EP2869138A2 - Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring - Google Patents
Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring Download PDFInfo
- Publication number
- EP2869138A2 EP2869138A2 EP20140181326 EP14181326A EP2869138A2 EP 2869138 A2 EP2869138 A2 EP 2869138A2 EP 20140181326 EP20140181326 EP 20140181326 EP 14181326 A EP14181326 A EP 14181326A EP 2869138 A2 EP2869138 A2 EP 2869138A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- spiral
- hairspring
- point
- center
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000034 method Methods 0.000 title description 6
- 238000012886 linear function Methods 0.000 claims abstract description 21
- 230000010355 oscillation Effects 0.000 claims abstract description 14
- 230000005484 gravity Effects 0.000 claims description 26
- 230000007423 decrease Effects 0.000 claims description 13
- 238000006073 displacement reaction Methods 0.000 claims description 12
- 230000000717 retained effect Effects 0.000 claims description 9
- 230000000694 effects Effects 0.000 abstract description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000000463 material Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000708 deep reactive-ion etching Methods 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000002964 rayon Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000942 Elinvar Inorganic materials 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241000607056 Stenodus leucichthys Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/04—Oscillators acting by spring tension
- G04B17/06—Oscillators with hairsprings, e.g. balance
- G04B17/066—Manufacture of the spiral spring
-
- G—PHYSICS
- G04—HOROLOGY
- G04B—MECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
- G04B17/00—Mechanisms for stabilising frequency
- G04B17/20—Compensation of mechanisms for stabilising frequency
- G04B17/22—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
- G04B17/222—Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances
Definitions
- the present invention relates to a spiral for a mechanical watch regulating member, a regulating member provided with such a spiral, and a method for producing such a spiral.
- the movements of mechanical watches are most often regulated by a regulating member comprising a balance and a hairspring.
- the outer end of the hairspring is attached to the rooster with the peg while the inner end is connected to the axis of the pendulum with the ferrule.
- the center of gravity of the spiral moves during successive expansions and contractions, so that it does not correspond in every moment with the center of rotation of the spiral on the axis of the balance.
- the distance between the center of gravity and the center of rotation creates an unbalance, which induces a lateral pressure (that is to say radial) on the axis of the balance and on the pivots of this axis. This unbalance and resulting lateral pressure on the axis disturb isochronism.
- planar spirals sometimes referred to as flat spirals
- photolithography or ion etching processes There is therefore an interest in obtaining planar spirals (sometimes referred to as flat spirals), less bulky and easier to perform with photolithography or ion etching processes.
- WO2012152843 discloses a hairspring comprising a number of through holes or blind holes to increase the area of the oxidizable surface, while maintaining the rigidity of the hairspring.
- the spiral has a terminal curve that allows the center of gravity of the spiral to be on the axis of the balance. The shape of this curve is not specified, nor its effect on the lateral pressure on the axis of the balance.
- CH327796 proposes to modify the section of a portion of the spiral blade, for example by folding, in order to increase its rigidity and to obtain a concentric development of the spiral.
- FR1588702 proposes to extend the outer end of the spiral with a resilient element more rigid than the spring.
- CH701846 describes a flat hairspring whose rigidity of the blade decreases progressively over more than 360 ° from a point situated between its inner end and its second turn and between its outer end and the penultimate turn.
- CH692532 proposes to modify the rigidity of a portion of the hairspring through additional heat treatment, which however has the disadvantage of increasing the cost of manufacture.
- US209642 discloses a flat horological spiral whose thickness is modulated in order to modify the flexibility of the turns and thus improve the isochronism.
- US3782169 suggests to change the thickness at certain points of the spiral, for example on the outer turn, to adjust its rigidity and therefore the frequency of the oscillator.
- EP1431844 describes a hairspring that has a variable pitch on one side to achieve a constant oscillation. This document does not describe how this irregular step improves the regularity of the oscillation and does not explain how this spiral must be sized.
- EP1473604 discloses an analytical method for sizing a spiral spring having a blade portion stiffened by increasing its thickness in the plane of the hairspring. This method, however, is based on a number of approximations.
- EP1605323 discloses a watch movement hairspring whose outer circumferential turn has a plurality of elbows 1-, 17, 18 and a plurality of reinforcements 19, 20, 21.
- WO2013034962 describes a spiral comprising an outer turn of variable thickness, arranged to compensate at least partially the variation of the movement of the movement according to the oscillation amplitude of the balance.
- US2011292770 discloses a silicon balance spring having a portion of its wave-shaped outer curve, to improve the oscillation of the hairspring.
- the utility model DE202012103893U describes another spiral having a stiffened outer turn due to a reinforced thickness portion.
- the rigid portion of these spirals constitutes a "dead" zone that is practically undeformed during contractions and expansions of the spiral.
- the outer coil therefore most often comprises a succession of zones with variable rigidity. The calculation of the deformations of such a spiral with variable stiffness is particularly difficult to perform, so that the shape of these spirals is most often approximations.
- variable stiffness of the spirals is most often obtained thanks to a variable thickness of the spiral blade in the spiral plane.
- machining or folding operations that make the manufacturing process more expensive are thus avoided.
- an outer coating for example a coating of silicon dioxide to compensate for variations as a function of the temperature of the Young's modulus of the spiral .
- Perfect compensation is only possible when the relationship between the thickness of the coating and that of the core is chosen precisely.
- the thickness of the layer of dioxide produced by heating is however constant while the thickness of the core varies in the case of a spiral of varying thickness. This results in a Young's modulus stiffened portions of the outer coil which depends on the temperature, and thus an imperfect compensation of unbalance when this temperature varies.
- the stiffness variation of the outer coil is also sometimes obtained by means of one or more elbows.
- a portion in which the spiral suddenly changes direction for example a portion in which the local radius of curvature is less than one tenth of the maximum radius of the spiral.
- Such elbows are difficult to obtain by folding in the case of metal spirals.
- the presence of such elbows creates zones of internal tension which may, during deformation of the spiral, weaken it or even cause it to break.
- An object of the present invention is therefore to provide a planar hairspring for a timepiece regulating member whose isochronism is improved compared to the spirals of the prior art.
- Another object is to propose a planar hairspring for a timepiece regulating organ whose center of gravity does not move or little and substantially corresponds to the center of rotation of the hairspring.
- Another goal is to propose a plan spiral different from the existing plan spirals.
- Another object is to propose a planar hairspring for a timepiece regulating member that can be optimized and calculated more easily and more precisely than the existing hairsprings.
- Another aim is to propose a planar hairspring for a clock-adjusting organ whose thickness of the blade in the plane of the hairspring is substantially constant.
- Another aim is to propose a planar hairspring for a timepiece regulating organ whose variation of rigidity of the blade comes essentially from the variable radius of curvature, but not from a variation of section or materials.
- a spiral thickness is considered to be substantially constant if the variations are mainly due to the process of manufacturing.
- a spiral thickness is also considered substantially constant if the thickness variations do not exceed +/- 10%.
- the section of the outer turn is considered constant if the variations are due mainly to the manufacturing process.
- a turn section is also considered to be substantially constant if surface variations do not exceed +/- 10%.
- the coefficient of proportionality between the distance ( ⁇ ) and the angular position ( ⁇ ) is positive in the case of turns whose radius increases counterclockwise, and negative in the case of turns of increasing radius in the clockwise direction.
- This solution has the advantage of reducing the lateral pressure on the axis of the balance without requiring a spiral in several planes and without requiring changes in the thickness of the spiral.
- the reduction is determined with respect to the pressure that would be exerted if the outer turn was made in such a way that the distance between each point of this outer turn and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest.
- the inner turns and the outer turn are all in the same plane, which allows, in the case of a silicon spiral, to produce it by photolithography. Independently of the material, this characteristic of planar spirals also makes it possible to reduce the bulk.
- This solution also makes it possible to produce a hairspring whose return torque depends on the amplitude of oscillation, so as to compensate, for example, for the delay due to the exhaust at small amplitudes.
- the displacements of the center of gravity of the spiral are compensated thanks to the geometrical shape of the last turn at least.
- the nonlinear function which determines the shape of the last turn can be obtained by successive approximations, by means of a simulation software, taking into account the different conditions (or constraints) expressed in the claims and in the description.
- the invention therefore results from a choice of unexpected conditions to define the shape of the last turn of a spiral.
- Conventional scrolls are usually not designed to respect this unusual set of conditions, and nothing a priori makes it possible to determine whether a functional spiral can be achieved in compliance with these conditions.
- the non-linear function ⁇ f 2 ( ⁇ ) is advantageously chosen so that the displacement of the center of gravity of the last turn during work of the hairspring at least partially offsets the displacement of the center of gravity of said other turns.
- the center of gravity tends to move away from the peak when the spiral expands, and to get closer to it when the hairspring contracts.
- the shape of the last turn it is for example possible to make a hairspring in which the center of gravity of the last turn tends to approach the peak during the expansion of the hairspring.
- the outer turn tends to reduce the overall center of gravity of the spiral on the center of rotation of the balance.
- the invention also relates to a planar hairspring intended to be mounted on the balance shaft of a mechanical watch regulating member, the hairspring being formed of a blade of substantially constant thickness in the plane of the spiral, the spiral having several internal turns in which the distance ( ⁇ ) between each point and the center of rotation of the hairspring varies according to a substantially linear function as a function of the angular position ( ⁇ ) of the point when the hairspring is at rest; and an outer turn in which the distance ( ⁇ ) between each point (M) of the last turn and the center of rotation increases and then decreases according to the angular position ( ⁇ ) of the point when the hairspring is at rest.
- the point of the spiral furthest from the center of rotation is thus distinct from the outer end, and distinct from the point of attachment to the peak.
- the nonlinear function f 2 therefore comprises a maximum, or in any case a local maximum, at a distance from its end; it grows then decreases. It can also include a point of inflection.
- the last turn of the spiral is advantageously devoid of bends, that is to say devoid of portions in which the local radius of curvature is less than 10% of the maximum radius of the spiral.
