EP2869138B1 - Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring - Google Patents

Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring Download PDF

Info

Publication number
EP2869138B1
EP2869138B1 EP14181326.1A EP14181326A EP2869138B1 EP 2869138 B1 EP2869138 B1 EP 2869138B1 EP 14181326 A EP14181326 A EP 14181326A EP 2869138 B1 EP2869138 B1 EP 2869138B1
Authority
EP
European Patent Office
Prior art keywords
hairspring
point
external
turn
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14181326.1A
Other languages
German (de)
French (fr)
Other versions
EP2869138A2 (en
EP2869138A3 (en
Inventor
Stéphane von Gunten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Original Assignee
Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA filed Critical Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Publication of EP2869138A2 publication Critical patent/EP2869138A2/en
Publication of EP2869138A3 publication Critical patent/EP2869138A3/en
Application granted granted Critical
Publication of EP2869138B1 publication Critical patent/EP2869138B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/222Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances

Definitions

  • the present invention relates to a spiral for a mechanical watch regulating member, a regulating member provided with such a spiral, and a method for producing such a spiral.
  • the movements of mechanical watches are most often regulated by a regulating member comprising a balance and a hairspring.
  • the outer end of the hairspring is attached to the rooster with the peg while the inner end is connected to the axis of the pendulum with the ferrule.
  • the center of gravity of the spiral moves during successive expansions and contractions, so that it does not correspond in every moment with the center of rotation of the spiral on the axis of the balance.
  • the distance between the center of gravity and the center of rotation creates an unbalance, which induces a lateral pressure (that is to say radial) on the axis of the balance and on the pivots of this axis. This unbalance and resulting lateral pressure on the axis disturb isochronism.
  • planar spirals sometimes referred to as flat spirals
  • photolithography or ion etching processes There is therefore an interest in obtaining planar spirals (sometimes referred to as flat spirals), less bulky and easier to perform with photolithography or ion etching processes.
  • WO2012152843 discloses a hairspring comprising a number of through holes or blind holes to increase the area of the oxidizable surface, while maintaining the rigidity of the hairspring.
  • the spiral has a terminal curve that allows the center of gravity of the spiral to be on the axis of the balance. The shape of this curve is not specified, nor its effect on the lateral pressure on the axis of the balance.
  • CH327796 proposes to modify the section of a portion of the spiral blade, for example by folding, in order to increase its rigidity and to obtain a concentric development of the spiral.
  • FR1588702 proposes to extend the outer end of the spiral with a resilient element more rigid than the spring.
  • CH701846 describes a flat hairspring whose rigidity of the blade decreases progressively over more than 360 ° from a point situated between its inner end and its second turn and between its outer end and the penultimate turn.
  • CH692532 proposes to modify the rigidity of a portion of the hairspring through additional heat treatment, which however has the disadvantage of increasing the cost of manufacture.
  • US209642 discloses a flat horological spiral whose thickness is modulated in order to modify the flexibility of the turns and thus improve the isochronism.
  • US3782169 suggests to change the thickness at certain points of the spiral, for example on the outer turn, to adjust its rigidity and therefore the frequency of the oscillator.
  • EP1431844 describes a hairspring that has a variable pitch on one side to achieve a constant oscillation. This document does not describe how this irregular step improves the regularity of the oscillation and does not explain how this spiral must be sized.
  • EP1473604 discloses an analytical method for sizing a spiral spring having a blade portion stiffened by increasing its thickness in the plane of the hairspring. This method, however, is based on a number of approximations.
  • EP1605323 discloses a watch movement hairspring whose outer circumferential turn has a plurality of elbows 1-, 17, 18 and a plurality of reinforcements 19, 20, 21.
  • WO2013034962 describes a spiral comprising an outer turn of variable thickness, arranged to compensate at least partially the variation of the movement of the movement according to the oscillation amplitude of the balance.
  • US2011292770 discloses a silicon balance spring having a portion of its wave-shaped outer curve, to improve the oscillation of the hairspring.
  • the utility model DE202012103893U describes another spiral having a stiffened outer turn due to a reinforced thickness portion.
  • the rigid portion of these spirals constitutes a "dead" zone that is practically undeformed during contractions and expansions of the spiral.
  • the outer coil therefore most often comprises a succession of zones with variable rigidity. The calculation of the deformations of such a spiral with variable stiffness is particularly difficult to perform, so that the shape of these spirals is most often approximations.
  • variable stiffness of the spirals is most often obtained thanks to a variable thickness of the spiral blade in the spiral plane.
  • machining or folding operations that make the manufacturing process more expensive are thus avoided.
  • an outer coating for example a coating of silicon dioxide to compensate for variations as a function of the temperature of the Young's modulus of the spiral .
  • Perfect compensation is only possible when the relationship between the thickness of the coating and that of the core is chosen precisely.
  • the thickness of the layer of dioxide produced by heating is however constant while the thickness of the core varies in the case of a spiral of varying thickness. This results in a Young's modulus stiffened portions of the outer coil which depends on the temperature, and thus an imperfect compensation of unbalance when this temperature varies.
  • the stiffness variation of the outer coil is also sometimes obtained by means of one or more elbows.
  • a portion in which the spiral suddenly changes direction for example a portion in which the local radius of curvature is less than one tenth of the maximum radius of the spiral.
  • Such elbows are difficult to obtain by folding in the case of metal spirals.
  • the presence of such elbows creates zones of internal tension which may, during deformation of the spiral, weaken it or even cause it to break.
  • An object of the present invention is therefore to provide a planar hairspring for a timepiece regulating member whose isochronism is improved compared to the spirals of the prior art.
  • Another object is to propose a planar hairspring for a timepiece regulating organ whose center of gravity does not move or little and substantially corresponds to the center of rotation of the hairspring.
  • Another goal is to propose a plan spiral different from the existing plan spirals.
  • Another object is to propose a planar hairspring for a timepiece regulating member that can be optimized and calculated more easily and more precisely than the existing hairsprings.
  • Another aim is to propose a planar hairspring for a clock-adjusting organ whose thickness of the blade in the plane of the hairspring is substantially constant.
  • Another aim is to propose a planar hairspring for a timepiece regulating organ whose variation of rigidity of the blade comes essentially from the variable radius of curvature, but not from a variation of section or materials.
  • the invention also relates to a method for producing such a hairspring, as defined in independent claim 13.
  • a spiral thickness is considered to be substantially constant if the variations are mainly due to the process of manufacturing.
  • a spiral thickness is also considered substantially constant if the thickness variations do not exceed +/- 10%.
  • the section of the outer turn is considered constant if the variations are due mainly to the manufacturing process.
  • a turn section is also considered to be substantially constant if surface variations do not exceed +/- 10%.
  • the coefficient of proportionality between the distance ( ⁇ ) and the angular position ( ⁇ ) is positive in the case of turns whose radius increases counterclockwise, and negative in the case of turns of increasing radius in the clockwise direction.
  • This solution has the advantage of reducing the lateral pressure on the axis of the balance without requiring a spiral in several planes and without requiring changes in the thickness of the spiral.
  • the reduction is determined with respect to the pressure that would be exerted if the outer turn was made in such a way that the distance between each point of this outer turn and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest.
  • the inner turns and the outer turn are all in the same plane, which allows, in the case of a silicon spiral, to produce it by photolithography. Independently of the material, this characteristic of planar spirals also makes it possible to reduce the bulk.
  • This solution also makes it possible to produce a hairspring whose return torque depends on the amplitude of oscillation, so as to compensate, for example, for the delay due to the exhaust at small amplitudes.
  • the displacements of the center of gravity of the spiral are compensated thanks to the geometrical shape of the last turn at least.
  • the nonlinear function which determines the shape of the last turn can be obtained by successive approximations, by means of a simulation software, taking into account the different conditions (or constraints) expressed in the claims and in the description.
  • the invention therefore results from a choice of unexpected conditions to define the shape of the last turn of a spiral.
  • Conventional scrolls are usually not designed to respect this unusual set of conditions, and nothing a priori makes it possible to determine whether a functional spiral can be achieved in compliance with these conditions.
  • the non-linear function ⁇ f 2 ( ⁇ ) is advantageously chosen so that the displacement of the center of gravity of the last turn during work of the hairspring at least partially offsets the displacement of the center of gravity of said other turns.
  • the center of gravity tends to move away from the peak when the spiral expands, and to get closer to it when the hairspring contracts.
  • the shape of the last turn it is for example possible to make a hairspring in which the center of gravity of the last turn tends to approach the peak during the expansion of the hairspring.
  • the outer turn tends to reduce the overall center of gravity of the spiral on the center of rotation of the balance.
  • the invention also relates to a planar hairspring intended to be mounted on the balance shaft of a mechanical watch regulating member, the hairspring being formed of a blade of substantially constant thickness in the plane of the spiral, the spiral having several internal turns in which the distance ( ⁇ ) between each point and the center of rotation of the hairspring varies according to a substantially linear function as a function of the angular position ( ⁇ ) of the point when the hairspring is at rest; and an outer turn in which the distance ( ⁇ ) between each point (M) of the last turn and the center of rotation increases and then decreases according to the angular position ( ⁇ ) of the point when the hairspring is at rest.
  • the point of the spiral furthest from the center of rotation is thus distinct from the outer end, and distinct from the point of attachment to the peak.
  • the nonlinear function f 2 therefore comprises a maximum, or in any case a local maximum, at a distance from its end; it grows then decreases. It can also include a point of inflection.
  • the last turn of the spiral is advantageously devoid of bends, that is to say devoid of portions in which the local radius of curvature is less than 10% of the maximum radius of the spiral.
  • the local radius of curvature of the last turn varies at rest in a ratio of 1 to 10 at most, preferably in a ratio of 1 to 5 at most, for example in a ratio of 1 to 2 at most. . This avoids the accumulation of tension in the bent areas, which allows for a stronger spiral.
  • the maximum of the function f 2 is advantageously at least 180 ° of the peak when the hairspring is at rest. So, this point away important center is far from the peak and is not likely to collide with the peak when working the spiral or shocks.
  • the linear distance between the maximum of the function f 2 and the outer end of the hairspring moves during work of the hairspring.
  • This linear distance (measured along the hairspring) can preferably decrease during the expansion of the hairspring.
  • the angular distance between the point of inflection and the outer end of the hairspring moves during work of the hairspring.
  • the maximum is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring is at rest.
  • This angular distance between the point of maximum radius and the outer end of the hairspring decreases during at least a portion of the expansion of the hairspring, so as to bring the point of maximum radius of the position to 180 ° of the pin, so to away from the piton.
  • the nonlinear function f 2 is preferably a continuous function.
  • the derivative of this non-linear function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity.
  • the invention thus also relates to a hairspring for a watch movement regulating member mechanical device in which the shape of at least one external turn is calculated so as to obtain a restoring torque C 'which depends on the amplitude according to a non-linear function, so as to compensate for the delay due to the small amplitude escapement respectively to compensate the advance at large amplitudes.
  • the shape is chosen so that the average of the torque exerted by the hairspring depends on the amplitude. This means that the hairspring will be stiffer than a conventional hairspring at small amplitudes, and then progressively less rigid than a conventional hairspring at large amplitudes.
  • the shape of the outer coil of the spiral is therefore chosen according to the exhaust.
  • the subject of the invention is also a mechanical watch regulating member comprising an escapement and a spiral formed of a blade of substantially constant thickness in the plane of the spiral, the spiral comprising several internal turns S 1 , S 2 ,. S N-1 for which the distance between each point and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest; the hairspring further comprising an outer turn for which the distance between each point and said center of rotation is a non-linear function of the angular position of the point when the hairspring is at rest; said non-linear function being adapted as a function of the exhaust, so as to reduce the lateral pressure exerted by the spring on the balance shaft when the hairspring is mounted on this axis and / or in order to compensate for the delay due to the exhaust at low amplitudes.
  • This solution therefore makes it possible to propose a regulating member in which the external curve of the spiral is modified with respect to a conventional Archimedes spiral taking into account the exhaust, so as to reduce the pressure on the axis and / or to compensate the drifts due to the exhaust.
  • the spiral 1 illustrated in the figures is a planar spiral, that is to say that all its turns S 1 , S 2 , ... S N-1 , S N are in the same plane. It can therefore be produced by LIGA, DRIE deep etching, laser etching or lithographic etching from a wafer based on silicon, diamond, glass, carbon, etc., or by winding a strip metal, for example Elinvar or Fe / Ni / Cr alloy for example. Spirals formed of several materials, for example silicon-based silicon or diamond-based silicon.
  • the inner end of the hairspring is intended to be mounted on the axis of a not shown beam by means of a shell 10.
  • the shell is integrated in the hairspring.
  • the invention however also applies to spirals without built-in ferrule.
  • the outer end of the hairspring is intended to be fixed to the unrepresented cock by means of a pin 11.
  • the pin is represented here by a pellet coming from one piece to the rest of the hairspring. Nevertheless, it is obvious that the end of the spiral can be made to constant thickness or take other forms according to the desired construction for its attachment to the peak.
  • the regulating member incorporating the hairspring according to the invention may include racket pins which pinch the hairspring at an adjustable distance from the end, in order to adjust the active length of the hairspring and thus to adjust the oscillation frequency of the hairspring. regulating organ.
  • the thickness of the hairspring 1 in the plane of the hairspring is substantially constant.
  • the spiral section is preferably rectangular and substantially constant between the inner end and the outer end. The computer modeling of the spiral deformations is thus simplified and can be performed without having to resort to approximations or simplifications.
  • the rigidity of the hairspring is determined in particular by its section, its length and the Young's modulus of the material used.
  • the hairspring comprises a core in a first material and a heat-compensating envelope in a second material.
  • the core is silicon-based and the envelope is made of silicon dioxide produced by thermal oxidation.
  • the heat compensating envelope compensates for variations in the Young's modulus of the core as the temperature varies.
  • the proportion between the core and the thermocompensator envelope is constant throughout the spiral.
  • the apparent Young's modulus is thus constant throughout the hairspring and for the entire thermocompensated temperature range.
  • the entire length of the hairspring acts as a return spring; there is no dead zone with reduced deformability.
  • the internal turns of the spiral S 1 to S N-1 are spiral Archimedes, so that the distance ⁇ between each point M of these turns and the center of rotation 100 of the spiral is substantially proportional to the angular position ⁇ from this point M when the hairspring is at rest.
  • all the turns of the spiral except the last turn S N on the outside are Archimedean spiral. It is also possible to provide a hairspring in which only certain internal turns are spiral Archimedes, for example the turns S 1 to S N-2 , or the turns S 2 to S N-1 , etc.
  • At least the outer turn S N is modified and does not correspond to an Archimedean spiral.
  • this function f 2 is a non-linear function of the angular position ( ⁇ ) of the point when the hairspring is at rest. We can also imagine starting the function at the turn S N-2 or S N-3 .
  • the function f 2 is chosen so as to reduce the lateral pressure exerted by the hairspring on the balance shaft when the hairspring 1 rotates about this axis.
  • the function f 2 can also be chosen so that the return torque exerted by the spiral varies as a function of the rotation angle (and therefore the amplitude) of the spiral; the dependence is preferably nonlinear so as to compensate for the delay due to the small amplitude escape.
  • the hairspring can be slightly stiffer at small amplitudes, respectively slightly less rigid at large amplitudes, which makes it possible to compensate for the imperfections of the exhaust.
  • the function f 2 so that the average of the torque exerted during the contraction and during the expansion, for a given angle of rotation, makes it possible to compensate for the imperfections of the escapement.
  • Geometric shapes that fulfill this first condition and / or second condition can be obtained analytically by a system of equations by placing the condition that the unbalance of the hairspring must be minimal regardless of the angular position of the ferrule 10 and the balance.
  • a second condition is preferably that the function f 2 must be continuous.
  • a third condition is that the derived from the function f 2 must be continuous, the fourth condition is preferably that the restoring torque exerted by the spiral on the axis of the balance is proportional to the angle of rotation.
  • this system of equation is simpler to solve than if the rigidity is variable. It is therefore not necessary to resort to approximations to solve it so that it is possible to arrive by analytical calculation to an optimal solution.
  • Geometric shapes that fulfill these different conditions can also be obtained, more simply, by successive approximations by means of a simulation software which makes it possible to estimate the unbalance and / or the lateral pressure on the axis of the balance according to the chosen shape and the angular position of the axis of the balance.
  • This solution has the advantage of reducing the lateral pressure (that is to say radial) on the axis of the balance without requiring spirals in several planes and without requiring changes in the thickness or composition of the spiral.
  • this solution makes it possible to produce a hairspring in which the return torque does not vary linearly as a function of the angle of rotation.
  • a hairspring that would be more rigid at small amplitudes than a conventional hairspring in which the torque varies linearly with amplitude, so as to increase the return torque and therefore the frequency of oscillations. to small amplitudes, and thus compensate the delay due to the exhaust.
  • rack pins not shown can be moved to change the active length of the hairspring and thus finely adjust the step.
  • Geometric shapes that fulfill these different conditions can also be obtained by successive approximations using a simulation software that estimates the return torque exerted as a function of the angular position of the balance, so as to exert the torque that allows in combination with a given escape to obtain an improved isochronism whatever the amplitude of the oscillations of the balance.
  • the non-linear function ⁇ f 2 ( ⁇ ) is advantageously chosen so that the displacement of the center of gravity of the last turn S N during the work of the hairspring 1 at least partially compensates for the displacement of the center of gravity of the other turns S 1 at S N-1 .
  • the nonlinear function f 2 comprises a maximum 13, that is to say a point where the radius ⁇ decreases when the angular position ⁇ increases in absolute value by moving towards the outside of the hairspring. .
  • the point of maximum diameter 13 is advantageously at least 180 ° in absolute value of the peak 11 when the spiral is at rest. Thus, this point at a significant distance from the center is far from the peak and does not risk colliding with the peak when working the spiral or shocks.
  • the linear distance d between the point of maximum radius 13 and the outer end of the hairspring 11 moves during work of the hairspring.
  • This linear distance d (measured along the hairspring) may preferably decrease during the expansion of the hairspring, so that the point of inflection approaches the end of the hairspring.
  • the angular distance ⁇ between the point of maximum radius 13 and the outer end of the hairspring 11 moves during the work of the hairspring.
  • the point of maximum radius is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring 1 is at rest.
  • This angular distance ⁇ between the point of maximum radius and the outer end of the hairspring decreases during at least part of the expansion of the hairspring.
  • the point of maximum radius 13 is thus almost opposite to the peak 11, or in any case at an angular distance between 120 and 240 ° of the peak, and therefore at a great distance from the peak.
  • This makes it possible to move the center of gravity of the last turn opposite the peak, and to compensate the displacement in the direction of the peak of the center of gravity of the assembly formed by the other turns during the expansion of the hairspring.
  • This also allows to move the point of maximum radius 13 of the piton during the expansion of the spiral.
  • the function f 2 is preferably a continuous nonlinear function.
  • the derivative of this function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity, and therefore a restoring moment exerted by the spiral on the axis of the balance which varies according to the rotation angle of the spiral, without discontinuities.
  • the Figures 2 to 11 show the shape of the hairspring in different successive angular positions of the balance shaft. In particular, the displacement of the point of maximum radius 13 is observed.
  • the shape of the last turn S N is optimized so as to avoid the risk of contact with the peak 11 and / or the penultimate turn S N-1 .
  • the present invention also relates to a mechanical watch regulator member comprising a spiral formed of a blade of substantially constant thickness in the plane of the spiral, for example a spiral as described above, and a matching exhaust.
  • the escapement comprises for example a Swiss anchor and an anchor wheel.
  • the spiral is made according to the escapement, and comprises several internal spirals S 1 , S 2 , .., S N-1 spiral Archimedes, and an outer turn for which the distance ⁇ between each point and the center of rotation 100 is a nonlinear function f 2 of the angular position ⁇ of the point when the hairspring is at rest.
  • This function is chosen according to the exhaust, so as to reduce the lateral pressure exerted by the spiral on the axis of balance when the spiral is mounted on this axis and / or to compensate for the delay due to the exhaust at low amplitudes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Micromachines (AREA)

