferably made of plastic and flat anchors (8).
  • the plasters can be reinforced with fabric to further stabilize the overall system.

Description

Der Wärmedämmung kommt vor dem Hintergrund steigender Energiekosten und den höheren Anforderungen an die Energieeinsparung eine immer höhere Bedeutung zu. Eine neue Generation von Wärmedämmstoffen, sind die mikroporösen Wärmedämmstoffe auf Basis von pyrogenen Kieselsäuren oder Kieselsäureaerogelen. Diese zeichnen sich neben ihrer Nichtbrennbarkeit und ihrer physiologischen Unbedenklichkeit vor allem durch eine hohe Wärmedämmwirkung im Bereich von minus 200°C bis hin zu 1000°C aus. Mikroporöse Platten auf der Basis von pyrogener Kieselsäure, wie z. B. in EP-A-1988228 beschrieben und/oder Aerogelen, Trübungsmittel, armierenden Fasern und gegebenenfalls weiteren Zuschlagstoffen wie gefällten Kieselsäuren oder Flugaschen gelten als Stand der Technik und werden in zahlreichen Anwendungen, unter anderem auch als Kernmaterial in Vakuum-Isolations-Paneelen (VIP) erfolgreich eingesetzt.Against the background of rising energy costs and the higher demands on energy saving, thermal insulation is becoming increasingly important. A new generation of thermal insulation materials are the microporous thermal insulation materials based on pyrogenic silicas or silicic acid aerogels. In addition to their non-flammability and physiological harmlessness, these are characterized above all by a high thermal insulation effect in the range from minus 200 ° C to 1000 ° C. Microporous plates based on fumed silica, such as. B. in EP-A-1988228 described and / or aerogels, opacifiers, reinforcing fibers and possibly other additives such as precipitated silicas or fly ash are considered state of the art and are successfully used in numerous applications, including as core material in vacuum insulation panels (VIP).

Ein gravierender Nachteil ist dabei jedoch, dass diese Dämmstoffe, im Kontakt mit flüssigem Wasser ihre Struktur und somit unter anderem ihre Wärmedämmeigenschaften irreversibel verlieren. Auch eine nachträgliche vollständige Trocknung kann den Originalzustand nicht mehr herstellen.A serious disadvantage, however, is that these insulation materials, in contact with liquid water, irreversibly lose their structure and thus their thermal insulation properties, among other things. Even a subsequent complete drying can no longer restore the original condition.

Um diesen Nachteil auszugleichen wurden mikroporöse Dämmstoffe und Dämmstoffplatten entwickelt welche hydrophob, also wasserabweisend sind. So beschreiben zum Beispiel EP-A-1988228 und DE-A-102010005800 Verfahren zur Herstellung hydrophober Wärmedämmplatten auf Basis pyrogener Kieselsäuren.To compensate for this disadvantage, microporous insulation materials and insulation panels were developed which are hydrophobic, i.e. water-repellent. So describe for example EP-A-1988228 and DE-A-102010005800 Process for the production of hydrophobic thermal insulation boards based on fumed silica.

Ein Nachteil dieser wasserabweisenden Dämmstoffplatten ist, dass sie keine kapillaraktiven Eigenschaften aufweisen um z.B. Wandfeuchtigkeit (Kondensat) kapillar durch die Wärmedämmschicht an den Innenraum abgeben zu können.A disadvantage of these water-repellent insulation panels is that they do not have any capillary-active properties, e.g. Wall moisture (condensate) to be able to pass through the thermal insulation layer to the interior by capillary action.

Dies ist für ein nachhaltiges Funktionieren eines Innendämmsystems zwingend erforderlich. In der Offenlegungsschriften DE-U-202009008493 wird z. B. beschrieben, dass die Kapillarwirkung bei einer Wärmedämmplatte erreicht wird, indem man in die Wärmedämmplatte Durchbrüche einbaut, die mit kapillaraktiven Substanzen befüllt sind.This is essential for the sustainable functioning of an interior insulation system. In the Offenlegungsschrift DE-U-202009008493 is z. B. described that the capillary effect is achieved with a thermal insulation board, by building openings in the thermal insulation board that are filled with capillary-active substances.

Andere Wärmedämmplatten, z. B. nach DE-A-102010044789 sind so gestaltet, dass zwischen einer kapillaraktiven Deckschichtplatte und einer kapillaraktiven (Grenzschicht) Trägerplatte Wärmedämmelemente mit einer geringeren spezifischen Wärmeleitfähigkeit so in Freiräume eingebaut sind, dass sie von kapillaraktiven Stegen eingefasst sind, welche die Deck- und Trägerplatten miteinander verbinden.Other thermal insulation panels, e.g. B. after DE-A-102010044789 are designed so that between a capillary-active cover plate and a capillary-active (boundary layer) carrier plate, thermal insulation elements with a lower specific thermal conductivity are installed in free spaces in such a way that they are surrounded by capillary-active webs which connect the cover and carrier plates to one another.

