EP2892851A1 - Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment - Google Patents

Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment

Info

Publication number
EP2892851A1
EP2892851A1 EP13759136.8A EP13759136A EP2892851A1 EP 2892851 A1 EP2892851 A1 EP 2892851A1 EP 13759136 A EP13759136 A EP 13759136A EP 2892851 A1 EP2892851 A1 EP 2892851A1
Authority
EP
European Patent Office
Prior art keywords
titanium dioxide
particles
zinc
infrared
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13759136.8A
Other languages
German (de)
English (en)
Inventor
Michael Schmidt
Katja Scharf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kronos International Inc
Original Assignee
Kronos International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kronos International Inc filed Critical Kronos International Inc
Publication of EP2892851A1 publication Critical patent/EP2892851A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0532Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
    • C01G23/0534Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts in the presence of seeds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1236Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching
    • C22B34/124Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors
    • C22B34/125Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining titanium or titanium compounds from ores or scrap by wet processes, e.g. by leaching using acidic solutions or liquors containing a sulfur ion as active agent

Definitions

  • Infrared-reflecting pigment based on titanium dioxide and methods for its
  • the invention relates to rutile titanium dioxide pigment particles which are capable of highly reflecting infrared radiation as well as having pigmenting properties and a process for their preparation.
  • the titanium dioxide particles are suitable for
  • Infrared radiation is usually referred to as the electromagnetic radiation which adjoins in the wavelength range above the visible light, i. from 780 nm to about 1 mm.
  • the sunlight reaching the earth's surface is essentially in the
  • UV ultraviolet radiation
  • IR infrared radiation
  • electromagnetic radiation is optimally reflected by particles whose particle size corresponds to half the wavelength of the electromagnetic radiation.
  • Pigmentary titanium dioxide particles accordingly have a particle size distribution of about 0.2 to 0.4 ⁇ corresponding to half the wavelength of visible light (380 to 780 nm).
  • IR radiation in the wavelength range from 780 nm to 2500 nm particles in the size range of about 0.4 to 1.3 ⁇ are suitable.
  • EP 1 580 166 A1 discloses titanium dioxide particles having primary particle sizes of 0.5 to 2.0 ⁇ m, which selectively reflect IR radiation and favor the ready dispersibility of cosmetic compositions produced therewith.
  • the particles are prepared by mixing hydrated titanium oxide with an aluminum compound, a zinc compound and a potassium compound, followed by calcination.
  • the particles according to EP 1 580 166 A1 are rod-shaped.
  • US 5,898,180 A discloses an IR-reflective enamel composition for cooking utensils containing TiO 2 particles, preferably rutile.
  • the rutile particles are recrystallized by tempering the enamel composition and thus reinforced IR-reflective.
  • WO 2009/136141 A1 discloses a colored IR-reflecting composition containing TiO 2 particles with a crystal size of more than 0.4 ⁇ m, which have an inorganic coating.
  • No. 6,113,875 A discloses a color-stable anatase titanium dioxide pigment having a particle size of from 0.1 to 1 ⁇ m, which is doped with aluminum and / or zinc.
  • the object of the present invention is to provide an alternative titanium dioxide-based pigment which reflects in the near infrared range and which has no significant loss of brightness compared to customary titanium dioxide pigments.
  • the particle size d 50 is in the range of 0.4 to 1 ⁇
  • the titanium dioxide particles are doped with zinc and potassium, and they are not doped with
  • the object is further achieved by a method for producing an infrared-reflecting pigment based on titanium dioxide, wherein
  • an iron-titanium-containing raw material is digested with sulfuric acid and iron sulfate and titanyl sulfate is formed