- the local radius of curvature of the last turn varies at rest in a ratio of 1 to 10 at most, preferably in a ratio of 1 to 5 at most, for example in a ratio of 1 to 2 at most. . This avoids the accumulation of tension in the bent areas, which allows for a stronger spiral.
- the maximum of the function f 2 is advantageously at least 180 ° of the peak when the hairspring is at rest. So, this point away important center is far from the peak and is not likely to collide with the peak when working the spiral or shocks.
- the linear distance between the maximum of the function f 2 and the outer end of the hairspring moves during work of the hairspring.
- This linear distance (measured along the hairspring) can preferably decrease during the expansion of the hairspring.
- the angular distance between the point of inflection and the outer end of the hairspring moves during work of the hairspring.
- the maximum is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring is at rest.
- This angular distance between the point of maximum radius and the outer end of the hairspring decreases during at least a portion of the expansion of the hairspring, so as to bring the point of maximum radius of the position to 180 ° of the pin, so to away from the piton.
- the nonlinear function f 2 is preferably a continuous function.
- the derivative of this non-linear function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity.
- the invention thus also relates to a hairspring for a watch movement regulating member mechanical device in which the shape of at least one external turn is calculated so as to obtain a restoring torque C 'which depends on the amplitude according to a non-linear function, so as to compensate for the delay due to the small amplitude escapement respectively to compensate the advance at large amplitudes.
- the shape is chosen so that the average of the torque exerted by the hairspring depends on the amplitude. This means that the hairspring will be stiffer than a conventional hairspring at small amplitudes, and then progressively less rigid than a conventional hairspring at large amplitudes.
- the shape of the outer coil of the spiral is therefore chosen according to the exhaust.
- the subject of the invention is also a mechanical watch regulating member comprising an escapement and a spiral formed of a blade of substantially constant thickness in the plane of the spiral, the spiral comprising several internal turns S 1 , S 2 ,. S N-1 for which the distance between each point and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest; the hairspring further comprising an outer turn for which the distance between each point and said center of rotation is a non-linear function of the angular position of the point when the hairspring is at rest; said non-linear function being adapted as a function of the exhaust, so as to reduce the lateral pressure exerted by the spring on the balance shaft when the hairspring is mounted on this axis and / or in order to compensate for the delay due to the exhaust at low amplitudes.
- This solution therefore makes it possible to propose a regulating member in which the external curve of the spiral is modified with respect to a conventional Archimedes spiral taking into account the exhaust, so as to reduce the pressure on the axis and / or to compensate the drifts due to the exhaust.
- the spiral 1 illustrated in the figures is a planar spiral, that is to say that all its turns S 1 , S 2 , ... S N-1 , S N are in the same plane. It can therefore be produced by LIGA, DRIE deep etching, laser etching or lithographic etching from a wafer based on silicon, diamond, glass, carbon, etc., or by winding a strip metal, for example Elinvar or Fe / Ni / Cr alloy for example. Spirals formed of several materials, for example silicon-based silicon or diamond-based silicon.
- the inner end of the hairspring is intended to be mounted on the axis of a not shown beam by means of a shell 10.
- the shell is integrated in the hairspring.
- the invention however also applies to spirals without built-in ferrule.
- the outer end of the hairspring is intended to be fixed to the unrepresented cock by means of a pin 11.
- the pin is represented here by a pellet coming from one piece to the rest of the hairspring. Nevertheless, it is obvious that the end of the spiral can be made to constant thickness or take other forms according to the desired construction for its attachment to the peak.
- the regulating member incorporating the hairspring according to the invention may include racket pins which pinch the hairspring at an adjustable distance from the end, in order to adjust the active length of the hairspring and thus to adjust the oscillation frequency of the hairspring. regulating organ.
- the thickness of the hairspring 1 in the plane of the hairspring is substantially constant.
- the spiral section is preferably rectangular and substantially constant between the inner end and the outer end. The computer modeling of the spiral deformations is thus simplified and can be performed without having to resort to approximations or simplifications.
- the rigidity of the hairspring is determined in particular by its section, its length and the Young's modulus of the material used.
- the hairspring comprises a core in a first material and a heat-compensating envelope in a second material.
- the core is silicon-based and the envelope is made of silicon dioxide produced by thermal oxidation.
- the heat compensating envelope compensates for variations in the Young's modulus of the core as the temperature varies.
- the proportion between the core and the thermocompensator envelope is constant throughout the spiral.
- the apparent Young's modulus is thus constant throughout the hairspring and for the entire thermocompensated temperature range.
- the entire length of the hairspring acts as a return spring; there is no dead zone with reduced deformability.
- the internal turns of the spiral S 1 to S N-1 are spiral Archimedes, so that the distance ⁇ between each point M of these turns and the center of rotation 100 of the spiral is substantially proportional to the angular position ⁇ from this point M when the hairspring is at rest.
- all the turns of the spiral except the last turn S N on the outside are Archimedean spiral. It is also possible to provide a hairspring in which only certain internal turns are spiral Archimedes, for example the turns S 1 to S N-2 , or the turns S 2 to S N-1 , etc.
- At least the outer turn S N is modified and does not correspond to an Archimedean spiral.
- this function f 2 is a non-linear function of the angular position ( ⁇ ) of the point when the hairspring is at rest.
- the function f 2 is chosen so as to reduce the lateral pressure exerted by the hairspring on the balance shaft when the hairspring 1 rotates about this axis.
- the function f 2 can also be chosen so that the return torque exerted by the spiral varies as a function of the rotation angle (and therefore the amplitude) of the spiral; the dependence is preferably nonlinear so as to compensate for the delay due to the small amplitude escape.
- the hairspring can be slightly stiffer at small amplitudes, respectively slightly less rigid at large amplitudes, which makes it possible to compensate for the imperfections of the exhaust.
- the function f 2 so that the average of the torque exerted during the contraction and during the expansion, for a given angle of rotation, makes it possible to compensate for the imperfections of the escapement.
- Geometric shapes that fulfill this first condition and / or second condition can be obtained analytically by a system of equations by placing the condition that the unbalance of the hairspring must be minimal regardless of the angular position of the ferrule 10 and the balance.
- a second condition is preferably that the function f 2 must be continuous.
- a third condition is that the derived from the function f 2 must be continuous, the fourth condition is preferably that the restoring torque exerted by the spiral on the axis of the balance is proportional to the angle of rotation.
- this system of equation is simpler to solve than if the rigidity is variable. It is therefore not necessary to resort to approximations to solve it so that it is possible to arrive by analytical calculation to an optimal solution.
- Geometric shapes that fulfill these different conditions can also be obtained, more simply, by successive approximations by means of a simulation software which makes it possible to estimate the unbalance and / or the lateral pressure on the axis of the balance according to the chosen shape and the angular position of the axis of the balance.
- This solution has the advantage of reducing the lateral pressure (that is to say radial) on the axis of the balance without requiring spirals in several planes and without requiring changes in the thickness or composition of the spiral.
- this solution makes it possible to produce a hairspring in which the return torque does not vary linearly as a function of the angle of rotation.
- a hairspring that would be more rigid at small amplitudes than a conventional hairspring in which the torque varies linearly with amplitude, so as to increase the return torque and therefore the frequency of oscillations. to small amplitudes, and thus compensate the delay due to the exhaust.
- rack pins not shown can be moved to change the active length of the hairspring and thus finely adjust the step.
- Geometric shapes that fulfill these different conditions can also be obtained by successive approximations using a simulation software that estimates the return torque exerted as a function of the angular position of the balance, so as to exert the torque that allows in combination with a given escape to obtain an improved isochronism whatever the amplitude of the oscillations of the balance.
- the non-linear function ⁇ f 2 ( ⁇ ) is advantageously chosen so that the displacement of the center of gravity of the last turn S N during the work of the hairspring 1 at least partially compensates for the displacement of the center of gravity of the other turns S 1 at S N-1 .
- the nonlinear function f 2 comprises a maximum 13, that is to say a point where the radius ⁇ decreases when the angular position ⁇ increases in absolute value by moving towards the outside of the hairspring. .
- the point of maximum diameter 13 is advantageously at least 180 ° in absolute value of the peak 11 when the spiral is at rest. Thus, this point at a significant distance from the center is far from the peak and does not risk colliding with the peak when working the spiral or shocks.
- the linear distance d between the point of maximum radius 13 and the outer end of the hairspring 11 moves during work of the hairspring.
- This linear distance d (measured along the hairspring) may preferably decrease during the expansion of the hairspring, so that the point of inflection approaches the end of the hairspring.
- the angular distance ⁇ between the point of maximum radius 13 and the outer end of the hairspring 11 moves during the work of the hairspring.
- the point of maximum radius is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring 1 is at rest.
- This angular distance ⁇ between the point of maximum radius and the outer end of the hairspring decreases during at least part of the expansion of the hairspring.
- the point of maximum radius 13 is thus almost opposite to the peak 11, or in any case at an angular distance between 120 and 240 ° of the peak, and therefore at a great distance from the peak.
- This makes it possible to move the center of gravity of the last turn opposite the peak, and to compensate the displacement in the direction of the peak of the center of gravity of the assembly formed by the other turns during the expansion of the hairspring.
- This also allows to move the point of maximum radius 13 of the piton during the expansion of the spiral.
- the function f 2 is preferably a continuous nonlinear function.
- the derivative of this function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity, and therefore a restoring moment exerted by the spiral on the axis of the balance which varies according to the rotation angle of the spiral, without discontinuities.
- the Figures 2 to 11 show the shape of the hairspring in different successive angular positions of the balance shaft. In particular, the displacement of the point of maximum radius 13 is observed.
- the shape of the last turn S N is optimized so as to avoid the risk of contact with the peak 11 and / or the penultimate turn S N-1 .
- the present invention also relates to a mechanical watch regulator member comprising a spiral formed of a blade of substantially constant thickness in the plane of the spiral, for example a spiral as described above, and a matching exhaust.