Nachteile bei dieser Art von Wärmedämmverbundplatten sind, dass das Verhältnis von kapillaraktiver Fläche zu Wärmedämmfläche immer gleich ist, d. h. die Größe der kapillaraktiven Fläche also nicht individuell den unterschiedlichen raumklimatischen Verhältnissen angepasst werden kann. Auf extreme Bedingungen wie sie z. B. in Feuchträumen vorliegen, kann man daher nur mit hohem Aufwand reagieren.Disadvantages of this type of thermal insulation composite panels are that the ratio of capillary-active area to thermal insulation area is always the same, i.e. H. the size of the capillary-active surface cannot be individually adapted to the different room climatic conditions. Extreme conditions such as B. are in damp rooms, one can therefore react only with great effort.

Ein weiterer Nachteil ist, dass bei Zuschnitten vor Ort, eventuell der kapillaraktive Anteil verworfen werden muss und somit Feuchtigkeitsnester im Mauerwerk entstehen können. Die Herstellung dieser Art von Verbundplatten ist zudem kostenintensiv.Another disadvantage is that when cut to size on site, the capillary-active component may have to be discarded and moisture pockets can arise in the masonry. The production of this type of composite panels is also expensive.

Aufgabe der Erfindung ist es daher bei bestmöglicher Wärmedämmung eine schlanke Innendämmung zu erreichen, die durch kapillaraktive, wasserdampfdiffusionsoffene Bereiche zum einen eine Aufnahme von Raumluftfeuchtigkeit in die Wand zulässt, zum anderen eine Rückführung von flüssigem Wasser (Kondensat) durch Kapillarität und Verdunstung in den Raum gewährleistet. Gleichzeitig soll eine unkomplizierte, kostengünstige Herstellung der Wärmedämmplatte, sowie eine einfache Anbringung des Dämmsystems vor Ort gegeben sein.The object of the invention is therefore to achieve a slim interior insulation with the best possible thermal insulation, which on the one hand allows room air humidity to be absorbed into the wall through capillary-active, water vapor diffusion areas and on the other hand ensures that liquid water (condensate) is returned to the room through capillarity and evaporation . At the same time, an uncomplicated, inexpensive production of the thermal insulation board, as well as a simple application of the insulation system on site should be given.

Die technische Aufgabe wird durch einen Wandaufbau mit einem Innendämmungssystem mit Wärmedämmplatten gelöst, wobei die Wärmedämmplatten mit definierter Fugenbreite mittels eines Klebers wandseitig vor Ort auf eine bereits bestehende oder neu angebrachte kapillaraktive Schicht fixiert sind und die Fugen mit einer kapillaraktiven Schicht ausgefüllt, als auch die der Rauminnenseite zugewandte Seite der Wärmedämmplatten mit einer kapillaraktiven Schicht abgedeckt sind und damit allseitig von diesen kapillaraktiven Schichten umgeben sind.The technical problem is solved by a wall structure with an interior insulation system with thermal insulation panels, the thermal insulation panels with a defined Joint width are fixed on-site by means of an adhesive on the wall on an existing or newly attached capillary-active layer and the joints are filled with a capillary-active layer, and the side of the thermal insulation panels facing the inside of the room is covered with a capillary-active layer and thus surrounded on all sides by these capillary-active layers are.

Kapillaraktive Schicht bedeutet hierbei eine Schicht mit einem Wasseraufnahmekoeffizient w von > 0,5 kg/m2h0,5.Capillary-active layer here means a layer with a water absorption coefficient w of> 0.5 kg / m 2 h 0.5 .

Die Fugen werden mit Hilfe von kapillaraktiven, vorzugsweise wärmedämmenden Fugenmassen, Mörteln oder Putzen spaltenfrei aufgefüllt. Zur Raumseite hin werden die Wärmedämmplatten ebenfalls mit einer kapillaraktiven, vorzugsweise wärmedämmenden Schicht abgedeckt, so dass die Wärmedämmplatten allseitig von den oben beschriebenen Schichten umgeben sind.The joints are filled without gaps with the help of capillary-active, preferably heat-insulating joint compounds, mortars or plasters. Towards the room side, the thermal insulation panels are also covered with a capillary-active, preferably thermal insulation layer, so that the thermal insulation panels are surrounded on all sides by the layers described above.

Erfindungsgemäß wird hierbei eine effektive Wärmedämmung, gleichzeitig kombiniert mit einer ausreichenden Rückführung von Feuchtigkeit, als Kondensat vorliegend, durch Kapillarität, wobei die Wahl der Fugenbreite, in Kombination mit dem Fugenmörtel, die kapillaraktive Leistungsfähigkeit bestimmt. Dampfsperren, wie diese bei den klassischen nicht kapillaraktiven Dämmsystemen zwingend erforderlich sind, fallen weg.According to the invention, effective thermal insulation, simultaneously combined with sufficient return of moisture, present as condensate, through capillarity, the choice of joint width, in combination with the grout, determining the capillary-active performance. Vapor barriers, which are absolutely necessary in the classic non-capillary-active insulation systems, are no longer necessary.