  • the iron sulfate is separated and the titanyl sulfate is hydrolyzed
  • the resulting titanium oxide hydrate is subjected to a bleaching step
  • Potassium compound but not mixed with an aluminum compound and calcined and rutile titanium dioxide particles having a particle size d 50 of 0.4 to 1 ⁇ arise. Further advantageous embodiments of the invention are specified in the subclaims.
  • Particle size is understood below to mean the measurement results obtained in the particle size determination of a powder, in this case the measurement of titanium dioxide particles, using a disk centrifuge (for example Disc Centrifuge DC 20000 from CPS).
  • a disk centrifuge for example Disc Centrifuge DC 20000 from CPS.
  • the invention is based on the recognition that titanium dioxide particles with medium
  • Titanium dioxide can be known to be prepared by various methods. The world
  • the present invention provides a simple and economical way to prepare rutile titanium dioxide particles having a mean particle size d 50 of 0.4 to 1 pm doped with zinc and potassium.
  • the particles are not doped with aluminum.
  • the particles have a compact particle shape.
  • the particles preferably contain 0.2 to 0.25% by weight of zinc calculated as ZnO and 0.18 to 0.26% by weight of potassium, calculated as K 2 O and in each case based on TiO 2 .
  • the particles have an aspect ratio of at most 1.5: 1.
  • particle size d 50 denotes the median of a mass-based particle size distribution which was determined using an X-ray disk centrifuge (for example Disc Centrifuge DC 20000 from CPS).
  • compacted, in particular spherical particles are advantageous in order to achieve optimal reflection in the near IR range.
  • Squat particles can also be better dispersed in the user matrix than rod-shaped particles.
  • the IR-reflecting rutile titanium dioxide according to the invention is prepared by calcination of titanium oxide hydrate, which rutile, a zinc compound and a
  • the titanium oxide hydrate is preferably prepared after the sulfate process.
  • Titanium oxide is also understood according to the invention as titanium hydrate, metatitanic acid, titanium hydroxide, hydrous titanium oxide or titanium oxohydrate.
  • the iron-titanium-containing raw material in particular ilmenite, is digested with sulfuric acid to form iron sulphate and titanyl sulphate.
  • the iron sulfate is usually crystallized and separated.
  • the titanyl sulfate is hydrolyzed and freed the resulting titanium oxide hydrate in a bleaching step largely of coloring transition metals.
  • the bleached titanium oxide hydrate is separated, filtered and washed.
  • Rutile nuclei at least one zinc compound and at least one potassium compound, but no aluminum compound, are then added to the titanium oxide hydrate. Subsequently, the titanium oxide is calcined at about 950 to 1050 ° C, with rutile titanium dioxide particles formed.
  • the person skilled in the art knows the individual steps of the sulphate process for producing titanium dioxide,
  • the rutile titanium dioxide particles produced by the process according to the invention have a compact form.
  • the particle size d 50 is in the range of 0.4 to 1 ⁇ .
  • the aspect ratio is preferably at most 1.5: 1.
  • rutile nuclei based on Ti0 2 is added.
  • Zinc acts as a crystal growth promoter in the production of Ti0 2 .
  • Zinc compounds are, for example, zinc sulfate, zinc oxide or zinc hydroxide, is preferred Zinc oxide.
  • the compound can be added as an aqueous solution or suspension. It is preferably added in such an amount that the rutile titanium dioxide particles 0.1 to 0.8 wt .-% zinc, preferably 0.2 to 0.4 wt .-% zinc and in particular 0.2 to 0.25 wt. -% Zinc calculated as ZnO and based on Ti0 2 included.
  • Potassium acts as a sintering inhibitor in the production of Ti0 2 .
  • Potassium compounds are, for example, potassium sulfate or potassium hydroxide, potassium hydroxide is preferred.
  • the compound may be added as an aqueous solution or salt. It is preferably added in such an amount that the rutile titanium dioxide particles 0.1 to 0.4 wt .-% potassium, preferably 0.18 to 0.26 wt .-% potassium counted as K 2 0 and based on Ti0 2 included ,
