EP2877748B1 - Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine - Google Patents

Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine Download PDF

Info

Publication number
EP2877748B1
EP2877748B1 EP13742442.0A EP13742442A EP2877748B1 EP 2877748 B1 EP2877748 B1 EP 2877748B1 EP 13742442 A EP13742442 A EP 13742442A EP 2877748 B1 EP2877748 B1 EP 2877748B1
Authority
EP
European Patent Office
Prior art keywords
compressor
gas
working
volume
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13742442.0A
Other languages
English (en)
French (fr)
Other versions
EP2877748A2 (de
Inventor
Jens HÖHNE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pressure Wave Systems GmbH
Original Assignee
Pressure Wave Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pressure Wave Systems GmbH filed Critical Pressure Wave Systems GmbH
Publication of EP2877748A2 publication Critical patent/EP2877748A2/de
Application granted granted Critical
Publication of EP2877748B1 publication Critical patent/EP2877748B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/073Pumps having fluid drive the actuating fluid being controlled by at least one valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/02Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows
    • F04B45/033Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having bellows having fluid drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/08Cooling; Heating; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the invention relates to a compressor device and a cooling device equipped therewith or a refrigeration machine equipped therewith.
  • a helium compressor 100 is connected to a rotary valve 106 via a high pressure line 102 and a low pressure line 104.
  • the rotary valve 106 is connected via a gas line 108 to a cooling device 110 in the form of a Gifford-McMahon cooler or a pulse tube cooler.
  • the rotary valve 106 alternately the high and low pressure side of the gas compressor 100 is connected to the pulse tube cooler or the Gifford-McMahon cooler.
  • the rate at which compressed helium is introduced and re-exported to the cooling device 100 is in the range of 1 Hz.
  • a disadvantage of such cooling or compressor systems is that the motorized rotary valve 106 causes losses of up to 50% of the input power of the compressor.
  • acoustic compressors or high-frequency compressors in which one or more pistons are caused by a magnetic field in linear resonant vibrations. These resonant frequencies are in the range of a few 10 Hz and are therefore not suitable for use with pulse tube coolers and Gifford-McMahon coolers to produce very low temperatures in the lower than 10 K range.
  • a membrane compressor or pump which has a working space that is divided into a gas volume and a liquid volume by an elastic, gas and liquid-tight membrane.
  • a Liquid pump liquid is periodically pressed into the liquid volume of the working space, whereby the elastic membrane expands in the direction of gas volume and this compresses - compressor function - or pushes out of the gas volume - pump function.
  • a disadvantage is the fact that the gas-liquid-tight and pressure-resistant sealing of the elastic membrane in the working space is comparatively expensive. Especially in the field of sealing, the membrane is heavily loaded, so that either very expensive materials must be used or a shorter life has to be accepted.
  • the US 5,181,383 shows a cooling device in which compressed helium gas is expanded in a pressure transmission tube with a piston and a bellows.
  • the compression of the helium gas takes place in the compressor, which is not described in detail.
  • this compression obviously only serves to adapt the gas pressure in the pressure transfer tube to the pressure of the compressed helium gas, so that in subsequent step b), Fig. 3b the controlled expansion of the helium gas can take place.
  • a linear compressor in which a compressor piston driven by a linear motor compresses a gas.
  • a piston is displaced by a liquid pressed into a bellows, thereby changing the dead volume and the resonance frequency of the compressor.
  • the bellows is not used to compress a gas.
  • a heat pump and a refrigerator with a compressor device are known.
  • the compressor device comprises a compressor chamber in which a balloon is arranged.
  • the balloon is periodically pressurized with liquid so that the gas surrounding the balloon is periodically compressed and relaxed again.
  • the disadvantage here is that the balloon envelope can scrape or rub in certain operating conditions on the hard and possibly edged inner surface of the compressor chamber. As a result, due to the pressure conditions hole or cracking in the balloon envelope occur.
  • cryogenic cooling device with a compressor device with gas-filled bellows known, which are surrounded by a periodically pumped liquid.
  • the balloon envelope Due to the fact that the gas volume in the balloon and the volume of liquid on the outside, the balloon envelope is always protected by a liquid film on the hard inside (usually metal) from damage when due to irregular operating conditions rubs the balloon envelope on the hard inside of the compressor room. Since the working fluid is usually hydraulic oil (claim 8), the protective effect is additionally improved by the lubricating oil effect.
  • a tubular bellows can be used as a membrane.
  • a bellows has the advantage that due to the construction and the arrangement of the folds, the volume increase or volume reduction takes place "directed" along the longitudinal direction of the bellows. Frictional contact of the bellows with the hard inside of the compressor chamber is thus almost impossible.
  • the gas volume can also be provided in the interior of the bellows. This "directionality" of the volume change can be improved by positive guidance of the bellows along a rod with longitudinal bearings.
  • the bellows usually consists of a stainless steel alloy and, with the exception of hydrogen, is extremely gastight for all relevant working gases.
  • a working fluid reservoir is provided. This makes it possible conventional liquid pumps, eg. b. Gear pumps - claim 7 - to use.
  • the working fluid reservoir ensures that the correct amount of working fluid in the correct pressure range is always available for the pumping device.
  • the compressor device may be formed as a non-gas-conveying compressor or as a gas-conveying compressor - claim 3 -.
  • a gas-conveying compressor compressed working gas is supplied via a first working gas connection, which is designed as a high pressure port, a downstream device.
  • Working gas at a lower pressure is returned via a second working gas connection, which is designed as a low-pressure connection, in the compressor device-claim 13.
  • the working gas reservoir is connected via a differential pressure regulator with the gas volume of the compressor device. This ensures that the working gas is already precompressed available.
  • the working gas in the gas reservoir is located approximately at the level of the low pressure of the compressor device. If the pressure of the working gas in the compressor device drops below the pressure in the gas reservoir during the expansion phase, working gas flows via the differential pressure regulator from the gas reservoir into the gas volume of the compressor device.
  • the pumping device preferably comprises an electric drive, claim 6, since such a can be easily controlled.
  • Gear pumps are characterized by a long service life, low maintenance and low dead volume and are suitable for high pressure applications up to 300 bar.
  • a working fluid preferably hydraulic oil according to DIN 51524 is used, which is additionally dehydrated or anhydrous.