- the escapement comprises for example a Swiss anchor and an anchor wheel.
- the spiral is made according to the escapement, and comprises several internal spirals S 1 , S 2 , .., S N-1 spiral Archimedes, and an outer turn for which the distance ⁇ between each point and the center of rotation 100 is a nonlinear function f 2 of the angular position ⁇ of the point when the hairspring is at rest.
- This function is chosen according to the exhaust, so as to reduce the lateral pressure exerted by the spiral on the axis of balance when the spiral is mounted on this axis and / or to compensate for the delay due to the exhaust at low amplitudes.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Springs (AREA)
- Micromachines (AREA)
Abstract
Spiral plan destiné à être monté sur l'axe de balancier d'un organe régulateur de montre mécanique, le spiral étant formé d'une lame de rigidité sensiblement constante, le spiral comportant : plusieurs spires internes dans lesquelles la distance (Á) entre chaque point et le centre de rotation varie de façon sensiblement linéaire en fonction de la position angulaire (¸) du point lorsque le spiral est au repos; une spire externe dans lesquelles la distance (r) entre chaque point et le centre de rotation est une fonction non linéaire de la position angulaire (¸) du point lorsque le spiral est au repos; ladite fonction non linéaire ayant pour effet de réduire la pression latérale exercée par le spiral sur ledit axe de balancier lorsque le spiral est monté sur cet axe et/ou ayant pour effet de compenser le retard dû à l'échappement aux petites amplitudes d'oscillation.Spiral plane intended to be mounted on the balance shaft of a mechanical watch regulating member, the spiral being formed of a substantially constant stiffness blade, the hairspring comprising: a plurality of internal turns in which the distance (Á) between each point and the center of rotation varies substantially linearly as a function of the angular position (¸) of the point when the hairspring is at rest; an outer turn in which the distance (r) between each point and the center of rotation is a non-linear function of the angular position (¸) of the point when the hairspring is at rest; said non-linear function having the effect of reducing the lateral pressure exerted by the hairspring on said balance shaft when the hairspring is mounted on this axis and / or having the effect of compensating for the delay due to the escape at small amplitudes of oscillation .
Description
La présente invention concerne un spiral pour organe réglant de montre mécanique, un organe régulateur muni d'un tel spiral, et un procédé de réalisation d'un tel spiral.The present invention relates to a spiral for a mechanical watch regulating member, a regulating member provided with such a spiral, and a method for producing such a spiral.
Les mouvements de montres mécaniques sont le plus souvent régulés par un organe réglant comportant un balancier et un spiral.The movements of mechanical watches are most often regulated by a regulating member comprising a balance and a hairspring.
Les spiraux horlogers conventionnels sont en forme de spirale d'Archimède, et sont donc définis par l'équation polaire suivante :
dans laquelle p et θ sont les coordonnées polaires tandis que a est une constante positive ou négative. En s'éloignant du centre, le rayon p du spiral augmente donc linéairement avec l'angle θ (ou avec la valeur absolue de cet angle si le spiral croît dans le sens horaire). La courbe externe du spiral est souvent modifiée par rapport à cette forme idéale afin d'améliorer l'isochronisme et d'éviter les collisions entre l'avant-dernière spire et le piton.Conventional watch spirals are Archimedean spiral shaped, and are therefore defined by the following polar equation:
where p and θ are the polar coordinates while a is a positive or negative constant. Moving away from the center, the radius p of the spiral increases linearly with the angle θ (or with the absolute value of this angle if the spiral increases in the clockwise direction). The outer curve of the spiral is often modified with respect to this ideal shape in order to improve the isochronism and to avoid collisions between the penultimate turn and the peak.
L'extrémité externe du spiral est fixée au coq grâce au piton tandis que l'extrémité interne est liée à l'axe du balancier grâce à la virole.The outer end of the hairspring is attached to the rooster with the peg while the inner end is connected to the axis of the pendulum with the ferrule.
L'extrémité externe du spiral étant fixe, le centre de gravité du spiral se déplace lors des expansions et contractions successives, en sorte qu'il ne correspond pas en chaque instant avec le centre de rotation du spiral sur l'axe du balancier. La distance entre le centre de gravité et le centre de rotation crée un balourd, ce qui induit une pression latérale (c'est-à-dire radiale) sur l'axe du balancier et sur les pivots de cet axe. Ce balourd et la pression latérale résultante sur l'axe perturbent l'isochronisme.The outer end of the spiral being fixed, the center of gravity of the spiral moves during successive expansions and contractions, so that it does not correspond in every moment with the center of rotation of the spiral on the axis of the balance. The distance between the center of gravity and the center of rotation creates an unbalance, which induces a lateral pressure (that is to say radial) on the axis of the balance and on the pivots of this axis. This unbalance and resulting lateral pressure on the axis disturb isochronism.
Afin de réduire ce balourd, on connaît le spiral de Breguet muni d'une courbe externe repliée dans un autre plan que celui du spiral. De telles courbes terminales nécessitent une hauteur supplémentaire qui n'est pas toujours disponible. Elles sont par ailleurs difficiles à réaliser avec des techniques de photolithographie telles que la LIGA (Lithographie Galvanoformung Abformung) ou la gravure profonde DRIE (Deep Reactive Ion Etching) par exemple. Leur usage est donc avant tout cantonné aux spiraux métalliques mais reste très difficile à réaliser à partir d'un wafer. La photolithographie présente cependant l'avantage de permettre une production très précise et reproductible de spiraux.In order to reduce this unbalance, we know the Breguet hairspring provided with an external curve folded in another plane than that of the hairspring. Such terminal curves require additional height that is not always available. They are also difficult to achieve with photolithography techniques such as LIGA (Lithography Galvanoformung Abformung) or deep etching DRIE (Deep Reactive Ion Etching) for example. Their use is primarily confined to metal spirals but remains very difficult to achieve from a wafer. However, photolithography has the advantage of allowing a very precise and reproducible production of spirals.
Il existe donc un intérêt pour obtenir des spiraux plans (on parle aussi parfois de spiraux plats), moins encombrants et plus faciles à réaliser avec des procédés de photolithographie ou de gravure ionique.There is therefore an interest in obtaining planar spirals (sometimes referred to as flat spirals), less bulky and easier to perform with photolithography or ion etching processes.
Afin de réduire le balourd dans le d'un spiral plan,
Une solution similaire est aussi décrite en 1958 par Emile et Gaston Michel dans l'article « Spiraux plats concentriques sans courbes » de la Société Suisse de Chronométrie (SSC), qui propose de modifier la rigidité d'une portion de spire de manière à maintenir la concentricité du centre de rotation et du centre de gravité de la portion active spiral, c'est-à-dire de la portion du spiral qui se déforme.A similar solution is also described in 1958 by Emile and Gaston Michel in the article "Concentric flat spirals without curves" of the Swiss Society of Chronometry (SSC), which proposes to modify the rigidity of a portion of turn so as to maintain the concentricity of the center of rotation and the center of gravity of the spiral active portion, that is to say the portion of the spiral that is deformed.
De manière similaire,
Le modèle d'utilité
La portion rigide de ces différents spiraux constitue une zone « morte » qui ne se déforme pratiquement pas lors des contractions et expansions du spiral. La spire externe comporte donc le plus souvent une succession de zones à rigidité variable. Le calcul des déformations d'un tel spiral à rigidité variable est particulièrement difficile à effectuer, en sorte que la forme de ces spiraux résulte le plus souvent d'approximations.The rigid portion of these spirals constitutes a "dead" zone that is practically undeformed during contractions and expansions of the spiral. The outer coil therefore most often comprises a succession of zones with variable rigidity. The calculation of the deformations of such a spiral with variable stiffness is particularly difficult to perform, so that the shape of these spirals is most often approximations.
La rigidité variable des spiraux est le plus souvent obtenue grâce à une épaisseur variable de la lame du spiral dans le plan du spiral. Pour différentes raisons, il est cependant préférable de réaliser un spiral à partir d'une lame d'épaisseur constante. Dans le cas d'un spiral laminé, par exemple en métal, on évite ainsi des opérations d'usinage ou de pliage qui renchérissent le processus de fabrication.The variable stiffness of the spirals is most often obtained thanks to a variable thickness of the spiral blade in the spiral plane. For different reasons, it is however preferable to make a hairspring from a blade of constant thickness. In the case of a rolled spiral, for example of metal, machining or folding operations that make the manufacturing process more expensive are thus avoided.
Dans le cas d'un spiral à base de silicium et/ou de diamant, on souhaite souvent appliquer un revêtement externe, par exemple un revêtement en dioxyde de silicium afin de compenser les variations en fonction de la température du module d'Young du spiral. Une compensation parfaite est uniquement possible lorsque le rapport entre l'épaisseur du revêtement et celui de l'âme est choisi de manière précise. L'épaisseur de la couche de dioxyde produite par chauffage est cependant constante alors que l'épaisseur de l'âme varie dans le cas d'un spiral d'épaisseur variable. Il en résulte un module d'Young des portions rigidifiées de la spire externe qui dépend de la température, et donc une compensation imparfaite du balourd lorsque cette température varie.In the case of a spiral based on silicon and / or diamond, it is often desired to apply an outer coating, for example a coating of silicon dioxide to compensate for variations as a function of the temperature of the Young's modulus of the spiral . Perfect compensation is only possible when the relationship between the thickness of the coating and that of the core is chosen precisely. The thickness of the layer of dioxide produced by heating is however constant while the thickness of the core varies in the case of a spiral of varying thickness. This results in a Young's modulus stiffened portions of the outer coil which depends on the temperature, and thus an imperfect compensation of unbalance when this temperature varies.