Description

Domaine techniqueTechnical area

La présente invention concerne un spiral pour organe réglant de montre mécanique, un organe régulateur muni d'un tel spiral, et un procédé de réalisation d'un tel spiral.The present invention relates to a spiral for a mechanical watch regulating member, a regulating member provided with such a spiral, and a method for producing such a spiral.

Etat de la techniqueState of the art

Les mouvements de montres mécaniques sont le plus souvent régulés par un organe réglant comportant un balancier et un spiral.The movements of mechanical watches are most often regulated by a regulating member comprising a balance and a hairspring.

Les spiraux horlogers conventionnels sont en forme de spirale d'Archimède, et sont donc définis par l'équation polaire suivante : ρ =

Figure imgb0001
dans laquelle ρ et θ sont les coordonnées polaires tandis que a est une constante positive ou négative. En s'éloignant du centre, le rayon ρ du spiral augmente donc linéairement avec l'angle θ (ou avec la valeur absolue de cet angle si le spiral croît dans le sens horaire). La courbe externe du spiral est souvent modifiée par rapport à cette forme idéale afin d'améliorer l'isochronisme et d'éviter les collisions entre l'avant-dernière spire et le piton.Conventional watch spirals are Archimedean spiral shaped, and are therefore defined by the following polar equation: ρ =
Figure imgb0001
where ρ and θ are the polar coordinates while a is a positive or negative constant. Moving away from the center, the radius ρ of the spiral increases linearly with the angle θ (or with the absolute value of this angle if the spiral increases in the clockwise direction). The outer curve of the spiral is often modified with respect to this ideal shape in order to improve the isochronism and to avoid collisions between the penultimate turn and the peak.