  • the hydraulic oil is in a closed system of pumping device, working fluid equalizing device and fluid volume in the compressor chamber, so that during operation no water from the environment can be absorbed by the hydraulic oil.
  • water can be used as a working fluid, especially when extremely impermeable membrane materials, eg. B. bellows made of stainless steel, are applied.
  • Water as a working fluid is also advantageous, since in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than has penetrated into a downstream cooler Hydraulic oil.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly - claim 8.
  • helium or nitrogen is preferably used as the working gas.
  • the balloon-shaped membrane or the tubular bellows must be impermeable and resistant both for the particular working gas used and for the working fluid. Since a material can not always meet these different requirements, these membranes are preferably multi-layered of different materials - claim 10. Thus, the membrane can be adjusted both in terms of working fluid and with respect to the working gas.
  • the compressor device according to the invention provides compressed working gas in the frequency range necessary for the Gifford-McMahon cooler and pulse tube cooler - claims 11 to 13.
  • the compressor device is designed as a conveying compressor device, it can be used as a drive for a conventional refrigerating machine.
  • Fig. 1 shows a first exemplary embodiment for explaining the compressor device according to the invention, which is designed as a gas or working gas-promoting compressor device.
  • the compressor device comprises a compressor device 2, which has a gas-tight closed compressor chamber 4.
  • a balloon or a balloon-shaped membrane 6 is arranged in the compressor chamber 4.
  • the balloon 6 divides the compressor chamber 4 into a gas volume 8 for a working gas 10 and a liquid volume 12 for a working fluid 14.
  • the gas volume 8 is the interior of the balloon 6 and the fluid volume 12 is the area of the compressor chamber 4 outside the balloon 6
  • Fluid volume 12 outside of the balloon 6 is connected to a first working fluid line 18 which leads out of the compressor chamber 4.
  • the balloon 6 includes a first balloon port 19 connected to the high pressure gas outlet 20 and a second balloon port 21 connected to the low pressure gas outlet 22.
  • the first working fluid line 18 opens into a pumping device 24, which via a second working fluid line 26th is connected to a working fluid equalization device 28 in the form of a working fluid reservoir.
  • working fluid 14 is periodically pressed into the liquid volume 12 via the first working fluid line 18 and let out again.
  • the working gas 10 is compressed in the balloon 6.
  • the working gas 10 expands in the balloon 6 and thereby relaxes.
  • the compressed working gas 10 is the high-pressure gas outlet 20 a downstream consumer, z. B. a cryocooler - not shown - supplied.
  • the working gas 10 is returned to the gas volume 8 in the balloon 6 at a lower pressure, so that the circuit is closed.
  • the working fluid compensation device 28 ensures that sufficient working fluid 14 is always present and can be pumped into the fluid volume 12 in the compressor chamber 4 in order to compress the working gas 10 in the gas volume 8 in the balloon 6.
  • the working gas 10 expands the balloon 6 and working fluid 14 is forced into the working fluid equalizing device 28 via the first working fluid line 18, the pumping device 24 and the second working fluid line 26.
  • Fig. 2 shows a second exemplary embodiment for explaining the invention, which differs from the first exemplary embodiment Fig. 1 only differs in that a gear pump 30 is used as a pumping device, which is driven by an electric motor 32.
  • This type of pumping device has proved to be particularly advantageous, since they are characterized by a long service life, low maintenance and low dead volume. Due to their construction, they are suitable for high pressure applications up to 300 bar.
  • Fig. 3 shows a third exemplary embodiment for explaining the invention, which differs from the first exemplary embodiment Fig. 1 only differs in that the compressor device is designed as a non-promotional compressor device.
  • the balloon 6 comprised a balloon opening 40 connected to a working gas port 42. This opens into the gas volume 8 in the working gas port 40. About this working gas port 40, the periodic pressure change generated in the gas volume 8 is not shown - transferred to the downstream cooler.
  • Fig. 4 shows a first embodiment of the invention, which differs from the third exemplary embodiment Fig. 3 distinguished by a working gas balancing device.
  • the working gas balancing device comprises a working gas reservoir 50, which is connected via a first gas line 52, a differential pressure regulator 54 and a common gas line 55 with the gas volume 8 in the balloon 6.
  • the working gas reservoir 50 is also connected via a second gas line 56, a pressure relief valve 58 and the common gas line 55 to the gas volume 8 in the balloon 6.
  • the common gas line 55 opens into the balloon opening 40.
  • the working gas connection 42 branches off from the common gas line 55 and ends in a cooling device 60.
  • Working gas 10 flows into the gas volume 8 in the balloon 6 via the first gas line 52, the differential pressure regulator 54 and the common gas line 55 when the pressure of the working gas 10 in the gas volume 8 drops below the pressure in the working gas reservoir 50 due to low temperatures.
  • working gas reservoir 50 thus "working gas losses", which can occur in a downstream cooler, are compensated.
  • the working gas 10 to be supplied is already pre-compressed by the differential pressure regulator 54 for further compression in the gas volume 8 in the balloon 6.
  • Working gas 10 can flow into the working gas reservoir 50 via the second gas line 56, the pressure relief valve 58 and the common gas line 55 if the pressure of the working gas 10 in the gas volume 8 becomes too high.
  • Fig. 5 shows a second embodiment of the invention, which differs from the first embodiment Fig. 4 only differs in that instead of a balloon, a tubular bellows 80 is used, which surrounds the gas volume 8.
  • the bellows 80 has the advantage over the balloon 6 that the increase in volume and the reduction in volume are in each case directed along the longitudinal extent of the tubular bellows 80.
  • the bellows 80 is made of a stainless steel alloy and is extremely gas-tight with the exception of hydrogen for all relevant working gases.
  • the tubular bellows 80 does not bend at maximum volume against the longitudinal extent, the bellows is usually by a arranged in the longitudinal direction of the Faltebalgs stable rod with longitudinal bearings - not shown - out. In this way, it is reliably prevented that the bellows 80 can be damaged by frictional contact with the inner surface of the compressor chamber 4.
  • a gear pump driven by an electric motor may be used as the pumping means 24.
  • Hydraulic oils according to DIN 51524 are suitable as working fluids. These H, HL, HLP and HVLP oils are oils which are well tolerated with common sealants such as NBR (acrylonitrile-butadiene rubber) etc. NBR, however, is not sufficiently helium-tight. HF oils are often incompatible with commonly used sealing materials (http://de.wikipedia.org/wiki/List_of_Plastic_materials). For helium-tight balloons is synthetic rubber such. For example, chlorobutyl. When using helium as working gas 10, it is therefore advantageous if the balloon-shaped membrane 6 consists of several layers, for. B. from a working fluid 14 in the form of hydraulic oil facing layer of NBR and from a helium as working gas 10 facing layer of chlorobutyl.
  • water can be used as a working fluid, especially when extremely impermeable membrane materials, eg. B. bellows made of stainless steel, are used.