  • the rutile titanium dioxide particles according to the invention can be subjected to a grinding process after the calcination in order to comminute agglomerates or aggregates.
  • a grinding process after the calcination in order to comminute agglomerates or aggregates.
  • the rutile titanium dioxide particles are subsequently surface-treated inorganic and / or organic.
  • the inorganic surface treatment includes the usual methods which are also applied to titanium dioxide pigments.
  • the rutile titanium dioxide particles according to the invention can be coated with a SiO 2 layer and then with an Al 2 O 3 layer.
  • a dense or a loose SiO 2 layer can be applied, as described, for example, in: H. Weber, "Silica as constituent of the titanium dioxide pigments", Kronos Information 6.1 (1978)
  • Coating with inorganic oxides such as Si0 2 , Zr0 2 , Sn0 2 , Al 2 0 3 etc. increases the photostability of Ti0 2 particles and in particular an outer Al 2 0 3 layer improves the dispersion of the particles in the user matrix.
  • the particles may be deagglomerated in a steam jet mill or similar micronizer.
  • the untreated particles according to the invention in comparison to the surface treatment of known TiO 2 pigment particles, that the untreated particles according to the invention (particle sizes d 50 from 0.4 to 1 ⁇ m) have a significantly lower BET specific surface area (approx 2 to 6 m 2 / g) than the untreated pigment particles (particle size d 50 about 0.3 ⁇ , specific surface area about 8 to 10 m 2 / g).
  • the surface treatment would thus form a much thicker coating on the coarser particle.
  • (poly) alcohols such as trimethylolpropane (TMP), silicone oils, siloxanes, organophosphates, amines, stearates.
  • TMP trimethylolpropane
  • silicone oils such as silicone oils, siloxanes, organophosphates, amines, stearates.
  • the infrared-reflective rutile titanium dioxide particles according to the invention can be used in paints, lacquers and plastics and, for example, in plasters or paving stones in order to reflect thermal radiation.
  • Titanium oxide hydrate produced by the sulfate process for the production of titanium dioxide was used.
  • the washed titanium oxide hydrate paste was pasted into water (300 g / l of TiO 2 ) and with 0.2% by weight of ZnO in the form of zinc oxide, 0.22% by weight of K 2 O in the form of potassium hydroxide and with 1% by weight .-% Rutilkeimen added.
  • the suspension was then dried at 120 ° C for 16 hours. Subsequently, 3 kg of the
  • the ground TiO 2 was made into a paste with water (350 g / L) and ground in a sand mill. The suspension was then heated to 80 ° C and adjusted with NaOH to a pH of 11.5. Thereafter, 3.0 wt .-% Si0 2 in the form of
  • Potassium water glass added within 30 minutes. After 10 minutes of retention, the pH was lowered to a pH of 4 within 150 minutes by the addition of HCl. After stirring for 10 minutes, 3.0% by weight of Al 2 O 3 as sodium aluminate along with HCl was added over 30 minutes so that the pH remained constant at about 4 during this parallel addition.
  • the suspension was adjusted to a pH of 6.5 to 7 with NaOH and the
  • Example 1 As Example 1, but with the difference that 0.4 wt .-% ZnO was added.
  • the particle size d 50 was 0.88 ⁇ and the BET specific surface area 2 m 2 / g. figure
  • Washed titanium oxide hydrate paste as from Example 1 was pasted (300 g / L Ti0 2 ) and with 0.4 wt .-% ZnO in the form of zinc oxide, 0.4 wt .-% Al 2 0 3 in the form of aluminum sulfate, 0 , 22 wt .-% K 2 0 added in the form of potassium hydroxide and 1 wt .-% rutile.
  • the suspension was dried at 120 ° C for 16 hours. Subsequently, 3 kg of the
  • FIG. 2 shows a SEM image of the particles. The particles have a clear compared to the particles of Example 1 and 2
  • the rutile titanium dioxide particles prepared according to Example 1 and Example 2 were aftertreated with Si0 2 and Al 2 0 3 in a known manner and then in a white
  • Figure 3 (Example 1) and 4 (Example 2) show the measured reflection spectra. It can be clearly seen that the reflection decreases with increasing particle size in the visible and increases in the near IR.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

