EP2851452B1 - Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe - Google Patents

Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe Download PDF

Info

Publication number
EP2851452B1
EP2851452B1 EP13004572.7A EP13004572A EP2851452B1 EP 2851452 B1 EP2851452 B1 EP 2851452B1 EP 13004572 A EP13004572 A EP 13004572A EP 2851452 B1 EP2851452 B1 EP 2851452B1
Authority
EP
European Patent Office
Prior art keywords
layer
steel sheet
suspension
weight
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13004572.7A
Other languages
English (en)
French (fr)
Other versions
EP2851452A1 (de
Inventor
Achim Losch
Jahn Meinrad
Frank Beier
Wibke Geist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuchs SE
Original Assignee
Fuchs Petrolub SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuchs Petrolub SE filed Critical Fuchs Petrolub SE
Priority to EP13004572.7A priority Critical patent/EP2851452B1/de
Priority to PL13004572T priority patent/PL2851452T3/pl
Priority to ES13004572T priority patent/ES2734456T3/es
Priority to PCT/EP2014/002550 priority patent/WO2015039762A1/de
Publication of EP2851452A1 publication Critical patent/EP2851452A1/de
Application granted granted Critical
Publication of EP2851452B1 publication Critical patent/EP2851452B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Definitions

  • the present invention relates to a galvanized steel sheet having an inorganic functional layer and a method for producing the coated galvanized steel sheet. Furthermore, the invention relates to the use of the steel sheet for the production of motor vehicle components.
  • Electrolytically galvanized and hot-dip galvanized sheet steel has been established from the mid-1980s until today as an essential pillar of corrosion protection for high-quality car bodies.
  • Zinc-protected surfaces today ensure such high corrosion resistance that the useful life of the entire vehicle is no longer decisively limited by corrosion.
  • Electrolytically galvanized steel has been used for years in the automotive body shop.
  • the surface finish is applied before galvanizing ("temper rolling").
  • the softer zinc layer is subsequently uniformly deposited by electrolysis on the hard base metal.
  • the elo-galvanized strip can be phosphated.
  • Vorphosphatierung acts as a solid lubricant, reduces friction and prevents welding of the zinc on the tool.
  • Prelube oils are used for pre-phosphated sheet metal. Ribbons and sinkers are often washed with low viscosity Prelube oils. A relubrication with drawing oils is only exceptionally necessary.
  • Another possibility for improving the formability is the coating with dry lubricant (Drylube, Hotmelt) instead of the Prelubeöle.
  • hot-dip galvanized sheets In recent years, the proportion of hot-dip galvanized sheets in the automotive industry has risen sharply. In hot dip galvanizing, the band can only be trained after galvanizing. The texture is thus embossed in contrast to the electrolytically galvanized strip in the soft zinc layer. Due to the process, the zinc immersion bath contains a certain amount of aluminum, which accumulates on the surface as aluminum oxide. Hot-dip galvanized sheets tend to deform during forming Material transfer of the soft zinc to the tool. Friction and wear increase. This effect is also called job wear or galling. Unlike elo-galvanized steel, drawing oils and hotmelts can not sufficiently reduce this phenomenon in hot-dip galvanized steel. A phosphating similar to the Vorphosphatmaschine when elo-galvanized steel is due to the process not applied economically to Feuerzinkblechen.
  • Release layers or tribo layers applied to the surface of galvanized steel must be compatible with the raw building adhesives used for automotive use.
  • WO 2005/071140 A1 the use of an aqueous treating solution containing sulfate ions in a concentration of at least 0.01 mol / l is known to treat the surface of a galvanized steel sheet to reduce damage to the coating during forming and for temporarily improved corrosion protection.
  • ArcelorMittal has developed such a tribolayer for fire zinc sheets and launched it under the name "NIT". This layer is characterized by a very good friction reduction with good adhesive adhesion.
  • electrolytically galvanized sheet has been proven in addition to oiling a tri-cation tape phosphating. This is similar to the later applied in the Lackierline tri-cation phosphating.
  • DE 102008016050 A1 describes a primer for forming a forming layer, metal substrates coated with this primer and the use of the primer and the coated substrates.
  • the primers contain binders, additives, anticorrosive pigments, crosslinking agents and solvents. Branched polyester resins or other resins may be used as the binder, and anticorrosive pigments may be calcium modified silica, zinc phosphates, aluminum phosphates, aluminum triphosphates, silica-magnesium pigments and mixtures.
  • WO 2004/050808 A1 discloses a lubricant coated sheet metal having improved forming properties.
  • the coating lubricant is a corrosion protection oil, a so-called Prelube oil and / or a dry lubricant (Drylube, Dry Film Lubricant), wherein the metal sheet comprises a layer by applying a solution containing an organic phosphoric acid ester, on the Surface of the sheet is formed.
  • a solution which is the organic Contains phosphoric acid ester applied to the top and / or bottom of the sheet and then the lubricant to the thus coated sheet.
  • the solution can be applied by dipping, spraying, brushing or knife coating.
  • insufficient process compatibility in automotive engineering still limits the use.
  • EP 2 570 515 A2 discloses a chromate-free treatment method for aluminum substrates for forming a conversion layer using an aqueous alkaline treatment solution containing Li ions, phosphate, hydroxide ions and carbonate ions and having a pH greater than 10.
  • the treatment solution is applied to the metal substrate to produce a wet film of any thickness, depending on the application requirements. Without performing a rinse step, the wet film is dried, wherein the exposure time varies based on the type and thickness of the desired conversion layer.
  • US Pat. No. 5,660,707 describes a method of improving the formability and weldability of a galvanized steel sheet by producing a zinc oxide layer on the surface of the steel sheet as a forming auxiliary layer.
  • an aqueous, alkaline treatment solution with hydrogen peroxide is used as the oxidizing agent.
  • the treatment solution is buffered with NaOH and NaHCO 3 to a pH in a range of 7 to 11 and applied to the galvanized steel sheet to form a wet film which is allowed to act for a predetermined period of time at a predetermined temperature and then rinsed to remove a wet film Zinc oxide layer with at least 150 mg / m 2 to obtain.
  • US Pat. No. 6,231,686 B1 describes a method of treating a galvanized steel sheet to improve formability.
  • a forming auxiliary layer is produced on the surface of the steel sheet, which comprises a conversion layer of zinc carbonates.
  • the aqueous treatment solution used has 1 to 150 g / l of ammonium hydrogencarbonate or alkali metal hydrogencarbonate, resulting in a pH of the solution in a range of 6 to 9.
  • the aqueous processing solution is applied to the galvanized steel sheet and a wet film is produced which is at a predetermined time for a predetermined period of time Temperature is allowed to act in dependence of the concentration of the solution. Thereafter, the wet film is rinsed off and the resulting conversion layer has a coating weight of 10 to 100 mg / m 2 surface, which is determined by the contact time and the concentration of the solution.
  • the present invention based on the object to produce a conversion layer on the surface of a galvanized steel sheet in a simplified and accelerated work process without affecting subsequent process steps.
  • the time-economic and in existing manufacturing processes, especially in automotive integrable production of a galvanized steel sheet with a functional layer is to be made possible, which is significantly improved in terms of formability compared to only oiled surfaces, especially at high contact pressures and high temperatures, and large-scale Apply economically and is safe in terms of environment, health and safety.
  • Another object is to provide the galvanized steel sheet with functional layer, which is significantly improved in terms of formability compared to only oiled surfaces, especially at high contact pressures and high temperatures.
  • the functional layer should be insoluble or compatible with subsequently sprayed on lubricating oil.
  • the functional layer should also show a good adhesion of structural adhesive and suitable for body pretreatment (phosphating and phosphate-free process) and KTL-compatible.
  • Claim 12 discloses the use of the coated galvanized steel sheet in automobile construction.
  • a method according to the invention for the time-economic production of a galvanized steel sheet having an inorganic functional layer on the surface forming a Umformanges slaughter or part of a Umformologis slaughter begins with the preparation of an aqueous, silane-free (silane-free) solution or suspension containing at least one carbonate Supplier or at least one carbonate supplier and at least one hydroxide supplier.
  • carbonate or “hydroxide supplier” refers to salts which are at least partially soluble in aqueous medium and dissociate, so that the desired zinc salts are formed on the galvanized surface by chemical reaction in the aqueous treatment solution or suspension become.
  • the carbonate supplier (s) are selected from ammonium bicarbonate, ammonium carbonate, alkali metal hydrogencarbonates, alkali metal carbonates, and alkali metal carboxylates
  • the hydroxide source (s) are selected from alkali metal hydroxides, alkali metal oxides, alkali metal alcoholates, and magnesium hydroxide or magnesium oxide.
  • an additional hydroxide supplier can advantageously be dispensed with if the carbonate supplier goes into solution with the formation of hydroxide ions in an aqueous medium, as described, for example, in US Pat. B. with alkali metal bicarbonates and alkali metal carbonates is the case.
  • a concentration of the carbonate supplier (s) required in the solution or suspension to form the conversion layer is in a range from 1 to 5% by weight, preferably from 3 to 5% by weight.
  • the pH of the aqueous solution or suspension is in the range of 8 to 12. It has been found that a pH of (9 ⁇ 0.5) leads to particularly suitable conversion layers. Depending on the type of carbonate or hydroxide suppliers selected, the pH of the treatment solution or suspension may already be in the range mentioned area; however, if desired or required, addition of sodium hydroxide and / or potassium hydroxide may be made to adjust the pH.
  • the aqueous solution or suspension is applied to at least one side of the galvanized steel sheet, and thus a wet film having a predetermined thickness is produced, which is adjusted in accordance with the concentration of the treating solution of 1 to 20 ⁇ m, so that a chemical reaction of the metallic coating with the at least partially dissolved in the aqueous medium and dissociated carbonate suppliers or hydroxide suppliers to form zinc salts.
  • a conversion layer of zinc salts which are at least partially carbonates, is then obtained as the inorganic functional layer.
  • the layer weight of the dry substance after drying the wet film is determined by the thickness of the wet film and the concentration and is advantageously in a range of 25 to 200 mg / m 2 surface, preferably from 40 to 90 mg / m 2 and is thus the desired further processing suitable.
  • a deposited dry matter of 40 to 90 mg / m 2 surface is obtained, which converts to hydrozincite.
  • the coating weight of the conversion layer is in a range of 190 to 340 mg / m 2 and thus has a favorable and suitable strength for the intended purpose.
  • the hot-dip galvanized or elo-galvanized steel sheets with the functional layer can be economically produced with a small amount of time and equipment.
  • This treatment solution or suspension advantageously contains neither heavy metals nor organic compounds or solvents.
  • the risks associated with the use of alkaline solutions are known and can be well managed; necessary protective measures against chemical burns are limited.
  • this conversion layer is oil-resistant and only soluble in acids. The conversion layer shows good adhesion of raw building adhesives and is suitable for car body pretreatment and KTL-compatible.
  • any alkali element can generally be used as a cation of the carbonate and hydroxide suppliers, but mainly for cost and availability reasons, sodium and / or potassium will preferably be used.
  • Particularly preferred as carbonate suppliers are sodium and / or potassium bicarbonate and / or carbonate and used as hydroxide suppliers sodium or potassium hydroxide.
  • a treatment solution or suspension with these components achieves conversion layers with an optimum combination of friction behavior and bondability.
  • the application of the aqueous solution or suspension to the galvanized steel sheet can generally be done by spraying without squeezing or jetting and stripping with non-driven squeeze rolls.
  • the aqueous solution or suspension is applied by rolling continuously on a strip of galvanized steel sheet.
  • a Rollcoater usually per Coating side with two or three rollers (scoop roller, application roller and possibly regulating roller) works, whereby the band is deflected at the counter-pressure roller.
  • the aqueous solution or suspension can be rolled up in a time-economical manner by means of two squeeze rolls, between which the hot-dip galvanized steel sheet or steel strip is guided, in a simple and thus preferred manner.
  • the aqueous solution or suspension is sprayed in excess onto the squeezing rollers arranged on both sides of the galvanized steel sheet and excess solution or suspension, which drips off the sheet or the rollers, is collected and guided into a feed tank.
  • the squeeze rolls are pressurized to the surfaces of the galvanized steel sheet, thereby stripping the aqueous solution or suspension onto the surfaces of the galvanized steel sheet.
  • the thickness of the wet film is set in a range of 1 to 20 ⁇ m by selecting the setting pressure, a hardness of rubberizing the squeezing rollers, a speed of the squeezing rollers and a speed of the steel sheet and thus a relative speed of the squeezing rollers to the steel sheet.
  • a corrosion protection oil and / or a Prelubeöls or a dry lubricant carried on the conversion layer, so that a lubricating oil layer having a basis weight of 0.2 to 3.0 g / m 2 is obtained.
  • An inventive hot-dip galvanized steel sheet has on the surface an inorganic functional layer which forms a forming auxiliary layer or is part of a forming auxiliary layer.
  • the inorganic functional layer according to the invention is based on an alternative chemical basis. It is a conversion layer formed of zinc and zinc salts, at least part of which belongs to the carbonates.
  • the conversion layer is obtained by applying a treatment medium to the galvanized sheet steel surface which is an aqueous, silicic acid-free solution or suspension which contains at least one carbonate supplier, but preferably at least one carbonate supplier and additionally at least one hydroxide supplier.
  • the zinc salts of the conversion layer may further include zinc hydroxides and zinc oxides;