  • Water as a working fluid is also advantageous because in the event of defects, water that has penetrated into a downstream cryocooler can be removed more easily than hydraulic oil that has entered a downstream cooler.
  • water is suitable as a working medium in explosion-protected applications, since water is non-flammable and non-explosive. In addition, water is non-toxic and therefore environmentally friendly.
  • valve is provided in the working gas connection 42 leading out of the gas volume 8.
  • a valve can be provided here in order to build up a higher pressure difference in the expansion phase of the compressor device 2. Ie. Although the gas volume 8 in the compressor chamber 4 already increases in the expansion phase, the valve in the working gas connection 42 is still closed. Only when a certain pressure difference has built up, this valve is opened. In this way, the backflow of the working gas 10 can be accelerated via the working gas connection 42 into the compressor device 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Reciprocating Pumps (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Die Erfindung betrifft eine Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung oder eine damit ausgerüstete Kältemaschine.
  • Zum Kühlung von Kernspintomographen, Kryo-Pumpen etc. werden Pulsrohrkühler oder Gifford-McMahon-Kühler eingesetzt. Hierbei kommen Gas- und insbesondere Heliumkompressoren in Kombination mit Rotations- bzw. Drehventilen zum Einsatz, wie sie in Fig. 6 dargestellt ist. Ein Helium-Kompressor 100 wird über eine Hochdruckleitung 102 und eine Niederdruckleitung 104 mit einem Drehventil 106 verbunden. Ausgangsseitig wird das Drehventil 106 über eine Gasleitung 108 mit einer Kühlvorrichtung 110 in Form eines Gifford-McMahon-Kühlers oder eines Pulsrohrkühlers verbunden. Dabei wird über das Drehventil 106 abwechselnd die Hoch- bzw. Niederdruckseite des Gaskompressors 100 mit dem Pulsrohrkühler oder dem Gifford-McMahon-Kühler verbunden. Die Rate mit der verdichtetes Helium in die Kühlvorrichtung 100 eingeführt und wieder ausgeführt wird liegt im Bereich von 1 Hz. Nachteilig bei solchen Kühl- bzw. Kompressorsystemen ist, dass das motorisch angetriebene Drehventil 106 Verluste von bis zu 50% der Eingangsleistung des Kompressors verursacht.
  • Es sind auch akustische Kompressoren oder Hochfrequenzkompressoren bekannt, bei denen ein oder mehrere Kolben durch ein Magnetfeld in lineare Resonanzschwingungen versetzt werden. Diese Resonanzfrequenzen liegen im Bereich von einigen 10 Hz und sind daher nicht für die Verwendung mit Pulsrohrkühlern und Gifford-McMahon-Kühlern zur Erzeugung sehr tiefer Temperaturen im Bereich kleiner 10 K geeignet.
  • Aus der CH 457147 B ist ein Membrankompressor oder -pumpe bekannt, die einen Arbeitsraum aufweist, dass durch eine elastische, gas- und flüssigkeitsdichte Membran in ein Gasvolumen und ein Flüssigkeitsvolumen unterteilt ist. Mittels einer Flüssigkeitspumpe wird Flüssigkeit periodisch in das Flüssigkeitsvolumen des Arbeitsraums gedrückt, wodurch die elastische Membran sich in Richtung Gasvolumen ausdehnt und dieses komprimiert - Kompressorfunktion - oder aus dem Gasvolumen herausschiebt - Pumpenfunktion. Nachteilig ist herbei, dass die gas- flüssigkeitsdichte und drückresistente Abdichtung der elastischen Membran in dem Arbeitsraum vergleichsweise aufwendig ist. Insbesondere im Bereich der Abdichtung wird die Membran stark belastet, so dass entweder sehr teuere Materialien verwendete werden müssen oder eine geringere Lebensdauer in Kauf genommen werden muss.
  • Die US 5,181,383 zeigt eine Kühlvorrichtung, bei der komprimiertes Heliumgas in einem Druckübertragungsrohr mit Kolben und einem Faltenbalg entspannt wird. Die Verdichtung des Heliumgases erfolgt in dem Kompressor, der nicht näher beschrieben ist. Allerdings erfolgt in einem Zwischenschritt bei der Entspannung des im Kompressor verdichteten Heliumgases im Druckübertragungsrohr eine Verdichtung von im Faltenbalg eingeschlossenem Heliumrestgas bei geschlossenen Ventilen - Schritt a), Fig.3a. Diese Verdichtung dient aber offensichtlich lediglich dazu den Gasdruck in dem Druckübertragungsrohr dem Druck des komprimierten Heliumgases anzupassen, so dass im nachfolgenden Schritt b), Fig. 3b die kontrollierte Expansion des Heliumgases erfolgen kann. Auf beiden Seiten des Faltenbalgs befindet sich Gas.
  • Aus der D2, US 1,780,336 ist eine Pumpvorrichtung bekannt, bei der über ein Antriebsmedium (gasförmig oder flüssig) ein zu pumpendes Fluid (ebenfalls gasförmig oder flüssig) gefördert wird. Eine Kompressorvorrichtung ist nicht offenbart.
  • Aus der US 2006/0110259 A1 ist ein Linearkompressor bekannt, bei dem ein durch einen Linearmotor angetriebener Kompressorkolben ein Gas verdichtet. Bei einer Ausführungsform wird durch eine in einen Faltenbalg eingepresste Flüssigkeit ein Kolben verschoben und dadurch das Totvolumen und die Resonanzfrequenz des Kompressors verändert. Der Faltenbalg wird nicht zur Kompression eines Gases genutzt.
  • Aus US 2010/0178184 A1 ist wiederum keine Kompressorvorrichtung, sondern lediglich eine Pumpenvorrichtung bekannt, bei dem antriebsseitig ein Antriebsgas von einer Faltenbalgstruktur eingeschlossen ist. Das zu pumpende Fluid (Gas oder Flüssigkeit) befindet sich außerhalb der Faltenbälge. Weitere Pumpeinrichtungen sind aus WO2011/018244A1 , US4483665A , US3524714A sowie DE2801671A1 bekannt.
  • Aus der DE10344698B4 sind eine Wärmepumpe und eine Kältemaschine mit einer Kompressoreinrichtung bekannt. Die Kompressoreinrichtung umfasst einen Verdichterraum in dem ein Ballon angeordnet ist. Der Ballon wird periodisch mit Flüssigkeit beaufschlagt, so dass das den Ballon umgebende Gas periodisch verdichtet und wieder entspannt wird. Nachteilig hierbei ist, dass der Ballonhülle bei bestimmten Betriebszuständen an der harten und eventuell kantigen Innenoberfläche des Verdichterraums in schaben oder reiben kann. Hierdurch können aufgrund der Druckverhältnisse Loch- bzw. Rissbildung in der Ballonhülle auftreten.
  • Aus der SU440534A1 ist eine Tieftemperatur-Kühlvorrichtung mit einer Kompressoreinrichtung mit gasgefüllten Faltenbälgen bekannt, die von einer periodisch gepumpten Flüssigkeit umgeben sind.
  • Ausgehend von der SU440534A1 oder der DE10344698B4 ist es daher Aufgabe der Erfindung, eine Kompressorvorrichtung anzugeben, bei der Volumenverringerungen des Arbeitsgases aufgrund niedriger Temperaturen ausgeglichen werden. Weiter ist es Aufgabe der Erfindung, eine Kühlvorrichtung und eine Kältemaschine mit einer solchen Kompressorvorrichtung anzugeben.
  • Die Lösung dieser Aufgaben erfolgt durch die Merkmale der Ansprüche 1, 11 bzw. 14.
  • Dadurch, dass das Gasvolumen im Ballon und das Flüssigkeitsvolumen außen ist, wird die Ballonhülle immer durch einen Flüssigkeitsfilm auf der harten Innenseite (idR aus Metall) vor Beschädigungen geschützt, wenn aufgrund von irregulären Betriebszuständen die Ballonhülle an der harten Innenseite des Verdichterraums reibt. Da es sich bei der Arbeitsflüssigkeit in der Regel um Hydrauliköl handelt (Anspruch 8) wird die Schutzwirkung zusätzlich durch den Schmieröleffekt verbessert.
  • Anstelle eines Ballons kann auch ein schlauchförmiger Faltenbalg als Membran eingesetzt werden. Ein Faltenbalg weist den Vorteil auf, dass durch die Konstruktion und die Anordnung der Falten die Volumenvergrößerung bzw. Volumenverkleinerung "gerichtet" entlang der Längsrichtung des Faltenbalgs erfolgt. Eine reibende Berührung des Faltenbalgs mit der harten Innenseite des Verdichterraums ist damit nahezu ausgeschlossen. Damit kann bei Einsatz eines Faltenbalgs als Verdichtermembran das Gasvolumen auch im Inneren des Faltenbalgs vorgesehen werden. Diese "Gerichtetheit" der Volumenänderung kann durch eine Zwangsführung des Faltenbalgs entlang einer Stange mit Längslager verbessert werden. Der Faltenbalg besteht üblicherweise aus einer Edelstahllegierung und ist mit Ausnahme von Wasserstoff für alle relevanten Arbeitsgase extrem gasdicht.