Bevorzugt ist die kapillaraktive Schicht als wärmedämmende Schicht ausgelegt. Die kapillaraktive Schicht kann aus Mörtel oder Putzen, gegebenenfalls mit Geweben verstärkt, oder aus Platten bestehen. In einer besonderen Ausführungsform umfasst die kapillaraktive Schicht Calciumsilikatplatten. Die gemäß der Erfindung eingesetzten Calciumsilikatplatten weisen bevorzugt eine Dichte von 250 - 380 kg/m3 auf.The capillary-active layer is preferably designed as a heat-insulating layer. The capillary-active layer can consist of mortar or plaster, optionally reinforced with fabric, or consist of plates. In a particular embodiment, the capillary-active layer comprises calcium silicate plates. The calcium silicate boards used according to the invention preferably have a density of 250-380 kg / m 3 .

Gemäß der vorliegenden Erfindung sind die Fugen mit einer kapillaraktiven Schicht ausgefüllt. Dabei beträgt die Breite der Fugen bevorzugt 5 - 30 mm, besonders bevorzugt 8 - 20 mm.According to the present invention, the joints are filled with a capillary-active layer. The width of the joints is preferably 5 to 30 mm, particularly preferably 8 to 20 mm.

Das Material der kapillaraktiven Schicht weist vorzugsweise eine mittlere Porosität von 50 - 70 Vol.-% auf.The material of the capillary-active layer preferably has an average porosity of 50-70% by volume.

In einer besonderen Ausführungsform der Erfindung umfassen die Fugen Streifen von Calciumsilicat oder sie bestehen daraus.In a particular embodiment of the invention, the joints comprise strips of calcium silicate or consist of them.

Die Wasserdampfdiffusionswiderstandszahl des Fugenmateriales beträgt bevorzugt 5 - 20. Die spezifische Wärmeleitfähigkeit des Fugenmateriales ist bevorzugt <0,25 W/mK, besonders bevorzugt < 0,15 W/mK und ganz besonders bevorzugt <0,10 W/mK, ist.The water vapor diffusion resistance of the joint material is preferably 5-20. The specific thermal conductivity of the joint material is preferably <0.25 W / mK, particularly preferably <0.15 W / mK and very particularly preferably <0.10 W / mK.

Zur Anwendung gelangen vorzugsweise Wärmedämmstoffplatten mit einer geringen spezifischen Wärmeleitzahl. Dies können organische Wärmedämmplatten, beispielsweise aus Polyurethan oder auch Vakuum-Isolations-Paneele (VIP) sein. Bei Polyurethan und Vakuum-Isolations-Paneele ist zu beachten, dass diese nicht diffusionsoffen sind. Bevorzugt werden anorganische Wärmedämmstoffplatten auf Basis mikroporöser Kieselsäure eingesetzt. Besonders vorteilhaft ist hierbei pyrogen hergestellte Kieselsäure. Die pyrogen hergestellte Kieselsäure wird in der Regel durch Flammenhydrolyse erhalten. Bei diesem Verfahren wird ein verdampftes oder gasförmiges, hydrolysierbares Siliciumhalogenid mit einer Flamme zur Reaktion bringt, die durch Verbrennung von Wasserstoff und eines sauerstoffhaltigen Gases gebildet worden ist. Die Verbrennungsflamme stellt dabei Wasser für die Hydrolyse des Siliciumhalogenides und genügend Wärme zur Hydrolysereaktion zur Verfügung. Ein so hergestelltes Siliciumdioxid wird als pyrogene Kieselsäure bezeichnet. Bei diesem Prozess werden zunächst Primärpartikel gebildet, die nahezu frei von inneren Poren sind. Diese Primärteilchen verschmelzen während des Prozesses über sogenannte "Sinterhälse" zu Aggregaten, die aufgrund ihrer dreidimensionalen, offenen Struktur makroporös sind. Aufgrund dieser Struktur sind pyrogen hergestellte Siliciumdioxidpulver ideale Wärmedämmstoffe, da die Aggregatstruktur eine hinreichende mechanische Stabilität bewirkt, die Wärmeübertragung durch Festkörperleitfähigkeit über die "Sinterhälse" minimiert und eine ausreichend hohe Porosität erzeugt.Thermal insulation panels with a low specific coefficient of thermal conductivity are preferably used. These can be organic thermal insulation panels, for example made of polyurethane, or vacuum insulation panels (VIP). In the case of polyurethane and vacuum insulation panels, it must be ensured that they are not permeable to diffusion. Inorganic thermal insulation panels based on microporous silica are preferably used. Pyrogenically produced silica is particularly advantageous here. The fumed silica is usually obtained by flame hydrolysis. In this process, a vaporized or gaseous hydrolyzable silicon halide is reacted with a flame which has been formed by the combustion of hydrogen and an oxygen-containing gas. The combustion flame provides water for the hydrolysis of the silicon halide and sufficient heat for the hydrolysis reaction. A silicon dioxide produced in this way is referred to as fumed silica. During this process, primary particles are initially formed that are almost free of internal pores. During the process, these primary particles merge via so-called "sintered necks" to form aggregates that are macroporous due to their three-dimensional, open structure. Due to this structure, pyrogenic silicon dioxide powders are ideal thermal insulation materials, since the aggregate structure provides sufficient mechanical stability, minimizes the heat transfer through solid-state conductivity via the "sintered necks" and creates a sufficiently high porosity.

Die besten Ergebnisse werden erhalten, wenn die Wärmedämmplatte hydrohobierte, pyrogene Kieselsäure umfasst.The best results are obtained when the thermal insulation board comprises waterproofed, pyrogenic silica.

