EP2844726A1 - Composition lubrifiante pour moteur - Google Patents

Composition lubrifiante pour moteur

Info

Publication number
EP2844726A1
EP2844726A1 EP13723047.0A EP13723047A EP2844726A1 EP 2844726 A1 EP2844726 A1 EP 2844726A1 EP 13723047 A EP13723047 A EP 13723047A EP 2844726 A1 EP2844726 A1 EP 2844726A1
Authority
EP
European Patent Office
Prior art keywords
lubricating composition
weight
polyalkylene glycol
wear
butylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13723047.0A
Other languages
German (de)
English (en)
Other versions
EP2844726B1 (fr
Inventor
Olivier Lerasle
Jérôme VALADE
Nadjet Khelidj
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies Marketing Services SA
Dow Global Technologies LLC
Original Assignee
Total Marketing Services SA
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Marketing Services SA, Dow Global Technologies LLC filed Critical Total Marketing Services SA
Publication of EP2844726A1 publication Critical patent/EP2844726A1/fr
Application granted granted Critical
Publication of EP2844726B1 publication Critical patent/EP2844726B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to the lubrication of hybrid motor vehicle engines and micro-hybrid powered vehicles, in particular micro-hybrid powered vehicles equipped with the "Stop-and-Start" system.
  • Hybrid drive systems overcome these disadvantages by implementing an electric motor and a conventional thermal internal combustion engine, in series, in parallel or in combination.
  • a hybrid vehicle starting is provided by the electric motor. Up to a speed of the order of 50 km / h, it is the electric motor that ensures the traction of the vehicle. As soon as a higher speed is reached or a strong acceleration is required, the internal combustion engine takes over. When the speed decreases or when the vehicle stops, the internal combustion engine stops and the electric motor takes over. Thus, the internal combustion engine of hybrid vehicles undergoes a significant number of stops and restarts compared to a conventional combustion engine thermal vehicles.
  • certain vehicles are equipped with the "Stop-and-Start” system, also known as automatic stops and restarts. These vehicles are generally considered “micro-hybrid” vehicles. Indeed, these vehicles are equipped with a thermal internal combustion engine and an alternator-starter or a reinforced starter which ensure the stopping and restarting of the internal combustion engine thermal when the vehicle comes to a stop.
  • the thermal internal combustion engines of microhybrid vehicles equipped with the "stop-and-start” system such as the internal combustion engines of hybrid vehicles, undergo a significant number of shutdowns and restarts compared to a thermal internal combustion engine. conventional vehicles.
  • the internal combustion engine of hybrid vehicles or micro-hybrid vehicles undergoes, during its lifetime, a number of stops and start-ups much larger than that of a conventional vehicle.
  • the applicant company has therefore developed new lubricating compositions comprising at least one polyalkylene glycol obtained by polymerization or copolymerization of alkylene oxides, of which at least one butylene oxide, and also comprising at least one polymer improving the viscosity.
  • the amount of polyalkylene glycol in the lubricant compositions according to the invention is between 1 to 28% by weight, relative to the total weight of lubricating composition.
  • compositions according to the invention make it possible to reduce the wear of the bearings present in the engines, in particular engines of vehicles with hybrid powertrain and vehicles with microhybrid motorization, including in particular the engines of vehicles with micro-hybrid powertrain equipped with Stop-and-Start system.
  • the Applicant Company has surprisingly found that the combination of these polyalkylene glycols and certain inorganic friction modifiers, in particular organomolybdenum compounds, advantageously makes it possible to further reduce the wear of the motor bearings.
  • R 1, R 2 and R 3 independently represent a hydrogen atom or a hydrocarbon group having up to 40 carbon atoms
  • R 4 is a hydrogen atom, a methyl group or an ethyl group
  • - L is a linking group
  • n is an integer between 4 and 40
  • A is an alkoxy group having from 2 to 25 units derived from ethylene oxide, propylene oxide and / or butylene oxide and comprises homopolymers and random copolymers of at least two of the units above and
  • This composition may also comprise a viscosity index improving polymer.
  • this document does not disclose an engine lubricating composition comprising at least one organomolybdenum compound.
  • EP0438709 discloses an engine oil comprising at least one base oil, at least one viscosity index improving polymer and at least one product resulting from the reaction of alkylphenols or bisphenol A with at least one butylene oxide or a butylene / propylene oxide to improve the cleanliness of the pistons of automobile engines.
  • this document does not disclose an engine lubricating composition comprising at least one organomolybdenum compound.
  • the subject of the invention is an engine lubricating composition
  • a engine lubricating composition comprising at least one base oil, at least one viscosity index improving polymer, at least one organomolybdenum compound and at least one polyalkylene glycol, obtained by polymerization or copolymerization of oxides.