L'extrémité externe du spiral est fixée au coq grâce au piton tandis que l'extrémité interne est liée à l'axe du balancier grâce à la virole.The outer end of the hairspring is attached to the rooster with the peg while the inner end is connected to the axis of the pendulum with the ferrule.

L'extrémité externe du spiral étant fixe, le centre de gravité du spiral se déplace lors des expansions et contractions successives, en sorte qu'il ne correspond pas en chaque instant avec le centre de rotation du spiral sur l'axe du balancier. La distance entre le centre de gravité et le centre de rotation crée un balourd, ce qui induit une pression latérale (c'est-à-dire radiale) sur l'axe du balancier et sur les pivots de cet axe. Ce balourd et la pression latérale résultante sur l'axe perturbent l'isochronisme.The outer end of the spiral being fixed, the center of gravity of the spiral moves during successive expansions and contractions, so that it does not correspond in every moment with the center of rotation of the spiral on the axis of the balance. The distance between the center of gravity and the center of rotation creates an unbalance, which induces a lateral pressure (that is to say radial) on the axis of the balance and on the pivots of this axis. This unbalance and resulting lateral pressure on the axis disturb isochronism.

Afin de réduire ce balourd, on connaît le spiral de Breguet muni d'une courbe externe repliée dans un autre plan que celui du spiral. De telles courbes terminales nécessitent une hauteur supplémentaire qui n'est pas toujours disponible. Elles sont par ailleurs difficiles à réaliser avec des techniques de photolithographie telles que la LIGA (Lithographie Galvanoformung Abformung) ou la gravure profonde DRIE (Deep Reactive Ion Etching) par exemple. Leur usage est donc avant tout cantonné aux spiraux métalliques mais reste très difficile à réaliser à partir d'un wafer. La photolithographie présente cependant l'avantage de permettre une production très précise et reproductible de spiraux.In order to reduce this unbalance, we know the Breguet hairspring provided with an external curve folded in another plane than that of the hairspring. Such terminal curves require additional height that is not always available. They are also difficult to achieve with photolithography techniques such as LIGA (Lithography Galvanoformung Abformung) or deep etching DRIE (Deep Reactive Ion Etching) for example. Their use is primarily confined to metal spirals but remains very difficult to achieve from a wafer. However, photolithography has the advantage of allowing a very precise and reproducible production of spirals.

Il existe donc un intérêt pour obtenir des spiraux plans (on parle aussi parfois de spiraux plats), moins encombrants et plus faciles à réaliser avec des procédés de photolithographie ou de gravure ionique.There is therefore an interest in obtaining planar spirals (sometimes referred to as flat spirals), less bulky and easier to perform with photolithography or ion etching processes.

WO2012152843 décrit un spiral comprenant un nombre de trous traversants ou borgnes afin d'augmenter l'aire de la surface oxydable, tout en conservant la rigidité du spiral. Le spiral comporte une courbe terminale qui permet au centre de gravité du spiral de se trouver sur l'axe du balancier. La forme de cette courbe n'est pas spécifiée, ni son effet sur la pression latérale sur l'axe du balancier. WO2012152843 discloses a hairspring comprising a number of through holes or blind holes to increase the area of the oxidizable surface, while maintaining the rigidity of the hairspring. The spiral has a terminal curve that allows the center of gravity of the spiral to be on the axis of the balance. The shape of this curve is not specified, nor its effect on the lateral pressure on the axis of the balance.

Afin de réduire le balourd dans le d'un spiral plan, CH327796 propose de modifier la section d'une partie de la lame du spiral, par exemple par pliage, en vue d'augmenter sa rigidité et d'obtenir un développement concentrique du spiral.In order to reduce the unbalance in a spiral plane, CH327796 proposes to modify the section of a portion of the spiral blade, for example by folding, in order to increase its rigidity and to obtain a concentric development of the spiral.

Une solution similaire est aussi décrite en 1958 par Emile et Gaston Michel dans l'article « Spiraux plats concentriques sans courbes » de la Société Suisse de Chronométrie (SSC), qui propose de modifier la rigidité d'une portion de spire de manière à maintenir la concentricité du centre de rotation et du centre de gravité de la portion active spiral, c'est-à-dire de la portion du spiral qui se déforme.A similar solution is also described in 1958 by Emile and Gaston Michel in the article "Concentric flat spirals without curves" of the Swiss Society of Chronometry (SSC), which proposes to modify the rigidity of a portion of turn so as to maintain the concentricity of the center of rotation and the center of gravity of the spiral active portion, that is to say the portion of the spiral that is deformed.

De manière similaire, FR1588702 propose de prolonger l'extrémité extérieure du spiral avec un élément élastique plus rigide que le ressort.In the same way, FR1588702 proposes to extend the outer end of the spiral with a resilient element more rigid than the spring.

CH701846 décrit un spiral plat dont la rigidité de la lame décroît de manière progressive sur plus de 360° à partir d'un point situé entre son extrémité interne et sa deuxième spire et entre son extrémité externe et l'avant-dernière spire. CH701846 describes a flat hairspring whose rigidity of the blade decreases progressively over more than 360 ° from a point situated between its inner end and its second turn and between its outer end and the penultimate turn.

CH692532 propose de modifier la rigidité d'une portion du spiral grâce à un traitement thermique additionnel, qui a cependant l'inconvénient de renchérir le coût de fabrication. CH692532 proposes to modify the rigidity of a portion of the hairspring through additional heat treatment, which however has the disadvantage of increasing the cost of manufacture.

US209642 divulgue un spiral horloger plat dont l'épaisseur est modulée afin de modifier la flexibilité des spires et d'améliorer ainsi l'isochronisme. US209642 discloses a flat horological spiral whose thickness is modulated in order to modify the flexibility of the turns and thus improve the isochronism.

US3782169 suggère de modifier l'épaisseur en certains points du spiral, par exemple sur la spire externe, afin de régler sa rigidité et donc la fréquence de l'oscillateur. US3782169 suggests to change the thickness at certain points of the spiral, for example on the outer turn, to adjust its rigidity and therefore the frequency of the oscillator.

EP1431844 décrit un spiral qui dispose d'un pas variable d'un côté pour obtenir une oscillation constante. Ce document ne décrit pas en quoi ce pas irrégulier permet d'améliorer la régularité de l'oscillation et n'explique pas comment ce spiral doit être dimensionné. EP1431844 describes a hairspring that has a variable pitch on one side to achieve a constant oscillation. This document does not describe how this irregular step improves the regularity of the oscillation and does not explain how this spiral must be sized.

EP1473604 décrit un une méthode analytique pour dimensionner un ressort spiral dont une portion de lame est rigidifiée en augmentant son épaisseur dans le plan du spiral. Cette méthode repose cependant sur un certain nombre d'approximations. EP1473604 discloses an analytical method for sizing a spiral spring having a blade portion stiffened by increasing its thickness in the plane of the hairspring. This method, however, is based on a number of approximations.

EP1605323 décrit un spiral pour mouvement d'horlogerie dont la spire extérieure périphérique présente plusieurs coudes 1-, 17, 18 et plusieurs renforcements 19, 20, 21. EP1605323 discloses a watch movement hairspring whose outer circumferential turn has a plurality of elbows 1-, 17, 18 and a plurality of reinforcements 19, 20, 21.

WO2013034962 décrit un spiral comprenant une spire extérieure d'épaisseur variable, agencée pour compenser au moins partialement la variation de la marche du mouvement en fonction de l'amplitude d'oscillation du balancier. WO2013034962 describes a spiral comprising an outer turn of variable thickness, arranged to compensate at least partially the variation of the movement of the movement according to the oscillation amplitude of the balance.

US2011292770 décrit un spiral en silicium ayant une partie de sa courbe extérieure en forme d'onde, afin d'améliorer l'oscillation du spiral. US2011292770 discloses a silicon balance spring having a portion of its wave-shaped outer curve, to improve the oscillation of the hairspring.

Le modèle d'utilité DE202012103893U décrit un autre spiral comportant une spire externe rigidifiée grâce à une portion d'épaisseur renforcée.The utility model DE202012103893U describes another spiral having a stiffened outer turn due to a reinforced thickness portion.

La portion rigide de ces différents spiraux constitue une zone « morte » qui ne se déforme pratiquement pas lors des contractions et expansions du spiral. La spire externe comporte donc le plus souvent une succession de zones à rigidité variable. Le calcul des déformations d'un tel spiral à rigidité variable est particulièrement difficile à effectuer, en sorte que la forme de ces spiraux résulte le plus souvent d'approximations.The rigid portion of these spirals constitutes a "dead" zone that is practically undeformed during contractions and expansions of the spiral. The outer coil therefore most often comprises a succession of zones with variable rigidity. The calculation of the deformations of such a spiral with variable stiffness is particularly difficult to perform, so that the shape of these spirals is most often approximations.

La rigidité variable des spiraux est le plus souvent obtenue grâce à une épaisseur variable de la lame du spiral dans le plan du spiral. Pour différentes raisons, il est cependant préférable de réaliser un spiral à partir d'une lame d'épaisseur constante. Dans le cas d'un spiral laminé, par exemple en métal, on évite ainsi des opérations d'usinage ou de pliage qui renchérissent le processus de fabrication.The variable stiffness of the spirals is most often obtained thanks to a variable thickness of the spiral blade in the spiral plane. For different reasons, it is however preferable to make a hairspring from a blade of constant thickness. In the case of a rolled spiral, for example of metal, machining or folding operations that make the manufacturing process more expensive are thus avoided.

Dans le cas d'un spiral à base de silicium et/ou de diamant, on souhaite souvent appliquer un revêtement externe, par exemple un revêtement en dioxyde de silicium afin de compenser les variations en fonction de la température du module d'Young du spiral. Une compensation parfaite est uniquement possible lorsque le rapport entre l'épaisseur du revêtement et celui de l'âme est choisi de manière précise. L'épaisseur de la couche de dioxyde produite par chauffage est cependant constante alors que l'épaisseur de l'âme varie dans le cas d'un spiral d'épaisseur variable. Il en résulte un module d'Young des portions rigidifiées de la spire externe qui dépend de la température, et donc une compensation imparfaite du balourd lorsque cette température varie.In the case of a spiral based on silicon and / or diamond, it is often desired to apply an outer coating, for example a coating of silicon dioxide to compensate for variations as a function of the temperature of the Young's modulus of the spiral . Perfect compensation is only possible when the relationship between the thickness of the coating and that of the core is chosen precisely. The thickness of the layer of dioxide produced by heating is however constant while the thickness of the core varies in the case of a spiral of varying thickness. This results in a Young's modulus stiffened portions of the outer coil which depends on the temperature, and thus an imperfect compensation of unbalance when this temperature varies.