In der Regel enthalten die Wärmedämmplatten neben pyrogener Kieselsäure noch ein oder mehrere Trübungsmittel. Diese umfassen Ruße, Titanoxide, Siliciumcarbide, Zirkonoxide, Ilmenite, Eisentitanate, Eisenoxide, Zirkonsilikate und Manganoxide. Ein Gemisch umfassend pyrogene Kieselsäure und Trübungsmittel enthält in der Regel 30 bis 95 Gew.-% pyrogene Kieselsäure und 5 bis 70 Gew.-% Trübungsmittel, bezogen auf die Summe von pyrogener Kieselsäure und Trübungsmittel.As a rule, the thermal insulation panels contain one or more opacifiers in addition to pyrogenic silica. These include carbon blacks, titanium oxides, silicon carbides, zirconium oxides, ilmenites, iron titanates, iron oxides, zirconium silicates and manganese oxides. A mixture comprising pyrogenic silica and opacifier generally contains 30 to 95% by weight of pyrogenic silica and 5 to 70% by weight of opacifier, based on the sum of pyrogenic silica and opacifier.

Die spezifische Wärmeleitfähigkeit der Wärmedämmplatten beträgt bevorzugt weniger als 0,04 W/m·K, besonders bevorzugt weniger als 0,025 W/m·K. Die Dicke der Wärmedämmplatte beträgt bevorzugt 20 bis 70 mm, besonders bevorzugt 30 bis 50 mm.The specific thermal conductivity of the thermal insulation panels is preferably less than 0.04 W / m · K, particularly preferably less than 0.025 W / m · K. The thickness of the thermal insulation board is preferably 20 to 70 mm, particularly preferably 30 to 50 mm.

Durch die Fugenmörtel, bzw. die Putze werden die Wärmedämmplatten fest und luftblasenfrei im Verbundsystem eingebaut und stabilisiert. Vorzugsweise sollen die Mörtelmassen, bzw. Putze, Leichtmörtel mit hoher Porosität und damit geringer spezifischer Wärmeleitfähigkeit sein. Die kapillare Aktivität darf jedoch nicht beeinträchtigt werden. Daher wird die Diffusionsaktivität des Gesamtsystems über den Mörtel und die Fugenbreite gesteuert. Zusätzlich dürfen VIP nicht durch den Kern oder die Randfolie gedübelt werden. Verankerungen sind aber über die Fugen, mit großflächigen Tellern möglich.The joint mortar or plaster ensures that the thermal insulation panels are installed and stabilized firmly and without air bubbles in the composite system. The mortar masses or plasters should preferably be light mortars with high porosity and thus low specific thermal conductivity. However, capillary activity must not be impaired. Therefore, the diffusion activity of the overall system is controlled by the mortar and the joint width. In addition, VIPs must not be dowelled through the core or the edge foil. Anchoring is possible via the joints with large plates.

Um eine optimale Verklebung von hydrophoben Wärmedämmplatten mit den als wässerigen Systemen vorliegenden Fugenmörteln und Putzen zu gewährleisten können diese, wie in DE-A-102010046678 beschrieben, mit einer hydrophilen Oberfläche ausgestattet werden. Ebenso ist eine hydrophile Kaschierung wie in DE-A-102010046684 beschrieben möglich. Alternativ können die Wärmedämmstoffplatten auch in perforierte Schrumpffolien eingehüllt werden. Die Perforierung dient U. a. der Erhaltung der Diffusionsoffenheit.In order to ensure optimal bonding of hydrophobic thermal insulation panels with the joint mortars and plasters, which are present as aqueous systems, these can be used, as in DE-A-102010046678 described, be provided with a hydrophilic surface. Likewise, a hydrophilic lamination is as in DE-A-102010046684 described possible. Alternatively, the thermal insulation panels can also be wrapped in perforated shrink films. The perforation is used, inter alia. the maintenance of diffusion openness.

Die Fixierung der Wärmedämmplatte geschieht mittels eines Klebers. Dieser Kleber hat bevorzugt eine Wasserdampfdiffusionswiderstandszahl von 10 -100, besonders bevorzugt von 15 - 50.The thermal insulation board is fixed using an adhesive. This adhesive preferably has a water vapor diffusion resistance number of 10-100, particularly preferably 15-50.

Die sich auf der Rauminnenseite zugewandten Seite der Wärmedämmplatte befindliche kapillaraktive Schicht, weist bevorzugt eine Wasserdampfdiffusionswiderstandszahl von 5 - 30 auf und umfasst Mörtel, bevorzugt in einer Stärke von 10 mm - 30 mm oder Calciumsilikatplatten mit einer Dicke von 10 - 30 mm, bevorzugt mit einer Dichte von 250 - 380 kg/m3.The capillary-active layer located on the inside of the room facing side of the thermal insulation board preferably has a water vapor diffusion resistance number of 5 - 30 and comprises mortar, preferably in a thickness of 10 mm - 30 mm or calcium silicate boards with a thickness of 10 - 30 mm, preferably with a Density from 250 - 380 kg / m 3 .