  • alkylene compound comprising from 3 to 8 carbon atoms, of which at least one butylene oxide, the amount of polyalkylene glycol being from 1 to 28% by weight, relative to the total weight of lubricating composition.
  • the lubricating composition comprises from 0.1 to 10% by weight, relative to the total mass of lubricating composition, of organomolybdenum compound, preferably from 0.5 to 8%, more preferably from 1 to 5%.
  • the organomolybdenum compound is chosen from dithiocarbamates and / or dithiophosphates of molybdenum, taken alone or as a mixture.
  • the polyalkylene glycol is a copolymer of butylene oxide and propylene oxide.
  • the weight ratio of butylene oxide to propylene oxide is from 3: 1 to 1: 3, preferably from 3: 1 to 1: 1.
  • the polyalkylene glycol has a molar mass measured according to ASTM D4274 of 300 to 1000 grams per mole, preferably 500 to 750 grams per mole.
  • the polyalkylene glycol has a kinematic viscosity at 100 ° C measured according to ASTM D445 of 1 to 12 cSt, preferably 3 to 7 cSt, more preferably 3.5 to 6.5 cSt.
  • the lubricating composition comprises from 2 to 20% by weight of polyalkylene glycol, relative to the total weight of the lubricating composition, preferably from 3 to 15%, still more preferably from 5 to 12%, even more preferably from 6 to 20% by weight. at 10%.
  • the viscosity index improving polymer is selected from the group consisting of copolymer olefins, copolymers of ethylene and alpha-olefin, copolymers of styrene and olefin, polyacrylates alone or in admixture. .
  • the lubricating composition comprises from 1 to 15% by weight of viscosity index improving polymer, relative to the total weight of the lubricating composition, preferably from 2 to 10%, more preferably from 3 to 8%.
  • the lubricant composition consists of:
  • additives chosen from antiwear additives, detergents, dispersants, antioxidants, friction modifiers, pour point depressants, alone or as a mixture,
  • the invention also relates to the use of at least one polyalkylene glycol, obtained by polymerization or copolymerization of alkylene oxides comprising from 3 to 8 carbon atoms, of which at least one butylene oxide in a lubricating composition for lubricating metal surfaces, polymeric surfaces and / or amorphous carbon surfaces, thermal internal combustion engines of vehicles with hybrid and / or microhybrid motorization.
  • said polyalkylene glycol is combined with at least one organomolybdenum compound.
  • this use is aimed at reducing the wear of the internal combustion engine, in particular the wear of the bearings of the internal combustion engine, in particular the wear of the connecting rod bearings of the internal combustion engine.
  • Another object of the invention is a method of lubricating at least one part of a motor vehicle engine hybrid and or micro-hybrid, said method comprising at least one step of contacting the lubricant composition as defined above with at least one part of said engine, said part comprising at least one metal surface or a polymeric surface and / or an amorphous carbon surface.
  • said piece is a pad, preferably a connecting rod pad.
  • the present invention relates to the field of lubrication of internal combustion engines of hybrid or micro-hybrid motor vehicles.
  • Hybrid motorized vehicles are here understood to mean vehicles using two different energy storages capable of moving said vehicles.
  • hybrid vehicles combine a thermal internal combustion engine and an electric motor, said electric motor participating in the traction of the vehicle.
  • the operating principle of hybrid vehicles is as follows:
  • the kinetic energy is used to recharge the batteries.
  • vehicle with micro-hybrid powertrain means vehicles comprising a thermal internal combustion engine, but no electric motor such as hybrid vehicles, the "hybrid” character being provided by the presence of the Stop and Start system provided by an alternator. -starter or a reinforced starter which ensure the stopping and restarting of the engine when the vehicle comes to rest and then restarts.
  • the present invention more preferably relates to the lubrication of thermal internal combustion engines of vehicles equipped with hybrid or micro-hybrid systems circulating in an urban environment, where the Stop-and-Start phenomenon and the resulting wear are increased.
  • a fixed part comprising the engine block, the cylinder head, the cylinder head gasket, the liner and various parts ensuring the assembly and sealing of these different parts.
  • a movable part comprising the crankshaft, the connecting rod and its bearings, the piston and its segments.
  • the role of the connecting rod is to transmit to the crankshaft the forces received by the piston, transforming a reciprocating rectilinear motion into a circular motion in one direction.
  • a connecting rod has two circular bores, one of small diameter, called small end, and the other of large diameter called big end. Between these two bores, is the body of the connecting rod connecting the small end and the small end.
  • the small end is engaged around the axis of the piston, the friction between the small end and the axis of the piston is reduced by the interposition between the two moving parts of a circular ring covered or made of anti-metal. friction (bronze, for example), or bearings (usually needle).