La variation de rigidité de la spire externe est aussi parfois obtenue grâce à un ou plusieurs coudes. On appelle coude dans cette demande une portion dans laquelle le spiral change brusquement de direction, par exemple une portion dans laquelle le rayon de courbure local est inférieur à un dixième du rayon maximal du spiral. De tels coudes sont cependant difficiles à obtenir par pliage dans le cas de spiraux métalliques. Dans le cas de spiraux en silicium, la présence de tels coudes crée des zones de tension interne qui peuvent, lors des déformation du spiral, le fragiliser ou même provoquer sa rupture.The stiffness variation of the outer coil is also sometimes obtained by means of one or more elbows. In this application is called a portion in which the spiral suddenly changes direction, for example a portion in which the local radius of curvature is less than one tenth of the maximum radius of the spiral. Such elbows, however, are difficult to obtain by folding in the case of metal spirals. In the case of silicon spirals, the presence of such elbows creates zones of internal tension which may, during deformation of the spiral, weaken it or even cause it to break.

Bref résumé de l'inventionBrief summary of the invention

Un but de la présente invention est donc de proposer un spiral plan pour organe réglant d'horlogerie dont l'isochronisme est amélioré par rapport aux spiraux de l'art antérieur.An object of the present invention is therefore to provide a planar hairspring for a timepiece regulating member whose isochronism is improved compared to the spirals of the prior art.

Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont le centre de gravité ne se déplace pas ou peu et correspond sensiblement au centre de rotation du spiral.Another object is to propose a planar hairspring for a timepiece regulating organ whose center of gravity does not move or little and substantially corresponds to the center of rotation of the hairspring.

Un autre but est de proposer un spiral plan différent des spiraux plans existants.Another goal is to propose a plan spiral different from the existing plan spirals.

Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie qui puisse être optimisé et calculé plus facilement et plus précisément que les spiraux existants.Another object is to propose a planar hairspring for a timepiece regulating member that can be optimized and calculated more easily and more precisely than the existing hairsprings.

Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont l'épaisseur de la lame dans le plan du spiral est sensiblement constante.Another aim is to propose a planar hairspring for a clock-adjusting organ whose thickness of the blade in the plane of the hairspring is substantially constant.

Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont la variation de rigidité de la lame provient essentiellement du rayon de courbure variable, mais pas d'une variation de section ou de matériaux.Another aim is to propose a planar hairspring for a timepiece regulating organ whose variation of rigidity of the blade comes essentially from the variable radius of curvature, but not from a variation of section or materials.

Selon l'invention, ces buts sont atteints notamment au moyen d'un spiral tel que défini dans la revendication indépendante 1. L'invention concerne également un procédé de réalisation d'un tel spiral, comme défini dans la revendication indépendante 13.According to the invention, these objects are achieved in particular by means of a hairspring as defined in independent claim 1. The invention also relates to a method for producing such a hairspring, as defined in independent claim 13.

Une épaisseur de spiral est considérée comme sensiblement constante si les variations sont dues principalement au processus de fabrication. Une épaisseur de spiral est également considérée comme sensiblement constante si les variations d'épaisseur n'excèdent pas +/-10%.A spiral thickness is considered to be substantially constant if the variations are mainly due to the process of manufacturing. A spiral thickness is also considered substantially constant if the thickness variations do not exceed +/- 10%.

La section de la spire externe est considérée comme constante si les variations sont dues principalement au processus de fabrication. Une section de spire est également considérée comme sensiblement constante si les variations de surface n'excèdent pas +/-10%.The section of the outer turn is considered constant if the variations are due mainly to the manufacturing process. A turn section is also considered to be substantially constant if surface variations do not exceed +/- 10%.

Le coefficient de proportionnalité entre la distance (ρ) et la position angulaire (θ) est positif dans le cas de spires dont le rayon croît dans le sens antihoraire, et négatif dans le cas de spires de rayon croissant dans le sens horaire.The coefficient of proportionality between the distance (ρ) and the angular position (θ) is positive in the case of turns whose radius increases counterclockwise, and negative in the case of turns of increasing radius in the clockwise direction.

Cette solution présente l'avantage de réduire la pression latérale sur l'axe du balancier sans nécessiter un spiral sur plusieurs plans et sans nécessiter de modifications de l'épaisseur du spiral. La réduction est déterminée par rapport à la pression qui serait exercée si la spire externe était réalisée de manière à ce que la distance entre chaque point de cette spire externe et le centre de rotation du spiral varie de façon linéaire en fonction de la position angulaire de ce point lorsque le spiral est au repos.This solution has the advantage of reducing the lateral pressure on the axis of the balance without requiring a spiral in several planes and without requiring changes in the thickness of the spiral. The reduction is determined with respect to the pressure that would be exerted if the outer turn was made in such a way that the distance between each point of this outer turn and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest.

Les spires internes et la spire externe sont toutes dans le même plan, ce qui permet, dans le cas d'un spiral en silicium, de le produire par photolithographie. Indépendamment du matériau, cette caractéristique des spiraux plans permet aussi de réduire l'encombrement.The inner turns and the outer turn are all in the same plane, which allows, in the case of a silicon spiral, to produce it by photolithography. Independently of the material, this characteristic of planar spirals also makes it possible to reduce the bulk.

Cette solution permet aussi de réaliser un spiral dont le couple de rappel dépend de l'amplitude d'oscillation, de manière par exemple à compenser le retard dû à l'échappement aux petites amplitudes.This solution also makes it possible to produce a hairspring whose return torque depends on the amplitude of oscillation, so as to compensate, for example, for the delay due to the exhaust at small amplitudes.

Les déplacements du centre de gravité du spiral sont compensés grâce à la forme géométrique de la dernière spire au moins.The displacements of the center of gravity of the spiral are compensated thanks to the geometrical shape of the last turn at least.

La fonction non linéaire qui détermine la forme de la dernière spire peut être obtenue par approximations successives, au moyen d'un logiciel de simulation, en tenant compte des différentes conditions (ou contraintes) exprimées dans les revendications et dans la description.The nonlinear function which determines the shape of the last turn can be obtained by successive approximations, by means of a simulation software, taking into account the different conditions (or constraints) expressed in the claims and in the description.

Selon un aspect, l'invention résulte donc d'un choix de conditions inattendues pour définir la forme de la dernière spire d'un spiral. Les spiraux conventionnels ne sont habituellement pas conçus de manière à respecter cet ensemble inhabituel de conditions, et rien a priori ne permet d'ailleurs de déterminer si un spiral fonctionnel peut être réalisé en respectant ces conditions.According to one aspect, the invention therefore results from a choice of unexpected conditions to define the shape of the last turn of a spiral. Conventional scrolls are usually not designed to respect this unusual set of conditions, and nothing a priori makes it possible to determine whether a functional spiral can be achieved in compliance with these conditions.

Ce n'est donc qu'après avoir fait le choix inattendu de réaliser un spiral obéissant à ces différentes conditions, puis de l'avoir réalisé au moyen de longues heures de simulation, qu'il a été constaté que non seulement un tel spiral peut être réalisé, mais qu'en outre ses qualités en terme d'isochronisme notamment sont excellentes.It is therefore only after making the unexpected choice to make a hairspring obeying these different conditions, then to have realized it by means of long hours of simulation, that it has been found that not only can such a hairspring be realized, but in addition its qualities in terms of isochronism in particular are excellent.

La fonction non linéaire ρ = f2(θ) est avantageusement choisie en sorte que le déplacement du centre de gravité de la dernière spire lors du travail du spiral compense au moins partiellement le déplacement du centre de gravité desdites autres spires.The non-linear function ρ = f 2 (θ) is advantageously chosen so that the displacement of the center of gravity of the last turn during work of the hairspring at least partially offsets the displacement of the center of gravity of said other turns.

Dans les spiraux conventionnels en spirale d'Archimède, le centre de gravité tend à s'éloigner du piton lors de l'expansion du spiral, et à s'en rapprocher lorsque le spiral se contracte. En modifiant, dans le spiral selon l'invention, la forme de la dernière spire, il est par exemple possible de réaliser un spiral dans lequel le centre de gravité de la dernière spire tend à se rapprocher du piton lors de l'expansion du spiral. Ainsi, la spire externe tend à ramener le centre de gravité global du spiral sur le centre de rotation du balancier.In the spiral spirals of Archimedes, the center of gravity tends to move away from the peak when the spiral expands, and to get closer to it when the hairspring contracts. By modifying, in the hairspring according to the invention, the shape of the last turn, it is for example possible to make a hairspring in which the center of gravity of the last turn tends to approach the peak during the expansion of the hairspring. . Thus, the outer turn tends to reduce the overall center of gravity of the spiral on the center of rotation of the balance.

Selon un aspect, l'invention a aussi pour objet un spiral plan destiné à être monté sur l'axe de balancier d'un organe régulateur de montre mécanique, le spiral étant formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, le spiral comportant plusieurs spires internes dans lesquelles la distance (ρ) entre chaque point et le centre de rotation du spiral varie selon une fonction sensiblement linéaire en fonction de la position angulaire (θ) du point lorsque le spiral est au repos; ainsi qu'une spire externe dans laquelle la distance (ρ) entre chaque point (M) de la dernière spire et le centre de rotation augmente puis décroît en fonction de la position angulaire (θ) du point lorsque le spiral est au repos.According to one aspect, the invention also relates to a planar hairspring intended to be mounted on the balance shaft of a mechanical watch regulating member, the hairspring being formed of a blade of substantially constant thickness in the plane of the spiral, the spiral having several internal turns in which the distance (ρ) between each point and the center of rotation of the hairspring varies according to a substantially linear function as a function of the angular position (θ) of the point when the hairspring is at rest; and an outer turn in which the distance (ρ) between each point (M) of the last turn and the center of rotation increases and then decreases according to the angular position (θ) of the point when the hairspring is at rest.

Le point du spiral le plus distant du centre de rotation est donc distinct de l'extrémité extérieure, et distinct du point d'attache au piton. La fonction non linéaire f2 comporte donc un maximum, ou en tout cas un maximum local, à distance de son extrémité ; elle croît puis décroît. Elle peut aussi comporter un point d'inflexion.The point of the spiral furthest from the center of rotation is thus distinct from the outer end, and distinct from the point of attachment to the peak. The nonlinear function f 2 therefore comprises a maximum, or in any case a local maximum, at a distance from its end; it grows then decreases. It can also include a point of inflection.