Grundsätzlich können die Wärmedämmstoffplatten frei verlegt werden, z.B. gegeneinander versetzt oder wie es die jeweils vorliegende örtliche Gegebenheit, z. B. bei Laibungen, verlangt.In principle, the thermal insulation panels can be laid freely, e.g. offset against each other or as it is the respective local situation, z. B. with reveals, required.

Ein mehrschichtiger Aufbau von Wärmedämmplatten und kapillaraktiver Schicht kann nach Bedarf zur Rauminnenseite wiederholt werden. Das System hat gegenüber herkömmlichen Systemen folgende Vorteile:

  1. a) einfache Anbringung der einzelnen Wärmedämmschichten vor Ort
  2. b) schlankes, raumsparendes System,
  3. c) keine komplizierte und kostenintensive Herstellung von Wärmedämmverbundplatten,
  4. d) unkomplizierter Zuschnitt, Verlegung und Verfugungen, sowie Zusammenbau des Systems vor Ort auch bei Laibungen
  5. e) das System ist auf Grund der vollflächigen Anbringung jeder einzelnen Schicht weitgehend luftdicht, auch bei unebenen Wänden. Dadurch wird Luftzirkulation und somit die Bildung von Wärmebrücken und damit die Gefahr der Schimmelbildung ausgeschlossen.
  6. f) individuelle Kombination der Dämmstoffdicken und diffusionsoffenen Flächen, je nach raumklimatischen Verhältnissen oder Raumnutzung (z. B. Feuchträume) ist es möglich, durch die Bemessung der Fugenbreite (entspricht der kapillaraktiven Flächenleistung)zwischen den Wärmdämmpaneelen die kapillaraktive Leistungsfähigkeit vor Ort zu variieren. Dies wird unterstützt durch Simulationsrechnungen mit materialspezifischen Kennwerten
  7. g) bei Verwendung von rein anorganischen Materialien, wie hydrophoben, mikroporösen Wärmedämmplatten, enthält das System keine Brandlast eine Verlegung von elektrischen Leitungen oder Rohrleitungen ist ohne Zerstörung der Dämmschichten in den Systemfugen möglich.
A multilayer structure of thermal insulation panels and a capillary-active layer can be repeated on the inside of the room as required. The system has the following advantages over conventional systems:
  1. a) simple application of the individual thermal insulation layers on site
  2. b) slim, space-saving system,
  3. c) no complicated and cost-intensive production of thermal insulation composite panels,
  4. d) uncomplicated cutting, laying and grouting, as well as assembly of the system on site, even with reveals
  5. e) the system is largely airtight due to the full-surface application of each individual layer, even with uneven walls. This prevents air circulation and thus the formation of thermal bridges and thus the risk of mold growth.
  6. f) Individual combination of insulation thicknesses and diffusion-open surfaces, depending on the room climatic conditions or room use (e.g. damp rooms), it is possible to vary the capillary-active performance on site by dimensioning the joint width (corresponds to the capillary-active area performance) between the thermal insulation panels. This is supported by simulation calculations with material-specific parameters
  7. g) When using purely inorganic materials, such as hydrophobic, microporous thermal insulation panels, the system does not contain any fire load.It is possible to lay electrical cables or pipes without destroying the insulation layers in the system joints.

Der Aufbau des Wärmedämmsystems auf dem zu dämmenden Mauerwerk kann in verschiedenen Varianten geschehen und stellt sich wie folgt dar:
Die zu dämmende Innenwand (1) erhält gegebenenfalls eine mineralische Dichtungsschlämme (MDS). Auf diese, so vorbereitete Wand, wird die erste kapillaraktive Mörtelschicht, die auch als Ausgleichsschicht dienen kann, aufgebracht (2).
The structure of the thermal insulation system on the masonry to be insulated can be done in different ways and is represented as follows:
The inner wall (1) to be insulated is optionally given a mineral sealing slurry (MDS). The first capillary-active mortar layer, which can also serve as a leveling layer, is applied to this prepared wall (2).

Variante A) (Figur 1):Variant A) (Figure 1):

Auf die kapillaraktive Mörtelschicht (2) werden die Wärmedämmstoffplatten (3) vollflächig so fixiert, dass zwischen den einzelnen Platten individuell breite Fugen (4) entstehen. Fixierte Wärmedämmplatten und Fugen werden mit kapillaraktiven, vorzugsweise wärmedämmenden Putzen (5) aufgefüllt und abgedeckt. Die Fixierung geschieht durch eindrücken der Wärmedämmplatte in die noch nicht abgebundene Mörtelschicht durch Kleber (7) auf die abgebundene Mörtelschicht. Zusätzlich kann die Fixierung der Wärmedämmplatte durch verankern (8) in der Bestandswand durch die Mörtelschicht hindurch geschehen.The thermal insulation panels (3) are fixed over the entire surface of the capillary-active mortar layer (2) so that individually wide joints (4) are created between the individual panels. Fixed thermal insulation panels and joints are filled and covered with capillary-active, preferably heat-insulating plaster (5). It is fixed by pressing the thermal insulation board into the mortar layer that has not yet set using adhesive (7) on the set mortar layer. In addition, the thermal insulation board can be fixed by anchoring it (8) in the existing wall through the mortar layer.