  • crankpin crankpin The big end, it, encloses the crankpin crankpin.
  • the friction between the crankpin and crankpin assembly is reduced by the existence of an oil film and the interposition between the crankpin and the crankpin, pads. In this case we speak of big-end bearings.
  • crankshaft is a rotating part. Its positioning and maintenance are achieved by a number of bearings, called trunnions. So we have a fixed part, the bearing crankshaft, which encloses a moving part, the crankshaft journal. Lubrication between these two parts is imperative and pads are put in place to resist the forces applied to these bearings. In this case we speak of trunnion bushings (or bearings of shaft line or crankshaft bearings).
  • the role of the bearing in the case of a big end or a trunnion, is to allow a good rotation of the crankshaft.
  • the pads are thin shells in the shape of a half-cylinder. These are parts that are extremely sensitive to lubrication conditions. If there is contact between the bushing and the rotating shaft, crankpin or pin, the energy released systematically leads to significant wear or engine breakage. The generated wear can also play the role of amplifying the phenomenon and the severity of the contact.
  • frequent stops and restart as is the case for vehicles with hybrid or micro-hybrid powertrain, the bearings are subject to frequent breaks and reboots of the oil film. Thus at each stop / restart takes place a contact between the metal interfaces and it is the frequency of occurrence of these contacts that is problematic for the pads.
  • the bearings are subject to several types of wear in the motors.
  • the different types of wear encountered in motors are: adhesive wear or wear through metal-to-metal contact, abrasive wear, corrosive wear, fatigue wear, or complex forms of wear ( contact corrosion, cavitation erosion, electrical wear).
  • the pads are subject in particular to adhesive wear, the invention is particularly useful for improving this type of wear but the invention can nevertheless be applied to the other types of wear mentioned above.
  • Surfaces that are sensitive to wear are metal-like surfaces, or metallic-type surfaces coated with another layer which may be either a polymer or an amorphous carbon layer. . Wear occurs at the interface between said surfaces that come into contact when the oil film becomes insufficient.
  • the metal type surface may be a surface made of a pure metal such as tin (Sn) or lead (Pb). Most of the time, the metal type surface is a metal type alloy, based on a metal and at least one other metal element or not. A frequently used alloy is steel, iron alloy (Fe) and carbon (C).
  • the bearings used in the automotive industry are mostly bearings whose support is made of steel, a support coated or not with another metal alloy.
  • the other metal alloys constituting the metal surfaces according to the invention are alloys comprising as base element tin (Sn), lead (Pb), copper (Cu) or aluminum (Al).
  • Cadmium (Cd), silver (Ag) or zinc (Zn) may also be basic elements of the metal alloys constituting the metal surfaces according to the invention.
  • To these basic elements will be added other elements chosen from antimony (Sb), arsenic (As), chromium (Cr), indium (In), magnesium (Mg), nickel (Ni), platinum (Pt) or silicon (Si).
  • Preferred alloys are based on the following combinations Al / Sn, Al / Sn / Cu, Cu / Sn, Cu / Al, Sn / Sb / Cu, Pb / Sb / Sn, Cu / Pb, PB / Sn / Cu, Al / Pb / Si, Pb / Sn, Pb / In, Al / Si, Al / Pb.
  • the preferred combinations are Sn / Cu, Sn / Al, Pb / Cu or Pb / Al combinations.
  • Copper and lead-based alloys are preferred alloys, and are also known as cupro-lead or white metal alloys.
  • the surfaces affected by wear are polymeric surfaces. Most of the time, the pads are made of steel and additionally comprise this polymeric surface.
  • the polymers that can be used are either thermoplastics such as polyamides, polyethylenes, fluoropolymers such as tetrafluoroethylenes, in particular polytetrafluoroethylenes (PTFE), or thermosets such as polyimides or phenoplasts (or phenol-formaldehyde PF resins).
  • the surfaces concerned by the wear are surfaces of amorphous carbon type.
  • the bearings are made of steel and include in addition this surface type amorphous carbon.
  • the surfaces of amorphous carbon type are also called DLC, or Diamond Like Carbon or Diamond Like Coating, whose carbons are sp 2 and sp 3 hybridizations.
  • polyalkylene glycols used in the context of the present invention have properties suitable for use in a motor oil. These are polymers or copolymers (statistics or blocks) of alkylene oxides, which can be prepared according to the known methods described in the application WO 2009/134716, page 2 line 26 to page 4 line 12, for example by etching. an alcohol initiator on the epoxy bond of an alkylene oxide and propagation of the reaction.