Il en résulte une forme de spiral hautement inhabituelle avec un rayon de la dernière spire qui décroît en se dirigeant vers l'extérieur sur au moins une portion de la dernière spire. Cette liberté supplémentaire lors de la réalisation du spiral, par rapport aux spiraux conventionnels dans lesquels le rayon est progressivement croissant depuis le centre vers l'extérieur, permet d'obtenir des spires externes qui se déforment davantage lors du travail du spiral, dont le centre de gravité se déplace sur un long chemin, et qui compensent ainsi efficacement le problème du déplacement du balourd des autres spires.This results in a highly unusual spiral shape with a radius of the last turn that decreases outwardly on at least a portion of the last turn. This additional freedom in the production of the hairspring, compared with conventional hairsprings in which the spoke is progressively increasing from the center towards the outside, makes it possible to obtain external turns which deform more during the work of the hairspring, whose center gravity travels a long way, and thus effectively offset the problem of moving the unbalance of other turns.

La dernière spire du spiral est avantageusement dépourvue de coudes, c'est-à-dire dépourvue de portions dans lesquelles le rayon de courbure local est inférieur à 10% du rayon maximal du spiral. En d'autres termes, le rayon de courbure local de la dernière spire varie au repos dans un rapport de 1 à 10 au maximum, préférablement dans un rapport de 1 à 5 au maximum, par exemple dans un rapport de 1 à 2 au maximum. On évite ainsi l'accumulation de tension dans les zones coudées, ce qui permet de réaliser un spiral plus solide.The last turn of the spiral is advantageously devoid of bends, that is to say devoid of portions in which the local radius of curvature is less than 10% of the maximum radius of the spiral. In other words, the local radius of curvature of the last turn varies at rest in a ratio of 1 to 10 at most, preferably in a ratio of 1 to 5 at most, for example in a ratio of 1 to 2 at most. . This avoids the accumulation of tension in the bent areas, which allows for a stronger spiral.

Le maximum de la fonction f2 est avantageusement au moins à 180° du piton lorsque le spiral est au repos. Ainsi, ce point à distance importante du centre est éloigné du piton et ne risque pas d'entrer en collision avec le piton lors du travail du spiral ou de chocs.The maximum of the function f 2 is advantageously at least 180 ° of the peak when the hairspring is at rest. So, this point away important center is far from the peak and is not likely to collide with the peak when working the spiral or shocks.

Avantageusement, la distance linéaire entre le maximum de la fonction f2 et l'extrémité externe du spiral se déplace lors du travail du spiral. Cette distance linéaire (mesurée le long du spiral) peut de préférence diminuer lors de l'expansion du spiral.Advantageously, the linear distance between the maximum of the function f 2 and the outer end of the hairspring moves during work of the hairspring. This linear distance (measured along the hairspring) can preferably decrease during the expansion of the hairspring.

De préférence, la distance angulaire entre le point d'inflexion et l'extrémité externe du spiral se déplace lors du travail du spiral. Le maximum est de préférence au moins à 210°, de préférence au moins à 270° du piton lorsque le spiral est au repos.Preferably, the angular distance between the point of inflection and the outer end of the hairspring moves during work of the hairspring. The maximum is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring is at rest.

Cette distance angulaire entre le point de rayon maximal et l'extrémité externe du spiral diminue pendant au moins une partie de l'expansion du spiral, de manière à rapprocher le point de rayon maximal de la position à 180° du piton, donc à l'éloigner du piton. Cela permet de déplacer le centre de gravité de la dernière spire à l'opposé du piton, et de compenser le déplacement du centre de gravité de l'ensemble formé par les autres spires. Cela permet aussi d'éloigner le point de rayon maximal encore davantage du piton lors de l'expansion du spiral.This angular distance between the point of maximum radius and the outer end of the hairspring decreases during at least a portion of the expansion of the hairspring, so as to bring the point of maximum radius of the position to 180 ° of the pin, so to away from the piton. This makes it possible to move the center of gravity of the last turn opposite the peak, and to compensate for the displacement of the center of gravity of the assembly formed by the other turns. This also makes it possible to move the point of maximum radius even further from the peak during the expansion of the hairspring.

La fonction f2 non linéaire est de préférence une fonction continue. La dérivée de cette fonction non linéaire est de préférence une fonction continue. Cela permet d'obtenir une déformation concentrique et progressive des spires, sans discontinuité.The nonlinear function f 2 is preferably a continuous function. The derivative of this non-linear function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity.

Dans un mode de réalisation, la fonction f2 est choisie de manière à ce que le couple de rappel C exercé par le spiral sur l'axe du balancier varie sans discontinuités en fonction de l'amplitude, c'est-à-dire de l'angle de rotation du spiral, par exemple selon une fonction linéaire C=f(θ).In one embodiment, the function f2 is chosen so that the restoring torque C exerted by the spring on the axis of the balance varies without discontinuities as a function of the amplitude, that is to say angle of rotation of the spiral, for example according to a linear function C = f (θ).

Selon une caractéristique indépendante, l'invention concerne donc aussi un spiral pour organe réglant de mouvement de montre mécanique dans lequel la forme d'au moins une spire externe est calculée de manière à obtenir un couple de rappel C' qui dépend de l'amplitude selon une fonction non linéaire, de manière à compenser le retard dû à l'échappement aux petites amplitudes, respectivement à compenser l'avance aux grandes amplitudes. Si le couple de rappel exercé par le spiral pour une amplitude donnée varie entre la phase d'expansion et de contraction, la forme est choisie de manière à ce que la moyenne du couple exercé par le spiral dépende de l'amplitude. Cela signifie que le spiral sera plus rigide qu'un spiral conventionnel aux petites amplitudes, puis progressivement moins rigide qu'un spiral conventionnel aux grandes amplitudes. La forme de la spire externe du spiral est donc choisie en fonction de l'échappement.According to an independent characteristic, the invention thus also relates to a hairspring for a watch movement regulating member mechanical device in which the shape of at least one external turn is calculated so as to obtain a restoring torque C 'which depends on the amplitude according to a non-linear function, so as to compensate for the delay due to the small amplitude escapement respectively to compensate the advance at large amplitudes. If the return moment exerted by the hairspring for a given amplitude varies between the expansion and contraction phase, the shape is chosen so that the average of the torque exerted by the hairspring depends on the amplitude. This means that the hairspring will be stiffer than a conventional hairspring at small amplitudes, and then progressively less rigid than a conventional hairspring at large amplitudes. The shape of the outer coil of the spiral is therefore chosen according to the exhaust.

L'invention a aussi pour objet un organe régulateur de montre mécanique comportant un échappement et un spiral formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, le spiral comportant plusieurs spires internes S1, S2, .., SN-1 pour lesquelles la distance entre chaque point et le centre de rotation du spiral varie de façon linéaire en fonction de la position angulaire de ce point lorsque le spiral est au repos; le spiral comportant en outre une spire externe pour laquelle la distance entre chaque point et ledit centre de rotation est une fonction non linéaire de la position angulaire du point lorsque le spiral est au repos;
la dite fonction non linéaire étant adaptée en fonction de l'échappement, de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral est monté sur cet axe et/ou de manière à compenser le retard dû à l'échappement aux basses amplitudes.
The subject of the invention is also a mechanical watch regulating member comprising an escapement and a spiral formed of a blade of substantially constant thickness in the plane of the spiral, the spiral comprising several internal turns S 1 , S 2 ,. S N-1 for which the distance between each point and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest; the hairspring further comprising an outer turn for which the distance between each point and said center of rotation is a non-linear function of the angular position of the point when the hairspring is at rest;
said non-linear function being adapted as a function of the exhaust, so as to reduce the lateral pressure exerted by the spring on the balance shaft when the hairspring is mounted on this axis and / or in order to compensate for the delay due to the exhaust at low amplitudes.

Cette solution permet donc de proposer un organe réglant dans lequel la courbe externe du spiral est modifiée par rapport à une spirale d'Archimède classique en tenant compte de l'échappement, de manière à réduire la pression sur l'axe et/ou à compenser les dérives de marche dues à l'échappement.This solution therefore makes it possible to propose a regulating member in which the external curve of the spiral is modified with respect to a conventional Archimedes spiral taking into account the exhaust, so as to reduce the pressure on the axis and / or to compensate the drifts due to the exhaust.

Brève description des figuresBrief description of the figures

Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :

  • La figure 1 illustre une vue en perspective d'un spiral selon l'invention.
  • Les figures 2 à 11 montrent différentes vues successives depuis le dessus d'un spiral lors de son développement.
Examples of implementation of the invention are indicated in the description illustrated by the appended figures in which:
  • The figure 1 illustrates a perspective view of a hairspring according to the invention.
  • The Figures 2 to 11 show different successive views from the top of a hairspring during its development.

Exemple(s) de mode de réalisation de l'inventionExample (s) of embodiment of the invention

Le spiral 1 illustré sur les figures est un spiral plan, c'est-à-dire que toutes ses spires S1, S2, ... SN-1, SN se trouvent dans un même plan. Il peut donc être produit par LIGA, par gravure profonde DRIE, par gravure laser ou par attaque lithographique à partir d'un wafer à base de silicium, de diamant, de verre, de carbone, etc., ou par enroulement d'une bande de métal, par exemple d'Elinvar ou d'alliage Fe/Ni/Cr par exemple. Des spiraux formés de plusieurs matériaux, par exemple à base de silicium revêtu de dioxyde de silicium ou à base de diamant.The spiral 1 illustrated in the figures is a planar spiral, that is to say that all its turns S 1 , S 2 , ... S N-1 , S N are in the same plane. It can therefore be produced by LIGA, DRIE deep etching, laser etching or lithographic etching from a wafer based on silicon, diamond, glass, carbon, etc., or by winding a strip metal, for example Elinvar or Fe / Ni / Cr alloy for example. Spirals formed of several materials, for example silicon-based silicon or diamond-based silicon.

L'extrémité interne du spiral est destinée à être montée sur l'axe d'un balancier non illustré au moyen d'une virole 10. Dans l'exemple illustré, la virole est intégrée au spiral. L'invention s'applique cependant aussi à des spiraux dépourvus de virole intégrée.The inner end of the hairspring is intended to be mounted on the axis of a not shown beam by means of a shell 10. In the example shown, the shell is integrated in the hairspring. The invention however also applies to spirals without built-in ferrule.

L'extrémité externe du spiral est destinée à être fixée au coq non représenté d'un mouvement au moyen d'un piton 11. Le piton est représenté ici par une pastille venant d'un seul tenant au reste du spiral. Néanmoins, il est évident que l'extrémité du spiral peut être faite à épaisseur constante ou prendre d'autres formes selon la construction souhaitée pour son attache au piton.The outer end of the hairspring is intended to be fixed to the unrepresented cock by means of a pin 11. The pin is represented here by a pellet coming from one piece to the rest of the hairspring. Nevertheless, it is obvious that the end of the spiral can be made to constant thickness or take other forms according to the desired construction for its attachment to the peak.