L'invention concerne des particules de pigment d'oxyde de titane rutile qui sont en mesure de réfléchir dans une grande mesure le rayonnement infrarouge et présentent en même temps des propriétés de pigment, de même qu'un procédé pour leur préparation. Les particules présentent une granulométrie moyenne allant de 0,4 à 1,0 µm et sont dopées au zinc et au potassium, mais exemptes d'aluminium. Les particules présentent une forme compacte avec un rapport de côté préféré de 1,5:1. Les particules sont préparées de préférence d'après le procédé connu au sulfate servant à la préparation du dioxyde de titane et, après la calcination, sont post-traitées inorganiquement et/ou organiquement. Les particules d'oxyde de titane rutile selon l'invention conviennent à la fabrication de peintures, de laques ou de plastiques, ainsi que par exemple de crépis ou de carreaux calorifuges.
EP13759136.8A 2012-09-08 2013-08-27 Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment Withdrawn EP2892851A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012017854.9A DE102012017854A1 (de) 2012-09-08 2012-09-08 Infrarot-reflektierendes Pigment auf Basis Titandioxid sowie Verfahren zu seiner Herstellung
PCT/EP2013/002576 WO2014037083A1 (fr) 2012-09-08 2013-08-27 Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment

Publications (1)

Publication Number Publication Date
EP2892851A1 true EP2892851A1 (fr) 2015-07-15

Family

ID=49118485

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13759136.8A Withdrawn EP2892851A1 (fr) 2012-09-08 2013-08-27 Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment

Country Status (10)

Country Link
US (1) US20140073729A1 (fr)
EP (1) EP2892851A1 (fr)
JP (1) JP2015533758A (fr)
KR (1) KR20150054799A (fr)
CN (1) CN104640813A (fr)
AU (1) AU2013312028B2 (fr)
BR (1) BR112015004120A2 (fr)
DE (1) DE102012017854A1 (fr)
RU (1) RU2015112861A (fr)
WO (1) WO2014037083A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303624B2 (ja) * 2014-03-07 2018-04-04 堺化学工業株式会社 二酸化チタン粒子の製造方法
GB201502250D0 (en) 2015-02-11 2015-03-25 Tioxide Europe Ltd Coated product
WO2016171383A1 (fr) * 2015-04-22 2016-10-27 코스맥스 주식회사 Procédé d'évaluation d'efficacité de matériau de blocage des rayons infrarouges
EP3190159A1 (fr) * 2016-01-08 2017-07-12 Kronos International, Inc. Procede de revetement de surface d'un substrat
GB201610194D0 (en) 2016-06-10 2016-07-27 Huntsman P&A Uk Ltd Titanium dioxide product
CN107828248B (zh) * 2017-11-10 2020-02-14 广西顺风钛业有限公司 一种塑料色母粒用钛白粉
KR102049467B1 (ko) 2018-05-30 2019-11-27 한국세라믹기술원 가지형 공중합체를 이용하여 제조된 이산화티타늄 입자를 포함하는 고반사 소재
KR102117026B1 (ko) 2018-08-30 2020-05-29 한국세라믹기술원 이산화티타늄 입자를 포함하는 고반사 소재
GB201816643D0 (en) * 2018-10-12 2018-11-28 Croda Int Plc Titanium dioxide dispersion
KR102200128B1 (ko) 2018-12-27 2021-01-08 한국세라믹기술원 금속치환형 티타네이트계 적외선 차폐 소재 및 그 제조방법
KR102185905B1 (ko) 2018-12-27 2020-12-02 한국세라믹기술원 층상형 티타네이트계 적외선 차폐 소재 및 그 제조방법
KR102174527B1 (ko) 2019-04-30 2020-11-06 코스맥스 주식회사 화합물 및 이를 포함하는 근적외선 차단제용 화장료 조성물
CN114072358B (zh) * 2019-05-14 2023-10-24 帝化株式会社 氧化钛粉体及其制造方法
KR102650588B1 (ko) * 2020-11-24 2024-03-22 한국전자기술연구원 라이다 센서용 도료 조성물 및 그의 제조방법
EP4046964A1 (fr) * 2021-02-19 2022-08-24 Kronos International, Inc. Procédé de production d'une charge d'alimentation contenant du titane pour le procédé au chorure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1335184A (en) * 1969-12-24 1973-10-24 Laporte Industries Ltd Manufacture of pigmenting titanium dioxide
DE3238098A1 (de) * 1982-10-14 1984-04-19 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von mit zink dotierten ti0(pfeil abwaerts)2(pfeil abwaerts)-pigmenten mit verbesserten optischen eigenschaften
DE3817445A1 (de) * 1988-05-21 1989-11-23 Bayer Ag Verfahren zum herstellen von titandioxid
US5811180A (en) 1994-07-26 1998-09-22 The Regents Of The University Of California Pigments which reflect infrared radiation from fire
SE504902C2 (sv) 1994-11-02 1997-05-26 Diabact Ab Beredning för påvisande av Helicobacter pylori i magsäcken
WO1997024288A1 (fr) * 1995-12-27 1997-07-10 Tohkem Products Corporation Octahedrite stable et son procede de preparation
US5898180A (en) 1997-05-23 1999-04-27 General Electric Company Infrared energy reflecting composition and method of manufacture
AU2003284650C1 (en) * 2002-12-09 2014-03-13 Tayca Corporation Titanium dioxide particles having beneficial properties and method for producing same
EP1669325A1 (fr) * 2004-12-13 2006-06-14 Kerr-McGee Pigments GmbH Particules fines de titanates de zirkonium et de plomb-zirkonium et procédé de préparation utilisant des particules d'hydrate d'oxyde de titanium ayant une surface > 50m^2/g
US7799124B2 (en) * 2005-04-07 2010-09-21 E.I. Du Pont De Nemours And Company Process for treating inorganic particles via sintering of sinterable material
GB0808239D0 (en) * 2008-05-07 2008-06-11 Tioxide Group Services Ltd Compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2014037083A1 *