  • the conversion layer may thus preferably have a hydrozincite-like mineral structure which is formed from the dry substance deposited by the method according to the invention by application and drying of a wet film with a coating weight of 25 to 200 mg / m 2 surface.
  • the conversion layer with a method according to the invention can be displayed time-economically.
  • the layer weight of the dry substance which leads to the formation of the conversion layer is from 25 to 200 mg / m 2 surface, preferably from 40 to 90 mg / m 2 , a sufficiently good formability is ensured.
  • a tracer system can be provided in the conversion layer, which can be detected by X-ray fluorescence analysis and is selected from potassium, phosphorus, silicon or even tin or titanium compounds.
  • the Umformins slaughter the hot-dip galvanized steel sheet also has a lubricating oil layer, which is applied to the conversion layer, which in itself shows only limited anti-corrosion and lubricating effect.
  • This lubricating oil layer has a basis weight of 0.2 to 3.0 g / m 2 , typically 1.0 -1.5 g / m 2 , and thus meets the current delivery instructions for oiled steel strip.
  • the conversion layer is compatible with subsequently sprayed on corrosion protection oil or Prelube oil or dry lubricants and their suitability for subsequent process steps such as adhesive bonding or removability in automotive shell construction does not affect.
  • the application of corrosion protection or prelube oil or dry lubricant is for corrosion protection and lubrication necessary during forming.
  • the terms "conversion layer” and "functional layer” are used synonymously. While the term “conversion layer” is used more in the context of chemical composition and formation process, the term “functional layer” is more likely to be associated with the effect of this layer (in subsequent process steps).
  • a coated galvanized steel sheet according to the invention can be used for the production of a motor vehicle component, wherein the steel sheet is subjected to one or more forming steps.
  • the conversion layer applied to the galvanized sheet steel as a tribo layer is suitable for use in the automotive industry; and also the application of the treatment solution can be industrially implemented in mass production.
  • solids with layer lattice structure should be particularly suitable for reducing the solid friction in which the linking of the structure-forming Layers with one another in a spatial direction is much weaker than in the layer plane. This property is found z.
  • MoS 2 molybdenum disulfide
  • h-BN hexagonal boron nitride
  • such solids are generally not suitable for use on sheet metal surfaces for automobile bodies, since they exert a separating effect on the adhesives used in the shell.
  • the above-mentioned substances have low surface energies and are insoluble in the treatment baths used for cleaning and pretreating the body panels, which would lead to poor results in the structure of the paint job.
  • a suitable mineral is brucite, which consists of magnesium hydroxide, Mg (OH) 2 . It forms a layer grid of the Cdl2 type (where the iodide ions form a hexagonal close-packed spherical packing, the octahedral gaps of every second interlayer space are completely filled with cadmium ions) with pronounced cleavage in one spatial direction, but in contrast to graphite, molybdenum disulfide or hexagonal boron nitride has no pronounced low surface energies and is soluble in treatment baths because of its predominantly ionic bonding character. The solubility in water is low, which makes the continuous application of a drying wet film difficult.
  • the functional or conversion layer to be produced on the galvanized steel surface ensures the reduction of the friction during forming of the steel sheet.
  • the conversion layer is formed by the reaction of the surface-dried solution described above with the metal surface.
  • the thickness of the conversion layer thus results from the concentration of the treatment solution and the thickness of the applied wet film.
  • the basis weight of the dry substance is 25 to 200 mg / m 2 , preferably 40 to 90 mg / m 2 .
  • the pH of the treatment solution or suspension should be 8 to 12.
  • the solutions or suspensions of the carbonate or hydroxide suppliers may contain cations of the elements lithium, sodium, potassium, rubidium, cesium, but preferably sodium and potassium, and magnesium hydroxide or oxide.
  • the treatment solution may contain as an additive a tracer system which, although not required to obtain the tribological effect, serves as an indicator for the quantitative detection of the applied amount and does not hinder the formation of the conversion layer.
  • a tracer system which, although not required to obtain the tribological effect, serves as an indicator for the quantitative detection of the applied amount and does not hinder the formation of the conversion layer.
  • substances of the following elements can be used: potassium, phosphorus, silicon, tin or titanium. These elements can be detected more easily than the element sodium by X-ray fluorescence analysis (RFA).
  • the compounds potassium carbonate / bicarbonate, Na / K phosphate or Na / K di- / tri-phosphates, alkali silicate (especially sodium silicate, potassium silicate) tin carbonate / bicarbonate can be used for this purpose.
  • the treatment solution can be 0.01 to 1.5 wt .-% of the respective tracer system, preferably 0.05 to 1 wt .-%.
  • the application of the solution or suspension can generally be done by dipping, spraying, spraying / squeezing, roller coater or combinations of these methods with subsequent drying - of course, or thermally assisted.
  • the galvanized sheet steel coated according to the invention has a reduced coefficient of friction, wherein in addition the stick-slip behavior is avoided or at least reduced. Furthermore, the transfer of material from the workpiece to the tool and the formation of metal abrasion is reduced. On the other hand, the paintability and adhesiveness of the surface is retained.
  • the galvanized sheet steel coated according to the invention is wash-resistant to wash oils, while the conversion layer is very readily wettable with water.
  • the Fig. 1 shows a preferred simple method for producing a friction-reducing coated steel sheet according to the invention.
  • the sketched for carrying out the process plant can be roughly divided into three steps, jetting, squeezing and drying.
  • the galvanized steel strip 1 is moved in accordance with the feed direction a and guided between the rubberized squeezing rollers 10, which are located above and below the steel strip 1.
  • the treatment solution L (or suspension) is sprayed in excess onto the rubber coating 11 of the squeeze rollers 10.
  • the excess of the processing solution L at the squeegee 10 above the steel strip 1 flows first onto the steel strip 1, then over the strip edge in the receiver 13, while the excess of the treatment solution L at the squeegee 10 below the steel strip 1 directly from the roller 10 back into the storage container 13 passes.
  • the treatment solution L is supplied to the application devices 12 via corresponding feed lines 14.
  • the self-propelled squeeze rolls 10 are placed on the surfaces of the steel strip 1 with pneumatic or hydraulic pressure and strip the excess processing solution L thereon.
  • the upper roller serves as an abutment for the lower roller and vice versa.
  • the Anstelldrucks the hardness of the rubber coating 11, the relative speed of the squeeze rolls 10, which rotate at speed b, the steel strip 1 and the speed a of the steel strip 1 wet films 2 'of 1 to 20 microns, but preferably 2 to 3 microns produced become. Thinner wet films may be preferred as they allow shorter dryer runs, lower belt temperatures, or faster belt speeds.
  • the wet film 2 ' is dried in a circulating air dryer 15, so that the functional layer 2 is obtained on the hot-dip galvanized steel strip surface. Between outlet squeeze rollers 10 and outlet circulating air dryer 15, the steel strip 1 is tensioned without support.
  • the wet film can also be air-dried.
  • Construction and arrangement of the application device may well differ from the example shown.
  • roller coater equipped with two or three rollers, which allow greater freedom in the design of the wet film independently of the belt speed.
  • Rollcoaters are also part of the standard equipment for many systems, especially for the inline coating of antifinger printing.
  • roller coater cause significantly higher investment, maintenance and operating costs, they are used for simple post-treatments, as it represents the application of the treatment solution according to the invention, less frequently.
  • sodium and potassium carbonate and bicarbonate or sodium and potassium bicarbonate and hydroxide are selected with a total concentration in the treatment solution of 3 to 5 wt .-% and the pH in a range of 7 to 13, preferably 8 to 12, more preferably set to 9.
  • the pH of the treatment solution should be in a range from 8 to 12, more preferably about 9, and is optionally adjusted, preferably with NaOH or KOH.
  • the exemplary process described here of forming conversion layers by the action of basic alkali metal carbonates on galvanized steel surfaces provides for the formation of structures which resemble the hydrozincite Zn 5 [(OH) 6
  • surfaces of hot-dip galvanized steel strips contain not only zinc but also a smaller proportion of aluminum (Z-plates and ZM-plates) or magnesium (ZM-plates).
  • the conversion layer resulting from corrosion also contains aluminum or magnesium compounds (hydroxides, carbonates, oxides).
  • the formed corrosion layer is amorphous, an exact chemical composition or crystal structure is not given.
  • the layers of basic zinc-aluminum carbonate / hydroxide (sheet “Z”), basic zinc / magnesium-aluminum carbonate / hydroxide (sheet “ZM”) or basic zinc carbonate / hydroxide (sheet “ZE”) are referred to below as the conversion layer or Functional layer described.
  • the wet film applied to the metal surface according to the invention is dried and subsequently not rinsed with water. Therefore, all non-volatile components remain on the surface.
  • the layer weight of the dry substance is in a range from 25 to 200 mg / m 2 surface, preferably 40 to 90 mg / m 2 .
  • the coating weight of the forming conversion layer is due to corrosion and incorporation of the zinc, aluminum or magnesium from the sheet surface accordingly greater.
  • the coating weight of the dry substance can be determined by the thickness of the wet film as a function of the concentration of the treatment solution. For example, a wet film of a 3% solution is to be applied 1.3 to 3.0 ⁇ m thick in order to achieve the preferred basis weight of the dry matter of 40 to 90 mg / m 2 .
  • the layer thickness can be checked by X-ray fluorescence analysis of the added to the solution and present in the dry substance tracer elements potassium, phosphorus, sulfur or silicon, tin, titanium.
  • the friction-reducing effect of the conversion layer can be detected, for example, by strip drawing experiments based on VDA 230-213 and by cup draw tests, as described below with reference to FIGS FIGS. 2 to 4 will be shown.
  • treatment solutions used to treat the sheets for strip pulling tests and cupping tests are listed in the table below.
  • Table 1 Examples of treatment solutions: designation Treatment or aqueous treatment solution FG TS [mg / m 2 ] EMERGENCY untreated - NC 5% by weight NaHCO 3 / NaOH, pH 9 70 KC 5% by weight KHCO 3 / KOH, pH 9 70 NC + KC 4.25% NaHCO 3 + 0.75% KHCO 3 / NaOH, pH 9 70 NC + PH 4.25% NaHCO 3 + 0.75% Na tripolyphosphate / NaOH, pH 9 70 NC + S 4.25% NaHCO 3 + 0.75% Na 2 SO 4 / NaOH, pH 9 70 NC + Si 4.25% NaHCO 3 + 0.75% Na metasilicate / NaOH, pH 9 70 NC + SiO 2 4.25% NaHCO 3 + 0.75% SiO 2 dispersion Aerodisp W 7520 N (Evonik, Hanau) / NaOH, pH 9 70 H 2 O Steam
  • the 5% strength by weight treatment solution having a pH of 9 is obtained by dissolving 50 g of NaHCO 3 in 950 g of demineralized water and then the solution with sodium hydroxide solution (eg with 50% by weight of NaOH) pH 9 is adjusted.
  • Fig. 2 shows in a graph in which the friction coefficient is plotted against the contact pressure, results for flat-strip stripping experiments, on a treated with 5 wt .-% NaHCO 3 / NaOH aqueous solution (pH 9) NC sheet and a 5 wt. % KHCO 3 / KOH aqueous solution (pH 9) treated sheet KC (see Table 1) and for comparison on an untreated sheet NOT according to VDA 230-213 were performed.
  • the maximum punch force on the untreated sheet NOT is plotted against the differently pretreated sheet according to Table 1.
  • the presence of tracers is not required.
  • the examples given show that the different tracer systems have some influence on the overall layer friction, albeit to a lesser extent.
  • the conversion layers of treatment solutions with the tracer systems in particular with phosphate (NC + PH) and silicon dioxide (NC + SiO 2), allow the lowest stamping forces. This suggests that either the presence of certain tracer components is more effective Promotes conversion layer or contribute certain tracer components for better tribological effectiveness and, for example, be installed even in the conversion layer.
  • phosphates are known as lubricating components, and the SiO 2 dispersion is attributed to lubricating effect.
  • both effects come into consideration.
  • the conversion layer is compatible with a subsequent manufacturing process of a car body shell:
  • the temporary corrosion protection of the steel sheet is indispensable for the storage and transport of steel coils and still unpainted pressed parts. This is usually achieved by applying anti-corrosive or Prelube oils or waxy hotmelt dry lubricants in the rolling mill.
  • the proof of the anti-corrosion properties can be exemplified by a condensed water climate test be carried out as described in the test specification VDA 230-213.
  • the Prelube Anticorit PL 3802-39 S used for lubrication has been used for years for coil lubrication in the German steel and automotive industry. It can therefore be assumed that the conversion coatings are suitable for the temporary corrosion protection of coils and pressed parts.
  • a good adhesion of the adhesives used is essential for the carcass shell.
  • the compatibility of the conversion layer with such structural adhesives can be investigated by way of example with an adhesive bead test.
  • a strand (bead) of the still liquid adhesive is applied to the pretreated and with 2.8 to 3.2 g / m 2 Anticorit PL 3802-39 S oiled test sheet and subsequently thermally cured. After cooling, the adhesive bead is mechanically peeled off and the surfaces of the sheet and the removed bead are examined. A retention of adhesive residues on the metal surface indicates good adhesion of adhesive metal.
  • Such good adhesion is accompanied by a rough, and thus whitish surface of the adhesive bead.
  • the adhesives used were, for example, the products Betamate TM 1496 F and Betamate TM 1040 from Dow Automotive.
  • the adhesive beads cured on the sheets were subjected to corrosion before peeling.
  • moisture loads were carried out over a period of 504 h at 50 ° C and 95% relative humidity. It was found that the fracture pattern after the corrosion load is also cohesive (CF) or near-surface cohesive (SCF).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