L'organe réglant incorporant le spiral selon l'invention peut inclure des goupilles de raquettes qui pincent le spiral à distance réglable de l'extrémité, afin de régler la longueur active du spiral et donc d'ajuster la fréquence d'oscillation de l'organe réglant.The regulating member incorporating the hairspring according to the invention may include racket pins which pinch the hairspring at an adjustable distance from the end, in order to adjust the active length of the hairspring and thus to adjust the oscillation frequency of the hairspring. regulating organ.

L'épaisseur du spiral 1 dans le plan du spiral est sensiblement constante. La section du spiral est de préférence rectangulaire et sensiblement constante entre l'extrémité interne et l'extrémité externe. La modélisation informatique des déformations du spiral est ainsi simplifiée et peut être effectuée sans devoir recourir à des approximations ni à des simplifications.The thickness of the hairspring 1 in the plane of the hairspring is substantially constant. The spiral section is preferably rectangular and substantially constant between the inner end and the outer end. The computer modeling of the spiral deformations is thus simplified and can be performed without having to resort to approximations or simplifications.

La rigidité du spiral est notamment déterminée par sa section, sa longueur et le module d'Young du matériau employé. Dans un mode de réalisation, le spiral comporte une âme dans un premier matériau et une enveloppe thermocompensatrice dans un deuxième matériau. Dans un exemple, l'âme est à base de silicium et l'enveloppe est en dioxyde de silicium produit par oxydation thermique.The rigidity of the hairspring is determined in particular by its section, its length and the Young's modulus of the material used. In one embodiment, the hairspring comprises a core in a first material and a heat-compensating envelope in a second material. In one example, the core is silicon-based and the envelope is made of silicon dioxide produced by thermal oxidation.

L'enveloppe thermocompensatrice compense les variations du module d'Young de l'âme lorsque la température varie. La proportion entre l'âme et l'enveloppe thermocompensatrice est constante tout au long du spiral. Le module d'Young apparent est ainsi constant tout au long du spiral et pour toute la plage de température thermocompensée.The heat compensating envelope compensates for variations in the Young's modulus of the core as the temperature varies. The proportion between the core and the thermocompensator envelope is constant throughout the spiral. The apparent Young's modulus is thus constant throughout the hairspring and for the entire thermocompensated temperature range.

De surcroit, toute la longueur du spiral agit comme ressort de rappel ; il n'y a pas de zone morte à déformabilité réduite.In addition, the entire length of the hairspring acts as a return spring; there is no dead zone with reduced deformability.

Les spires internes du spiral S1 jusqu'à SN-1 sont en spirale d'Archimède, en sorte que la distance ρ entre chaque point M de ces spires et le centre de rotation 100 du spiral est sensiblement proportionnelle à la position angulaire θ de ce point M lorsque le spiral est au repos. Dans un mode de réalisation préférentiel, toutes les spires du spiral à l'exception de la dernière spire SN à l'extérieur sont en spirale d'Archimède. Il est aussi possible de prévoir un spiral dans lequel seules certaines spires internes sont en spirale d'Archimède, par exemple les spires S1 à SN-2, ou les spires S2 à SN-1, etc.The internal turns of the spiral S 1 to S N-1 are spiral Archimedes, so that the distance ρ between each point M of these turns and the center of rotation 100 of the spiral is substantially proportional to the angular position θ from this point M when the hairspring is at rest. In a preferred embodiment, all the turns of the spiral except the last turn S N on the outside are Archimedean spiral. It is also possible to provide a hairspring in which only certain internal turns are spiral Archimedes, for example the turns S 1 to S N-2 , or the turns S 2 to S N-1 , etc.

Selon l'équation, au moins la spire externe SN est modifiée et ne correspond pas à une spirale d'Archimède. La distance ρ entre les points de cette dernière spire (ou d'une portion de cette dernière spire, ou de plusieurs spires externes) et le centre de rotation du spiral est une fonction ρ = f2 (θ) différente de la fonction linéaire ρ = aθ qui s'applique aux autres spires internes. Dans un mode de réalisation, cette fonction f2 est une fonction non linéaire de la position angulaire (θ) du point lorsque le spiral est au repos. On peut aussi imaginer faire commencer la fonction à la spire SN-2 ou SN-3.According to the equation, at least the outer turn S N is modified and does not correspond to an Archimedean spiral. The distance ρ between the points of this last turn (or of a portion of this turn, or of several external turns) and the center of rotation of the spiral is a function ρ = f 2 (θ) different from the linear function ρ = aθ which applies to the other inner turns. In one embodiment, this function f 2 is a non-linear function of the angular position (θ) of the point when the hairspring is at rest. We can also imagine starting the function at the turn S N-2 or S N-3 .

La fonction f2 est choisie de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral 1 tourne autour de cet axe. La fonction f2 peut aussi être choisie de manière à ce que le couple de rappel exercé par le spiral varie en fonction de l'angle de rotation (et donc de l'amplitude) du spiral ; la dépendance est de préférence non linéaire de manière à compenser le retard dû à l'échappement aux petites amplitudes. Par rapport à un spiral idéal dans lequel le couple de rappel est proportionnel à l'angle de rotation du balancier, le spiral peut être légèrement plus rigide aux petites amplitudes, respectivement légèrement moins rigide aux grandes amplitudes, ce qui permet de compenser les imperfections de l'échappement. Il est aussi possible de choisir la fonction f2 de manière à ce que la moyenne du couple exercé lors de la contraction et lors de l'expansion, pour un angle de rotation donné, permette de compenser les imperfections de l'échappement.The function f 2 is chosen so as to reduce the lateral pressure exerted by the hairspring on the balance shaft when the hairspring 1 rotates about this axis. The function f 2 can also be chosen so that the return torque exerted by the spiral varies as a function of the rotation angle (and therefore the amplitude) of the spiral; the dependence is preferably nonlinear so as to compensate for the delay due to the small amplitude escape. Compared to an ideal hairspring in which the return torque is proportional to the angle of rotation of the balance, the hairspring can be slightly stiffer at small amplitudes, respectively slightly less rigid at large amplitudes, which makes it possible to compensate for the imperfections of the exhaust. It is also possible to choose the function f 2 so that the average of the torque exerted during the contraction and during the expansion, for a given angle of rotation, makes it possible to compensate for the imperfections of the escapement.

Des formes géométriques qui remplissent cette première condition et/ou cette deuxième condition peuvent être obtenues de manière analytique par un système d'équations en posant la condition que le balourd du spiral doit être minime quelle que soit la position angulaire de la virole 10 et du balancier. Une deuxième condition est de préférence que la fonction f2 doit être continue. Une troisième condition est que la dérivée de la fonction f2 doit être continue, ne quatrième condition est de préférence que le couple de rappel exercé par le spiral sur l'axe du balancier est proportionnel à l'angle de rotation. Comme la rigidité du spiral peut être constante, ce système d'équation est plus simple à résoudre que si la rigidité est variable. Il n'est donc pas nécessaire de recourir à des approximations pour le résoudre en sorte qu'il est possible d'arriver par calcul analytique à une solution optimale.Geometric shapes that fulfill this first condition and / or second condition can be obtained analytically by a system of equations by placing the condition that the unbalance of the hairspring must be minimal regardless of the angular position of the ferrule 10 and the balance. A second condition is preferably that the function f 2 must be continuous. A third condition is that the derived from the function f 2 must be continuous, the fourth condition is preferably that the restoring torque exerted by the spiral on the axis of the balance is proportional to the angle of rotation. As the rigidity of the hairspring can be constant, this system of equation is simpler to solve than if the rigidity is variable. It is therefore not necessary to resort to approximations to solve it so that it is possible to arrive by analytical calculation to an optimal solution.

Des contraintes supplémentaires peuvent être posées pour choisir entre différentes solutions possibles. Par exemple, il est possible de choisir la solution qui minimise le diamètre maximal du spiral, afin de réduire l'encombrement.Additional constraints may be asked to choose between different possible solutions. For example, it is possible to choose the solution that minimizes the maximum diameter of the hairspring, in order to reduce the bulk.

Des formes géométriques qui remplissent ces différentes conditions peuvent aussi être obtenues, plus simplement, par approximations successives au moyen d'un logiciel de simulation qui permet d'estimer le balourd et/ou la pression latérale sur l'axe du balancier en fonction de la forme choisie et de la position angulaire de l'axe du balancier.Geometric shapes that fulfill these different conditions can also be obtained, more simply, by successive approximations by means of a simulation software which makes it possible to estimate the unbalance and / or the lateral pressure on the axis of the balance according to the chosen shape and the angular position of the axis of the balance.

Cette solution présente l'avantage de réduire la pression latérale (c'est-à-dire radiale) sur l'axe du balancier sans nécessiter de spiraux sur plusieurs plans et sans nécessiter de modifications de l'épaisseur ou de la composition du spiral.This solution has the advantage of reducing the lateral pressure (that is to say radial) on the axis of the balance without requiring spirals in several planes and without requiring changes in the thickness or composition of the spiral.

Les déplacements du centre de gravité du spiral sont ainsi compensés par à la forme géométrique de la dernière spire SN.The displacements of the center of gravity of the spiral are thus compensated by the geometrical shape of the last turn S N.

Alternativement, ou en combinaison, cette solution permet de réaliser un spiral dans lequel le couple de rappel ne varie pas linéairement en fonction de l'angle de rotation. Par exemple, il est possible de réaliser un spiral qui serait plus rigide aux petites amplitudes qu'un spiral conventionnel dans lequel le couple varie linéairement en fonction de l'amplitude, de manière à augmenter le couple de rappel et donc la fréquence d'oscillations aux petites amplitudes, et de compenser ainsi le retard dû à l'échappement. En option, des goupilles de raquettes non représentées peuvent être déplacées pour modifier la longueur active du spiral et ainsi ajuster finement la marche.Alternatively, or in combination, this solution makes it possible to produce a hairspring in which the return torque does not vary linearly as a function of the angle of rotation. For example, it is possible to produce a hairspring that would be more rigid at small amplitudes than a conventional hairspring in which the torque varies linearly with amplitude, so as to increase the return torque and therefore the frequency of oscillations. to small amplitudes, and thus compensate the delay due to the exhaust. Optionally, rack pins not shown can be moved to change the active length of the hairspring and thus finely adjust the step.

Des formes géométriques qui remplissent ces différentes conditions peuvent aussi être obtenues par approximations successives au moyen d'un logiciel de simulation qui permet d'estimer le couple de rappel exercé en fonction de la position angulaire du balancier, de manière à exercer le couple qui permette en combinaison avec un échappement donné d'obtenir un isochronisme amélioré quelle que soit l'amplitude des oscillations du balancier.Geometric shapes that fulfill these different conditions can also be obtained by successive approximations using a simulation software that estimates the return torque exerted as a function of the angular position of the balance, so as to exert the torque that allows in combination with a given escape to obtain an improved isochronism whatever the amplitude of the oscillations of the balance.