Variante B) (Figur 2):Variant B) (Figure 2):

Auf der kapillaraktiven Mörtelschicht (2) werden kapillaraktive Platten vorzugsweise aus Calciumsilikat (9) fugenfrei verklebt (7) und/oder verankert (8).On the capillary-active mortar layer (2), capillary-active plates, preferably made of calcium silicate (9), are glued (7) and / or anchored (8) without joints.

Auf die entstandene Wandfläche werden gemäß Variante A) die Wärmedämmplatten (3) und Putze (5) aufgebracht.The thermal insulation panels (3) and plasters (5) are applied to the resulting wall surface according to variant A).

Variante C) (Figur 3):Variant C) (Figure 3):

Auf der kapillaraktiven Mörtelschicht (2) werden gemäß Alternative B) kapillaraktive Platten vorzugsweise aus Calciumsilikat (9) fugenfrei angebracht.According to alternative B), capillary-active plates, preferably made of calcium silicate (9), are attached to the capillary-active mortar layer (2) without joints.

Auf die entstandene Wandfläche werden gemäß Variante B) die Wärmedämmplatten (3) fixiert. Die entstandenen Fugen werden mit kapillaraktiven, vorzugsweise wärmedämmenden Fugenmörteln (10) bündig aufgefüllt. Alternativ werden kapillaraktive, in Länge, Breite und Höhe den Fugen angepassten Leisten, vorzugsweise aus Calciumsilikat eingeklebt. Auf die so entstandene Fläche werden wiederum Platten, vorzugsweise aus Calciumsilikat (9a) angeklebt und/oder verankert, die raumseitige Fläche wird dann optisch gestaltet (11).The thermal insulation panels (3) are fixed on the resulting wall surface according to variant B). The resulting joints are filled flush with capillary-active, preferably heat-insulating joint mortar (10). Alternatively, capillary-active strips that are adapted in length, width and height to the joints, preferably made of calcium silicate, are glued in. Panels, preferably made of calcium silicate (9a), are in turn glued and / or anchored to the surface created in this way, and the surface on the room side is then optically designed (11).

Variante D) (Figur 4):Variant D) (Figure 4):

Gemäß Variante A) werden auf die kapillaraktive Mörtelschicht (2) die Wärmedämmstoffplatten (3) vollflächig so mittels eines Klebers (7) fixiert, dass zwischen den einzelnen Platten individuell breite Fugen (4) entstehen. Gemäß Variante C) werden die entstandenen Fugen mit kapillaraktiven, vorzugsweise wärmedämmenden Fugenmörteln oder Leisten (10) bündig aufgefüllt, alternativ werden kapillaraktive, in Länge, Breite und Höhe den Fugen angepassten Leisten, vorzugsweise aus Calciumsilikat eingeklebt. Auf die so entstandene Fläche werden wiederum Platten, vorzugsweise aus Calciumsilikat (9a) angeklebt oder verankert, die raumseitige Fläche wird dann optisch gestaltet (11).According to variant A), the thermal insulation panels (3) are fixed over the entire surface of the capillary-active mortar layer (2) by means of an adhesive (7) so that individually wide joints (4) are created between the individual panels. According to variant C), the resulting joints are filled flush with capillary-active, preferably heat-insulating joint mortar or strips (10); alternatively, capillary-active strips, preferably made of calcium silicate, are glued in, adapted to the joints in length, width and height. Panels, preferably made of calcium silicate (9a), are in turn glued or anchored to the surface created in this way, and the surface on the room side is then optically designed (11).

Die kapillaraktiven Platten und Leisten werden mit kapillaraktiven Klebern (7) auf der jeweiligen Unterschicht befestigt. Bei Wärmedämmplatten mit hygrisch aktiver, also hydrophiler Oberfläche und hydrophoben Kern, können einfache Kleber, z.B.The capillary-active plates and strips are attached to the respective sub-layer with capillary-active adhesives (7). In the case of thermal insulation panels with a hygrically active, i.e. hydrophilic surface and a hydrophobic core, simple adhesives, e.g.

Fliesenkleber verwendet werden. Bei hydrophober Oberfläche der Wärmedämmplatten, können entsprechende aktive Kleber zur Befestigung herangezogen werden, die eine ausreichende Menge an Netzmitteln enthalten und somit die Benetzbarkeit der Oberfläche der hydrophoben Wärmedämmplatten ermöglichen.Tile adhesive can be used. In the case of a hydrophobic surface of the thermal insulation panels, corresponding active adhesives can be used for fastening which contain a sufficient amount of wetting agents and thus enable the surface of the hydrophobic thermal insulation panels to be wetted.

Die eingesetzten Kleber sollen etwas höhere Diffusionswiderstände haben als die Wärmedämmplatten, damit sie als Wasserdampfbremse wirksam werden können. Eventuelles Kondensat entsteht dann an der Klebefläche und wird durch die kapillaraktiven Systeme zurückgeführt.The adhesives used should have slightly higher diffusion resistance than the thermal insulation panels so that they can act as a water vapor barrier. Any condensate then arises on the adhesive surface and is returned by the capillary-active systems.