La variation de rigidité de la spire externe est aussi parfois obtenue grâce à un ou plusieurs coudes. On appelle coude dans cette demande une portion dans laquelle le spiral change brusquement de direction, par exemple une portion dans laquelle le rayon de courbure local est inférieur à un dixième du rayon maximal du spiral. De tels coudes sont cependant difficiles à obtenir par pliage dans le cas de spiraux métalliques. Dans le cas de spiraux en silicium, la présence de tels coudes crée des zones de tension interne qui peuvent, lors des déformation du spiral, le fragiliser ou même provoquer sa rupture.The stiffness variation of the outer coil is also sometimes obtained by means of one or more elbows. In this application is called a portion in which the spiral suddenly changes direction, for example a portion in which the local radius of curvature is less than one tenth of the maximum radius of the spiral. Such elbows, however, are difficult to obtain by folding in the case of metal spirals. In the case of silicon spirals, the presence of such elbows creates zones of internal tension which may, during deformation of the spiral, weaken it or even cause it to break.
Un but de la présente invention est donc de proposer un spiral plan pour organe réglant d'horlogerie dont l'isochronisme est amélioré par rapport aux spiraux de l'art antérieur.An object of the present invention is therefore to provide a planar hairspring for a timepiece regulating member whose isochronism is improved compared to the spirals of the prior art.
Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont le centre de gravité ne se déplace pas ou peu et correspond sensiblement au centre de rotation du spiral.Another object is to propose a planar hairspring for a timepiece regulating organ whose center of gravity does not move or little and substantially corresponds to the center of rotation of the hairspring.
Un autre but est de proposer un spiral plan différent des spiraux plans existants.Another goal is to propose a plan spiral different from the existing plan spirals.
Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie qui puisse être optimisé et calculé plus facilement et plus précisément que les spiraux existants.Another object is to propose a planar hairspring for a timepiece regulating member that can be optimized and calculated more easily and more precisely than the existing hairsprings.
Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont l'épaisseur de la lame dans le plan du spiral est sensiblement constante.Another aim is to propose a planar hairspring for a clock-adjusting organ whose thickness of the blade in the plane of the hairspring is substantially constant.
Un autre but est de proposer un spiral plan pour organe réglant d'horlogerie dont la variation de rigidité de la lame provient essentiellement du rayon de courbure variable, mais pas d'une variation de section ou de matériaux.Another aim is to propose a planar hairspring for a timepiece regulating organ whose variation of rigidity of the blade comes essentially from the variable radius of curvature, but not from a variation of section or materials.
Selon l'invention, ces buts sont atteints notamment au moyen d'un spiral plan destiné à être monté sur l'axe de balancier d'un organe régulateur de montre mécanique, le spiral étant formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, le spiral comportant :
- plusieurs spires internes dans lesquelles la distance (p) entre chaque point et le centre de rotation du spiral varie selon une fonction sensiblement linéaire en fonction de la position angulaire (θ) du point lorsque le spiral est au repos;
- une spire externe dans lesquelles la distance (p) entre chaque point et le centre de rotation est une fonction non linéaire de la position angulaire (θ) du point lorsque le spiral est au repos;
- lesdites spires internes et ladite spire externe étant toutes dans le même plan ;
- la section de ladite spire externe étant sensiblement constante ;
- ladite fonction non linéaire étant destinée à réduire la pression latérale exercée par le spiral sur ledit axe de balancier lorsque le spiral est monté sur cet axe par rapport à la pression qui serait exercée si la spire externe était réalisée de manière à ce que la distance entre chaque point de cette spire externe et le centre de rotation du spiral varie de façon linéaire en fonction de la position angulaire de ce point lorsque le spiral est au repos.
- a plurality of internal turns in which the distance (p) between each point and the center of rotation of the hairspring varies according to a substantially linear function as a function of the angular position (θ) of the point when the hairspring is at rest;
- an outer turn in which the distance (p) between each point and the center of rotation is a non-linear function of the angular position (θ) of the point when the hairspring is at rest;
- said inner turns and said outer turn being all in the same plane;
- the section of said outer turn being substantially constant;
- said non-linear function being intended to reduce the lateral pressure exerted by the hairspring on said balance shaft when the hairspring is mounted on this axis with respect to the pressure that would be exerted if the outer turn was made so that the distance between each point of this outer turn and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest.
Une épaisseur de spiral est considérée comme sensiblement constante si les variations sont dues principalement au processus de fabrication. Une épaisseur de spiral est également considérée comme sensiblement constante si les variations d'épaisseur n'excèdent pas +/-10%.A spiral thickness is considered to be substantially constant if the variations are mainly due to the process of manufacturing. A spiral thickness is also considered substantially constant if the thickness variations do not exceed +/- 10%.
La section de la spire externe est considérée comme constante si les variations sont dues principalement au processus de fabrication. Une section de spire est également considérée comme sensiblement constante si les variations de surface n'excèdent pas +/-10%.The section of the outer turn is considered constant if the variations are due mainly to the manufacturing process. A turn section is also considered to be substantially constant if surface variations do not exceed +/- 10%.
Le coefficient de proportionnalité entre la distance (ρ) et la position angulaire (θ) est positif dans le cas de spires dont le rayon croît dans le sens antihoraire, et négatif dans le cas de spires de rayon croissant dans le sens horaire.The coefficient of proportionality between the distance (ρ) and the angular position (θ) is positive in the case of turns whose radius increases counterclockwise, and negative in the case of turns of increasing radius in the clockwise direction.
Cette solution présente l'avantage de réduire la pression latérale sur l'axe du balancier sans nécessiter un spiral sur plusieurs plans et sans nécessiter de modifications de l'épaisseur du spiral. La réduction est déterminée par rapport à la pression qui serait exercée si la spire externe était réalisée de manière à ce que la distance entre chaque point de cette spire externe et le centre de rotation du spiral varie de façon linéaire en fonction de la position angulaire de ce point lorsque le spiral est au repos.This solution has the advantage of reducing the lateral pressure on the axis of the balance without requiring a spiral in several planes and without requiring changes in the thickness of the spiral. The reduction is determined with respect to the pressure that would be exerted if the outer turn was made in such a way that the distance between each point of this outer turn and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest.
Les spires internes et la spire externe sont toutes dans le même plan, ce qui permet, dans le cas d'un spiral en silicium, de le produire par photolithographie. Indépendamment du matériau, cette caractéristique des spiraux plans permet aussi de réduire l'encombrement.The inner turns and the outer turn are all in the same plane, which allows, in the case of a silicon spiral, to produce it by photolithography. Independently of the material, this characteristic of planar spirals also makes it possible to reduce the bulk.
Cette solution permet aussi de réaliser un spiral dont le couple de rappel dépend de l'amplitude d'oscillation, de manière par exemple à compenser le retard dû à l'échappement aux petites amplitudes.This solution also makes it possible to produce a hairspring whose return torque depends on the amplitude of oscillation, so as to compensate, for example, for the delay due to the exhaust at small amplitudes.
Les déplacements du centre de gravité du spiral sont compensés grâce à la forme géométrique de la dernière spire au moins.The displacements of the center of gravity of the spiral are compensated thanks to the geometrical shape of the last turn at least.
La fonction non linéaire qui détermine la forme de la dernière spire peut être obtenue par approximations successives, au moyen d'un logiciel de simulation, en tenant compte des différentes conditions (ou contraintes) exprimées dans les revendications et dans la description.The nonlinear function which determines the shape of the last turn can be obtained by successive approximations, by means of a simulation software, taking into account the different conditions (or constraints) expressed in the claims and in the description.
Selon un aspect, l'invention résulte donc d'un choix de conditions inattendues pour définir la forme de la dernière spire d'un spiral. Les spiraux conventionnels ne sont habituellement pas conçus de manière à respecter cet ensemble inhabituel de conditions, et rien a priori ne permet d'ailleurs de déterminer si un spiral fonctionnel peut être réalisé en respectant ces conditions.According to one aspect, the invention therefore results from a choice of unexpected conditions to define the shape of the last turn of a spiral. Conventional scrolls are usually not designed to respect this unusual set of conditions, and nothing a priori makes it possible to determine whether a functional spiral can be achieved in compliance with these conditions.
Ce n'est donc qu'après avoir fait le choix inattendu de réaliser un spiral obéissant à ces différentes conditions, puis de l'avoir réalisé au moyen de longues heures de simulation, qu'il a été constaté que non seulement un tel spiral peut être réalisé, mais qu'en outre ses qualités en terme d'isochronisme notamment sont excellentes.It is therefore only after making the unexpected choice to make a hairspring obeying these different conditions, then to have realized it by means of long hours of simulation, that it has been found that not only can such a hairspring be realized, but in addition its qualities in terms of isochronism in particular are excellent.
La fonction non linéaire ρ = f2(θ) est avantageusement choisie en sorte que le déplacement du centre de gravité de la dernière spire lors du travail du spiral compense au moins partiellement le déplacement du centre de gravité desdites autres spires.The non-linear function ρ = f 2 (θ) is advantageously chosen so that the displacement of the center of gravity of the last turn during work of the hairspring at least partially offsets the displacement of the center of gravity of said other turns.
Dans les spiraux conventionnels en spirale d'Archimède, le centre de gravité tend à s'éloigner du piton lors de l'expansion du spiral, et à s'en rapprocher lorsque le spiral se contracte. En modifiant, dans le spiral selon l'invention, la forme de la dernière spire, il est par exemple possible de réaliser un spiral dans lequel le centre de gravité de la dernière spire tend à se rapprocher du piton lors de l'expansion du spiral. Ainsi, la spire externe tend à ramener le centre de gravité global du spiral sur le centre de rotation du balancier.In the spiral spirals of Archimedes, the center of gravity tends to move away from the peak when the spiral expands, and to get closer to it when the hairspring contracts. By modifying, in the hairspring according to the invention, the shape of the last turn, it is for example possible to make a hairspring in which the center of gravity of the last turn tends to approach the peak during the expansion of the hairspring. . Thus, the outer turn tends to reduce the overall center of gravity of the spiral on the center of rotation of the balance.