Also Published As

Publication number Publication date
DE102012017854A1 (de) 2014-05-28
BR112015004120A2 (pt) 2017-07-04
RU2015112861A (ru) 2016-10-27
AU2013312028A1 (en) 2015-02-26
CN104640813A (zh) 2015-05-20
AU2013312028B2 (en) 2017-03-16
KR20150054799A (ko) 2015-05-20
JP2015533758A (ja) 2015-11-26
WO2014037083A1 (fr) 2014-03-13
US20140073729A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
EP2892851A1 (fr) Pigment à base d'oxyde de titane réfléchissant le rayonnement infrarouge et procédé de préparation dudit pigment
EP1776424B1 (fr) Procede pour le post-traitement de pigments de dioxyde de titane
EP3053967B1 (fr) Pigments brillants metalliques basés sur des plaquettes d'aluminium d'une épaisseur de 1-30 nm
EP1771519B1 (fr) Pigment de dioxyde de titane resistant aux intemperies et procede de production correspondant
EP1989264B1 (fr) Pigment au dioxyde de titane à forte opacité et procédé de fabrication dudit pigment
DE69005926T3 (de) Verfahren zum Beschichten von Titandioxidpigmenten.
EP0008101B1 (fr) Procédé de préparation de pigments de dioxyde de titane à haute résistance aux intempéries et leur utilisation
DE69806924T2 (de) Verfahren zur herstellung einer lichtbeständigen titandioxid-pigment-schlämmung
DE3941543A1 (de) Dispersionen
WO2016165832A1 (fr) Pigments brillants nacrés à base de substrats ayant une structure monolithique, procédés servant à la fabrication desdits pigments et utilisation de pigments brillants nacrés de ce type
EP0499863A1 (fr) Procédé de préparation de dioxyde de titane finement divisé et dioxyde de titane finement divisé
EP2875077B1 (fr) Procédé de traitement de la surface de particules inorganiques
DE3145620A1 (de) Titandioxidpigment und verfahren zu seiner herstellung
EP1373412B1 (fr) Composition de pigments au dioxyde de titane
EP2740770B1 (fr) Procédé de traitement de surface pour la fabrication de pigment rutile à base de dioxyde de titane universel à durabilité élevée
EP2859052B1 (fr) Procédé pour produire des particules de zns présentant un revêtement d'oxyde métallique contenant du cobalt, produits ainsi obtenus et leur utilisation
WO2016026548A1 (fr) Procédé pour revêtir la surface de particules inorganiques avec du dioxyde de silicium et au moins un autre composé inorganique
DE60206380T2 (de) Photostabiles titandioxid der modifikation rutil
DE2033038C3 (de) Verfahren zur Herstellung eines mit einem Überzug aus hydratisiertem Aluminiumsilicat, gegebenenfalls mit einem zusätzlichen Überzug von schwammartigem Aluminiumoxid eingekapselten TiO2 - Pigments
DE4040162A1 (de) Zirkoniumsilikat-farbkoerper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20170623