  • Dadurch, dass das Gasvolumen mit einem Gasreservoir verbunden ist, können Volumenverringerungen des Arbeitsgases in einem nachgeschalteten Verbraucher, z. B. einem Kühler, aufgrund niedriger Temperaturen ausgeglichen werden.
  • Gemäß der vorteilhaften Ausgestaltung der Erfindung nach Anspruch 2 wird ein Arbeitsflüssigkeitsreservoir bereitgestellt. Hierdurch ist es möglich herkömmliche Flüssigkeitspumpen, z. b. Zahnradpumpen - Anspruch 7 - zu verwenden. Das Arbeitsflüssigkeitsreservoir sorgt dafür, dass für die Pumpeinrichtung immer die richtige Menge Arbeitsflüssigkeit im richtigen Druckbereich zur Verfügung steht.
  • Die Kompressorvorrichtung gemäß der vorliegenden Erfindung kann als nicht Gas fördernder Kompressor oder als Gas fördernder Kompressor - Anspruch 3 - ausgebildet sein. Im Falle des nicht Gas fördernden Kompressors werden über den einzigen Arbeitsgasanschluss lediglich Druckoszillationen, z. B. für einen damit angetriebenen Kryokühler - Anspruch 11 - bereit gestellt. Als Gas fördernder Kompressor wird komprimiertes Arbeitsgas über einen ersten Arbeitsgasanschluss, der als Hochdruckanschluss ausgelegt ist, einer nachgeschalteten Einrichtung zugeführt. Arbeitsgas mit geringerem Druck wird über einen zweiten Arbeitsgasanschluss, der als Niederdruckanschluss ausgelegt ist, in die Kompressorvorrichtung zurückgeführt-Anspruch 13.
  • Gemäß der bevorzugten Ausgestaltung der Erfindung nach Anspruch 4 ist das Arbeitsgasreservoir über einen Differenzdruckregler mit dem Gasvolumen der Verdichtereinrichtung verbunden. Hierdurch wird erreicht, dass das Arbeitsgas bereits vorkomprimiert zur Verfügung steht. Das Arbeitsgas im Gasreservoir befindet sich in etwa auf dem Niveau des Niederdrucks der Verdichtereinrichtung. Sinkt in der Entspannungsphase der Druck des Arbeitsgases in der Verdichtereinrichtung unter den Druck im Gasreservoir ab, strömt Arbeitsgas über den Differenzdruckregler aus dem Gasreservoir in das Gasvolumen der Verdichtereinrichtung.
  • Durch die Verbindung des Gasreservoirs mit dem Gasvolumen im Verdichterraum über ein Überdruckventil nach Anspruch 5 kann Arbeitsgas in das Arbeitsgasreservoir strömen, falls der Druck des Arbeitsgases im Gasvolumen zu hoch wird. Durch diese Sicherheitsmassnahme werden Beschädigungen der Verdichtereinrichtungen durch Überdruck verhindert.
  • Die Pumpeinrichtung umfasst vorzugsweise einen elektrischen Antrieb, Anspruch 6, da sich ein solcher einfach regeln lässt.
  • Besonders geeignet ist eine Zahnradpumpe als Pumpeinrichtung - Anspruch 7. Zahnradpumpen zeichnen sich durch eine hohe Lebensdauer, geringen Wartungsaufwand und geringem Totvolumen aus und sind für Hochdruckanwendungen bis 300 Bar geeignet.
  • Als Arbeitsflüssigkeit wird bevorzugt Hydrauliköl nach DIN 51524 eingesetzt, das zusätzlich entwässert bzw. wasserfrei ist. Das Hydrauliköl befindet sich in einem geschlossenen System aus Pumpeinrichtung, Arbeitsflüssigkeitsausgleichseinrichtung und Flüssigkeitsvolumen im Verdichterraum, so dass während des Betriebs kein Wasser aus der Umgebung durch das Hydrauliköl aufgenommen werden kann. Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden, insbesondere dann, wenn extrem wasserundurchlässige Membranmaterialien, z. B. Faltenbälge aus Edelstahl, angewandt werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo-Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich - Anspruch 8.
  • Für Kryo-Anwendungen wird je nach Temperaturbereich vorzugsweise Helium oder Stickstoff als Arbeitsgas verwendet - Anspruch 9.
  • Die ballonförmige Membran bzw. der schlauchförmige Faltenbalg muss sowohl für das jeweils verwendete Arbeitsgas als auch für die Arbeitsflüssigkeit undurchlässig und resistent sein. Da ein Werkstoff diese unterschiedlichen Anforderungen nicht immer erfüllen kann, sind diese Membranen vorzugsweise mehrschichtig aus unterschiedlichen Materialien aufgebaut - Anspruch 10. Damit kann die Membran sowohl hinsichtlich der Arbeitsflüssigkeit als auch in Hinblick auf das Arbeitsgas angepasst werden.
  • Die erfindungsgemäße Verdichtereinrichtung stellt verdichtetes Arbeitsgas im für Gifford-McMahon-Kühler und Pulsrohrkühler notwendigen Frequenzbereich bereit-Anspruch 11 bis 13.
  • Wenn die Verdichtereinrichtung als fördernde Verdichtereinrichtung auslegt ist, kann sie als Antrieb einen herkömmlichen Kältemaschine genutzt werden - Anspruch 14.
  • Die übrigen Unteransprüche beziehen sich auf weitere vorteilhafte Ausgestaltungen der Erfindung. Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung verschiedener Ausführungsformen.
  • Es zeigt:
    • Fig. 1 eine schematische Darstellung einer ersten beispielhaften Ausführungsform zur Erläuterung der Erfindung als fördernde Kompressorvorrichtung,
    • Fig. 2 eine schematische Darstellung einer zweiten beispielhaften Ausführungsform zur Erläuterung der Erfindung als fördernde Kompressorvorrichtung,
    • Fig. 3 eine schematische Darstellung einer dritten beispielhaften Ausführungsform zur Erläuterung der Erfindung als nicht-fördernde Kompressorvorrichtung,
    • Fig. 4 eine schematische Darstellung einer ersten Ausführungsform der Erfindung als nicht-fördernde Kompressorvorrichtung,
    • Fig. 5 eine schematische Darstellung einer zweiten Ausführungsform der Erfindung als fördernde Kompressorvorrichtung, und
    • Fig. 6 eine schematische Darstellung einer Heliumkompressoreinrichtung mit Drehventil und einer Kühleinrichtung gemäß dem Stand der Technik.
  • Bei der Erläuterung der verschiedenen Ausführungsformen werden gleiche oder einander entsprechende Bauteile mit denselben Bezugszeichen versehen.
  • Fig. 1 zeigt eine erste beispielhafte Ausführungsform zur Erläuterung der erfindungsgemäßen Kompressorvorrichtung, die als Gas bzw. Arbeitsgas fördernde Kompressorvorrichtung ausgebildet ist. Die Kompressorvorrichtung umfasst eine Verdichtereinrichtung 2, die einen gasdicht geschlossenen Verdichterraum 4 aufweist. In dem Verdichterraum 4 ist ein Ballon bzw. eine ballonförmige Membran 6 angeordnet. Der Ballon 6 unterteilt den Verdichterraum 4 in ein Gasvolumen 8 für ein Arbeitsgas 10 und in ein Flüssigkeitsvolumen 12 für eine Arbeitsflüssigkeit 14. Das Gasvolumen 8 ist das Innere des Ballons 6 und das Flüssigkeitsvolumen 12 ist der Bereich des Verdichterraums 4 außerhalb des Ballons 6. Das Flüssigkeitsvolumen 12 außerhalb des Ballons 6 ist mit einer ersten Arbeitsflüssigkeitsleitung 18 verbunden ist, die aus dem Verdichterraum 4 herausführt. Der Ballon 6 umfasst eine erste Ballonöffnung 19, die mit dem Hochdruckgasauslass 20 verbunden ist, und ein zweite Ballonöffnung 21, die mit dem Niederdruckgasauslass 22 verbunden ist. Die erste Arbeitsflüssigkeitsleitung 18 mündet in eine Pumpeinrichtung 24, die über eine zweite Arbeitsflüssigkeitsleitung 26 mit einer Arbeitsflüssigkeitsausgleichseinrichtung 28 in Form eines Arbeitsflüssigkeitsreservoirs verbunden ist.
  • Durch die Pumpeinrichtung 24 wird Arbeitsflüssigkeit 14 periodisch in das Flüssigkeitsvolumen 12 über die erste Arbeitsflüssigkeitsleitung 18 eingepresst und wieder herausgelassen. Durch das Einpumpen der Arbeitsflüssigkeit 14 in das Flüssigkeitsvolumen 12 wird das Arbeitsgas 10 im Ballon 6 komprimiert. Durch das Ablassen von Arbeitsflüssigkeit 14 in das Arbeitsflüssigkeitsreservoir 28 dehnt sich das Arbeitsgas 10 im Ballon 6 aus und entspannt sich dadurch. Durch das periodische Einpressen von Arbeitsflüssigkeit 14 in das Flüssigkeitsvolumen 12 wird das Arbeitsgas 10 in dem Gasvolumen 8 im Ballon 6 periodisch verdichtet und wieder entspannt. Das verdichtete Arbeitsgas 10 wird über den Hochdruckgasauslass 20 einem nachgeschalteten Verbraucher, z. B. einem Kryo-Kühler - nicht dargestellt - zugeführt. Über den Niederdruckgaseinlass 22 wird das Arbeitsgas 10 mit geringerem Druck wieder in das Gasvolumen 8 im Ballon 6 zurückgeführt, so dass der Kreislauf geschlossen ist.