  • Die nachfolgende Erfindung bezieht sich auf ein verzinktes Stahlblech mit einer anorganischen Funktionsschicht und auf ein Verfahren zur Herstellung des beschichteten verzinkten Stahlblechs. Ferner bezieht sich die Erfindung auf die Verwendung des Stahlblechs zur Herstellung von Kraftfahrzeugbauteilen.
  • Elektrolytisch verzinktes und feuerverzinktes Feinblech hat sich von Mitte der 1980er Jahre bis heute als eine wesentliche Säule des Korrosionsschutzes für hochwertige Automobilkarosserien etabliert. Durch Verzinkungen geschützte Oberflächen gewährleisten heute eine so hohe Korrosionsbeständigkeit, dass die Nutzbarkeitsdauer des Gesamtfahrzeugs nicht mehr entscheidend durch Korrosion beschränkt ist.
  • Elektrolytisch verzinkter Stahl wird seit Jahren im Bereich der automobilen Rohkarosse eingesetzt. Die Oberflächenfeingestalt wird hierbei vor der Verzinkung aufgebracht ("Dressieren"). Die weichere Zinkschicht wird nachfolgend gleichmäßig durch Elektrolyse auf dem harten Basismetall abgeschieden. Zur Verbesserung der Umformbarkeit kann das elo-verzinkte Band phosphatiert werden. Diese sogenannte Vorphosphatierung wirkt als Festschmierstoff, senkt die Reibung und verhindert ein Aufschweißen des Zinks auf dem Werkzeug. Bei vorphosphatierten Blechen kommen hauptsächlich Prelube-Öle zum Einsatz. Bänder und Platinen werden häufig mit niedrigviskosen Ölen der Prelubecharakteristik gewaschen. Eine Nachschmierung mit Ziehölen ist nur ausnahmsweise erforderlich. Eine weitere Möglichkeit zur Verbesserung der Umformbarkeit ist die Beschichtung mit Trockenschmierstoff (Drylube, Hotmelt) anstelle der Prelubeöle.
  • In den letzten Jahren ist der Anteil feuerverzinkter Bleche im Automobilbau stark angestiegen. Bei der Feuerverzinkung kann das Band nur nach der Verzinkung dressiert werden. Die Textur ist also im Unterschied zum elektrolytisch verzinkten Band in der weichen Zinkschicht eingeprägt. Das Zink-Tauchbad enthält verfahrensbedingt einen gewissen Anteil Aluminium, das sich an der Oberfläche als Aluminiumoxid anreichert. Feuerverzinkte Bleche neigen bei der Umformung zum Materialübertrag des weichen Zinks auf das Werkzeug. Reibung und Verschleiß steigen an. Dieser Effekt wird auch Auftragreibverschleiß oder Galling genannt. Anders als bei elo-verzinktem Stahl können Ziehöle und Hotmelts diese Erscheinung bei feuerverzinktem Stahl bislang nicht ausreichend reduzieren. Eine Phosphatierung ähnlich der Vorphosphatierung beim elo-verzinkten Stahl ist auf Feuerzinkblechen verfahrensbedingt nicht wirtschaftlich aufzutragen.
  • Da die im Vergleich zu Stahl sehr duktilen Zinkoberflächen zu vermehrtem Abrieb in Presswerkzeugen führen, der leicht zu visuell wahrnehmbaren Oberflächendefekten führen kann, wurde anfangs einseitig verzinktes Blech für Sichtteile verwendet, wobei die lackierte Sichtseite selbst unverzinkt war. Kontinuierliche Verbesserungen in der Prozesskette erlauben heute die Fertigung von Außenhautteilen mit beidseitig verzinkter Oberfläche.
  • Bei deren Herstellung wie auch bei schwierigen Umformteilen sind - zusätzlich zur Schmierung mit flüssigen oder halbfesten Medien - auf der Oberfläche des metallischen Werkstücks oder Werkzeugs verankerte Trennschichten von Vorteil. Neben der tribologischen Wirkung, die mindestens auf einer ausreichend starken mechanischen Trennung der metallischen Oberflächen von Werkzeug und Werkstück beruht, wird eine umfassende Kompatibilität mit der Prozesskette im Karosserierohbau angestrebt.
  • Trenn- bzw. Triboschichten, die auf die Oberfläche von verzinktem Stahl aufgebracht werden, müssen zur Verwendung im Automobilbau mit den eingesetzten Rohbauklebstoffen verträglich sein. Aus WO 2005/071140 A1 ist die Verwendung einer wässrigen Behandlungslösung, die Sulfationen in einer Konzentration von zumindest 0,01 mol/l enthält, bekannt, um die Oberfläche eines galvanisierten Stahlblechs zur Reduzierung der Beschädigung der Beschichtung während des Umformens und für einen temporär verbesserten Korrosionsschutz zu behandeln.
  • ArcelorMittal hat eine solche Triboschicht für Feuerzinkbleche entwickelt und unter dem Namen "NIT" in den Markt gebracht. Diese Schicht zeichnet sich durch eine sehr gute Reibungsminderung bei gleichzeitig guter Klebstoffhaftung aus.
  • Für das produktionsbedingt rauere, häufig in der Außenhaut eingesetzte, elektrolytisch verzinkte Feinblech hat sich zusätzlich zur Beölung eine Tri-Kationen-Bandphosphatierung bewährt. Diese ist artgleich zur später in der Lackierlinie aufgebrachten Tri-Kationen-Phosphatierung.
  • Artgleiche Tri-Kationen-Bandphosphatierungen auf feuerverzinktem Blech konnten sich bisher ebenso wenig im Automobilbau etablieren wie artähnliche, nicht-kristalline "No-Rinse" Phosphatierungen, wie sie z. B. von der Salzgitter AG unter dem Markennamen µPhos® angeboten werden. Dabei handelt es sich um eine anorganische Konversionsschicht mit einer Dicke von ca. 300 nm als Umformhilfe für feuerverzinktes Feinblech.
  • DE 102008016050 A1 beschreibt einen Primer zur Erzeugung einer Umformschicht, mit diesem Primer beschichtete Metallsubstrate sowie die Verwendung des Primers und der beschichteten Substrate. Die Primer enthalten Bindemittel, Additive, Korrosionsschutzpigmente, Vernetzungsmittel und Lösungsmittel. Als Bindemittel können verzweigte Polyesterharze oder andere Harze gewählt werden, und als Korrosionsschutzpigmente kommen mit Kalzium modifizierte Silicapigmente, Zinkphosphate, Aluminiumphosphate, Aluminiumtriphosphate, Silica-Magnesiumpigmente und Gemische in Betracht.
  • Diese Schichten bieten eine gute Reibungsminderung, weisen zum Teil allerdings Klebstoffinkompatibilitäten auf, so dass die Verwendbarkeit für den automobilen Rohbau eingeschränkt ist.
  • WO 2004/050808 A1 offenbart ein schmierstoffbeschichtetes Metallblech mit verbesserten Umformeigenschaften. Bei dem Beschichtungsschmierstoff handelt es sich um ein Korrosionsschutzöl, ein so genanntes Prelube-Öl und/oder einen Trockenschmierstoff (Drylube, Dry Film Lubricant), wobei das Metallblech eine Schicht umfasst, die durch Aufbringen einer Lösung, die einen organischen Phosphorsäureester enthält, auf die Oberfläche des Blechs gebildet ist. Zur Herstellung des schmierstoffbeschichteten Metallblechs wird eine Lösung, die den organischen Phosphorsäureester enthält, auf die Ober- und/oder Unterseite des Blechs und danach der Schmierstoff auf das so beschichtete Blech aufgebracht. Das Aufbringen der Lösung kann durch Tauchen, Sprühen, Streichen oder Rakeln erfolgen. Allerdings führt eine nicht ausreichende Prozesskompatibilität im Automobilbau noch zu Beschränkungen des Einsatzes.
  • Aus EP 2 570 515 A2 ist ein chromatfreies Behandlungsverfahren für Aluminiumsubstrate zur Erzeugung einer Konversionsschicht entnehmbar, bei dem eine wässrige, alkalische Behandlungslösung verwendet wird, die Li-lonen, Phosphat, Hydroxidionen und Carbonat-Ionen enthält und einen pH-Wert größer 10 aufweist. Die Behandlungslösung wird auf das Metallsubstrat aufgebracht und ein Nassfilm mit beliebiger Dicke erzeugt, die von den Anwendungsanforderungen abhängig ist. Ohne Durchführen eines Spülschritts wird der Nassfilm getrocknet, wobei die Einwirkzeit basierend auf der Art und Dicke der gewünschten Konversionsschicht variiert.
  • US 5 660 707 A beschreibt ein Verfahren zur Verbesserung der Formbarkeit und Schweißbarkeit eines verzinkten Stahlblechs durch die Herstellung einer Zinkoxidschicht an der Oberfläche des Stahlblechs als Umformhilfsschicht. Hierzu wird eine wässrige, alkalische Behandlungslösung mit Wasserstoffperoxid als Oxidationsmittel eingesetzt. Die Behandlungslösung wird mit NaOH und NaHCO3 auf einen pH-Wert in einem Bereich von 7 bis 11 gepuffert und auf das verzinkte Stahlblech unter Erzeugung eines Nassfilms aufgebracht, der für eine vorbestimmte Zeitdauer bei einer vorbestimmten Temperatur einwirken gelassen und dann abgespült wird, um eine Zinkoxidschicht mit zumindest 150 mg/m2 zu erhalten.
  • US 6 231 686 B1 beschreibt ein Verfahren zur Behandlung eines verzinkten Stahlblechs zur Verbesserung der Umformbarkeit. Hierbei wird an der Oberfläche des Stahlblechs eine Umformhilfsschicht erzeugt, die eine Konversionsschicht aus Zinkcarbonaten umfasst. Die dazu verwendete wässrige Behandlungslösung weist 1 bis 150 g/l Ammoniumhydrogencarbonat oder Alkalimetallhydrogencarbonat auf, woraus sich ein pH-Wert der Lösung in einem Bereich von 6 bis 9 ergibt. Die wässrige Behandlungslösung wird auf das verzinkte Stahlblech aufgebracht und ein Nassfilm erzeugt, der für eine vorbestimmte Zeitdauer bei einer vorbestimmten Temperatur in Anhängigkeit der Konzentration der Lösung einwirken gelassen wird. Danach wird der Nassfilm abgespült und die erhaltene Konversionsschicht hat ein Schichtgewicht von 10 bis 100 mg/m2 Oberfläche, das durch die Einwirkzeit und die Konzentration der Lösung bestimmt wird.
  • Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zu Grunde, eine Konversionsschicht an der Oberfläche eines verzinkten Stahlblechs in einem vereinfachten und beschleunigten Arbeitsprozess ohne Beeinträchtigung nachfolgender Prozessschritte zu erzeugen. Insbesondere soll die zeitökonomische und in bestehende Herstellungsprozesse vor allem im Automobilbau integrierbare Herstellung eines verzinkten Stahlblechs mit einer Funktionsschicht ermöglicht werden, die hinsichtlich Umformbarkeit im Vergleich zu nur beölten Oberflächen, vor allem bei hohen Kontaktdrücken und hohen Temperaturen, signifikant verbessert ist, und die sich großtechnisch wirtschaftlich auftragen lässt sowie unbedenklich hinsichtlich Umwelt, Gesundheit und Sicherheit ist.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des unabhängigen Anspruchs 1 gelöst.
  • Eine weitere Aufgabe liegt in der Bereitstellung des verzinkten Stahlblechs mit Funktionsschicht, die hinsichtlich Umformbarkeit im Vergleich zu nur beölten Oberflächen, vor allem bei hohen Kontaktdrücken und hohen Temperaturen, signifikant verbessert ist. Zudem soll die Funktionsschicht unlöslich oder verträglich mit nachfolgend aufgesprühtem Schmieröl sein. Die Funktionsschicht soll ferner eine gute Haftung von Rohbauklebstoff zeigen und geeignet für Karosserievorbehandlung (Phosphatierungen und phosphatfreie Verfahren) sowie KTL-verträglich sein.
  • Diese Aufgabe wird durch ein beschichtetes Stahlblech mit den Merkmalen des unabhängigen Anspruchs 8 gelöst.
  • Anspruch 12 offenbart die Verwendung des beschichteten verzinkten Stahlblechs im Automobilbau.
  • Weiterbildungen der Gegenstände werden durch die jeweiligen Unteransprüche beschrieben.
  • Ein erfindungsgemäßes Verfahren zur zeitökonomischen Herstellung eines verzinkten Stahlblechs, das an der Oberfläche eine anorganische Funktionsschicht auf weist, die eine Umformhilfsschicht bildet bzw. Teil einer Umformhilfsschicht ist, beginnt mit dem Herstellen einer wässrigen, siliziumwasserstofffreien (silanfreien) Lösung oder Suspension, die zumindest einen Carbonat-Lieferanten oder zumindest einen Carbonat-Lieferanten und zumindest einen Hydroxid-Lieferanten enthält.
  • Mit "Carbonat-" bzw. "Hydroxid-Lieferant" werden vorliegend Salze bezeichnet, die in wässrigem Medium zumindest teilweise löslich sind und dissoziieren, so dass die gewünschten Zink-Salze an der verzinkten Oberfläche durch chemische Reaktion in der wässrigen Behandlungslösung bzw. Suspension gebildet werden. Der oder die Carbonat-Lieferanten werden aus Ammoniumhydrogencarbonat, Ammoniumcarbonat, Alkalimetallhydrogencarbonaten, Alkalimetallcarbonaten und Alkalimetallcarboxylaten ausgewählt und der oder die Hydroxid-Lieferanten aus Alkalimetallhydroxiden, Alkalimetalloxiden, Alkalimetallalkoholaten und Magnesiumhydroxid bzw. Magnesiumoxid.