  • polyalkylene glycols (PAG) correspond in particular to the general formula (A):
  • Y 1 and Y 2 are, independently of one another, hydrogen or a hydrocarbon group, for example an alkyl or alkylphenyl group, having between 1 and 30 carbon atoms,
  • n represents an integer greater than or equal to 2, preferably less than 60, preferably ranging from 5 to 30, preferentially ranging from 7 to 15,
  • R 2x -x represents one or more integers ranging from 1 to n
  • the groups R 2x -i and R 2x are, independently of one another, hydrogen or hydrocarbon radicals comprising between 1 and 6 carbon atoms, preferably alkyl.
  • R 2x and R 2x are preferably linear.
  • At least at least one of R and R 2x 2x _i is hydrogen.
  • R 2x is preferably hydrogen.
  • the sum of the carbon number of R 2x _i and R 2x is from 1 to 6.
  • the sum of the carbon number of R 2x- i and R 2x is 2.
  • the corresponding alkylene oxide monomer is butylene oxide.
  • the alkylene oxides used in the structure of the PAGs used in the compositions according to the invention contain from 3 to 8 carbon atoms. At least one of the alkylene oxides entering into the structure of these PAGs is a butylene oxide, said butylene oxide being 1,2-butylene oxide or 2,3-butylene oxide, preferably 1,2 butylene oxide.
  • the PAG obtained, in part or in full, from ethylene oxide do not have a lipophilic character sufficient to be used in engine oil formulations.
  • they can not be used in combination with other mineral, synthetic or natural base oils.
  • alkylene oxides comprising more than 8 carbon atoms is also not desired because, to produce bases having the molar mass and therefore the targeted viscosimetric grade for the motor applications, then there will be a number of reduced monomers (n low in formula (A) above), with side chains R 2x -i and R 2x long. This adversely affects the overall linear character of the PAG molecule and leads to viscosity indices (VI) that are too low for engine oil application.
  • the viscosity index VI (measured according to standard NFT 60136) of the PAGs of formula (A) used in the invention is greater than or equal to 100, preferably greater than or equal to 120.
  • the PAGs according to the invention are obtained from alkylene oxides comprising at least one butylene oxide.
  • copolymers of butylene oxide (BO) and propylene oxide (PO) are particularly preferred because they have both good tribological and rheological properties of PAGs containing ethylene oxide and / or polypropylene units, and good solubility in conventional mineral, synthetic, and natural bases, and other oily compounds.
  • PAGs are prepared by reacting one or more alcohols with a mixture of butylene oxide and propylene oxide.
  • PAGs prepared with a mixture where this ratio is from 3: 1 to 1: 1 are particularly well miscible and soluble in base oils, including Group IV synthetic oils (polyalphaolefins).
  • the PAGs according to the invention are prepared from alcohol containing from 8 to 12 carbon atoms. 2-Ethylhexanol and dodecanol, alone or in a mixture, and in particular dodecanol, are particularly preferred since the PAGs prepared from these alcohols have very low traction coefficients.
  • the PAGs according to the invention are such that their molar carbon to oxygen ratio is greater than 3: 1, preferably ranging from 3: 1 to 6: 1. This gives said PAG polarity and viscosity index properties particularly suitable for use in motor oil.
  • the molar mass, measured according to the ASTM D2502 standard, of the PAGs according to the invention is preferably between 300 and 1000 grams per mole (g / mol), preferably between 350 and 600 g / mol (that is why they contain a number of alkylene oxide units n limited as described above in the formula (A)).
  • the molar mass, measured according to the ASTM D4274 standard, of the PAGs according to the invention has a value preferably ranging from 300 to 1000 grams per mole (g / mol), preferably ranging from 500 to 750 g / mol.
  • KV100 kinematic viscosities at 100 ° C.
  • KV100 generally ranging from 1 to 12 cSt, preferably from 3 to 7 cSt, preferentially from 3.5 to 6.5 cSt, or from 4 to 6 cSt or 3.5 at 4.5 cSt.
  • the KV100 of the compositions is measured according to ASTM D445.
  • the use of light PAGs (KV100 approximately from 2 to 6.5 cSt) is preferably chosen, in order to be able to more easily formulate cold grade 5W or 0W multigrade oils according to the SAEJ300 classification, since the heavier PAGs (a) have cold properties (high SCC) that do not easily achieve these grades.
  • a lubricant composition for an engine in particular for a hybrid or micro-hybrid engine, said lubricant composition comprising at least one base oil, at least one organomolybdenum compound and from 1 to 28% by weight of a or more polyalkylene glycols described above, with respect to the total weight of lubricating composition.
  • the lubricating compositions according to the invention comprise from 2 to 20% by weight of one or more polyalkylene glycols described above, relative to the total mass of lubricating composition, more preferably from 3 to 15%, and even more preferably from 5 to 12%, even more preferably from 6 to 10%.