La fonction non linéaire ρ = f2(θ) est avantageusement choisie en sorte que le déplacement du centre de gravité de la dernière spire SN lors du travail du spiral 1 compense au moins partiellement le déplacement du centre de gravité des autres spires S1 à SN-1.The non-linear function ρ = f 2 (θ) is advantageously chosen so that the displacement of the center of gravity of the last turn S N during the work of the hairspring 1 at least partially compensates for the displacement of the center of gravity of the other turns S 1 at S N-1 .

Dans un mode de réalisation avantageux, la fonction non linéaire f2 comporte un maxima 13, c'est-à-dire un point où le rayon ρ diminue lorsque la position angulaire θ augmente en valeur absolue en se déplaçant vers l'extérieur du spiral.In an advantageous embodiment, the nonlinear function f 2 comprises a maximum 13, that is to say a point where the radius ρ decreases when the angular position θ increases in absolute value by moving towards the outside of the hairspring. .

Par conséquent, la distance ρ entre chaque point de la dernière spire SN et le centre de rotation 100 augmente puis décroît en fonction de la position angulaire -θ lorsque le spiral est au repos. Le point du spiral le plus distant du centre de rotation est donc distinct de l'extrémité extérieure, et distinct du point d'attache au piton et des goupilles de raquette si de telles goupilles sont présentes.Consequently, the distance ρ between each point of the last turn S N and the center of rotation 100 increases and then decreases as a function of the angular position -θ when the hairspring is at rest. The point of the spiral furthest from the center of rotation is thus distinct from the outer end, and distinct from the point of attachment to the stud and racket pins if such pins are present.

Le point de diamètre maximal 13 est avantageusement au moins à 180° en valeur absolue du piton 11 lorsque 1 le spiral est au repos. Ainsi, ce point à distance importante du centre est éloigné du piton et ne risque pas d'entrer en collision avec le piton lors du travail du spiral ou de chocs.The point of maximum diameter 13 is advantageously at least 180 ° in absolute value of the peak 11 when the spiral is at rest. Thus, this point at a significant distance from the center is far from the peak and does not risk colliding with the peak when working the spiral or shocks.

Avantageusement, la distance linéaire d entre le point de rayon maximal 13 et l'extrémité externe du spiral 11 se déplace lors du travail du spiral. Cette distance linéaire d (mesurée le long du spiral) peut de préférence diminuer lors de l'expansion du spiral, en sorte que le point d'inflexion se rapproche de l'extrémité du spiral.Advantageously, the linear distance d between the point of maximum radius 13 and the outer end of the hairspring 11 moves during work of the hairspring. This linear distance d (measured along the hairspring) may preferably decrease during the expansion of the hairspring, so that the point of inflection approaches the end of the hairspring.

La distance angulaire α entre le point de rayon maximal 13 et l'extrémité externe du spiral 11 se déplace lors du travail du spiral. Le point de rayon maximal est de préférence au moins à 210°, de préférence au moins à 270° du piton lorsque le spiral 1 est au repos.The angular distance α between the point of maximum radius 13 and the outer end of the hairspring 11 moves during the work of the hairspring. The point of maximum radius is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring 1 is at rest.

Cette distance angulaire α entre le point de rayon maximal et l'extrémité externe du spiral diminue pendant au moins une partie de l'expansion du spiral. Lorsque le spiral est complètement détendu, le point de rayon maximal 13 se trouve ainsi presque à l'opposé du piton 11, ou en tout cas à une distance angulaire entre 120 et 240° du piton, et donc à grande distance du piton. Cela permet de déplacer le centre de gravité de la dernière spire à l'opposé du piton, et de compenser le déplacement en direction du piton du centre de gravité de l'ensemble formé par les autres spires lors de l'expansion du spiral. Cela permet aussi d'éloigner le point de rayon maximal 13 du piton lors de l'expansion du spiral.This angular distance α between the point of maximum radius and the outer end of the hairspring decreases during at least part of the expansion of the hairspring. When the hairspring is completely relaxed, the point of maximum radius 13 is thus almost opposite to the peak 11, or in any case at an angular distance between 120 and 240 ° of the peak, and therefore at a great distance from the peak. This makes it possible to move the center of gravity of the last turn opposite the peak, and to compensate the displacement in the direction of the peak of the center of gravity of the assembly formed by the other turns during the expansion of the hairspring. This also allows to move the point of maximum radius 13 of the piton during the expansion of the spiral.

La fonction f2 est de préférence une fonction non linéaire continue. La dérivée de cette fonction est de préférence une fonction continue. Cela permet d'obtenir une déformation concentrique et progressive des spires, sans discontinuité, et donc un couple de rappel exercé par le spiral sur l'axe du balancier qui varie en fonction de l'angle de rotation du spiral, sans discontinuités.The function f 2 is preferably a continuous nonlinear function. The derivative of this function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity, and therefore a restoring moment exerted by the spiral on the axis of the balance which varies according to the rotation angle of the spiral, without discontinuities.

Dans l'exemple de spiral 1 illustré sur les figures 1 à 11, le centre de gravité de la dernière spire SN s'éloigne du piton lors de l'expansion du spiral tandis que le centre de gravité de l'ensemble formé par les autres spires S1 à SN-1 se rapproche du piton lors de cette expansion. Ainsi, la spire externe SN tend à tirer les autres spires de manière à compenser le déplacement de son propre centre de gravité.In the example of spiral 1 illustrated on the Figures 1 to 11 the center of gravity of the last turn S N moves away from the peak during the expansion of the spiral while the center of gravity of the assembly formed by the other turns S1 to S N-1 approaches the peak when this expansion. Thus, the outer turn S N tends to pull the other turns so as to compensate for the displacement of its own center of gravity.

Les figures 2 à 11 montrent la forme du spiral dans différentes positions angulaires successives de l'axe de balancier. On observe en particulier le déplacement du point de rayon maximal 13.The Figures 2 to 11 show the shape of the hairspring in different successive angular positions of the balance shaft. In particular, the displacement of the point of maximum radius 13 is observed.

La forme de la dernière spire SN est optimisée de manière à éviter le risque de contact avec le piton 11 et/ou avec l'avant-dernière spire SN-1.The shape of the last turn S N is optimized so as to avoid the risk of contact with the peak 11 and / or the penultimate turn S N-1 .

Pour définir la forme du spiral on peut par exemple employer le procédé suivant :

  • on définit un spiral avec N-1 spires S1 à SN-1 en forme de spirale d'Archimède au repos. Le nombre N de spires est déterminé en fonction du matériau et en tenant compte du couple de rappel désirée en fonction du balancier et de la fréquence d'oscillation souhaitée.
  • on définit une spire externe SN obéissant à une équation polaire ρ = f2 (θ) où f2 est inconnu.
  • on pose comme condition que l'extrémité externe de la spire externe est fixe tandis que l'extrémité interne de cette spire est liée à l'extrémité interne des N-1 spires.
  • parmi toutes les fonctions f2 possible, on en retient au moins une qui permet de minimiser la force latérale exercée sur l'axe du balancier quelle que soit la position angulaire du balancier. Alternativement, ou en combinaison, on choisit une fonction qui permette d'obtenir le couple de rappel nécessaire afin de compenser le retard dû à un échappement donné aux petites amplitudes d'oscillation.
  • parmi toutes les fonctions f2 retenues au cours de l'étape précédente, on en retient au moins une qui soit continue, dont la dérivée soit continue, et qui minimise le risque de contact entre le spiral et le piton ainsi que le risque de contact entres spires, quelle que soit la position angulaire du balancier.
  • si plusieurs fonctions ont été retenues au cours de l'étape précédente, on en retient au moins une qui comporte un point de rayon maximal à distance de l'extrémité, c'est-à-dire dont le rayon croît puis décroît.
  • si plusieurs fonctions ont été retenues au cours de l'étape précédente, on en retient au moins une qui permette de minimiser l'encombrement maximal du spiral quelle que soit la position angulaire du balancier.
To define the shape of the spiral one can for example use the following method:
  • a spiral is defined with N-1 turns S1 to SN-1 in the form of an Archimedean spiral at rest. The number N of turns is determined as a function of the material and taking into account the desired return torque as a function of the balance and the desired oscillation frequency.
  • we define an external turn S N obeying a polar equation ρ = f 2 (θ) where f 2 is unknown.
  • it is a condition that the outer end of the outer turn is fixed while the inner end of this turn is connected to the inner end of the N-1 turns.
  • among all the functions f 2 possible, at least one retains at least one which makes it possible to minimize the lateral force exerted on the axis of the balance whatever the angular position of the balance. Alternatively, or in combination, a function is chosen which makes it possible to obtain the necessary return torque in order to compensate for the delay due to a given escapement at the small amplitudes of oscillation.
  • among all the functions f 2 retained during the previous step, at least one which is continuous, the derivative of which is continuous, is retained and which minimizes the risk of contact between the hairspring and the peak and the risk of contact. between turns, regardless of the angular position of the balance.
  • if several functions have been retained during the previous step, at least one of them is retained which has a point of maximum radius at a distance from the end, that is to say whose radius increases and then decreases.
  • if several functions have been retained in the previous step, at least one of them is retained which makes it possible to minimize the maximum bulk of the spiral whatever the angular position of the balance.

Ces différentes étapes ainsi que les conditions correspondantes peuvent être appliquées dans un autre ordre, ou simultanément. La sélection de fonctions f2 peut être effectuée par un calcul analytique et/ou par approximations successives.These different steps as well as the corresponding conditions can be applied in another order, or simultaneously. The selection of functions f 2 can be performed by an analytical calculation and / or by successive approximations.

La présente invention a aussi pour objet un organe régulateur de montre mécanique comportant un spiral formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, par exemple un spiral tel que décrit ci-dessus, et un échappement assorti. L'échappement comporte par exemple une ancre suisse et une roue d'ancre. Le spiral est réalisé en fonction de l'échappement, et comporte plusieurs spires internes S1, S2, .., SN-1 en spirale d'Archimède, ainsi qu'une spire externe pour laquelle la distance ρ entre chaque point et le centre de rotation 100 est une fonction non linéaire f2 de la position angulaire θ du point lorsque le spiral est au repos. Cette fonction est choisie en fonction de l'échappement, de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral est monté sur cet axe et/ou de manière à compenser le retard dû à l'échappement aux basses amplitudes.The present invention also relates to a mechanical watch regulator member comprising a spiral formed of a blade of substantially constant thickness in the plane of the spiral, for example a spiral as described above, and a matching exhaust. The escapement comprises for example a Swiss anchor and an anchor wheel. The spiral is made according to the escapement, and comprises several internal spirals S 1 , S 2 , .., S N-1 spiral Archimedes, and an outer turn for which the distance ρ between each point and the center of rotation 100 is a nonlinear function f 2 of the angular position θ of the point when the hairspring is at rest. This function is chosen according to the exhaust, so as to reduce the lateral pressure exerted by the spiral on the axis of balance when the spiral is mounted on this axis and / or to compensate for the delay due to the exhaust at low amplitudes.