  • So ist es je nach Art des Carbonat-Lieferanten denkbar, dass vorteilhaft auf einen zusätzlichen Hydroxid-Lieferanten verzichtet werden kann, falls der Carbonat-Lieferant unter Bildung von Hydroxidionen in wässrigem Medium in Lösung geht, wie das z. B. bei Alkalimetallhydrogencarbonaten und Alkalimetallcarbonaten der Fall ist.
  • Eine zur Bildung der Konversionsschicht erforderliche Konzentration des oder der Carbonat-Lieferanten in der Lösung bzw. Suspension liegt in einem Bereich von 1 bis 5 Gew.-%, bevorzugt 3 bis 5 Gew.-%.
  • Der pH-Wert der wässrigen Lösung oder Suspension liegt in einem Bereich von 8 bis 12. Es hat sich gezeigt, dass ein pH-Wert von (9 ± 0,5) zu besonders geeigneten zur Konversionsschichten führt. Je nach Art der gewählten Carbonat- bzw. Hydroxid-Lieferanten kann der pH-Wert der Behandlungslösung bzw. Suspension bereits im genannten Bereich liegen; falls gewünscht oder erforderlich, kann aber auch eine Zugabe von Natriumhydroxid und/oder Kaliumhydroxid erfolgen, um den pH-Wert zu justieren.
  • Die wässrige Lösung oder Suspension wird auf zumindest eine Seite des verzinkten Stahlblechs aufgebracht und es wird damit ein Nassfilm mit einer vorbestimmten Dicke erzeugt, die in Abhängigkeit der Konzentration der Behandlungslösung von 1 bis 20 µm eingestellt wird, so dass an der Oberfläche eine chemische Reaktion des metallischen Überzugs mit den zumindest teilweise im wässrigen Medium gelösten und dissoziierten Carbonat-Lieferanten bzw. Hydroxid-Lieferanten zur Bildung von Zink-Salzen erfolgt. Nach dem Trocknen des Nassfilms, ohne dass ein Spülschritt durchgeführt wird, wird dann als anorganische Funktionsschicht eine Konversionsschicht aus Zink-Salzen, die zumindest teilweise Carbonate sind, erhalten. Das Schichtgewicht der Trockensubstanz nach dem Trocknen des Nassfilms wird durch die Dicke des Nassfilms und die Konzentration bestimmt und liegt vorteilhaft in einem Bereich von 25 bis 200 mg/m2 Oberfläche, vorzugsweise von 40 bis 90 mg/m2 und ist so zur gewünschten Weiterverarbeitung geeignet.
  • So wird beispielsweise für eine zu behandelnde Oberfläche, die nur Zink und Zinkoxid enthält, mit einer Behandlungslösung, die als Carbonat-Lieferant Natriumhydrogencarbonat enthält, eine abgeschiedene Trockensubstanz von 40 bis 90 mg/m2 Oberfläche erhalten, die sich zu Hydrozinkit umsetzt. Unter diesen Bedingungen liegt das Schichtgewicht der Konversionsschicht in einem Bereich von 190 bis 340 mg/m2 und hat damit für den angestrebten Zweck eine günstige und geeignete Stärke.
  • Mit diesem No-Rinse-Verfahren können die feuerverzinkten oder elo-verzinkten Stahlbleche mit der Funktionsschicht unter geringem zeitlichen und apparativen Aufwand auch großtechnisch wirtschaftlich erzeugt werden.
  • Diese Behandlungslösung bzw. Suspension enthält vorteilhaft weder Schwermetalle noch organische Verbindungen bzw. Lösungsmittel. Die mit dem Einsatz alkalischer Lösungen verbundenen Risiken sind bekannt und können gut gehandhabt werden; erforderliche Schutzmaßnahmen gegen Verätzungen halten sich in Grenzen. Ferner ist diese Konversionsschicht ölbeständig und nur in Säuren löslich. Die Konversionsschicht zeigt gute Haftung von Rohbauklebstoffen und ist für Karossenvorbehandlungen geeignet sowie KTL-verträglich.
  • Selbstverständlich kann generell jedes Alkalielement als Kation der Carbonat- und Hydroxid-Lieferanten eingesetzt werden, hauptsächlich aus Kosten- und Verfügbarkeitsgründen werden jedoch vorzugsweise Natrium und/oder Kalium zum Einsatz kommen. Besonders bevorzugt werden als Carbonat-Lieferanten Natrium- und/oder Kalium-Hydrogencarbonat und/oder -Carbonat und als Hydroxid-Lieferanten Natrium- oder Kalium-Hydroxid eingesetzt. Eine Behandlungslösung bzw. Suspension mit diesen Komponenten erzielt Konversionsschichten mit einer optimalen Kombination aus Reibverhalten und Verklebbarkeit.
  • Um die Dicke der erzeugten Konversionsschicht überprüfen zu können, kann in einer Ausführungsform des Verfahrens beim Herstellen der Behandlungslösung oder Suspension ein in der Röntgenfluoreszenzanalyse nachweisbares Tracersystem zugegeben werden, das
    • Natrium- und/oder Kalium-Phosphat oder Natrium- und/oder Kalium- Di- und/oder Tri-Phosphate, oder
    • Kalium-Hydrogencarbonat, oder
    • Natrium- und/oder Kalium-Sulfat, oder
    • Natrium- und/oder Kalium-Silikate, Natrium- und/oder Kalium-Metasilikate, oder eine Natrium-haltige SiO2-Dispersion
    • eine Zinn- oder Titan-Verbindung
    aufweist. Für das Tracersystem kann eine Konzentration im Bereich von 1 bis 30 Gew.-%, bevorzugt 10 bis 20 Gew.-%, besonders bevorzugt 15 Gew.-%, bezogen auf den Gehalt an Carbonat- und Hydroxid-Lieferanten, gewählt werden.
  • Das Aufbringen der wässrigen Lösung oder Suspension auf das verzinkte Stahlblech kann generell durch Aufsprühen ohne Abquetschen oder Aufdüsen und Abstreifen mit nicht angetriebenen Abquetschwalzen erfolgen. Bevorzugt jedoch wird die wässrige Lösung oder Suspension durch Aufwalzen kontinuierlich auf ein Band aus verzinktem Stahlblech aufgebracht. Hierzu kann ein Rollcoater, der üblicherweise pro Beschichtungsseite mit zwei oder drei Walzen (Schöpfwalze, Applikationswalze und ggf. Regulierwalze) arbeitet, wobei das Band an der Gegendruckwalze umgelenkt wird.
  • Überraschend hat sich gezeigt, dass auf einfache und damit bevorzugte Weise die wässrige Lösung oder Suspension mittels zweier Abquetschwalzen, zwischen denen das feuerverzinkte Stahlblech bzw. Stahlband geführt wird, zeitökonomisch aufgewalzt werden kann.
  • Dabei wird die wässrige Lösung oder Suspension im Überschuss auf die beidseitig des verzinkten Stahlblechs angeordneten Abquetschwalzen aufgedüst und überschüssige Lösung oder Suspension, die von dem Blech oder den Walzen abtropft, aufgefangen und in einen Vorlagebehälter geführt. Die Abquetschwalzen werden mit Druck an die Oberflächen des verzinkten Stahlblechs angestellt und dabei die wässrige Lösung oder Suspension auf die Oberflächen des verzinkten Stahlblechs abgestreift. Die Dicke des Nassfilms wird in einem Bereich von 1 bis 20 µm durch Wahl des Anstelldrucks, einer Härte einer Gummierung der Abquetschwalzen, einer Geschwindigkeit der Abquetschwalzen und einer Geschwindigkeit des Stahlblechs und damit einer Relativgeschwindigkeit der Abquetschwalzen zum Stahlblech eingestellt.
  • In einem weiteren Verfahrensschritt kann das Applizieren eines Korrosionsschutzöls und/oder eines Prelubeöls bzw. eines Trockenschmierstoffes (Hotmelt, Dry Film Lubricant, Drylube) auf die Konversionsschicht erfolgen, so dass eine Schmierölschicht mit einem Flächengewicht von 0,2 bis 3,0 g/m2 erhalten wird.
  • Ein erfindungsgemäßes feuerverzinktes Stahlblech weist an der Oberfläche eine anorganische Funktionsschicht auf, die eine Umformhilfsschicht bildet bzw. Teil einer Umformhilfsschicht ist. Die erfindungsgemäße anorganische Funktionsschicht basiert auf einer alternativen chemischen Basis. Es handelt sich um eine Konversionsschicht, gebildet aus Zink und Zink-Salzen, von denen zumindest ein Teil zu den Carbonaten gehört. Die Konversionsschicht wird durch Aufbringen eines Behandlungsmediums auf die verzinkte Stahlblechoberfläche erhalten, bei dem es sich um eine wässrige, siliziumwasserstofffreie Lösung oder Suspension handelt, die zumindest einen Carbonat-Lieferanten, bevorzugt jedoch zumindest einen Carbonat-Lieferanten und zusätzlich zumindest einen Hydroxid-Lieferanten enthält.
  • Zu den Zink-Salzen der Konversionsschicht können ferner Zink-Hydroxide und Zink-Oxide gehören; die Konversionsschicht kann damit bevorzugt eine hydrozinkitähnliche Mineralstruktur aufweisen, die aus der mit dem erfindungsgemäßen Verfahren durch Applikation und Trocknung eines Nassfilms abgeschiedenen Trockensubstanz mit einem Schichtgewicht von 25 bis 200 mg/m2 Oberfläche gebildet wird.
  • Vorteilhaft lässt sich die Konversionsschicht mit einem erfindungsgemäßen Verfahren zeitökonomisch darstellen.
  • Beträgt das Schichtgewicht der Trockensubstanz, die zur Bildung der Konversionsschicht führt, 25 bis 200 mg/m2 Oberfläche, vorzugsweise 40 bis 90 mg/m2, ist eine ausreichend gute Umformbarkeit gewährleistet. Um die Dicke der Konversionsschicht nachweisen zu können, kann ein Tracersystem in der Konversionsschicht vorgesehen sein, das durch Röntgenfluoreszenzanalyse nachweisbar ist und aus Kalium-, Phosphor-, Silizium- oder aber auch aus Zinn- oder Titan-Verbindungen ausgewählt wird.
  • Um optimale Umformergebnisse zu erzielen, weist die Umformhilfsschicht des feuerverzinkten Stahlblechs zudem eine Schmierölschicht auf, die auf der Konversionsschicht aufgebracht ist, die für sich allein nur begrenzte Korrosionsschutz- und Schmierwirkung aufzeigt. Diese Schmierölschicht weist ein Flächengewicht von 0,2 bis 3,0 g/m2, typischerweise 1,0 -1,5 g/m2, auf, und genügt damit den gängigen Liefervorschriften für geöltes Stahlband.
  • Es hat sich gezeigt, dass die Konversionsschicht mit nachfolgend aufgesprühtem Korrosionsschutzöl bzw. Prelube-Öl oder Trockenschmierstoffen verträglich ist und deren Eignung für nachfolgende Prozessschritte wie Klebeverfahren oder die Entfernbarkeit im automobilen Rohbau nicht beeinträchtigt. Das Auftragen von Korrosionsschutz- oder Prelube-Öl bzw. Trockenschmierstoff ist für den Korrosionsschutz und die Schmierung bei der Umformung notwendig. Durch eine Kombination der Ölauflage mit der anorganischen Funktionsschicht ist eine deutliche Verbesserung der Schmierungseigenschaften zu erreichen. Vorliegend werden die Begriffe "Konversionsschicht" und "Funktionsschicht" synonym verwendet. Während die Bezeichnung "Konversionsschicht" eher im Zusammenhang mit der chemischen Zusammensetzung und dem Bildungsvorgang verwendet wird, wird die Bezeichnung "Funktionsschicht" eher mit der Wirkung dieser Schicht (in nachfolgenden Prozessschritten) in Verbindung gebracht.
  • Ein erfindungsgemäßes beschichtetes verzinktes Stahlblech kann zur Herstellung eines Kraftfahrzeugbauteils verwendet werden, wobei das Stahlblech einem oder mehreren Umformschritten unterzogen wird. Die auf dem verzinkten Stahlblech als Triboschicht aufgebrachte Konversionsschicht ist zum Einsatz im Automobilbau geeignet; und auch die Applikation der Behandlungslösung lässt sich industriell in Großserie umsetzen.
  • Weitere Vorteile werden durch die nachfolgende Beschreibung unter Bezug auf die begleitenden Figuren dargelegt. Der Bezug auf die Figuren in der Beschreibung dient der Unterstützung der Beschreibung und dem erleichterten Verständnis des Gegenstands. Es zeigt:
    • Fig. 1 zeigt eine lediglich schematische Darstellung als Seitenansicht auf eine Anlage zur Herstellung des erfindungsgemäßen beschichteten Stahlblechs,
    • Fig. 2 zeigt in einem Diagramm Ergebnisse von Flachbahn-Streifenziehversuchen an erfindungsgemäß behandelten Blechen im Vergleich mit unbehandeltem Blech,
    • Fig. 3 zeigt in einem Diagramm Ergebnisse von Napfziehversuchen an verschiedenen erfindungsgemäß behandelten Blechen im Vergleich mit unbehandeltem Blech,
    • Fig. 4 zeigt in einem Diagramm Ergebnisse von Napfziehversuchen an erfindungsgemäß bei unterschiedlichem pH-Wert behandelten Blechen im Vergleich mit unbehandeltem Blech.
  • Generell sollten zur Reduzierung der Festkörperreibung Festkörper mit Schichtgitterstruktur besonders geeignet sein, in der die Verknüpfung der strukturbildenden Schichten untereinander in einer Raumrichtung deutlich schwächer ausgebildet ist als in der Schichtebene. Diese Eigenschaft findet sich z. B. bei Graphit, Molybdändisulfid (MoS2) oder auch hexagonalem Bornitrid (h-BN). Derartige Feststoffe eignen sich aber in der Regel nicht für den Einsatz auf Blechoberflächen für Automobilkarosserien, da sie auf die im Rohbau verwendete Klebstoffe eine trennende Wirkung ausüben. Weiterhin weisen die oben angeführten Stoffe niedrige Oberflächenenergien auf und sind in den zur Reinigung und Vorbehandlung der Karosseriebleche verwendeten Behandlungsbädern unlöslich, was zu mangelhaften Ergebnissen im Aufbau der Lackierung führen würde.