  • the lubricating compositions used according to the present invention comprise one or more base oils, generally representing from 50% to 90% by weight, relative to the total mass of the lubricating composition, preferably from 60% to 85%, more preferably from 65 to 80%, even more preferably 70 to 75%.
  • the base oil (s) used in the lubricant compositions according to the present invention may be oils of mineral or synthetic origin of groups I to V according to the classes defined in the API classification (or their equivalents according to the ATIEL classification) as summarized. below, alone or mixed.
  • the base oil (s) used in the lubricant compositions according to the invention may be chosen from the oils of synthetic origin of group VI according to the ATIEL classification.
  • oils can be oils of vegetable, animal or mineral origin.
  • the mineral base oils according to the invention include all types of bases obtained by atmospheric and vacuum distillation of crude oil, followed by refining operations such as solvent extraction, deasphalting, solvent dewaxing, hydrotreatment, hydrocracking and hydroisomerization, hydrofinishing.
  • the base oils of the compositions according to the present invention can also be synthetic oils, such as certain esters of carboxylic acids and alcohols, or polyalphaolefins.
  • the polyalphaolefins used as base oils are, for example, obtained from monomers having from 4 to 32 carbon atoms (for example octene, decene), and a viscosity at 100 ° C. of between 1.5 and 15 cSt (ASTM D445). ). Their weight average molecular weight is typically between 250 and 3000 (ASTM D5296).
  • Mixtures of synthetic and mineral oils may also be employed, for example when formulating multigrade oils to avoid cold start problems.
  • the lubricant compositions according to the invention also comprise at least one inorganic friction modifier chosen from organomolybdenum compounds.
  • organomolybdenum compounds used in the compositions according to the invention are, for example, molybdenum dithiophosphates, molybdenum dithiocarbamates, molybdenum dithiophosphinates, molybdenum xanthates, molybdenum thioxanthates, and various organic molybdenum complexes such as carboxylates.
  • molybdenum esters molybdenum esters, molybdenum amides, obtainable by reaction of molybdenum oxide or ammonium molybdates with fatty substances, glycerides or fatty acids, or fatty acid derivatives (esters , amines, amides ).
  • Organomolybdenum compounds suitable for the lubricating compositions according to the present invention are for example described in application EP2078745, of paragraph [0036] in paragraph [062].
  • Preferred organomolybdenum compounds are molybdenum dithiophosphates and / or molybdenum dithiocarbamates.
  • molybdenum dithiocarbamates have been found to be very effective in reducing pad wear.
  • These molybdenum dithiocarbamates have the following general formula (I) in which R 1, R 2 , R 3 or R 4 are, independently of one another, linear or branched alkyl groups, saturated or unsaturated, comprising from 4 to 18 carbon atoms, preferably 8 to 13.
  • molybdenum dithiophosphates have the following general formula (II) in which R 5 , R 6, R 7 or R 8 are, independently of one another, linear or branched, saturated or unsaturated alkyl groups comprising from 4 to 18 carbon atoms, preferably 8 to 13.
  • the lubricating compositions according to the invention may comprise between 0.1 and 10% by weight, relative to the total mass of lubricating composition, of organomolybdenum compound, preferably between 0.5 and 8%, more preferably between 1 and 5% more preferably between 2 and 4%.
  • organomolybdenum compound preferably between 0.5 and 8%, more preferably between 1 and 5% more preferably between 2 and 4%.
  • organomolybdenum compounds that may be used in the compositions according to the invention comprise from 1 to 30% by weight of molybdenum, relative to the total mass of organomolybdenum compound, preferably from 2 to 20%, more preferably from 4 to 10%, and even more preferably 8 to 5%.
  • organomolybdenum compounds that can be used in the compositions according to the invention comprise from 1 to 10% by weight of phosphorus, with respect to the total weight of organomolybdenum compound, preferably from 2 to 8%, more preferably from 3 to 6%, and even more preferably from 4 to 5%.
  • the lubricating compositions may comprise at least one or more viscosity index (VI) improving polymers, such as for example Olefins Copolymers (OCP), copolymers of ethylene and alpha-olefin, copolymers of styrene and olefin such as copolymers of styrene and isoprene, polyacrylates such as polymethacrylates (PMA).
  • VI viscosity index
  • OCP Olefins Copolymers
  • COP Olefins Copolymers
  • styrene and olefin such as copolymers of styrene and isoprene
  • polyacrylates such as polymethacrylates (PMA).
  • the lubricating compositions according to the present invention may contain from 1 to 15% by weight, relative to the total weight of the lubricating composition, of at least one viscosity index improving polymer, preferably from 2 to 10%, more preferably 3 to 8%.
  • the lubricant compositions according to the invention preferably have a viscosity index value or VI, measured according to ASTM D2270 greater than 130, preferably greater than 140, preferably greater than 150.