Selon un aspect, l'invention a aussi pour objet un spiral plan destiné à être monté sur l'axe de balancier d'un organe régulateur de montre mécanique, le spiral étant formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, le spiral comportant plusieurs spires internes dans lesquelles la distance (ρ) entre chaque point et le centre de rotation du spiral varie selon une fonction sensiblement linéaire en fonction de la position angulaire (θ) du point lorsque le spiral est au repos; ainsi qu'une spire externe dans laquelle la distance (ρ) entre chaque point (M) de la dernière spire et le centre de rotation augmente puis décroît en fonction de la position angulaire (θ) du point lorsque le spiral est au repos.According to one aspect, the invention also relates to a planar hairspring intended to be mounted on the balance shaft of a mechanical watch regulating member, the hairspring being formed of a blade of substantially constant thickness in the plane of the spiral, the spiral having several internal turns in which the distance (ρ) between each point and the center of rotation of the hairspring varies according to a substantially linear function as a function of the angular position (θ) of the point when the hairspring is at rest; and an outer turn in which the distance (ρ) between each point (M) of the last turn and the center of rotation increases and then decreases according to the angular position (θ) of the point when the hairspring is at rest.
Le point du spiral le plus distant du centre de rotation est donc distinct de l'extrémité extérieure, et distinct du point d'attache au piton. La fonction non linéaire f2 comporte donc un maximum, ou en tout cas un maximum local, à distance de son extrémité ; elle croît puis décroît. Elle peut aussi comporter un point d'inflexion.The point of the spiral furthest from the center of rotation is thus distinct from the outer end, and distinct from the point of attachment to the peak. The nonlinear function f 2 therefore comprises a maximum, or in any case a local maximum, at a distance from its end; it grows then decreases. It can also include a point of inflection.
Il en résulte une forme de spiral hautement inhabituelle avec un rayon de la dernière spire qui décroît en se dirigeant vers l'extérieur sur au moins une portion de la dernière spire. Cette liberté supplémentaire lors de la réalisation du spiral, par rapport aux spiraux conventionnels dans lesquels le rayon est progressivement croissant depuis le centre vers l'extérieur, permet d'obtenir des spires externes qui se déforment davantage lors du travail du spiral, dont le centre de gravité se déplace sur un long chemin, et qui compensent ainsi efficacement le problème du déplacement du balourd des autres spires.This results in a highly unusual spiral shape with a radius of the last turn that decreases outwardly on at least a portion of the last turn. This additional freedom in the production of the hairspring, compared with conventional hairsprings in which the spoke is progressively increasing from the center towards the outside, makes it possible to obtain external turns which deform more during the work of the hairspring, whose center gravity travels a long way, and thus effectively offset the problem of moving the unbalance of other turns.
La dernière spire du spiral est avantageusement dépourvue de coudes, c'est-à-dire dépourvue de portions dans lesquelles le rayon de courbure local est inférieur à 10% du rayon maximal du spiral. En d'autres termes, le rayon de courbure local de la dernière spire varie au repos dans un rapport de 1 à 10 au maximum, préférablement dans un rapport de 1 à 5 au maximum, par exemple dans un rapport de 1 à 2 au maximum. On évite ainsi l'accumulation de tension dans les zones coudées, ce qui permet de réaliser un spiral plus solide.The last turn of the spiral is advantageously devoid of bends, that is to say devoid of portions in which the local radius of curvature is less than 10% of the maximum radius of the spiral. In other words, the local radius of curvature of the last turn varies at rest in a ratio of 1 to 10 at most, preferably in a ratio of 1 to 5 at most, for example in a ratio of 1 to 2 at most. . This avoids the accumulation of tension in the bent areas, which allows for a stronger spiral.
Le maximum de la fonction f2 est avantageusement au moins à 180° du piton lorsque le spiral est au repos. Ainsi, ce point à distance importante du centre est éloigné du piton et ne risque pas d'entrer en collision avec le piton lors du travail du spiral ou de chocs.The maximum of the function f 2 is advantageously at least 180 ° of the peak when the hairspring is at rest. So, this point away important center is far from the peak and is not likely to collide with the peak when working the spiral or shocks.
Avantageusement, la distance linéaire entre le maximum de la fonction f2 et l'extrémité externe du spiral se déplace lors du travail du spiral. Cette distance linéaire (mesurée le long du spiral) peut de préférence diminuer lors de l'expansion du spiral.Advantageously, the linear distance between the maximum of the function f 2 and the outer end of the hairspring moves during work of the hairspring. This linear distance (measured along the hairspring) can preferably decrease during the expansion of the hairspring.
De préférence, la distance angulaire entre le point d'inflexion et l'extrémité externe du spiral se déplace lors du travail du spiral. Le maximum est de préférence au moins à 210°, de préférence au moins à 270° du piton lorsque le spiral est au repos.Preferably, the angular distance between the point of inflection and the outer end of the hairspring moves during work of the hairspring. The maximum is preferably at least 210 °, preferably at least 270 ° of the peak when the hairspring is at rest.
Cette distance angulaire entre le point de rayon maximal et l'extrémité externe du spiral diminue pendant au moins une partie de l'expansion du spiral, de manière à rapprocher le point de rayon maximal de la position à 180° du piton, donc à l'éloigner du piton. Cela permet de déplacer le centre de gravité de la dernière spire à l'opposé du piton, et de compenser le déplacement du centre de gravité de l'ensemble formé par les autres spires. Cela permet aussi d'éloigner le point de rayon maximal encore davantage du piton lors de l'expansion du spiral.This angular distance between the point of maximum radius and the outer end of the hairspring decreases during at least a portion of the expansion of the hairspring, so as to bring the point of maximum radius of the position to 180 ° of the pin, so to away from the piton. This makes it possible to move the center of gravity of the last turn opposite the peak, and to compensate for the displacement of the center of gravity of the assembly formed by the other turns. This also makes it possible to move the point of maximum radius even further from the peak during the expansion of the hairspring.
La fonction f2 non linéaire est de préférence une fonction continue. La dérivée de cette fonction non linéaire est de préférence une fonction continue. Cela permet d'obtenir une déformation concentrique et progressive des spires, sans discontinuité.The nonlinear function f 2 is preferably a continuous function. The derivative of this non-linear function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity.
Dans un mode de réalisation, la fonction f2 est choisie de manière à ce que le couple de rappel C exercé par le spiral sur l'axe du balancier varie sans discontinuités en fonction de l'amplitude, c'est-à-dire de l'angle de rotation du spiral, par exemple selon une fonction linéaire C=f(θ).In one embodiment, the function f2 is chosen so that the restoring torque C exerted by the spring on the axis of the balance varies without discontinuities as a function of the amplitude, that is to say angle of rotation of the spiral, for example according to a linear function C = f (θ).
Selon une caractéristique indépendante, l'invention concerne donc aussi un spiral pour organe réglant de mouvement de montre mécanique dans lequel la forme d'au moins une spire externe est calculée de manière à obtenir un couple de rappel C' qui dépend de l'amplitude selon une fonction non linéaire, de manière à compenser le retard dû à l'échappement aux petites amplitudes, respectivement à compenser l'avance aux grandes amplitudes. Si le couple de rappel exercé par le spiral pour une amplitude donnée varie entre la phase d'expansion et de contraction, la forme est choisie de manière à ce que la moyenne du couple exercé par le spiral dépende de l'amplitude. Cela signifie que le spiral sera plus rigide qu'un spiral conventionnel aux petites amplitudes, puis progressivement moins rigide qu'un spiral conventionnel aux grandes amplitudes. La forme de la spire externe du spiral est donc choisie en fonction de l'échappement.According to an independent characteristic, the invention thus also relates to a hairspring for a watch movement regulating member mechanical device in which the shape of at least one external turn is calculated so as to obtain a restoring torque C 'which depends on the amplitude according to a non-linear function, so as to compensate for the delay due to the small amplitude escapement respectively to compensate the advance at large amplitudes. If the return moment exerted by the hairspring for a given amplitude varies between the expansion and contraction phase, the shape is chosen so that the average of the torque exerted by the hairspring depends on the amplitude. This means that the hairspring will be stiffer than a conventional hairspring at small amplitudes, and then progressively less rigid than a conventional hairspring at large amplitudes. The shape of the outer coil of the spiral is therefore chosen according to the exhaust.
L'invention a aussi pour objet un organe régulateur de montre mécanique comportant un échappement et un spiral formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, le spiral comportant plusieurs spires internes S1, S2, .., SN-1 pour lesquelles la distance entre chaque point et le centre de rotation du spiral varie de façon linéaire en fonction de la position angulaire de ce point lorsque le spiral est au repos; le spiral comportant en outre une spire externe pour laquelle la distance entre chaque point et ledit centre de rotation est une fonction non linéaire de la position angulaire du point lorsque le spiral est au repos;
la dite fonction non linéaire étant adaptée en fonction de l'échappement, de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral est monté sur cet axe et/ou de manière à compenser le retard dû à l'échappement aux basses amplitudes.The subject of the invention is also a mechanical watch regulating member comprising an escapement and a spiral formed of a blade of substantially constant thickness in the plane of the spiral, the spiral comprising several internal turns S 1 , S 2 ,. S N-1 for which the distance between each point and the center of rotation of the hairspring varies linearly as a function of the angular position of this point when the hairspring is at rest; the hairspring further comprising an outer turn for which the distance between each point and said center of rotation is a non-linear function of the angular position of the point when the hairspring is at rest;
said non-linear function being adapted as a function of the exhaust, so as to reduce the lateral pressure exerted by the spring on the balance shaft when the hairspring is mounted on this axis and / or in order to compensate for the delay due to the exhaust at low amplitudes.
Cette solution permet donc de proposer un organe réglant dans lequel la courbe externe du spiral est modifiée par rapport à une spirale d'Archimède classique en tenant compte de l'échappement, de manière à réduire la pression sur l'axe et/ou à compenser les dérives de marche dues à l'échappement.This solution therefore makes it possible to propose a regulating member in which the external curve of the spiral is modified with respect to a conventional Archimedes spiral taking into account the exhaust, so as to reduce the pressure on the axis and / or to compensate the drifts due to the exhaust.