  • Geeignet wären dagegen Verbindungen mit ähnlichem strukturellen Aufbau und einer chemischen Zusammensetzung, die keine negativen Wechselwirkungen in der späteren Prozesskette hervorruft. Ein geeignetes Mineral ist Brucit, welches aus Magnesiumhydroxid, Mg(OH)2, besteht. Es bildet ein Schichtgitter vom Cdl2-Typ (dort bilden die lodid-lonen eine hexagonal dichteste Kugelpackung aus, die Oktaederlücken jedes zweiten Schichtzwischenraums sind komplett mit Cadmium-Ionen gefüllt) mit ausgeprägter Spaltbarkeit in einer Raumrichtung, weist aber im Gegensatz zu Graphit, Molybdändisulfid oder hexagonalem Bornitrid keine ausgeprägt niedrigen Oberflächenenergien auf und ist auf Grund seines überwiegend ionischen Bindungscharakters in Behandlungsbädern löslich. Die Löslichkeit in Wasser ist aber gering, was die kontinuierliche Applikation aus einem trocknenden Nassfilm erschwert.
  • Untersuchungen zeigen, dass bewitterte Oberflächen von verzinktem Blech deutlich geringere Reibungskoeffizienten aufweisen als nicht bewitterte Oberflächen. Bei atmosphärischer Bewitterung bildet sich durch Einwirkung von Wasser und Kohlendioxid Hydrozinkit, Zn5[(OH)6|(CO3)2], auf Zinkoberflächen auf, das strukturelle Ähnlichkeiten zu Brucit aufweist.
  • Allerdings ist die Darstellung bewitterter Oberflächen im Rahmen eines vom kontinuierlich laufenden Verzinkungsprozess gespannten Zeitfensters weniger Sekunden allein durch Einwirkung von Wasser und CO2 nicht zu erreichen bzw. wäre aufgrund der erforderlichen Anlagenlänge nicht wirtschaftlich und nachhaltig realisierbar. Kurz: Bewitterung wird nicht als zeitökonomisch angesehen.
  • Es hat sich aber gezeigt, dass durch die Einwirkung wässriger Lösungen von Alkalimetallhydrogencarbonaten (AHCO3), Alkalimetallcarbonaten (A2CO3), Alkalimetallhydroxiden (AOH), Alkalimetalloxiden (A2O) , Alkalimetallalkoholaten (AO-R) und Alkalimetallcarboxylaten (AOOC-R) sowie Magnesiumoxid und/oder Magnesiumhydroxid auf verzinkten Oberflächen Konversionsschichten mit vergleichbarer Wirkung ausgebildet werden können.
  • Die auf der verzinkten Stahloberfläche zu erzeugende Funktions- bzw. Konversionsschicht sorgt für die Verminderung der Reibung beim Umformen des Stahlblechs. Die Konversionsschicht wird durch die Reaktion der auf der Oberfläche eingetrockneten, oben beschriebenen Lösung mit der Metalloberfläche erzeugt. Die Dicke der Konversionsschicht ergibt sich damit aus der Konzentration der Behandlungslösung und der Dicke des aufgetragenen Nassfilms. Das Flächengewicht der Trockensubstanz beträgt 25 bis 200 mg/m2, vorzugsweise 40 bis 90 mg/m2.
  • Der pH-Wert der Behandlungslösung bzw. Suspension soll 8 bis 12 betragen. Generell können die Lösungen bzw. Suspensionen der Carbonat- bzw. Hydroxid-Lieferanten Kationen der Elemente Lithium, Natrium, Kalium, Rubidium, Cäsium, vorzugsweise jedoch Natrium und Kalium, sowie Magnesiumhydroxid oder -oxid enthalten.
  • Des Weiteren kann die Behandlungslösung als Zusatz ein Tracersystem enthalten, das zwar nicht zur Erzielung der tribologischen Wirkung erforderlich ist, aber als Indikator zum quantitativen Nachweis der aufgetragenen Menge dient und die Bildung der Konversionsschicht nicht behindert. Hierzu können Substanzen folgender Elemente verwendet werden: Kalium, Phosphor, Silizium, Zinn oder Titan. Diese Elemente können einfacher als das Element Natrium mit der Röntgenfluoreszenzanalyse (RFA) nachgewiesen werden. Vorzugsweise können hierfür die Verbindungen Kalium-Carbonat/Hydrogencarbonat, Na/K-Phosphat bzw. Na/K-Di-/Tri-Phosphate, Alkali-Silikat (besonders Natriumsilikat, Kaliumsilikat) Zinn-Carbonat/Hydrogencarbonat eingesetzt werden. Die Behandlungslösung kann 0,01 bis 1,5 Gew.-% des jeweiligen Tracersystems, vorzugsweise 0,05 bis 1 Gew.-% enthalten.
  • Die Applikation der Lösung bzw. Suspension kann generell über Tauchen, Spritzen, Spritzen/Abquetschen, Rollcoater oder Kombinationen dieser Verfahren mit anschließender Trocknung - natürlich oder thermisch unterstützt - erfolgen. In Kombination mit einer Beölung von 0,2 bis 3,0 g/m2 je Seite weist das erfindungsgemäß beschichtete verzinkte Stahlblech einen reduzierten Reibkoeffizienten auf, wobei zudem das Stick-Slip-Verhalten vermieden oder zumindest reduziert wird. Ferner wird der Materialübertrag vom Werkstück auf das Werkzeug sowie die Bildung von Metallabrieb verringert. Die Lackier- und Verklebbarkeit der Oberfläche hingegen bleibt erhalten. Das erfindungsgemäß beschichtete verzinkte Stahlblech ist waschbeständig gegenüber Waschölen, während die Konversionsschicht sehr gut mit Wasser benetzbar ist.
  • Die Fig. 1 zeigt ein bevorzugtes einfaches Verfahren zur Herstellung eines erfindungsgemäß reibungsmindernd beschichteten Stahlblechs. Die zur Durchführung des Verfahrens skizzierte Anlage kann grob in drei Schritte, Aufdüsen, Abquetschen und Trocknen, unterteilt werden.
  • Das verzinkte Stahlband 1 wird gemäß Vorschubrichtung a bewegt und zwischen die gummierten Abquetschwalzen 10 geführt, die sich oberhalb und unterhalb des Stahlblechbandes 1 befinden. Mittels geeigneter Applikationsvorrichtungen 12 wird die Behandlungslösung L (oder Suspension) im Überschuss auf die Gummierung 11 der Abquetschwalzen 10 aufgedüst. Der Überschuss der Behandlungslösung L an der Abquetschwalze 10 oberhalb des Stahlblechbandes 1 fließt zuerst auf das Stahlblechband 1, dann über die Bandkante in der Vorlagebehälter 13, während der Überschuss der Behandlungslösung L an der Abquetschwalze 10 unterhalb des Stahlblechbandes 1 direkt von der Walze 10 zurück in den Vorlagebehälter 13 gelangt. Aus dem Vorlagebehälter 13 wird die Behandlungslösung L über entsprechende Speiseleitungen 14 den Applikationsvorrichtungen 12 zugeführt.
  • Die mit eigenem Antrieb ausgerüsteten Abquetschwalzen 10 werden mit pneumatischem oder hydraulischem Druck auf den Oberflächen des Stahlblechbandes 1 angestellt und streifen die im Überschuss vorhandene Behandlungslösung L darauf ab. Die Oberwalze dient als Widerlager für die Unterwalze und umgekehrt. Durch Wahl des Anstelldrucks, der Härte der Gummierung 11, der Relativgeschwindigkeit der Abquetschwalzen 10, die mit Geschwindigkeit b rotieren, zum Stahlblechband 1 und der Geschwindigkeit a des Stahlblechbandes 1 können Nassfilme 2' von 1 bis 20 µm, vorzugsweise aber 2 bis 3 µm erzeugt werden. Dünnere Nassfilme können bevorzugt sein, da sie kürzere Trocknerstrecken, geringere Bandtemperaturen oder schnellere Bandgeschwindigkeiten zulassen.
  • Der Nassfilm 2' wird in einem Umlufttrockner 15 getrocknet, so dass die Funktionsschicht 2 auf der feuerverzinkten Stahlbandoberfläche erhalten wird. Zwischen Auslauf Abquetschwalzen 10 und Auslauf Umlufttrockner 15 ist das Stahlblechband 1 unterstützungsfrei gespannt.
  • Generell kann der Nassfilm aber auch luftgetrocknet werden.
  • Aufbau und Anordnung der Applikationsvorrichtung können von dem gezeigten Beispiel durchaus abweichen.
  • So ist alternativ zum dargestellten Beispiel die Applikation durch einen mit zwei- oder drei Walzen ausgerüsteten Rollcoater denkbar, die größere Freiheiten bei der Ausgestaltung des Nassfilms unabhängig von der Bandgeschwindigkeit erlauben. Auch gehören Rollcoater bei vielen Anlagen zur Standardausrüstung, vor allem zur Inline-Beschichtung von Antifingerprint. Da Rollcoater allerdings deutlich höhere Invest-, Wartungs- und Betriebskosten verursachen, werden sie für einfache Nachbehandlungen, wie sie die erfindungsgemäße Applikation der Behandlungslösung darstellt, seltener eingesetzt.
  • Ferner ist auch das Aufsprühen eines Nassfilms ohne Abquetschen (z. B. in einer Nebelkammer) oder Aufdüsen und Abstreifen mit nicht angetriebenen Abquetschwalzen sowie das Durchziehen durch ein Tauchbad denkbar.
  • Als Substrat können beispielsweise folgende Bleche eingesetzt werden:
    • feuerverzinktes Blech, hot dip galvanized (Blech "Z"), gemäß Stahlinformationszentrum Charakteristische Merkmale CM095 Ausgabe 2010, ISSN 0175-2006, wobei es sich um ein kontinuierlich schmelztauchveredeltes Stahlfeinblech mit Zinküberzug "Z" einer Zinkauflage von 50 bis 600 g/m2 - vorzugsweise 50 bis 140 g/m2 - kalt nachgewalzt und texturiert mit einer mittleren Rauheit Ra = 0,7 bis 1,6 µm und einer Spitzenzahl RPc = 60 bis 140/cm und einem Dressiergrad von 0,2% bis 2,5% handelt,
    • feuerverzinktes Blech, hot dip galvanized (Blech "ZM"), gemäß Stahlinformationszentrum Charakteristische Merkmale CM095 Ausgabe 2010, ISSN 0175-2006, wobei es sich um kontinuierlich schmelztauchveredeltes Stahlfeinblech mit Zink/Magnesium-Überzug "ZM" einer Zink/Magnesium-Auflage von 40 bis 350 g/m2 - vorzugsweise 50 bis 140 g/m2 - kalt nachgewalzt und texturiert mit einer mittleren Rauheit Ra = 0,7 bis 1,6µm und einer Spitzenzahl RPc = 60 bis 140/cm und einem Dressiergrad von 0,2% bis 2,5% handelt.
    • elektrolytisch verzinktes Blech, electro-galvanized (Blech "ZE"), gemäß Stahlinformationszentrum Charakteristische Merkmale CM092, Ausgabe 2008, ISSN 0175-2006, wobei es sich um kaltgewalztes Stahlfeinblech, kalt nachgewalzt und texturiert mit einer mittleren Rauheit Ra = 0,7 bis 1,6 µm und einer Spitzenzahl RPc = 60 bis 140/cm, kontinuierlich elektrolytisch veredelt mit Zinküberzug "ZE" und einer Zinkschichtdicke von 2,5 bis 10 µm je Seite, vorzugsweise 5 bis 7,5 µm je Seite handelt.
  • Als Wirkstoffe in den beispielhaften Behandlungslösungen werden vorzugsweise Natrium- und Kaliumcarbonat und -hydrogencarbonat bzw. Natrium- und Kaliumhydrogencarbonat und -hydroxid mit einer Gesamtkonzentration in der Behandlungslösung von 3 bis 5 Gew.-% gewählt und der pH-Wert in einem Bereich von 7 bis 13, vorzugsweise 8 bis 12, besonders bevorzugt auf 9 eingestellt.
  • Wird ein Tracersystem zum Nachweis der Schichtdicke eingesetzt, liegt dessen Konzentration in einem Bereich von 1 bis 30 Gew.-%, bevorzugt 10 bis 20 Gew.-% und besonders bevorzugt bei 15 Gew.- % bezogen auf den Wirkstoffgehalt, wenn das Tracersystem aus den folgenden ausgewählt wird:
    • Na/K-Phosphat bzw. Na/K- Di-/Tri-Phosphate,
    • K-Hydrogencarbonat,
    • Na/K-Sulfat,
    • Na/K-Silikate, Na/K-Metasilikate, SiO2-Dispersion Na-haltig.
    • Zinn- oder Titan-Verbindungen
  • Auch mit Tracersystem soll der pH-Wert der Behandlungslösung in einem Bereich von 8 bis 12, besonders bevorzugt bei etwa 9 liegen, und wird gegebenenfalls eingestellt, vorzugsweise mit NaOH bzw. KOH.
  • Das hier beschriebene beispielhafte Verfahren der Bildung von Konversionsschichten durch die Einwirkung von basischen Alkalicarbonaten bzw. -hydrogencarbonaten auf verzinkte Stahloberflächen sorgt für die Bildung von Strukturen, die dem Hydrozinkit Zn5[(OH)6|(CO3)2] ähneln, das auf reinem Zink durch Korrosion in Gegenwart von luftgebundenem CO2 als basisches Zink-Carbonat neben weiteren -Hydroxiden, - Carbonaten und -Oxiden.
  • Im Unterschied zu reinen Zinkoberflächen enthalten Oberflächen feuerverzinkter Stahlbänder neben Zink auch einen kleineren Anteil Aluminium (Z-Bleche und ZM-Bleche) oder auch Magnesium (ZM-Bleche). Bei diesen Oberflächen enthält die durch Korrosion entstehende Konversionsschicht ebenfalls Aluminium- bzw. Magnesiumverbindungen (Hydroxide, Carbonate, Oxide). Die gebildete Korrosionsschicht ist amorph, eine genaue chemische Zusammensetzung bzw. Kristallstruktur ist nicht gegeben. Die Schichten aus basischem Zink-Aluminiumcarbonat/Hydroxid (Blech "Z"), basischem Zink/Magnesium-Aluminiumcarbonat/Hydroxid (Blech "ZM") bzw. basischem Zink-Carbonat/Hydroxid (Blech "ZE") werden im Folgenden als Konversionsschicht bzw. Funktionsschicht beschrieben.