  • Die Arbeitsflüssigkeitsausgleichseinrichtung 28 sorgt dafür, dass immer ausreichend Arbeitsflüssigkeit 14 vorhanden ist und in das Flüssigkeitsvolumen 12 im Verdichterraum 4 gepumpt werden kann, um das Arbeitsgas 10 im Gasvolumen 8 im Ballon 6 zu komprimieren. In der Entspannungsphase der Kompressorvorrichtung dehnt das Arbeitsgas 10 den Ballon 6 aus und Arbeitsflüssigkeit 14 wird über die erste Arbeitsflüssigkeitsleitung 18, die Pumpeinrichtung 24 und die zweite Arbeitsflüssigkeitsleitung 26 in die Arbeitsflüssigkeitsausgleichseinrichtung 28 gedrückt.
  • Fig. 2 zeigt eine zweite beispielhafte Ausführungsform zur Erläuterung der Erfindung, die sich von der ersten beispielhaften Ausführungsform nach Fig. 1 lediglich dadurch unterscheidet, dass als Pumpeinrichtung eine Zahnradpumpe 30 verwendet wird, die durch einen Elektromotor 32 angetrieben wird. Diese Art der Pumpeinrichtung hat sich als besonders vorteilhaft erwiesen, da sie sich durch hohe Lebensdauer, geringen Wartungsaufwand und geringem Totvolumen auszeichnen. Aufgrund ihrer Konstruktion sind sie für Hochdruckanwendungen bis 300 bar geeignet.
  • Fig. 3 zeigt eine dritte beispielhafte Ausführungsform zur Erläuterung der Erfindung, die sich von der ersten beispielhaften Ausführungsform nach Fig. 1 lediglich dadurch unterscheidet, dass die Kompressorvorrichtung als nicht fördernde Kompressorvorrichtung ausgestaltet ist. Der Ballon 6 umfasste eine Ballonöffnung 40, die mit einem Arbeitsgasanschluss 42 verbunden ist. Damit mündet in das Gasvolumen 8 in den Arbeitsgasanschluss 40. Über diesen Arbeitsgasanschluss 40 wird die in dem Gasvolumen 8 erzeugte periodische Druckänderung auf den nachgeschalteten Kühlernicht dargestellt - übertragen.
  • Fig. 4 zeigt eine erste Ausführungsform der Erfindung, die sich von der dritten beispielhaften Ausführungsform nach Fig. 3 durch eine Arbeitsgasausgleichseinrichtung unterscheidet. Die Arbeitsgasausgleichseinrichtung umfasst ein Arbeitsgasreservoir 50, das über eine erste Gasleitung 52, einen Differenzdruckregler 54 und eine gemeinsame Gasleitung 55 mit dem Gasvolumen 8 im Ballon 6 verbunden ist. Das Arbeitsgasreservoir 50 ist auch über eine zweite Gasleitung 56, ein Überdruckventil 58 und die gemeinsame Gasleitung 55 mit dem Gasvolumen 8 im Ballon 6 verbunden. Die gemeinsame Gasleitung 55 mündet in die Ballonöffnung 40. Der Arbeitsgasanschluss 42 zweigt von der gemeinsamen Gasleitung 55 ab und mündet in eine Kühleinrichtung 60.
  • Über die erste Gasleitung 52, den Differenzdruckregler 54 und die gemeinsame Gasleitung 55 strömt Arbeitsgas 10 in das Gasvolumen 8 im Ballon 6 nach, wenn der Druck des Arbeitsgases 10 im Gasvolumen 8 aufgrund niedriger Temperaturen unter den Druck im Arbeitsgasreservoir 50 abfällt. Durch das Arbeitsgasreservoir 50 können somit "Arbeitsgasverluste", die in einem nachgeschalteten Kühler auftreten können, ausgeglichen werden. Durch den Differenzdruckregler 54 wird hierbei das nachzuführende Arbeitsgas 10 bereits vorkomprimiert zur weiteren Komprimierung in dem Gasvolumen 8 im Ballon 6 bereitgestellt. Über die zweite Gasleitung 56, das Überdruckventil 58 und die gemeinsame Gasleitung 55 kann Arbeitsgas 10 in das Arbeitsgasreservoir 50 strömen, falls der Druck des Arbeitsgases 10 im Gasvolumen 8 zu hoch wird.
  • Fig. 5 zeigt eine zweite Ausführungsform der Erfindung, die sich von der ersten Ausführungsform nach Fig. 4 lediglich dadurch unterscheidet, dass anstelle eines Ballons ein schlauchförmiger Faltenbalg 80 eingesetzt wird, der das Gasvolumen 8 umschließt. Der Faltenbalg 80 hat gegenüber dem Ballon 6 den Vorteil, dass die Volumenvergrößerung und die Volumenverkleinerung jeweils gerichtet entlang der Längserstreckung des schlauchförmigen Faltenbalgs 80 erfolgt. Der Faltenbalg 80 besteht aus einer Edelstahllegierung und ist mit Ausnahme von Wasserstoff für alle relevanten Arbeitsgase extrem gasdicht. Damit der schlauchförmige Faltenbalg 80 bei maximalem Volumen nicht gegen die Längserstreckung abknickt, wird der Faltenbalg in der Regel durch eine in Längsrichtung des Faltebalgs angeordnete stabile Stange mit Längslager - nicht dargestellt - geführt. Auf diese Weise wird sicher verhindert, dass der Faltenbalg 80 durch Reibungskontakt mit der Innenfläche des Verdichterraums 4 beschädigt werden kann.
  • Da bei dem Faltenbalg 80 die Volumenänderung sehr kontrolliert erfolgt, besteht nicht die Gefahr, dass der Faltenbalg an der Innenwand des Verdichterraums 4 schabt und dadurch beschädigt werden könnte. Folglich kann bei Einsatz des Faltenbalgs 80 auch das Gasvolumen 8 und das Flüssigkeitsvolumen 12 vertauscht werden.
  • Ebenso wie bei der zweiten beispielhaften Ausführungsform nach Fig. 2 kann auch bei den Ausführungsformen nach Fig. 3, 4 und 5 eine durch einen Elektromotor angetrieben Zahnradpumpe als Pumpeinrichtung 24 eingesetzt werden.
  • Als Arbeitsflüssigkeit eignen sich Hydrauliköle nach DIN 51524. Diese H, HL, HLP und HVLP Öle sind Öle, die sich mit gängigen Dichtungskunststoffen wie NBR (AcrylnitrilButadien-Kautschuk) etc. gut vertragen. NBR ist allerdings nicht ausreichend heliumdicht. HF Öle sind häufig mit gängigen Dichtungsmaterialien (http://de.wikipedia.org/wiki/Liste_der_Kunststoffe) unverträglich. Für heliumdichte Ballons eignet sich Synthesekautschuk wie z. B. Chlorbutyl. Bei Verwendung von Helium als Arbeitsgas 10 ist es daher vorteilhaft, wenn die ballonförmige Membran 6 aus mehreren Schichten besteht, z. B. aus einer der Arbeitsflüssigkeit 14 in Form von Hydrauliköl zugewandten Schicht aus NBR und aus einer Helium als Arbeitsgas 10 zugewandten Schicht aus Chlorbutyl.
  • Alternativ kann auch Wasser als Arbeitsflüssigkeit verwendet werden, insbesondere dann, wenn extrem wasserundurchlässige Membranmaterialien, z. B. Faltenbälge aus Edelstahl, eingesetzt werden. Wasser als Arbeitsmittel ist auch vorteilhaft, da bei Defekten ein in einen nachgeschalteten Kryo-Kühler eingedrungenes Wasser leichter wieder entfernt werden kann als in einen nachgeschalteten Kühler eingedrungenes Hydrauliköl. Auch bietet sich Wasser als Arbeitsmittel bei explosionsgeschützten Anwendungen an, da Wasser nicht brennbar und nicht explosiv ist. Außerdem ist Wasser ungiftig und damit umweltfreundlich.
  • In den nicht-fördernden Ausführungsformen gemäß den Figuren 3, 4 und 5 ist in dem aus dem Gasvolumen 8 heraus führenden Arbeitsgasanschluss 42 kein Ventil vorgesehen. Es kann hier jedoch ein Ventil vorgesehen werden, um in der Entspannungsphase der Verdichtereinrichtung 2 eine höhere Druckdifferenz aufzubauen. D. h. obwohl sich in der Entspannungsphase das Gasvolumen 8 in dem Verdichterraum 4 bereits vergrößert, ist das Ventil in dem Arbeitsgasanschluss 42 noch geschlossen. Erst, wenn sich eine gewisse Druckdifferenz aufgebaut hat, wird dieses Ventil geöffnet. Auf diese Weise kann die Rückströmung des Arbeitsgases 10 über den Arbeitsgasanschluss 42 in die Verdichtereinrichtung 2 beschleunigt werden.
  • Bezugszeichenliste:
  • 2
    Verdichtereinrichtung
    4
    Verdichterraum
    6
    Ballon
    8
    Gasvolumen
    10
    Arbeitsgas
    12
    Flüssigkeitsvolumen
    14
    Arbeitsflüssigkeit
    18
    erste Arbeitsflüssigkeitsleitung
    19
    erste Ballonöffnung
    20
    Hochdruckgasauslass
    21
    zweite Ballonöffnung
    22
    Niederdruckgaseinlass
    24
    Pumpeinrichtung
    26
    zweite Arbeitsflüssigkeitsleitung
    28
    Arbeitsflüssigkeitsausgleichseinrichtung
    30
    Zahnradpumpe
    32
    Elektromotor
    40
    Ballonöffnung
    42
    Arbeitsgasanschluss
    50
    Arbeitsgasreservoir
    52
    erste Gasleitung
    54
    Differenzdruckregler
    55
    gemeinsame Gasleitung
    56
    zweite Gasleitung
    58
    Überdruckventil
    60
    Kühleinrichtung
    80
    Faltenbalg
    100
    Helium-Kompressor
    102
    Hochdruckleitung
    104
    Niederdruckleitung
    106
    Drehventil
    108
    Gasleitung
    110
    Kühlvorrichtung