Optional können sowohl die hydrophoben Wärmedämmplatten als auch die kapillaraktiven Wärmedämmplatten mit Dübeln, vorzugsweise aus Kunststoff und Flachankern im Mauerwerk zusätzlich befestigt werden (8). Zur weiteren Stabilisierung des Gesamtsystems können die Putze mit Gewebe verstärkt werden.Optionally, both the hydrophobic thermal insulation panels and the capillary-active thermal insulation panels can be additionally attached to the masonry with dowels, preferably made of plastic and flat anchors (8). The plasters can be reinforced with fabric to further stabilize the overall system.

Claims (17)

  1. Wall construction comprising an internal insulation system comprising thermal insulation sheets, wherein the thermal insulation sheets (3) are affixed on site with a defined joint width to the wall side of an existing or newly applied capillary-active layer (2, 9) and the joints (4) are filled with a capillary-active layer (5, 10) and the room interior-facing side of the thermal insulation sheets (3) is covered with a capillary-active layer (5, 9a) so that said sheets are surrounded on all sides by these capillary-active layers (2, 5, 9, 9a, 10), characterized in that the thermal insulation sheets (3) are affixed by means of an adhesive (7).
  2. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claim 1, characterized in that the capillary-active layer (2, 5, 9, 9a, 10) is a thermal insulation layer.
  3. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 or 2, characterized in that the capillary-active layer (2, 5, 9, 9a, 10) is made of mortar (2, 10) or renders (5) or of sheets (9, 9a) .
  4. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claim 3, characterized in that the sheets (9, 9a) are calcium silicate sheets.
  5. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 4, characterized in that the width of the joints (4) is 5 to 30 mm.
  6. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 5, characterized in that the average porosity of the joints (4) is 50-70% by volume.
  7. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 6, characterized in that the joints (4) comprise strips of calcium silicate.
  8. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 7, characterized in that the water vapour diffusion resistance number of the joint material (10) is 5-20 and the specific thermal conductivity is <0.25 W/mK.
  9. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 8, characterized in that the thermal insulation sheets (3) are inorganic sheets based on pyrogenic silica.
  10. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 9, characterized in that the thermal insulation sheets (3) are predominantly made of hydrophobic, pyrogenic silica.
  11. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 10, characterized in that the thermal insulation sheets (3) contain one or more opacifiers.
  12. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 11, characterized in that the thermal insulation sheets (3) have a specific thermal conductivity of less than 0.04 W/mK.
  13. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 12, characterized in that the thickness of the thermal insulation sheet (3) is 20 to 70 mm.
  14. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 13, characterized in that the thermal insulation sheets (3) are vacuum insulation panels.
  15. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 14, characterized in that the affixing of the thermal insulation sheet (3) comprises an adhesive (7) having a water vapour diffusion resistance number of 10-100.
  16. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 14, characterized in that the capillary-active layer (5, 9a) on the room interior-facing side of the thermal insulation sheet (3) has a water vapour diffusion resistance number of 5-30 and comprises mortar (5) or calcium silicate sheets (9a) having a thickness of 10-30 mm or more in each case.
  17. Wall construction comprising an internal insulation system comprising thermal insulation sheets according to Claims 1 to 15, characterized in that anchorings (8) are used to stabilize the wall construction.
EP13765354.9A 2012-09-22 2013-09-18 Wall structure with an interior insulation systems having laid thermally insulating panels with variable gap sizes Active EP2898154B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201210018793 DE102012018793A1 (en) 2012-09-22 2012-09-22 Wall structure for interior insulation system for masonry to be insulated, comprises thermal insulation panels fixed locally on capillary layer with wall sided defined joint width, where joints are filled with thermally insulating layer
DE201310006179 DE102013006179A1 (en) 2013-04-10 2013-04-10 Wall construction for interior insulation systems with installed thermal insulation panels with variable joint distances
PCT/EP2013/069375 WO2014044709A1 (en) 2012-09-22 2013-09-18 Wall structure for interior insulation systems having laid thermally insulating panels with variable gap sizes

Publications (2)

Publication Number Publication Date
EP2898154A1 EP2898154A1 (en) 2015-07-29
EP2898154B1 true EP2898154B1 (en) 2020-11-04

Family

ID=49223776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13765354.9A Active EP2898154B1 (en) 2012-09-22 2013-09-18 Wall structure with an interior insulation systems having laid thermally insulating panels with variable gap sizes

Country Status (3)

Country Link
EP (1) EP2898154B1 (en)
DK (1) DK2898154T3 (en)
WO (1) WO2014044709A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765251B1 (en) * 2013-02-12 2016-12-28 Daw Se Plate-shaped thermal insulation composite and thermal insulation composite area, in particular thermal insulation panel area, comprising plate-shaped thermal insulation composites, process for the preparation of thermal insulation composites, and use of thermal insulation composites for the thermal insulation of buildings
EP3031992B1 (en) * 2014-12-10 2018-02-14 Daw Se Thermal insulation composite and thermal insulation composite area and wall structure, comprising the thermal insulation composite or the thermal insulation composite area, and method for the preparation of wall structures
EP3045600A1 (en) 2015-01-16 2016-07-20 Evonik Degussa GmbH Thermal insulation body comprising capillary active elements
CN106284715A (en) * 2016-10-02 2017-01-04 康广云 Exempt to tear external wall insulation and construction method thereof open
CN107761985B (en) * 2017-09-09 2021-03-19 洛阳丹赫节能科技有限公司 Rear-mounted aerated concrete wall heat insulation structure and construction process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236703A2 (en) * 2001-02-28 2002-09-04 E.G.O. ELEKTRO-GERÄTEBAU GmbH Thermal insulation body
DE202010009060U1 (en) * 2010-06-15 2010-09-02 Microtherm N.V. Thermal insulation composite