  • Der erfindungsgemäß auf der Metalloberfläche aufgetragene Nassfilm wird getrocknet und nachfolgend nicht mit Wasser gespült. Daher verbleiben alle nichtflüchtigen Bestandteile auf der Oberfläche. Das Schichtgewicht der Trockensubstanz liegt in einem Bereich von 25 bis 200 mg/m2 Oberfläche, vorzugsweise 40 bis 90 mg/m2. Das Schichtgewicht der sich bildenden Konversionsschicht ist durch Korrosion und Einbau des Zinks, Aluminiums bzw. Magnesiums aus der Blechoberfläche entsprechend größer.
  • Das Schichtgewicht der Trockensubstanz kann durch die Dicke des Nassfilms in Abhängigkeit der Konzentration der Behandlungslösung bestimmt werden. Beispielsweise ist ein Nassfilm einer 3%-igen Lösung 1,3 bis 3,0 µm dick aufzutragen, um das bevorzugte Flächengewicht der Trockensubstanz von 40 bis 90 mg/m2 zu erzielen. Die Schichtdicke kann durch Röntgenfluoreszenzanalyse der der Lösung hinzugefügten und in der Trockensubstanz vorliegenden Tracerelemente Kalium, Phosphor, Schwefel oder Silizium, Zinn, Titan, überprüft werden.
  • Die reibungsmindernde Wirkung der Konversionsschicht kann beispielsweise durch Streifenziehversuche in Anlehnung an VDA 230-213 sowie durch Napfziehversuche nachgewiesen werden, wie nachfolgend unter Bezug auf die Figuren 2 bis 4 gezeigt wird.
  • Die zur Behandlung der Bleche für Streifenziehversuche und Napfziehversuche eingesetzten Behandlungslösungen sind in der nachfolgenden Tabelle aufgeführt. Tabelle 1: Beispiele für Behandlungslösungen:
    Bezeichnung Behandlung bzw. wässrige Behandlungslösung FG TS [mg/m2]
    NOT unbehandelt -
    NC 5 Gew.-% NaHCO3 / NaOH, pH 9 70
    KC 5 Gew.-% KHCO3 / KOH, pH 9 70
    NC+KC 4,25 % NaHCO3 + 0,75% KHCO3 / NaOH, pH 9 70
    NC+PH 4,25 % NaHCO3 + 0,75% Na-Tripolyphosphat / NaOH, pH 9 70
    NC+S 4,25 % NaHCO3 + 0,75% Na2SO4 / NaOH, pH 9 70
    NC+Si 4,25 % NaHCO3 + 0,75% Na-Metasilikat / NaOH, pH 9 70
    NC+SiO2 4,25 % NaHCO3 + 0,75% SiO2-Dispersion Aerodisp W 7520 N (Fa. Evonik, Hanau) / NaOH, pH 9 70
    H2O Wasserdampf -
    NC pH 11.5 5 Gew.-% Na2CO3 70
    NC pH 8.6 5 Gew.-% NaHCO3 70
    FG TS: Flächengewicht Trockensubstanz
  • So wird für das Beispiel NC die 5 Gew.-%ige Behandlungslösung mit pH 9 erhalten, indem 50 g NaHCO3 in 950 g vollentsalztem Wasser gelöst und danach die Lösung mit Natronlauge (z. B. mit 50 Gew.-% NaOH) auf pH 9 eingestellt wird.
  • Fig. 2 zeigt in einem Diagramm, in dem der Reibkoeffizient über den Kontaktdruck aufgetragen ist, Ergebnisse für Flachbahn-Streifenziehversuche, die an einem mit 5 Gew.-% NaHCO3 / NaOH wässriger Lösung (pH 9) behandelten Blech NC sowie einem mit 5 Gew.-% KHCO3 / KOH wässriger Lösung (pH 9) behandelten Blech KC (siehe Tabelle 1) und zum Vergleich an einem unbehandelten Blech NOT in Anlehnung an VDA 230-213 durchgeführt wurden. (Werkzeugmaterial GJS-700-2 (GGG 70L), Werkzeugtemperatur 40°C, Werkzeugdimension 74 x 144 mm2, Blechsorte = DX54D + Z100, Blechbreite 100 mm, Blechlänge 1500 mm, Blechdicke = 1 mm, Ziehgeschwindigkeit 10 mm/s.) Alle Prüfbleche wurden nach der Konversionsbehandlung vor dem Streifenziehversuch mit 1,1 bis 1,3 g/m2 Prelube-Öl Anticorit PL 3802-39S von Fuchs Europe GmbH, Mannheim, geölt. Die erfindungsgemäß behandelten Bleche NC, KC weisen gegenüber dem unbehandelten Blech NOT deutlich reduzierte Reibkoeffizienten auf, wobei zudem das Stick-Slip-Verhalten (Haftgleit-Verhalten), das bei dem unbehandelten Blech NOT auftritt, vermieden wird. Zudem wird ersichtlich, dass die mit NaHCO3 / NaOH erzeugen Konversionsschichten des Blechs NC tendenziell zu geringeren Reibzahlen führen als die mit KHCO3 / KOH erzeugten Konversionsschichten des Blechs KC.
  • Fig. 3 zeigt die Ergebnisse von Napfziehversuchen mit 0,8 mm starkem HDG-Blech (Presse BUP 200 der Fa. Zwick Roell, Ulm, Werkzeugmaterial Stempel und Ziehring = 1.2510, Werkzeugmaterial Niederhalter = 1.0503, Werkzeugtemperatur 25°C, zylindrischer Napf, Stempeldurchmesser = 50 mm, Stempelradius = 5 mm, Rondendurchmesser = 100 mm, Radius Ziehringrundung = 5 mm, Ziehspalt = 1,3 mm, Ziehverhältnis = 2.0, Niederhalterkraft = 30 kN, Blechsorte = DX54D + Z100, Blechdicke = 0.8 mm, Ziehgeschwindigkeit 10 mm/s). Im Säulendiagramm ist die maximale Stempelkraft am unbehandelten Blech NOT im Vergleich zu den gemäß Tabelle 1 unterschiedlich vorbehandelten Prüfblechen aufgetragen. Auch hier wurden alle Prüfbleche nach der Konversionsbehandlung mit 1,1 bis 1,3 g/m2 Prelube-Öl Anticorit PL 3802-39S geölt. Die mit den NaHCO3 -haltigen Behandlungslösungen behandelten Bleche (NC, NC+KC, NC+PH, NC+S, NC+Si, NC+SiO2) gestatten eine deutlich geringere maximale Stempelkraft als das unbehandelte Blech NOT. Es zeigt sich, dass auch eine Konversionsschicht, die aus einer Reaktion einer verzinkten Oberfläche mit Wasserdampf (Prüfblech H2O) erhalten wird, eine verringerte maximale Stempelkraft beim Napfziehversuch zur Folge hat und damit ein verbessertes tribologisches Verhalten zeigt.
  • Allerdings ist bislang die Behandlung mit Wasserdampf, die zu einer wirksamen Konversionsschicht führt, prozesstechnisch mit den üblicherweise eingesetzten Anlagen der Stahlindustrie nicht realisierbar, da zur Wasserdampfbehandlung deutlich längere Behandlungszeiten erforderlich sind als in dem vollkontinuierlichen Verfahren möglich ist. So bilden sich wirksame Konversionsschichten bei einer Temperatur von 40°C erst nach 1 Stunde und auch bei einer Temperatur von 95°C sind noch 2 Minuten erforderlich. Bei einer typischen Bandgeschwindigkeit im Walzwerk von 200 Metern pro Minute würden Behandlungszeiten von z. B. 2 Minuten eine Behandlungsstrecke auf der Produktionsanlage von 400 Metern erfordern. Behandlungszeiten von Sekunden, die der Fertigungsprozess verlangt, um die notwendige Produktivität der Anlagen zu erzielen, können daher mit Wasserdampf bislang nicht erzielt werden.
  • Für die Wirksamkeit einer erfindungsgemäßen Funktionsschicht hinsichtlich der Reibungsminderung ist die Gegenwart von Tracern nicht erforderlich. Die angegebenen Beispiele zeigen jedoch, dass die unterschiedlichen Tracersysteme einen gewissen Einfluss auf die Reibung der Gesamtschicht haben, wenn auch in einem geringeren Ausmaß. So gestatten die Konversionsschichten aus Behandlungslösungen mit den Tracersystemen, vor allem mit Phosphat (NC+PH) und Siliziumdioxid (NC+Si02) die geringsten Stempelkräfte. Dies deutet darauf hin, dass entweder die Gegenwart bestimmter Tracerkomponenten die Ausbildung einer wirksameren Konversionsschicht fördert oder bestimmte Tracerkomponenten zur besseren tribologischen Wirksamkeit beitragen und beispielsweise selbst in die Konversionsschicht eingebaut werden. So sind Phosphate als Schmierkomponenten bekannt, und auch der SiO2-Dispersion wird Schmierwirkung zugeschrieben. Gegebenenfalls kommen auch beide Effekte in Betracht.
  • Im Säulendiagramm in Fig. 4 sind die Ergebnisse von Napfziehversuchen mit HDG-Blech der Stärke 1,0 mm aufgetragen, wobei das unbehandelte Blech NOT mit einem bei pH 11,5 mit Na2CO3 und einem bei pH 8,6 mit NaHCO3 behandelten Blech (NC pH 11,5 und NC pH 8,6, siehe Tabelle 1) gegenübergestellt wird. (Prüfparameter: Werkzeugmaterial Stempel und Ziehring = 1.2510, Werkzeugmaterial Niederhalter = 1.0503, Werkzeugtemperatur 25°C, zylindrischer Napf, Durchmesser = 50 mm, Rondendurchmesser = 100 mm, Ziehverhältnis = 2.0, Niederhalterkraft = 30 kN, Blechsorte = DX54D + Z100, Blechdicke = 1,0 mm, Ziehgeschwindigkeit 10 mm/s) Die Prüfbleche wurden nach der Behandlung mit 1,1 bis 1,3 g/m2 Prelube-Öl Anticorit PL 3802-39S geölt.
  • Beide behandelten Bleche NC pH 11,5 und NC pH 8,6 erfordern im Napfziehversuch überraschend eine deutlich verringerte maximale Stempelkraft im Vergleich zu dem unbehandelten Blech NOT, wobei das bei pH 8,6 behandelte Blech NC pH 8,6 noch besser abschneidet als das bei pH 11,5 behandelte Blech NC pH 11,5, was daraus resultiert, dass bei pH 8,6 die Bildung des tribologisch besonders wirksamen Hydrozinkit Zn5[(OH)6(CO3)2] thermodynamisch bevorzugt erfolgt, während bei pH 11,5 die Bildung des weniger wirksamen Zinkoxid und -hydroxid erfolgt.
  • Ferner hat sich überraschend gezeigt, dass die Konversionsschicht mit einem nachfolgenden Fertigungsprozess einer Auto-Rohkarosse verträglich ist: In der Praxis ist für die Lagerung und den Transport von Stahlcoils sowie von noch unlackierten Pressteilen der temporäre Korrosionsschutz des Stahlbleches unverzichtbar. Dies wird normalerweise durch das Applizieren von Korrosionsschutz- oder Prelube-Ölen bzw. wachsartigen Hotmelt-Trockenschmierstoffen im Walzwerk erreicht. Der Nachweis der Korrosionsschutzeigenschaften kann beispielhaft durch einen Kondenswasser-Wechselklimatest erfolgen, wie er in der Prüfvorschrift VDA 230-213 beschrieben ist.
  • Für die Kondenswasser-Wechselklimatestung wurden jeweils fünf Bleche nach Tabelle 1 (NOT, NC, KC, NC+KC, NC+PH, NC+S, NC+Si, NC+SiO2) vorbehandelt, mit 1,1 bis 1,3 g/m2 Anticorit PL 3802-39 S geölt und während 30 Zyklen einer korrosionsfördernden Atmosphäre gemäß VDA 230-213 (5.4.8) ausgesetzt. Dabei hat sich gezeigt, dass die Schutzwirkung der behandelten Bleche (NC, KC, NC+KC, NC+PH, NC+S, NC+Si, NC+SiO2) der der nur geölten Referenzbleche ohne Konversionsschicht (NOT) entspricht. Das zur Beölung verwendete Prelube-Öl Anticorit PL 3802-39 S wird seit Jahren für die Coilbeölung in der deutschen Stahl- und Automobilindustrie eingesetzt. Daher kann von einer guten Eignung der Konversionsschichten für den temporären Korrosionsschutz von Coils und Pressteilen ausgegangen werden.
  • Weiter ist für den Rohbau von Autokarossen eine gute Haftung der verwendeten Klebstoffe unerlässlich. Die Verträglichkeit der Konversionsschicht mit solchen Rohbauklebstoffen kann beispielhaft mit einem Klebstoffraupentest untersucht werden. Hierbei wird ein Strang (Raupe) des noch flüssigen Klebstoffs auf das vorbehandelte und mit 2,8 bis 3,2 g/m2 Anticorit PL 3802-39 S geölte Prüfblech aufgetragen und nachfolgend thermisch ausgehärtet. Nach dem Erkalten wird die Klebstoffraupe mechanisch abgeschält und die Oberflächen des Bleches und der entfernten Raupe begutachtet. Ein Verbleib von Klebstoffresten auf der Metalloberfläche zeigt eine gute Haftung Klebstoff-Metall an. Eine solche gute Haftung geht einher mit einer rauen, und damit weißlichen Oberfläche der Klebstoffraupe. Als Klebstoff wurden beispielhaft die Produkte Betamate™ 1496 F und Betamate™ 1040 der Firma Dow Automotive verwendet.
  • Es konnte gezeigt werden, dass die Haftungseigenschaften der Prüfbleche mit Konversionsschicht (NC, KC, NC+KC, NC+PH, NC+S, NC+Si, NC+SiO2) vorteilhaft denen ohne eine solche Vorbehandlung (NOT) entsprechen. Es wurde in allen Fällen ein kohäsives (CF) bzw. oberflächennah-kohäsives (SCF) Bruchbild erzielt.
  • In einem weiteren Versuch wurden die auf den Blechen ausgehärteten Klebstoffraupen vor dem Abschälen einer Korrosionsbelastung ausgesetzt. Hierzu wurden exemplarisch Feuchtebelastungen über einen Zeitraum von504 h bei 50°C und 95% relativer Luftfeuchtigkeit durchgeführt. Es zeigte sich, dass das Bruchbild nach der Korrosionsbelastung ebenfalls kohäsiv (CF) bzw. oberflächennah-kohäsiv (SCF) ist. Diese Ergebnisse legen die Eignung der erfindungsgemäßen Konversionsschichten für die Klebeverfahren in der Herstellung von Autokarossen nahe.
  • Vor der Lackierung von Autokarossen ist die Entfernung öliger und die Lackhaftung negativ beeinflussender Schichten erforderlich. Dies geschieht durch eine wässrigalkalische Reinigung. Die restlose Entfernung von solchen Schichten wird durch eine vollständige Wasserbenetzbarkeit der Oberfläche angezeigt. Ein Nachweis der Entfernbarkeit kann beispielhaft durch die Entfernbarkeitsprüfung gemäß VDA 230-213 (5.10) erbracht werden.
  • Es hat sich gezeigt, dass sowohl Bleche ohne (NOT) als auch mit Konversionsschicht (NC, KC, NC+KC, NC+PH, NC+S, NC+Si, NC+SiO2) nach einer solchen Entfernbarkeitsprüfung vorteilhaft vollständig wasserbenetzbar sind. Es wird daher die Eignung der Konversionsschichten für die Vorbehandlung bzw. die Lackierung von Autokarossen postuliert.