  • the lubricant compositions according to the invention have a kinematic viscosity (KV100) at 100 ° C., measured according to ASTM D445, of between 3.8 cSt and 26.1 cSt, preferably between 5.6 and 12.5 cSt. which corresponds, according to the SAE J 300 classification, to grades 20 (5.6 to 9.3 cSt) or 30 (9.3 to 12.5 cSt) hot.
  • the lubricant compositions according to the invention are multigrade engine oils grade 0W or 5W cold, and 20 or 30 hot according to classification SAE J 300.
  • the lubricant compositions for engines used according to the invention may furthermore contain all types of additives suitable for use as engine oil.
  • additives can be introduced individually and / or included in packages of additives used in commercial lubricant formulations, performance levels as defined by the ACEA (Association of European Automobile Manufacturers) and / or the API. (American Petroleum Institute).
  • ACEA Association of European Automobile Manufacturers
  • API API.
  • These additive packages are concentrates comprising about 30% by weight of dilution base oil.
  • the lubricant compositions according to the invention may contain, in particular and without limitation, anti-wear and extreme pressure additives, antioxidants, detergents or overbased detergents, pour point improvers, dispersants, antifoams, thickeners. ...
  • the anti-wear and extreme pressure additives protect the friction surfaces by forming a protective film adsorbed on these surfaces.
  • the most commonly used is zinc dithiophosphate or ZnDTP. This category also contains various phosphorus, sulfur, nitrogen, chlorine and boron compounds.
  • anti-wear additives there is a wide variety of anti-wear additives, but the most used category in engine oils is that of phosphosulfur additives such as metal alkylthiophosphates, particularly zinc alkylthiophosphates, and more specifically zinc dialkyldithiophosphates or ZnDTPs.
  • the preferred compounds are of formula Zn ((SP (S) (OR 9 ) (ORio)) 2, or Rg and Rio are linear or branched, saturated or unsaturated alkyl groups, preferably containing from 1 to 18 carbon atoms.
  • ZnDTP is typically present at levels of the order of 0.1 to 2% by weight, based on the total weight of the lubricating composition.
  • Amine phosphates, polysulfides, especially sulfur olefins, are also commonly used antiwear additives.
  • the anti-wear and extreme-pressure additives are generally present in the compositions for motor lubricants at contents of between 0.5 and 6% by weight, preferably between 0.7 and 2%, preferably between 1 and 1.5%. relative to the total mass of the lubricating composition.
  • Antioxidants delay the degradation of oils in service, degradation that can result in the formation of deposits, the presence of sludge, or an increase the viscosity of the oil. They act as free radical inhibitors or destroyers of hydroperoxides.
  • antioxidants are phenolic and / or amine antioxidants.
  • Phenolic antioxidants may be ashless, or may be in the form of neutral or basic metal salts. Typically, these are compounds containing a sterically hindered hydroxyl group, for example when two hydroxyl groups are in the ortho or para position of each other, or when the phenol is substituted by an alkyl group comprising at least 6 carbon atoms. .
  • Amino compounds are another class of antioxidants that can be used alone or possibly in combination with phenolic compounds.
  • Typical examples are aromatic amines of the formula R11R12 13N, where R11 is an aliphatic group, or an optionally substituted aromatic group, R12 is an optionally substituted aromatic group, R13 is hydrogen, or an alkyl or aryl group, or a group of formula Ri4S (0) x R 5 where R i4 and R 5 are alkylene, alkenylene, or aralkylene, and x is an hasslelich number 0, 1 or 2.
  • Sulfurized alkyl phenols or their alkali and alkaline earth metal salts are also used as antioxidants.
  • antioxidants are that of oil-soluble copper compounds, for example copper thio- or dithiophosphates, copper and carboxylic acid salts, dithiocarbamates, sulphonates, phenates, acetylacetonates of copper.
  • the copper salts I and II, succinic acid or anhydride are used.
  • Antioxidants alone or as a mixture, are typically present in engine lubricating compositions in amounts of between 0.1 and 5% by weight, preferably between 0.3 and 2%, even more preferably between 0.5 and 1, 5%, based on the total mass of the lubricating composition.
  • Detergents reduce the formation of deposits on the surface of metal parts by dissolving the secondary products of oxidation and combustion, and allow the neutralization of certain acidic impurities from combustion and found in the oil.
  • the detergents commonly used in the formulation of lubricating compositions are typically anionic compounds having a long lipophilic hydrocarbon chain and a hydrophilic head.
  • the associated cation is typically a metal cation of an alkali or alkaline earth metal.
  • the detergents are preferably chosen from alkali metal or alkaline earth metal salts of carboxylic acids, sulphonates, salicylates and naphthenates, as well as the salts of phenates, preferably of calcium, magnesium, sodium or barium.