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1988228B1 (en) 2007-05-03 2020-04-15 Evonik Operations GmbH Building blocks and building systems with hydrophobic, microporous heat insulation and method of fabrication
DE202009008493U1 (en) 2009-06-17 2009-09-10 Remmers Baustofftechnik Gmbh Wall construction and thermal insulation board
DE102010005800A1 (en) 2010-01-27 2011-07-28 Günter Dr. 87471 Kratel Treatment of thermal insulation panels or molded body based on microporous silicic acid with organosilicon compound to hydrophobic insulation materials
DE102010044789A1 (en) 2010-09-09 2012-03-15 Calsitherm Verwaltungs Gmbh Thermal insulation plate for masonry wall, has chambers arranged between cover layer plate and barrier layer, where barrier layer is provided as barrier layer plate
DE102010046684A1 (en) 2010-09-27 2012-03-29 Günter Kratel Stabilized thermal insulation molding with hydrophobic, microporous insulation core and hydrophilic surface
DE102010046678A1 (en) 2010-09-27 2012-03-29 Günter Kratel Microporous, hydrophobic insulating moldings with a hygrically active, near-surface layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1236703A2 (en) * 2001-02-28 2002-09-04 E.G.O. ELEKTRO-GERÄTEBAU GmbH Thermal insulation body
DE202010009060U1 (en) * 2010-06-15 2010-09-02 Microtherm N.V. Thermal insulation composite

Also Published As

Publication number Publication date
WO2014044709A1 (en) 2014-03-27
EP2898154A1 (en) 2015-07-29
DK2898154T3 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
EP2898154B1 (en) Wall structure with an interior insulation systems having laid thermally insulating panels with variable gap sizes
DE102007040938B4 (en) Wall structure and thermal insulation board
EP1988228B1 (en) Building blocks and building systems with hydrophobic, microporous heat insulation and method of fabrication
EP2576929B1 (en) Insulation and method of manufacture
DE202007013074U1 (en) Masonry with integrated vacuum insulation based on microporous thermal insulation
CH708688B1 (en) Stable molded body as fire protection and / or thermal insulation and lightweight board with such, manufacturing process and use thereof and building containing a stable molded body or a lightweight board.
EP3245343B1 (en) Thermal insulation body comprising capillary active elements
DE202009008493U1 (en) Wall construction and thermal insulation board
EP3109217A1 (en) Stable moldings or plates for thermal insulation and for fire protection, the process for their production and their use as well as building comprising such ones
EP2143849A2 (en) Wall cladding and method for drying a wall surface
DE102013006179A1 (en) Wall construction for interior insulation systems with installed thermal insulation panels with variable joint distances
EP3896235B1 (en) Hybrid building
DE102012018793A1 (en) Wall structure for interior insulation system for masonry to be insulated, comprises thermal insulation panels fixed locally on capillary layer with wall sided defined joint width, where joints are filled with thermally insulating layer
DE102009029746A1 (en) Component i.e. clay brick, for constructing brick-work at existing wall of building, has thermal insulating material and U-shank front sides covered by insulating layer whose thermal conductivity is lower than thermal conductivity of body
DE102016117032A1 (en) Covering layer component and drywall system
DE19604571C2 (en) Shaped body for the external insulation of buildings
EP2837752B1 (en) Floor system and fabricating method thereof
DE202006004060U1 (en) Brick with double-skin construction in the thickness direction
DE102016012150A1 (en) wall construction
DE202016006326U1 (en) wall construction
DE7239801U (en) Heat-insulating sandwich construction element
DE19963360A1 (en) Building frame for dwelling has foundation on which pillars are mounted with panels attached to interior of building
DE20320165U1 (en) Construction material used for reinforced buildings, comprises main body of vacuum layers provided with connecting layers on two outer sides
DE7239840U (en) Thermally insulating sandwich construction element made from mineral building materials
DE7239799U (en) Heat-insulating sandwich construction element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK DEGUSSA GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170308

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200625

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1330994

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013015268

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210121

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013015268

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210304

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130918

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230525 AND 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201104

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230609

Year of fee payment: 11

Ref country code: FR

Payment date: 20230609

Year of fee payment: 11

Ref country code: DK

Payment date: 20230609

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230926

Year of fee payment: 11

Ref country code: GB

Payment date: 20230707

Year of fee payment: 11

Ref country code: AT

Payment date: 20230919

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230612

Year of fee payment: 11

Ref country code: BE

Payment date: 20230926

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013015268

Country of ref document: DE

Owner name: KINGSPAN INSULATION LIMITED, LEOMINSTER, GB

Free format text: FORMER OWNER: EVONIK OPERATIONS GMBH, 45128 ESSEN, DE