Claims (12)

  1. Verfahren zur zeitökonomischen Herstellung eines verzinkten Stahlblechs (1) mit einer Umformhilfsschicht aus zumindest einer anorganischen Funktionsschicht (2),
    umfassend die Schritte:
    - Herstellen einer wässrigen, siliziumwasserstofffreien Lösung (L) oder Suspension aus zumindest einem Carbonat-Lieferanten oder einer wässrigen, siliziumwasserstofffreien Lösung (L) oder Suspension aus zumindest einem Carbonat-Lieferanten und zumindest einem Hydroxid-Lieferanten, wobei der zumindest eine Carbonat-Lieferant ausgewählt ist aus Ammoniumhydrogencarbonat, Ammoniumcarbonat, Alkalimetallhydrogencarbonaten, Alkalimetallcarbonaten und Alkalimetallcarboxylaten und der zumindest eine Hydroxid-Lieferant ausgewählt ist aus Alkalimetallhydroxiden, Alkalimetalloxiden, Alkalimetallalkoholaten, Magnesiumhydroxiden und Magnesiumoxid,
    wobei eine Konzentration des zumindest einen Carbonat-Lieferanten in einem Bereich von 1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Lösung (L) oder Suspension, liegt,
    - Einstellen des pH-Werts der Lösung (L) oder Suspension in einem Bereich von 8 bis 12,
    - Aufbringen der wässrigen Lösung (L) oder Suspension auf zumindest eine Seite des verzinkten Stahlblechs (1) und Erzeugen eines Nassfilms (2') mit einer vorbestimmten Dicke, die in Abhängigkeit der Konzentration der Behandlungslösung von 1 bis 20 µm eingestellt wird,
    - ohne Durchführen eines Spülschritts Trocknen des Nassfilms (2') unter Erhalten eines Schichtgewichts einer Trockensubstanz von 25 bis 200 mg/m2 Oberfläche, wobei das Schichtgewicht der Trockensubstanz durch die Dicke des Nassfilms (2') und die Konzentration bestimmt wird, und wobei als anorganische Funktionsschicht (2) eine Konversionsschicht aus Zink und Zink-Salzen (2), die zumindest teilweise Carbonate sind, erhalten wird.
  2. Verfahren nach Anspruch 1,
    wobei
    die Konzentration des zumindest einen Carbonat-Lieferanten in einem Bereich von 3 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Lösung (L) oder Suspension, liegt, und/oder
    das Schichtgewicht der Trockensubstanz aus dem Nassfilm (2') 40 bis 90 mg/m2 beträgt, und/oder
    - der pH-Wert der Lösung (L) oder Suspension auf 9 ± 0,5, gegebenenfalls durch Zugabe von Natriumhydroxid und/oder Kaliumhydroxid, eingestellt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    wobei
    das Alkalimetall Natrium oder Kalium ist, wobei bevorzugt der zumindest eine Carbonat-Lieferant Natrium- und/oder Kalium-hydrogencarbonat und/oder -carbonat und der zumindest eine Hydroxid-Lieferant Natrium- und/oder Kalium-Hydroxid ist.
  4. Verfahren nach zumindest einem der Ansprüche 1 bis 3,
    umfassend den Schritt:
    - zum Nachweisen der Schichtdicke durch Röntgenfluoreszenzanalyse beim Herstellen der wässrigen, siliziumwasserstofffreien Lösung (L) oder Suspension Zugeben eines in der Röntgenfluoreszenzanalyse nachweisbaren Tracersystems, das
    - Natrium- und/oder Kalium-Phosphat oder Natrium- und/oder Kalium- Di- und/oder Tri-Phosphate oder
    - Kalium-Hydrogencarbonat, Kaliumcarbonat oder
    - Natrium- und/oder Kalium-Sulfat oder
    - Natrium- und/oder Kalium-Silikate, Natrium- und/oder Kalium-Metasilikate oder eine Natrium-haltige SiO2-Dispersion und/oder Zinn- oder Titan-Verbindungen mit einer Konzentration in einem Bereich von 1 bis 30 Gew.-%, bevorzugt 10 bis 20 Gew.-%, besonders bevorzugt 15 Gew.-%, bezogen auf den Gehalt an Carbonat- und Hydroxid-Lieferanten, aufweist.
  5. Verfahren nach zumindest einem der Ansprüche 1 bis 4,
    wobei das Aufbringen durch
    - Tauchen
    - Aufsprühen ohne Abquetschen oder
    - Aufsprühen und Abstreifen mit nicht angetriebenen Abquetschwalzen oder
    - Aufwalzen mittels eines Rollcoaters oder bevorzugt mittels zweier Abquetschwalzen (10), zwischen denen das verzinkte Stahlblech (1) geführt wird,
    erfolgt.
  6. Verfahren nach Anspruch 5,
    wobei das Aufwalzen mittels zweier Abquetschwalzen (10) die Schritte umfasst:
    - Aufdüsen der wässrigen Lösung (L) oder Suspension im Überschuss auf die beidseitig des verzinkten Stahlblechs (1) angeordneten Abquetschwalzen (10), wobei überschüssige Lösung oder Suspension aufgefangen und in einen Vorlagebehälter (13) geführt wird,
    - mit Druck Anstellen der Abquetschwalzen (10) an die Oberflächen des verzinkten Stahlblechs (1) und Abstreifen der wässrigen Lösung (L) oder Suspension auf die Oberflächen des verzinkten Stahlblechs (1) und
    - Einstellen der Dicke des Nassfilms (2') in einem Bereich von 1 bis 20 µm durch Wahl des Anstelldrucks, einer Härte einer Gummierung (11) der Abquetschwalzen (10), einer Geschwindigkeit (b) der Abquetschwalzen (10) und einer Geschwindigkeit (a) des Stahlblechs.
  7. Verfahren nach zumindest einem der Ansprüche 1 bis 6,
    umfassend die Schritte:
    - Applizieren eines Korrosionsschutzöls und/oder eines Prelube-Öls und/oder eines Trockenschmierstoffes auf die Konversionsschicht (2), so dass eine Schmierölschicht mit einem Flächengewicht von 0,2 bis 3,0 g/m2 erhalten wird.
  8. Beschichtetes verzinktes Stahlblech (1), dessen Oberfläche eine Umformhilfsschicht aus zumindest einer anorganischen Funktionsschicht (2) aufweist,
    dadurch gekennzeichnet, dass
    die anorganische Funktionsschicht (2) eine Konversionsschicht aus Zink und Zink-Salzen mit einer hydrozinkitartigen Mineralstruktur ist, die aus einer mit dem Verfahren nach zumindest einem der Ansprüche 1 bis 7 durch Applikation und Trocknung eines Nassfilms (2') abgeschiedenen Trockensubstanz mit einem Schichtgewicht von 25 bis 200 mg/m2 Oberfläche gebildet wird.
  9. Verzinktes Stahlblech (1) nach Anspruch 8,
    dadurch gekennzeichnet, dass
    das verzinkte Stahlblech (1) ein feuerverzinktes Stahlblech (1) ist.
  10. Verzinktes Stahlblech (1) nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass die Konversionsschicht (2) ein Tracersystem zum Nachweis der Schichtdicke aufweist, das durch Röntgenfluoreszenzanalyse nachweisbar ist und aus Kalium-, Phosphor-, Schwefel-, Silizium-, Zinn- oder Titan-Verbindungen ausgewählt wird.
  11. Verzinktes Stahlblech (1) nach zumindest einem der Ansprüche 8 bis 10,
    dadurch gekennzeichnet, dass
    die Umformhilfsschicht eine Schmierölschicht umfasst, die auf die Konversionsschicht (2) aufgebracht ist, wobei die Schmierölschicht bevorzugt
    - ein Korrosionsschutzöl und/oder ein Prelube-Öl und/oder einen Trockenschmierstoff umfasst, und
    - ein Flächengewicht von 0,2 bis 3,0 g/m2, bevorzugt 1,0 bis 1,5 g/m2 aufweist.
  12. Verwendung eines beschichteten verzinkten Stahlblechs (1) nach zumindest einem der Ansprüche 8 bis 11 zur Herstellung eines Kraftfahrzeugbauteils unter Durchführung zumindest eines Umformschritts.
EP13004572.7A 2013-09-19 2013-09-19 Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe Active EP2851452B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13004572.7A EP2851452B1 (de) 2013-09-19 2013-09-19 Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe
PL13004572T PL2851452T3 (pl) 2013-09-19 2013-09-19 Nieorganiczna powłoka funkcyjna na stali ocynkowanej ogniowo jako pomocna przy formowaniu
ES13004572T ES2734456T3 (es) 2013-09-19 2013-09-19 Capa funcional inorgánica sobre acero galvanizado por inmersión en caliente como ayuda para la conformación
PCT/EP2014/002550 WO2015039762A1 (de) 2013-09-19 2014-09-19 Anorganische karbonat- basierende konversionssschicht auf verzinktem stahl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13004572.7A EP2851452B1 (de) 2013-09-19 2013-09-19 Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe

Publications (2)

Publication Number Publication Date
EP2851452A1 EP2851452A1 (de) 2015-03-25
EP2851452B1 true EP2851452B1 (de) 2019-04-17

Family

ID=49236989

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13004572.7A Active EP2851452B1 (de) 2013-09-19 2013-09-19 Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe

Country Status (4)

Country Link
EP (1) EP2851452B1 (de)
ES (1) ES2734456T3 (de)
PL (1) PL2851452T3 (de)
WO (1) WO2015039762A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197430A1 (en) 2014-06-27 2015-12-30 Henkel Ag & Co. Kgaa Dry lubricant for zinc coated steel
US11078573B2 (en) 2016-01-19 2021-08-03 Thyssenkrupp Ag Method for producing a steel product with a Zn coating and a tribologically active layer deposited on the coating, and a steel product produced according to said method
CN110546303A (zh) 2017-03-30 2019-12-06 塔塔钢铁艾默伊登有限责任公司 用于处理金属表面的含水酸性组合物、使用这种组合物的处理方法和经处理的金属表面的用途
DE102018216216A1 (de) 2018-09-24 2020-03-26 Thyssenkrupp Ag Verfahren zur Verbesserung der Phosphatierbarkeit von metallischen Oberflächen, welche mit einer temporären Vor- bzw. Nachbehandlung versehen werden

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2175105C (en) * 1995-05-23 1999-09-21 C. Ramadeva Shastry Process for improving the formability and weldability properties of zinc coated steel sheet
US6231686B1 (en) * 1997-11-10 2001-05-15 Ltv Steel Company, Inc. Formability of metal having a zinc layer
DE10256639A1 (de) 2002-12-03 2004-06-24 Thyssenkrupp Stahl Ag Schmierstoffbeschichtetes Metallblech mit verbesserten Umformeigenschaften
EP1626434A4 (de) 2003-05-20 2006-12-20 Toshiba Corp Sputter-ionenpumpe, herstellungsprozess dafür und bildanzeige mit sputter-ionenpumpe
FR2864552B1 (fr) 2003-12-24 2006-07-21 Usinor Traitement de surface par hydroxysulfate
US20050259683A1 (en) 2004-04-15 2005-11-24 International Business Machines Corporation Control service capacity
DE102008016050A1 (de) 2007-12-24 2009-06-25 Voest-Alpine Stahl Gmbh Flexibler Primer und dessen Verwendung
US10876211B2 (en) * 2011-09-16 2020-12-29 Prc-Desoto International, Inc. Compositions for application to a metal substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2851452A1 (de) 2015-03-25
WO2015039762A1 (de) 2015-03-26
ES2734456T3 (es) 2019-12-10
PL2851452T3 (pl) 2019-10-31

Similar Documents

Publication Publication Date Title
EP2238227B1 (de) Verfahren zur beschichtung von metallischen oberflächen mit einer phosphatschicht und danach mit einer polymeren schmierstoffschicht
EP0700452B1 (de) Chromfreie konversionsbehandlung von aluminium
EP2683848A1 (de) Stahlflachprodukt, verfahren zum herstellen eines stahlflachprodukts und verfahren zum herstellen eines bauteils
EP2995674B1 (de) Verwendung eines Sulfats sowie Verfahren zum Herstellen eines Stahlbauteils durch Umformen in einer Umformmaschine
EP2373770B1 (de) Verfahren zum herstellen von formkörpern aus einseitig oder beidseitig verzinktem stahlblech
EP2826569B1 (de) Verfahren zur Passivierung von bandförmigem Schwarzblech
EP2851452B1 (de) Anorganische Funktionsschicht auf feuerverzinktem Stahl als Umformhilfe
EP1235949B1 (de) Verfahren zum aufbringen eines phosphatüberzuges und verwendung der derart phosphatierten metallteile
WO2000068458A1 (de) Vorbehandlung von aluminiumoberflächen durch chromfreie lösungen
WO2015036150A1 (de) Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils
EP2311928A2 (de) Wässrige Lösung enthaltend einen organischen Phosphorsäureester zur Herstellung eines schmierstoffbeschichteten Metallblechs mit verbesserten Umformeigenschaften
DE102008004728A1 (de) Phosphatiertes Stahlblech sowie Verfahren zur Herstellung eines solchen Blechs
EP0656957B1 (de) Verfahren zur phosphatierung von einseitig verzinktem stahlband
DE3800835A1 (de) Verfahren zur phosphatierung von metalloberflaechen
EP3230491B1 (de) Aufnahme von leichtmetallen in beiz- und vorbehandlungsverfahren für stahl
DE3512442A1 (de) Verfahren zur oberflaechenbehandlung von aluminium
US10914009B2 (en) Method for manufacturing non-phosphate coated metal material for cold heading-plastic working process
EP3405600B1 (de) Verfahren zum herstellen eines stahlprodukts mit einer zn-beschichtung und einer darauf aufgetragenen tribologisch aktiven schicht sowie entsprechend beschaffenes stahlprodukt
WO2010063597A1 (de) Verfahren zum herstellen von formkörpern aus einseitig oder beidseitig verzinktem stahlblech
EP3336219B1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
EP3898860A1 (de) Umformbeschichtungsmittel, mit diesem mittel beschichteter bandstahl und dessen verwendung in der herstellung von bauteilen durch umformen
WO1998013535A1 (de) Phosphatierverfahren für schnellaufende bandanlagen
WO2023057300A1 (de) Verfahren zum dressieren eines stahlblechs, dressiertes stahlblech und daraus hergestelltes bauteil
WO2020083645A1 (de) Polycarboxylat-beschichteter bandstahl und dessen verwendung zum tiefziehen
EP3807435A1 (de) Trennschicht für die warmumformung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150923

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUCHS PETROLUB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012631

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2734456

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012631

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130919

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230912

Year of fee payment: 11

Ref country code: AT

Payment date: 20230915

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230921

Year of fee payment: 11

Ref country code: PL

Payment date: 20230907

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231019

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240919

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240926

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240920

Year of fee payment: 12