Claims (15)

  1. Flat hairspring (1) intended to be mounted on the balance-staff of a regulating member of a mechanical watch, the hairspring being formed of a blade of a substantially constant thickness in the hairspring's plane,
    the hairspring comprising:
    several internal turns (S1, S2, .., SN-1) for which the distance (Þ) between each point (M) and the centre of rotation (100) of the hairspring varies in a linear manner depending on the angular position (θ) of this point when the hairspring is at rest;
    an external turn (SN) for which the distance (Þ) between each point and said centre of rotation (100) is a non-linear function (f2) of the angular position (θ) of the point when the hairspring is at rest;
    said internal turn and said external turn being all on the same plane;
    characterised in that
    the section of the internal and external turns of the hairspring is substantially constant;
    and in that the hairspring (1) comprises an internal extremity and an external extremity,
    said non-linear function (f2) containing a point (13) of maximum radius at a distance from said external extremity,
    said distance (Þ) between each point (M) of the last turn (SN) and the centre of rotation (100) increasing then decreasing depending on the angular position (θ) of the point when the hairspring is at rest, said non-linear function (f2) being intended to reduce the lateral pressure exerted by the hairspring (1) on said balance-staff when the hairspring is mounted on this axis relatively to the pressure that would be exerted if the external turn was produced in such a way that the distance (Þ) between each point of this external turn and the centre of rotation (100) of the hairspring varies in a linear manner depending on the angular position (θ) of the point when the hairspring is at rest.
  2. Hairspring according to claim 1, the local curve radius of said external turn varying at rest in a ratio of 1 to maximum 10, preferably in a ratio of 1 to maximum 5, for example in a ratio of 1 to maximum 2.
  3. Hairspring according to one of the claims 1 or 2, said non-linear function being chosen so that the shift in the centre of gravity of the last turn (SN) when the hairspring's (1) work at least partially compensates for the shift of the centre of gravity of the said other turns.
  4. Hairspring according to one of the claims 1 to 3, arranged so that the centre of gravity of the last turn (SN) approaches the hairspring-stud (11) when the hairspring expands whereas the centre of gravity of the assembly formed by the said internal turns (S1, S2, .., SN-1) moves away from the hairspring-stud during this expansion.
  5. Hairspring according to claim 4, wherein the most distant point (13) of said centre of rotation (100) is distinct from the exterior extremity.
  6. Hairspring according to one of the claims 1 to 5, wherein the hairspring extends over at least 180° between its external extremity and the point of maximum radius (13) when the hairspring is at rest.
  7. Hairspring according to claim 5, arranged so that the distance (d) measured along the hairspring between the point of maximum radius (13) and the external extremity of the hairspring (11) moves when the hairspring is working.
  8. Hairspring according to one of the claims 5 to 7, arranged so that the distance (11) between the point of maximum radius (13) and the external extremity of the hairspring (11) decreases when the hairspring expands.
  9. Hairspring according to one of the claims 5 to 8, wherein the angle (α) traversed by the hairspring from its external extremity to the point of maximum radius (13), in relationship to the centre of the hairspring, is at least 210° when the hairspring is at rest.
  10. Hairspring according to one of the claims 1 to 9, wherein said non-linear function (f2) is a continuous function.
  11. Hairspring according to one of the claims 1 to 10, wherein the derivative of said non-linear function (f2) is a continuous function.
  12. Hairspring according to the claims 1 to 11, said non-linear function (f2) being determined in such a manner that the restoring torque exerted by the hairspring is independent of the amplitude.
  13. Manufacturing process of flat hairspring intended to equip the balance-staff of a regulating member of a mechanical watch movement, comprising the following steps:
    - a hairspring is defined with N-1 internal turns in Archimedes spiral pattern at rest;
    - one defines an external turn (f2) corresponding to an unknown polar equation;
    - a condition is imposed that the external extremity of the external turn is fixed whereas the internal extremity of this turn is linked to the internal extremity of the N-1 internal turns;
    - among all the possible functions f2, at least one is retained that enables the minimisation of the lateral force exerted on the balance-staff no matter what angular position of the balance-staff and/or which is chosen depending on an escapement in such a way to compensate for the delay caused by this escapement at small oscillation amplitudes;
    - among all the functions f2 retained in the course of the preceding step, at least one is retained which comprises a local maxima distant from the extremity, that is continuous, of which the derivative is continuous, and which minimises the risk of contact between the hairspring and the hairspring-stud as well as the risk of contact between turns, no matter which angular position of the balance-staff;
    - creating a hairspring comprising N-1 internal turns in an Archimedes spiral pattern and an external turn corresponding to the function f2 retained at the preceding step, the internal and external hairsprings having a substantially constant section.
  14. Regulating member of a mechanical watch comprising an escapement and a hairspring according to one of the claims 1 to 12.
  15. Regulating member according to claim 14 wherein said non-linear function of the hairspring is adapted depending on the escapement, in such a way to compensate for the delay caused by the escapement at low amplitudes.
EP14181326.1A 2013-08-19 2014-08-18 Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring Active EP2869138B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01408/13A CH708429A1 (en) 2013-08-19 2013-08-19 Spiral for a regulating member of a mechanical watch, a regulating member provided with such a hairspring, and method of making such a hairspring.

Publications (3)

Publication Number Publication Date
EP2869138A2 EP2869138A2 (en) 2015-05-06
EP2869138A3 EP2869138A3 (en) 2016-03-09
EP2869138B1 true EP2869138B1 (en) 2017-10-04

Family

ID=49000746

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14181326.1A Active EP2869138B1 (en) 2013-08-19 2014-08-18 Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring

Country Status (2)

Country Link
EP (1) EP2869138B1 (en)
CH (1) CH708429A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3159748B1 (en) * 2015-10-22 2018-12-12 ETA SA Manufacture Horlogère Suisse Compact hairspring with variable cross-section
EP3159747A1 (en) * 2015-10-22 2017-04-26 ETA SA Manufacture Horlogère Suisse Compact hairspring with constant cross-section
EP4332686A1 (en) * 2022-08-30 2024-03-06 ETA SA Manufacture Horlogère Suisse Hairspring for balance-hairspring assembly of a clock movement

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US209642A (en) 1878-11-05 Improvement in balance-springs for time-keepers
CH327796A (en) * 1954-02-22 1958-02-15 Horlogerie Suisse S A Asuag Flat hairspring
CH499094A (en) 1967-11-09 1970-11-15 Kienzle Apparate Gmbh Return spring for measuring devices
CH1060869A4 (en) 1969-07-11 1971-06-30
CH692532A5 (en) 1997-10-21 2002-07-15 Ebauchesfabrik Eta Ag A method of making a balance spring for a horological movement.
EP1431844A1 (en) 2002-12-19 2004-06-23 SFT Services SA Assembly for the regulating organ of a watch movement
EP1473604B1 (en) * 2003-04-29 2010-06-23 Patek Philippe SA Genève Balance and flat hairspring regulator for a watch movement
EP1605323A3 (en) * 2004-04-13 2006-07-12 Coredem S.A. Spiral spring for mechanical clockwork
EP3101484A1 (en) * 2009-02-06 2016-12-07 DAMASKO GmbH Mechanical oscillation system for timepieces and method for manufacturing a mechanical oscillation system for watches
CH701846B8 (en) 2009-09-21 2015-06-15 Rolex Sa Flat spiral for clockwork pendulum and balance-sprung assembly.
CH704906B1 (en) * 2011-05-09 2020-06-30 Lvmh Swiss Mft Sa C/O Zenith Succursale De Lvmh Swiss Mft Sa Spiral spring in silicon for mechanical watch.
CH705471B1 (en) * 2011-09-07 2016-03-31 Patek Philippe Sa Geneve clockwork spring balance.
DE202012103893U1 (en) 2011-10-21 2012-10-25 Petra Damasko Oscillation system for mechanical movements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2869138A2 (en) 2015-05-06
EP2869138A3 (en) 2016-03-09
CH708429A1 (en) 2015-02-27

Similar Documents

Publication Publication Date Title
EP2407831B1 (en) Hairspring for oscillator balance of a clock piece and method for manufacturing same
EP3181938B1 (en) Method for manufacturing a hairspring with a predetermined stiffness by removing material
EP2523053B1 (en) Hairspring for sprung balance
EP2613206B1 (en) Hairspring with two spiral springs with improved isochronism
CH710795A2 (en) Silicon hairspring.
EP3181940B2 (en) Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material
EP2175328A2 (en) Balance-spring resonator spiral and its method of fabrication
EP2869138B1 (en) Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring
EP2690506B1 (en) Anti-tripping clock hairspring
EP2917787B1 (en) Clock movement having a balance and a hairspring
EP3769160A1 (en) Method for manufacturing a silicon hairspring
EP2753985B1 (en) Clock movement having a balance-wheel and hairspring
CH713409A2 (en) Spiral balance of the thermocompensated type, movement and timepiece.
CH706087A1 (en) Flat spiral for integration in control element of movement in timepiece, has series of turns formed by rolled plate, where outer end portion of spiral includes series of stiffened zones separated by flexible zones
EP2546705B1 (en) Method for manufacturing an horological hairsping
CH717357A2 (en) Watch hairspring in glass or ceramic, with complex geometry.
EP2138912B1 (en) Horological hairspring with concentric development
EP3534222A1 (en) Method for producing a thermally compensated oscillator
CH717283B1 (en) Watch assembly comprising an oscillating element and an escapement.
CH714706B1 (en) Angular return spring for thermo-compensated oscillator.
CH714704B1 (en) Angular return spring for thermo-compensated oscillator
CH714705B1 (en) Angular return spring for thermo-compensated oscillator.
EP4372479A1 (en) Method for manufacturing timepiece hairsprings
WO2023242746A1 (en) Balance spring for a timepiece resonator
CH714857A2 (en) Thermocompensated balance spring, movement and timepiece.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150306

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/06 20060101AFI20160204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 934579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: P&TS SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014015296

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171004

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 934579

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180104

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014015296

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

26N No opposition filed

Effective date: 20180705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180818

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014015296

Country of ref document: DE

Representative=s name: BECK & ROESSIG EUROPEAN PATENT ATTORNEYS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602014015296

Country of ref document: DE

Representative=s name: BECK & ROESSIG - EUROPEAN PATENT ATTORNEYS, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171004

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 10