Claims (14)

  1. Kompressorvorrichtung, mit
    einer Verdichtereinrichtung (2), die einen Verdichterraum (4) mit einem definierten Volumen aufweist, und in der eine elastische, gas- und flüssigkeitsdichte Membran (6) den Verdichterraum (4) in ein Gasvolumen (8) mit einem Arbeitsgas (10) und ein Flüssigkeitsvolumen (12) mit einer Arbeitsflüssigkeit (14) unterteilt,
    einem Arbeitsgasanschluss (20, 22; 40), der in das Gasvolumen (8) mündet, und einer Pumpeinrichtung (24), die die Arbeitsflüssigkeit (14) periodisch in das Flüssigkeitsvolumen (12) pumpt und dadurch das Arbeitsgas (10) im Gasvolumen (8) periodisch komprimiert,
    wobei die Membran als Ballon (6) oder als Faltenbalg ausgebildet ist, und wobei der Ballon (6) oder der Faltenbalg das Gasvolumen (8) umschließen, dadurch gekennzeichnet,
    dass das Gasvolumen (8) in dem Verdichterraum (4) über einen dritten Arbeitsgasanschluss (52) mit einem Arbeitsgasreservoir (50) verbunden ist.
  2. Kompressorvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Pumpeinrichtung (24) mit einer Arbeitsflüssigkeitsreservoir (28) verbunden ist.
  3. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in das Gasvolumen (8) ein zweiter Arbeitsgasanschluss (22) mündet, und dass der erste Arbeitsgasanschluss (20) als Hochdruckausgang und der zweite Arbeitsgasanschluss (22) als Niederdruckeingang ausgelegt ist.
  4. Kompressorvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass Arbeitsgasreservoir (50) über einen Differenzdruckregler (54) mit dem Gasvolumen (8) in dem Verdichterraum (4) verbunden ist.
  5. Kompressorvorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass Arbeitsgasreservoir (50) über ein Überdruckventil (58) mit dem Gasvolumen (8) in dem Verdichterraum (4) verbunden ist.
  6. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpeinrichtung (24) einen elektrischen Antrieb (32) aufweist.
  7. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpeinrichtung (24) eine Zahnradpumpe (30) umfasst.
  8. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Arbeitsflüssigkeit (14) ein Hydrauliköl oder Wasser ist.
  9. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Arbeitsgas (10) Helium oder Stickstoff ist.
  10. Kompressorvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ballonförmige Membran oder Faltenbalg mehrschichtig aufgebaut sind.
  11. Kühlvorrichtung mit einer Kompressorvorrichtung nach einem der vorhergehenden Ansprüche und einem Gifford-McMahon-Kühler oder einem Pulsrohrkühler, wobei die Verdichtereinrichtung (2) mit dem Gifford-McMahon-Kühler oder dem Pulsrohrkühler gekoppelt ist.
  12. Kühlvorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Verdichtereinrichtung (2) einen Hochdruckanschluss (20) aufweist und dass der Gifford-McMahon-Kühler oder der Pulsrohrkühler mit dem Hochdruckanschluss (20) der Verdichtereinrichtung (2) verbunden ist.
  13. Kühlvorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Verdichtereinrichtung (2) einen Niederdruckanschluss (22) aufweist und dass der Gifford-McMahon-Kühler oder der Pulsrohrkühler mit dem Niederdruckanschluss (22) der Verdichtereinrichtung (2) verbunden ist.
  14. Kompressorkältemaschine, insbesondere für herkömmliche Kühlschränke, mit einer Kompressorvorrichtung nach einem der vorhergehenden Ansprüche 1 bis 10, einem Verdampfer und einem Kondensator.
EP13742442.0A 2012-07-27 2013-07-26 Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine Active EP2877748B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012213293.7A DE102012213293B4 (de) 2012-07-27 2012-07-27 Kompressorvorrichtung sowie eine damit ausgerüstete Kühlvorrichtung und eine damit ausgerüstete Kältemaschine
PCT/EP2013/065822 WO2014016415A2 (de) 2012-07-27 2013-07-26 Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine

Publications (2)

Publication Number Publication Date
EP2877748A2 EP2877748A2 (de) 2015-06-03
EP2877748B1 true EP2877748B1 (de) 2019-02-06

Family

ID=48900977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13742442.0A Active EP2877748B1 (de) 2012-07-27 2013-07-26 Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine

Country Status (5)

Country Link
US (1) US11231029B2 (de)
EP (1) EP2877748B1 (de)
JP (1) JP6240190B2 (de)
DE (1) DE102012213293B4 (de)
WO (1) WO2014016415A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115715A1 (de) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Kompressorvorrichtung und Kühlvorrichtung mit Kompressorvorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217897A1 (de) * 2014-09-08 2016-03-10 Pressure Wave Systems Gmbh Kompressorvorrichtung, eine damit ausgerüstete Kühlvorrichtung und ein Verfahren zum Betreiben der Kompressorvorrichtung und der Kühlvorrichtung
FR3100319B1 (fr) * 2019-09-04 2021-08-20 Absolut System Machine cryogénique régénérative

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU440534A1 (ru) * 1972-07-03 1974-08-25 Предприятие П/Я М-5727 Холодильно-газова машина
DE2801670A1 (de) * 1978-01-16 1979-07-19 Uhde Gmbh Einrichtung fuer die absicherung einer membranhochdruckpumpe