Des exemples de mise en oeuvre de l'invention sont indiqués dans la description illustrée par les figures annexées dans lesquelles :
- La
figure 1 illustre une vue en perspective d'un spiral selon l'invention. - Les
figures 2 à 11 montrent différentes vues successives depuis le dessus d'un spiral lors de son développement.
- The
figure 1 illustrates a perspective view of a hairspring according to the invention. - The
Figures 2 to 11 show different successive views from the top of a hairspring during its development.
Le spiral 1 illustré sur les figures est un spiral plan, c'est-à-dire que toutes ses spires S1, S2, ... SN-1, SN se trouvent dans un même plan. Il peut donc être produit par LIGA, par gravure profonde DRIE, par gravure laser ou par attaque lithographique à partir d'un wafer à base de silicium, de diamant, de verre, de carbone, etc., ou par enroulement d'une bande de métal, par exemple d'Elinvar ou d'alliage Fe/Ni/Cr par exemple. Des spiraux formés de plusieurs matériaux, par exemple à base de silicium revêtu de dioxyde de silicium ou à base de diamant.The
L'extrémité interne du spiral est destinée à être montée sur l'axe d'un balancier non illustré au moyen d'une virole 10. Dans l'exemple illustré, la virole est intégrée au spiral. L'invention s'applique cependant aussi à des spiraux dépourvus de virole intégrée.The inner end of the hairspring is intended to be mounted on the axis of a not shown beam by means of a
L'extrémité externe du spiral est destinée à être fixée au coq non représenté d'un mouvement au moyen d'un piton 11. Le piton est représenté ici par une pastille venant d'un seul tenant au reste du spiral. Néanmoins, il est évident que l'extrémité du spiral peut être faite à épaisseur constante ou prendre d'autres formes selon la construction souhaitée pour son attache au piton.The outer end of the hairspring is intended to be fixed to the unrepresented cock by means of a
L'organe réglant incorporant le spiral selon l'invention peut inclure des goupilles de raquettes qui pincent le spiral à distance réglable de l'extrémité, afin de régler la longueur active du spiral et donc d'ajuster la fréquence d'oscillation de l'organe réglant.The regulating member incorporating the hairspring according to the invention may include racket pins which pinch the hairspring at an adjustable distance from the end, in order to adjust the active length of the hairspring and thus to adjust the oscillation frequency of the hairspring. regulating organ.
L'épaisseur du spiral 1 dans le plan du spiral est sensiblement constante. La section du spiral est de préférence rectangulaire et sensiblement constante entre l'extrémité interne et l'extrémité externe. La modélisation informatique des déformations du spiral est ainsi simplifiée et peut être effectuée sans devoir recourir à des approximations ni à des simplifications.The thickness of the
La rigidité du spiral est notamment déterminée par sa section, sa longueur et le module d'Young du matériau employé. Dans un mode de réalisation, le spiral comporte une âme dans un premier matériau et une enveloppe thermocompensatrice dans un deuxième matériau. Dans un exemple, l'âme est à base de silicium et l'enveloppe est en dioxyde de silicium produit par oxydation thermique.The rigidity of the hairspring is determined in particular by its section, its length and the Young's modulus of the material used. In one embodiment, the hairspring comprises a core in a first material and a heat-compensating envelope in a second material. In one example, the core is silicon-based and the envelope is made of silicon dioxide produced by thermal oxidation.
L'enveloppe thermocompensatrice compense les variations du module d'Young de l'âme lorsque la température varie. La proportion entre l'âme et l'enveloppe thermocompensatrice est constante tout au long du spiral. Le module d'Young apparent est ainsi constant tout au long du spiral et pour toute la plage de température thermocompensée.The heat compensating envelope compensates for variations in the Young's modulus of the core as the temperature varies. The proportion between the core and the thermocompensator envelope is constant throughout the spiral. The apparent Young's modulus is thus constant throughout the hairspring and for the entire thermocompensated temperature range.
De surcroit, toute la longueur du spiral agit comme ressort de rappel ; il n'y a pas de zone morte à déformabilité réduite.In addition, the entire length of the hairspring acts as a return spring; there is no dead zone with reduced deformability.
Les spires internes du spiral S1 jusqu'à SN-1 sont en spirale d'Archimède, en sorte que la distance ρ entre chaque point M de ces spires et le centre de rotation 100 du spiral est sensiblement proportionnelle à la position angulaire θ de ce point M lorsque le spiral est au repos. Dans un mode de réalisation préférentiel, toutes les spires du spiral à l'exception de la dernière spire SN à l'extérieur sont en spirale d'Archimède. Il est aussi possible de prévoir un spiral dans lequel seules certaines spires internes sont en spirale d'Archimède, par exemple les spires S1 à SN-2, ou les spires S2 à SN-1, etc.The internal turns of the spiral S 1 to S N-1 are spiral Archimedes, so that the distance ρ between each point M of these turns and the center of
Selon l'équation, au moins la spire externe SN est modifiée et ne correspond pas à une spirale d'Archimède. La distance ρ entre les points de cette dernière spire (ou d'une portion de cette dernière spire, ou de plusieurs spires externes) et le centre de rotation du spiral est une fonction ρ = f2 (θ) différente de la fonction linéaire ρ = aθ qui s'applique aux autres spires internes. Dans un mode de réalisation, cette fonction f2 est une fonction non linéaire de la position angulaire (θ) du point lorsque le spiral est au repos. On peut aussi imaginer faire commencer la fonction à la spire SN-2 OU SN-3.According to the equation, at least the outer turn S N is modified and does not correspond to an Archimedean spiral. The distance ρ between the points of this last turn (or of a portion of this turn, or of several external turns) and the center of rotation of the spiral is a function ρ = f 2 (θ) different from the linear function ρ = aθ which applies to the other inner turns. In one embodiment, this function f 2 is a non-linear function of the angular position (θ) of the point when the hairspring is at rest. One can also imagine starting the function with the turn S N-2 OR S N-3 .
La fonction f2 est choisie de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral 1 tourne autour de cet axe. La fonction f2 peut aussi être choisie de manière à ce que le couple de rappel exercé par le spiral varie en fonction de l'angle de rotation (et donc de l'amplitude) du spiral ; la dépendance est de préférence non linéaire de manière à compenser le retard dû à l'échappement aux petites amplitudes. Par rapport à un spiral idéal dans lequel le couple de rappel est proportionnel à l'angle de rotation du balancier, le spiral peut être légèrement plus rigide aux petites amplitudes, respectivement légèrement moins rigide aux grandes amplitudes, ce qui permet de compenser les imperfections de l'échappement. Il est aussi possible de choisir la fonction f2 de manière à ce que la moyenne du couple exercé lors de la contraction et lors de l'expansion, pour un angle de rotation donné, permette de compenser les imperfections de l'échappement.The function f 2 is chosen so as to reduce the lateral pressure exerted by the hairspring on the balance shaft when the
Des formes géométriques qui remplissent cette première condition et/ou cette deuxième condition peuvent être obtenues de manière analytique par un système d'équations en posant la condition que le balourd du spiral doit être minime quelle que soit la position angulaire de la virole 10 et du balancier. Une deuxième condition est de préférence que la fonction f2 doit être continue. Une troisième condition est que la dérivée de la fonction f2 doit être continue, ne quatrième condition est de préférence que le couple de rappel exercé par le spiral sur l'axe du balancier est proportionnel à l'angle de rotation. Comme la rigidité du spiral peut être constante, ce système d'équation est plus simple à résoudre que si la rigidité est variable. Il n'est donc pas nécessaire de recourir à des approximations pour le résoudre en sorte qu'il est possible d'arriver par calcul analytique à une solution optimale.Geometric shapes that fulfill this first condition and / or second condition can be obtained analytically by a system of equations by placing the condition that the unbalance of the hairspring must be minimal regardless of the angular position of the
Des contraintes supplémentaires peuvent être posées pour choisir entre différentes solutions possibles. Par exemple, il est possible de choisir la solution qui minimise le diamètre maximal du spiral, afin de réduire l'encombrement.Additional constraints may be asked to choose between different possible solutions. For example, it is possible to choose the solution that minimizes the maximum diameter of the hairspring, in order to reduce the bulk.
Des formes géométriques qui remplissent ces différentes conditions peuvent aussi être obtenues, plus simplement, par approximations successives au moyen d'un logiciel de simulation qui permet d'estimer le balourd et/ou la pression latérale sur l'axe du balancier en fonction de la forme choisie et de la position angulaire de l'axe du balancier.Geometric shapes that fulfill these different conditions can also be obtained, more simply, by successive approximations by means of a simulation software which makes it possible to estimate the unbalance and / or the lateral pressure on the axis of the balance according to the chosen shape and the angular position of the axis of the balance.
Cette solution présente l'avantage de réduire la pression latérale (c'est-à-dire radiale) sur l'axe du balancier sans nécessiter de spiraux sur plusieurs plans et sans nécessiter de modifications de l'épaisseur ou de la composition du spiral.This solution has the advantage of reducing the lateral pressure (that is to say radial) on the axis of the balance without requiring spirals in several planes and without requiring changes in the thickness or composition of the spiral.
Les déplacements du centre de gravité du spiral sont ainsi compensés par à la forme géométrique de la dernière spire SN.The displacements of the center of gravity of the spiral are thus compensated by the geometrical shape of the last turn S N.
Alternativement, ou en combinaison, cette solution permet de réaliser un spiral dans lequel le couple de rappel ne varie pas linéairement en fonction de l'angle de rotation. Par exemple, il est possible de réaliser un spiral qui serait plus rigide aux petites amplitudes qu'un spiral conventionnel dans lequel le couple varie linéairement en fonction de l'amplitude, de manière à augmenter le couple de rappel et donc la fréquence d'oscillations aux petites amplitudes, et de compenser ainsi le retard dû à l'échappement. En option, des goupilles de raquettes non représentées peuvent être déplacées pour modifier la longueur active du spiral et ainsi ajuster finement la marche.Alternatively, or in combination, this solution makes it possible to produce a hairspring in which the return torque does not vary linearly as a function of the angle of rotation. For example, it is possible to produce a hairspring that would be more rigid at small amplitudes than a conventional hairspring in which the torque varies linearly with amplitude, so as to increase the return torque and therefore the frequency of oscillations. to small amplitudes, and thus compensate the delay due to the exhaust. Optionally, rack pins not shown can be moved to change the active length of the hairspring and thus finely adjust the step.