  • metal salts may contain the metal in an approximately stoichiometric amount or in excess (in an amount greater than the stoichiometric amount). In the latter case, we are dealing with so-called overbased detergents.
  • the excess metal providing the overbased detergent character is in the form of oil-insoluble metal salts, for example carbonate, hydroxide, oxalate, acetate, glutamate, preferably carbonate, preferably calcium, magnesium, sodium or barium.
  • the lubricant compositions according to the present invention may contain any type of detergent known to those skilled in the art, neutral or overbased.
  • the more or less overbased character of the detergents is characterized by the BN (base number), measured according to the ASTM D2896 standard, and expressed in mg of KOH per gram.
  • Neutral detergents have a BN between about 0 and 80 mg KOH / g.
  • Overbased detergents they, BN values typically of the order of 150 mg KOH / g and more, or 250 mg KOH / g or 450 mg KOH / g or more.
  • the BN of the lubricant composition containing detergents is measured by ASTM D2896 and expressed as mg KOH per gram of lubricant.
  • the amounts of detergents included in the motor oils according to the invention are adjusted so that the BN of said oils, measured according to ASTM D2896, is between 5 and less than or equal to 20 mg of KOH per gram of d motor oil, preferably between 8 and 15 mg KOH per gram of engine oil.
  • Pour point depressant additives improve the cold behavior of oils by slowing the formation of paraffin crystals. They are for example alkyl polymethacrylates, polyacrylates, polyarylamides, polyalkylphenols, polyalkylnaphthalenes, alkylated polystyrene. They are generally present in the oils according to the invention at contents of between 0.1 and 0.5% by weight, relative to the mass of lubricating composition.
  • Dispersants such as, for example, succinimides, PIBs (polyisobutene) succinimides, Mannich bases, ensure the suspension and evacuation of insoluble solid contaminants formed by the secondary oxidation products which are formed when the engine oil is service.
  • the dispersant level is typically between 0.5 and 10% by weight, preferably between 1 and 5%, relative to the total weight of the lubricant composition.
  • Another object of the invention is a method of lubricating at least one part of a hybrid and / or micro-hybrid motor vehicle engine, said method comprising at least one step of bringing the lubricant composition into contact with one another. as defined above with at least one part of said engine, said part comprising at least one metal surface or a polymeric surface and / or an amorphous carbon surface.
  • the motor part is a pad, preferably a connecting rod pad.
  • the method according to the invention makes it possible to reduce the wear of the internal combustion engine of vehicles with hybrid or micro-hybrid powertrain.
  • the method according to the invention makes it possible to reduce the wear of the bearings, in particular connecting rod bearings.
  • the system tested includes a 4-cylinder diesel engine with a maximum torque of 200 Nm from 1750 to 2500 rpm. It is of the Stop-and-Start type and includes an alternator-starter between the clutch and the gearbox of the vehicle.
  • the engine oil is maintained at about 100 ° C in these tests.
  • the wear is followed by a usual technique of radiotracers, consisting of irradiating the surface of the connecting rod bearings whose wear is to be tested, and measuring during the test the increase in radioactivity of the engine oil, that is, the rate of loading of the oil into irradiated metal particles. This speed is directly proportional to the wear speed of the bearings.
  • the results are based on a comparative analysis of these damage rates (reference oil and test oil) and are validated by a frame with a reference oil in order to integrate positive or negative surface adaptation elements to the speed of damage.
  • the damage rates of the oils tested are all compared to the rate of damage of the reference oil and quantified as a speed ratio named Usure in Table I below.
  • the lubricant composition A is a grade 5W-30 reference lubricant composition.
  • the lubricating compositions B and C are lubricating compositions according to the invention additive with a polyalkylene glycol which is a PAG BO / PO (butylene oxide / propylene oxide) having a mass ratio 50/50, of KV100 equal to 6 cSt ( measured according to ASTM D445) and with a molecular weight of 750 g / mol (measured according to ASTM D4274).
  • a polyalkylene glycol which is a PAG BO / PO (butylene oxide / propylene oxide) having a mass ratio 50/50, of KV100 equal to 6 cSt ( measured according to ASTM D445) and with a molecular weight of 750 g / mol (measured according to ASTM D4274).
  • the lubricating composition D is a lubricant composition according to the invention, additive with the PAG described above, and an organomolybdenum compound of general formula (I) with RR 2 , R 3 and R 4 which are alkyl groups of 13 and / or 18 atoms. of carbon, the amount of molybdenum by weight, relative to the weight of the compound, is 10%, the amount of sulfur by weight, relative to the weight of the compound, is 11%.