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1780336A (en) * 1928-12-31 1930-11-04 Glacier Inc Pumping mechanism
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
DE1553116B2 (de) * 1966-10-25 1971-07-15 Licentia Patent Verwaltungs GmbH, 6000 Frankfurt Elektromotorisch betriebene Zahnrad Ölpumpe
CH457147A (de) 1967-01-20 1968-05-31 Hannes Keller Unterwassertechn Membrankompressor oder -pumpe
US3494192A (en) * 1968-09-17 1970-02-10 Greer Hydraulics Inc System for indicating the quantity of fluid in a separator type hydropneumatic accumulator
US3524714A (en) * 1968-10-30 1970-08-18 Us Air Force Pneumatic bellows pump
JPS57157076A (en) 1981-03-20 1982-09-28 Kyoei Zoki Kk Apparatus for conveying fluid under pressure
US4515516A (en) 1981-09-30 1985-05-07 Champion, Perrine & Associates Method and apparatus for compressing gases
US4483665A (en) * 1982-01-19 1984-11-20 Tritec Industries, Inc. Bellows-type pump and metering system
JPS6193282A (ja) 1984-10-11 1986-05-12 Kyokuto Kaihatsu Kogyo Co Ltd 流動体圧送用ピストンポンプの作動制御装置
US4673415A (en) * 1986-05-22 1987-06-16 Vbm Corporation Oxygen production system with two stage oxygen pressurization
JPS644882U (de) * 1987-06-29 1989-01-12
JPH0781754B2 (ja) * 1990-06-28 1995-09-06 新技術事業団 冷凍機
JP3369636B2 (ja) 1993-05-14 2003-01-20 三洋電機株式会社 ガス圧縮膨張機
GB2301426B (en) * 1995-05-16 1999-05-19 Toshiba Kk A refrigerator having a plurality of cooling stages
JPH09236343A (ja) 1996-02-29 1997-09-09 Aisin Seiki Co Ltd 極低温冷却装置
US20020068929A1 (en) 2000-10-24 2002-06-06 Roni Zvuloni Apparatus and method for compressing a gas, and cryosurgery system and method utilizing same
JP2002349433A (ja) 2001-05-23 2002-12-04 Asahi Eng Co Ltd 圧縮機
JP4022429B2 (ja) * 2002-05-20 2007-12-19 東海旅客鉄道株式会社 極低温冷凍装置
DE10245694A1 (de) 2002-09-30 2004-04-15 Luther, Gerhard, Dr.rer.nat. Verfahren und Vorrichtung zur Realisierung einer Wärmepumpe oder einer Kältemaschine mittels kombinierter Verdichtung und Verflüssigung durch eine Verdrängungsblase
BR0301492A (pt) * 2003-04-23 2004-12-07 Brasil Compressores Sa Sistema de ajuste de frequências de ressonância em compressor linear
KR101271948B1 (ko) 2005-04-21 2013-06-07 인더스트리얼 리서치 리미티드 압력파 생성장치
JP2008291865A (ja) 2007-05-22 2008-12-04 Yuken Kogyo Co Ltd シリンダ駆動装置
GB2455737B (en) * 2007-12-19 2010-08-11 Siemens Magnet Technology Ltd Variable charge compressor
US8636484B2 (en) * 2009-01-09 2014-01-28 Tom M. Simmons Bellows plungers having one or more helically extending features, pumps including such bellows plungers, and related methods
EP2295798A1 (de) * 2009-08-13 2011-03-16 Berlin Heart GmbH Antriebseinrichtung für den Kolben einer Fluidpumpe.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU440534A1 (ru) * 1972-07-03 1974-08-25 Предприятие П/Я М-5727 Холодильно-газова машина
DE2801670A1 (de) * 1978-01-16 1979-07-19 Uhde Gmbh Einrichtung fuer die absicherung einer membranhochdruckpumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022115715A1 (de) 2022-06-23 2023-12-28 Pressure Wave Systems Gmbh Kompressorvorrichtung und Kühlvorrichtung mit Kompressorvorrichtung

Also Published As

Publication number Publication date
DE102012213293A1 (de) 2014-01-30
DE102012213293B4 (de) 2018-03-29
EP2877748A2 (de) 2015-06-03
WO2014016415A3 (de) 2014-05-15
US11231029B2 (en) 2022-01-25
US20150128616A1 (en) 2015-05-14
JP2015524892A (ja) 2015-08-27
JP6240190B2 (ja) 2017-11-29
WO2014016415A2 (de) 2014-01-30

Similar Documents

Publication Publication Date Title
EP2877748B1 (de) Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine
EP3434897B1 (de) Kompressorvorrichtung, eine damit ausgerüstete kühlvorrichtung und ein verfahren zum betreiben der kompressorvorrichtung und der kühlvorrichtung
EP1828603B1 (de) Hermetischer kältemittelverdichter
DE102016105302A1 (de) Steuerstromregelventil, insbesondere für Scrollverdichter in Fahrzeugklimaanlagen oder Wärmepumpen
EP2710263B1 (de) Kompressorvorrichtung sowie eine damit ausgerüstete kühlvorrichtung und eine damit ausgerüstete kältemaschine
EP2065555B1 (de) Verfahren zum Betrieb einer Verdichtervorrichtung und zugehörige Verdichtervorrichtung
EP1812759B1 (de) Kombinierter kolben-expander-verdichter
DE102013112670A1 (de) Kühlkreislauf
DE102011080377B4 (de) Kühlvorrichtung mit Kompressorvorrichtung sowie Gifford-McMahon-Kühler oder Pulsrohrkühler
WO2023247277A1 (de) Kompressorvorrichtung und kühlvorrichtung mit kompressorvorrichtung
DE102017202521B4 (de) Kompressor mit Bewegungskompensationseinrichtung
DE102021102648B4 (de) Kolbenkompressor, insbesondere für eine Wärmepumpe
DE102014017894A1 (de) Heißgasmaschine nach dem Stirlingprinzip
DE102015207808A1 (de) Volumenausgleichsvorrichtung
DE102014106520A1 (de) Hochdruck-Plungerpumpe
DE102017101679A1 (de) Vorrichtung zum Versorgen einer Dichtung mit einem Schmiermittel
WO2005075904A1 (de) (tief)kühlmöbel mit naturumlauf
AT12158U1 (de) Kühlkopf für eine kühlanlage
DE102009036235A1 (de) Hydraulisches System
DE102015003943A1 (de) Vorrichtung und Verfahren zur Dosierung von Fluiden
DE102004022794A1 (de) Verdichter für Kältemittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150129

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1095086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012149

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013012149

Country of ref document: DE

Owner name: PRESSURE WAVE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: PRESSURE WAVE SYSTEMS GMBH, 80337 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRESSURE WAVE SYSTEMS GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190507

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190606

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190506

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012149

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190726

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190726

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1095086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230720

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 11

Ref country code: DE

Payment date: 20230614

Year of fee payment: 11