Des formes géométriques qui remplissent ces différentes conditions peuvent aussi être obtenues par approximations successives au moyen d'un logiciel de simulation qui permet d'estimer le couple de rappel exercé en fonction de la position angulaire du balancier, de manière à exercer le couple qui permette en combinaison avec un échappement donné d'obtenir un isochronisme amélioré quelle que soit l'amplitude des oscillations du balancier.Geometric shapes that fulfill these different conditions can also be obtained by successive approximations using a simulation software that estimates the return torque exerted as a function of the angular position of the balance, so as to exert the torque that allows in combination with a given escape to obtain an improved isochronism whatever the amplitude of the oscillations of the balance.
La fonction non linéaire ρ = f2(θ) est avantageusement choisie en sorte que le déplacement du centre de gravité de la dernière spire SN lors du travail du spiral 1 compense au moins partiellement le déplacement du centre de gravité des autres spires S1 à SN-1.The non-linear function ρ = f 2 (θ) is advantageously chosen so that the displacement of the center of gravity of the last turn S N during the work of the
Dans un mode de réalisation avantageux, la fonction non linéaire f2 comporte un maxima 13, c'est-à-dire un point où le rayon ρ diminue lorsque la position angulaire θ augmente en valeur absolue en se déplaçant vers l'extérieur du spiral.In an advantageous embodiment, the nonlinear function f 2 comprises a maximum 13, that is to say a point where the radius ρ decreases when the angular position θ increases in absolute value by moving towards the outside of the hairspring. .
Par conséquent, la distance ρ entre chaque point de la dernière spire SN et le centre de rotation 100 augmente puis décroît en fonction de la position angulaire -θ lorsque le spiral est au repos. Le point du spiral le plus distant du centre de rotation est donc distinct de l'extrémité extérieure, et distinct du point d'attache au piton et des goupilles de raquette si de telles goupilles sont présentes.Consequently, the distance ρ between each point of the last turn S N and the center of
Le point de diamètre maximal 13 est avantageusement au moins à 180° en valeur absolue du piton 11 lorsque 1 le spiral est au repos. Ainsi, ce point à distance importante du centre est éloigné du piton et ne risque pas d'entrer en collision avec le piton lors du travail du spiral ou de chocs.The point of
Avantageusement, la distance linéaire d entre le point de rayon maximal 13 et l'extrémité externe du spiral 11 se déplace lors du travail du spiral. Cette distance linéaire d (mesurée le long du spiral) peut de préférence diminuer lors de l'expansion du spiral, en sorte que le point d'inflexion se rapproche de l'extrémité du spiral.Advantageously, the linear distance d between the point of
La distance angulaire α entre le point de rayon maximal 13 et l'extrémité externe du spiral 11 se déplace lors du travail du spiral. Le point de rayon maximal est de préférence au moins à 210°, de préférence au moins à 270° du piton lorsque le spiral 1 est au repos.The angular distance α between the point of
Cette distance angulaire α entre le point de rayon maximal et l'extrémité externe du spiral diminue pendant au moins une partie de l'expansion du spiral. Lorsque le spiral est complètement détendu, le point de rayon maximal 13 se trouve ainsi presque à l'opposé du piton 11, ou en tout cas à une distance angulaire entre 120 et 240° du piton, et donc à grande distance du piton. Cela permet de déplacer le centre de gravité de la dernière spire à l'opposé du piton, et de compenser le déplacement en direction du piton du centre de gravité de l'ensemble formé par les autres spires lors de l'expansion du spiral. Cela permet aussi d'éloigner le point de rayon maximal 13 du piton lors de l'expansion du spiral.This angular distance α between the point of maximum radius and the outer end of the hairspring decreases during at least part of the expansion of the hairspring. When the hairspring is completely relaxed, the point of
La fonction f2 est de préférence une fonction non linéaire continue. La dérivée de cette fonction est de préférence une fonction continue. Cela permet d'obtenir une déformation concentrique et progressive des spires, sans discontinuité, et donc un couple de rappel exercé par le spiral sur l'axe du balancier qui varie en fonction de l'angle de rotation du spiral, sans discontinuités.The function f 2 is preferably a continuous nonlinear function. The derivative of this function is preferably a continuous function. This makes it possible to obtain a concentric and progressive deformation of the turns, without discontinuity, and therefore a restoring moment exerted by the spiral on the axis of the balance which varies according to the rotation angle of the spiral, without discontinuities.
Dans l'exemple de spiral 1 illustré sur les
Les
La forme de la dernière spire SN est optimisée de manière à éviter le risque de contact avec le piton 11 et/ou avec l'avant-dernière spire SN-1.The shape of the last turn S N is optimized so as to avoid the risk of contact with the
Pour définir la forme du spiral on peut par exemple employer le procédé suivant :
- on définit un spiral avec N-1 spires S1 à SN-1 en forme de spirale d'Archimède au repos. Le nombre N de spires est déterminé en fonction du matériau et en tenant compte du couple de rappel désirée en fonction du balancier et de la fréquence d'oscillation souhaitée.
- on définit une spire externe SN obéissant à une équation polaire ρ = f2 (θ) où f2 est inconnu.
- on pose comme condition que l'extrémité externe de la spire externe est fixe tandis que l'extrémité interne de cette spire est liée à l'extrémité interne des N-1 spires.
- parmi toutes les fonctions f2 possible, on en retient au moins une qui permet de minimiser la force latérale exercée sur l'axe du balancier quelle que soit la position angulaire du balancier. Alternativement, ou en combinaison, on choisit une fonction qui permette d'obtenir le couple de rappel nécessaire afin de compenser le retard dû à un échappement donné aux petites amplitudes d'oscillation.
- parmi toutes les fonctions f2 retenues au cours de l'étape précédente, on en retient au moins une qui soit continue, dont la dérivée soit continue, et qui minimise le risque de contact entre le spiral et le piton ainsi que le risque de contact entres spires, quelle que soit la position angulaire du balancier.
- si plusieurs fonctions ont été retenues au cours de l'étape précédente, on en retient au moins une qui comporte un point de rayon maximal à distance de l'extrémité, c'est-à-dire dont le rayon croît puis décroît.
- si plusieurs fonctions ont été retenues au cours de l'étape précédente, on en retient au moins une qui permette de minimiser l'encombrement maximal du spiral quelle que soit la position angulaire du balancier.
- a spiral is defined with N-1 turns S1 to SN-1 in the form of an Archimedean spiral at rest. The number N of turns is determined as a function of the material and taking into account the desired return torque as a function of the balance and the desired oscillation frequency.
- we define an external turn S N obeying a polar equation ρ = f 2 (θ) where f 2 is unknown.
- it is a condition that the outer end of the outer turn is fixed while the inner end of this turn is connected to the inner end of the N-1 turns.
- among all the functions f 2 possible, at least one retains at least one which makes it possible to minimize the lateral force exerted on the axis of the balance whatever the angular position of the balance. Alternatively, or in combination, a function is chosen which makes it possible to obtain the necessary return torque in order to compensate for the delay due to a given escapement at the small amplitudes of oscillation.
- among all the functions f 2 retained during the previous step, at least one which is continuous, the derivative of which is continuous, is retained and which minimizes the risk of contact between the hairspring and the peak and the risk of contact. between turns, regardless of the angular position of the balance.
- if several functions have been retained during the previous step, at least one of them is retained which has a point of maximum radius at a distance from the end, that is to say whose radius increases and then decreases.
- if several functions have been retained in the previous step, at least one of them is retained which makes it possible to minimize the maximum bulk of the spiral whatever the angular position of the balance.
Ces différentes étapes ainsi que les conditions correspondantes peuvent être appliquées dans un autre ordre, ou simultanément. La sélection de fonctions f2 peut être effectuée par un calcul analytique et/ou par approximations successives.These different steps as well as the corresponding conditions can be applied in another order, or simultaneously. The selection of functions f 2 can be performed by an analytical calculation and / or by successive approximations.
La présente invention a aussi pour objet un organe régulateur de montre mécanique comportant un spiral formé d'une lame d'épaisseur sensiblement constante dans le plan du spiral, par exemple un spiral tel que décrit ci-dessus, et un échappement assorti. L'échappement comporte par exemple une ancre suisse et une roue d'ancre. Le spiral est réalisé en fonction de l'échappement, et comporte plusieurs spires internes S1, S2, .., SN-1 en spirale d'Archimède, ainsi qu'une spire externe pour laquelle la distance ρ entre chaque point et le centre de rotation 100 est une fonction non linéaire f2 de la position angulaire θ du point lorsque le spiral est au repos. Cette fonction est choisie en fonction de l'échappement, de manière à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral est monté sur cet axe et/ou de manière à compenser le retard dû à l'échappement aux basses amplitudes.The present invention also relates to a mechanical watch regulator member comprising a spiral formed of a blade of substantially constant thickness in the plane of the spiral, for example a spiral as described above, and a matching exhaust. The escapement comprises for example a Swiss anchor and an anchor wheel. The spiral is made according to the escapement, and comprises several internal spirals S 1 , S 2 , .., S N-1 spiral Archimedes, and an outer turn for which the distance ρ between each point and the center of
Claims (16)
le spiral comportant :
the hairspring comprising:
ladite fonction non linéaire étant adaptée en fonction de l'échappement, de manière à compenser le retard dû à l'échappement aux basses amplitudes et/ou à réduire la pression latérale exercée par le spiral sur l'axe de balancier lorsque le spiral est monté sur cet axe par rapport à la pression qui serait exercée si la spire externe était réalisée de manière à ce que la distance entre chaque point de cette spire externe et le centre de rotation (100) du spiral varie de façon linéaire en fonction de la position angulaire (θ) de ce point lorsque le spiral est au repos.Mechanical watch regulator member comprising an escapement and a spiral formed of a blade of substantially constant thickness in the plane of the spiral, the spiral comprising a plurality of internal turns (S 1 , S 2 , .., S N-1 ) for which the distance (ρ) between each point (M) and the center of rotation (100) of the hairspring varies linearly as a function of the angular position (θ) of this point when the hairspring is at rest; the hairspring further comprising an outer turn (S N ) for which the distance (ρ) between each point and said center of rotation (100) is a non-linear function (f 2 ) of the angular position (θ) of the point when the spiral is at rest; said inner turns and said outer turn being all in the same plane; the section of said outer turn (S N ) being constant;
said non-linear function being adapted according to the escapement, so as to compensate for the delay due to the exhaust at low amplitudes and / or to reduce the lateral pressure exerted by the spiral on the balance shaft when the spiral is mounted on this axis with respect to the pressure that would be exerted if the outer turn was made so that the distance between each point of this outer turn and the center of rotation (100) of the hairspring varies linearly with the position angular (θ) of this point when the hairspring is at rest.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH01408/13A CH708429A1 (en) | 2013-08-19 | 2013-08-19 | Spiral for a regulating member of a mechanical watch, a regulating member provided with such a hairspring, and method of making such a hairspring. |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2869138A2 true EP2869138A2 (en) | 2015-05-06 |
EP2869138A3 EP2869138A3 (en) | 2016-03-09 |
EP2869138B1 EP2869138B1 (en) | 2017-10-04 |
Family
ID=49000746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14181326.1A Active EP2869138B1 (en) | 2013-08-19 | 2014-08-18 | Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2869138B1 (en) |
CH (1) | CH708429A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017083438A (en) * | 2015-10-22 | 2017-05-18 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Small balance-spring having constant cross section |
JP2017083435A (en) * | 2015-10-22 | 2017-05-18 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Small balance-spring having variable cross section |
CN115070394A (en) * | 2022-07-07 | 2022-09-20 | 昆山隆正机电科技有限公司 | Automatic assembling machine for hairspring and inner ring fixing seat |
CN118151513A (en) * | 2024-03-27 | 2024-06-07 | 深圳市宇珀黄金钟表科技有限公司 | Balance wheel and hairspring stability detection method and device of mechanical watch and computer equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4332686A1 (en) * | 2022-08-30 | 2024-03-06 | ETA SA Manufacture Horlogère Suisse | Hairspring for balance-hairspring assembly of a clock movement |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US209642A (en) | 1878-11-05 | Improvement in balance-springs for time-keepers | ||
CH327796A (en) | 1954-02-22 | 1958-02-15 | Horlogerie Suisse S A Asuag | Flat hairspring |
FR1588702A (en) | 1967-11-09 | 1970-04-17 | ||
US3782169A (en) | 1969-07-11 | 1974-01-01 | Fab D Assortiments Reunies | Regulating the frequency of an oscillatory system including a balance and a coiled spring |
CH692532A5 (en) | 1997-10-21 | 2002-07-15 | Ebauchesfabrik Eta Ag | A method of making a balance spring for a horological movement. |
EP1431844A1 (en) | 2002-12-19 | 2004-06-23 | SFT Services SA | Assembly for the regulating organ of a watch movement |
EP1473604A1 (en) | 2003-04-29 | 2004-11-03 | Patek Philippe S.A. | Balance and flat hairspring regulator for a watch movement |
EP1605323A2 (en) | 2004-04-13 | 2005-12-14 | Coredem S.A. | Spiral spring for mechanical clockwork |
CH701846A1 (en) | 2009-09-21 | 2011-03-31 | Rolex Sa | Spiral for flat stick together of watches and stick-spiral. |
US20110292770A1 (en) | 2009-02-06 | 2011-12-01 | Petra Damasko | Mechanical oscillating system for clocks and functional element for clocks |
DE202012103893U1 (en) | 2011-10-21 | 2012-10-25 | Petra Damasko | Oscillation system for mechanical movements |
WO2012152843A1 (en) | 2011-05-09 | 2012-11-15 | Lvmh Swiss Manufactures Sa | Silicon spiral spring for a mechanical watch |
WO2013034962A1 (en) | 2011-09-07 | 2013-03-14 | Patek Philippe Sa Geneve | Clock movement having a balance-wheel and hairspring |
-
2013
- 2013-08-19 CH CH01408/13A patent/CH708429A1/en not_active Application Discontinuation
-
2014
- 2014-08-18 EP EP14181326.1A patent/EP2869138B1/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US209642A (en) | 1878-11-05 | Improvement in balance-springs for time-keepers | ||
CH327796A (en) | 1954-02-22 | 1958-02-15 | Horlogerie Suisse S A Asuag | Flat hairspring |
FR1588702A (en) | 1967-11-09 | 1970-04-17 | ||
US3782169A (en) | 1969-07-11 | 1974-01-01 | Fab D Assortiments Reunies | Regulating the frequency of an oscillatory system including a balance and a coiled spring |
CH692532A5 (en) | 1997-10-21 | 2002-07-15 | Ebauchesfabrik Eta Ag | A method of making a balance spring for a horological movement. |
EP1431844A1 (en) | 2002-12-19 | 2004-06-23 | SFT Services SA | Assembly for the regulating organ of a watch movement |
EP1473604A1 (en) | 2003-04-29 | 2004-11-03 | Patek Philippe S.A. | Balance and flat hairspring regulator for a watch movement |
EP1605323A2 (en) | 2004-04-13 | 2005-12-14 | Coredem S.A. | Spiral spring for mechanical clockwork |
US20110292770A1 (en) | 2009-02-06 | 2011-12-01 | Petra Damasko | Mechanical oscillating system for clocks and functional element for clocks |
CH701846A1 (en) | 2009-09-21 | 2011-03-31 | Rolex Sa | Spiral for flat stick together of watches and stick-spiral. |
WO2012152843A1 (en) | 2011-05-09 | 2012-11-15 | Lvmh Swiss Manufactures Sa | Silicon spiral spring for a mechanical watch |
WO2013034962A1 (en) | 2011-09-07 | 2013-03-14 | Patek Philippe Sa Geneve | Clock movement having a balance-wheel and hairspring |
DE202012103893U1 (en) | 2011-10-21 | 2012-10-25 | Petra Damasko | Oscillation system for mechanical movements |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017083438A (en) * | 2015-10-22 | 2017-05-18 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Small balance-spring having constant cross section |
JP2017083435A (en) * | 2015-10-22 | 2017-05-18 | ウーテーアー・エス・アー・マニファクチュール・オロロジェール・スイス | Small balance-spring having variable cross section |
CN115070394A (en) * | 2022-07-07 | 2022-09-20 | 昆山隆正机电科技有限公司 | Automatic assembling machine for hairspring and inner ring fixing seat |
CN118151513A (en) * | 2024-03-27 | 2024-06-07 | 深圳市宇珀黄金钟表科技有限公司 | Balance wheel and hairspring stability detection method and device of mechanical watch and computer equipment |
Also Published As
Publication number | Publication date |
---|---|
CH708429A1 (en) | 2015-02-27 |
EP2869138A3 (en) | 2016-03-09 |
EP2869138B1 (en) | 2017-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2869138B1 (en) | Hairspring for a regulating member of a mechanical watch, regulating member provided with such a hairspring, and method for manufacturing such a hairspring | |
EP2407831B1 (en) | Hairspring for oscillator balance of a clock piece and method for manufacturing same | |
EP2523053B1 (en) | Hairspring for sprung balance | |
EP3181940B2 (en) | Method for manufacturing a hairspring with a predetermined stiffness by localised removal of material | |
CH710795A2 (en) | Silicon hairspring. | |
EP2613206A1 (en) | Hairspring with two spiral springs with improved isochronism | |
EP2690506B1 (en) | Anti-tripping clock hairspring | |
EP2917787B1 (en) | Clock movement having a balance and a hairspring | |
EP3769160A1 (en) | Method for manufacturing a silicon hairspring | |
EP2753985B1 (en) | Clock movement having a balance-wheel and hairspring | |
CH713409A2 (en) | Spiral balance of the thermocompensated type, movement and timepiece. | |
EP2138912B1 (en) | Horological hairspring with concentric development | |
CH706087B1 (en) | flat spiral for regulating organ of a watch movement. | |
EP2546705B1 (en) | Method for manufacturing an horological hairsping | |
CH717357A2 (en) | Watch hairspring in glass or ceramic, with complex geometry. | |
CH717283B1 (en) | Watch assembly comprising an oscillating element and an escapement. | |
EP3399373A1 (en) | Clock device with positioning member | |
CH714706B1 (en) | Angular return spring for thermo-compensated oscillator. | |
CH714704B1 (en) | Angular return spring for thermo-compensated oscillator | |
CH714705B1 (en) | Angular return spring for thermo-compensated oscillator. | |
EP4432020A1 (en) | Clock movement | |
EP4372479A1 (en) | Method for manufacturing timepiece hairsprings | |
CH714857A2 (en) | Thermocompensated balance spring, movement and timepiece. | |
EP2874019A1 (en) | End curve for a spiral driven by the outer end thereof | |
WO2017067955A1 (en) | Silicon hairspring for mechanical timepiece movement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150306 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04B 17/06 20060101AFI20160204BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170407 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 934579 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: P&TS SA, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602014015296 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171004 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 934579 Country of ref document: AT Kind code of ref document: T Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180104 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180105 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180204 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602014015296 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
26N | No opposition filed |
Effective date: 20180705 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180818 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180818 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602014015296 Country of ref document: DE Representative=s name: BECK & ROESSIG EUROPEAN PATENT ATTORNEYS, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602014015296 Country of ref document: DE Representative=s name: BECK & ROESSIG - EUROPEAN PATENT ATTORNEYS, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20140818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171004 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171004 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230902 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240821 Year of fee payment: 11 |