  • the lubricating composition E is a lubricant composition according to the invention, additive with the PAG described above, and an organomolybdenum compound of general formula (II) with R 5 , R 6 , R 7 and R 8 , which are alkyl groups of 8 carbon atoms.
  • the amount of molybdenum by weight, relative to the weight of the compound is 9%
  • the amount of sulfur by weight, relative to the weight of the compound is 10.1%
  • the amount of phosphorus in mass, relative to the mass of the compound is 3.2%.
  • Lubricating compositions F and G are control compositions respectively comprising an organomolybdenum compound of general formula (I) and an organomolybdenum compound of general formula (II) as described above.
  • the base oil used is a blend of Group III base oils with a viscosity number of 171.
  • the viscosity index improving polymer used is a linear styrene / butadiene polymer of mass M w equal to 139,700 (measured according to ASTM D5296), of mass M n equal to 133,000 (measured according to ASTM D5296), of polydispersity index equal to 1.1, 8% active ingredient in a Group III base oil.
  • the antioxidant is an amine antioxidant of alkylarylamine structure.
  • PPD or Depressant Point or Pour Point Depressant is polymethacrylate type.
  • the additive package used includes conventional anti-wear, anti-oxidant, dispersant and detergent additives.
  • the lubricant composition A is taken as a reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

La présente invention est relative à des compositions lubrifiantes pour moteur comprenant au moins une huile de base, au moins un polymère améliorant l'indice de viscosité, au moins un composé organomolybdène et au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène, la quantité de polyalkylène glycol étant de 1 à 28% en masse, par rapport à la masse totale de composition lubrifiante. L'utilisation d'au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène dans une huile de base permet de réduire l'usure des coussinets de bielle des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride.

Description

COMPOSITION LUBRIFIANTE POUR MOTEUR
Domaine technique
La présente invention concerne la lubrification de moteurs de véhicules à motorisation hybride et de véhicules à motorisation micro-hybride, en particulier de véhicules à motorisation micro-hybride équipés du système «Stop-and-Start».
Arrière plan technique
Les préoccupations environnementales et la recherche d'économies sur les ressources en énergies fossiles ont conduit au développement de véhicules à moteurs électriques. Toutefois, ces derniers sont limités en puissance, en autonomie, et nécessitent un très long temps de rechargement des batteries.
Les systèmes de motorisation hybride remédient à ces inconvénients en mettant en uvre un moteur électrique et un moteur à combustion interne thermique classique, en série, en parallèle ou en combiné.
Dans un véhicule hybride, le démarrage est assuré par le moteur électrique. Jusqu'à une vitesse de l'ordre de 50 km/h, c'est le moteur électrique qui assure la traction du véhicule. Dès lors qu'une vitesse plus élevée est atteinte ou qu'une accélération forte est demandée, le moteur à combustion interne thermique prend le relais. Lorsque la vitesse diminue ou lors des arrêts du véhicule, le moteur à combustion interne thermique s'arrête et le moteur électrique prend le relais. Ainsi le moteur à combustion interne thermique des véhicules hybrides subit un nombre important d'arrêts et de redémarrages comparativement à un moteur à combustion interne thermique de véhicules conventionnels.
Par ailleurs, certains véhicules sont équipés du système «Stop-and-Start» aussi appelé dispositif d'arrêts et de redémarrages automatiques. Ces véhicules sont généralement considérés comme des véhicules « micro-hybrides ». En effet ces véhicules sont équipés d'un moteur à combustion interne thermique et d'un alterno- démarreur ou d'un démarreur renforcé qui assurent l'arrêt et le redémarrage du moteur à combustion interne thermique lorsque le véhicule s'immobilise. Les moteurs à combustion interne thermique des véhicules microhybrides équipés du système « stop- and-start », comme les moteurs à combustion interne thermique des véhicules hybrides, subissent donc un nombre important d'arrêts et de redémarrages comparativement à un moteur à combustion interne thermique de véhicules conventionnels.
Ainsi, le moteur à combustion interne thermique des véhicules hybrides ou des véhicules micro-hybrides subit, au cours de sa durée de vie, un nombre d'arrêts et de démarrages beaucoup plus importants que celui d'un véhicule classique. Ceci engendre potentiellement, pour les moteurs à combustion interne thermique des véhicules hybrides et micro-hybrides, des problèmes d'usure spécifiques, en particulier sur le long terme. Ces problèmes d'usure spécifiques sont notamment visibles au niveau des coussinets des têtes de bielles.
Il existe donc un besoin de développer de nouvelles compositions lubrifiantes permettant un fonctionnement fiable des moteurs à combustion interne thermique des véhicules hybrides et micro-hybrides équipés du système Stop-and-Start, et en particulier susceptibles de réduire l'usure, en particulier l'usure des coussinets, en particulier l'usure des coussinets des têtes de bielle, dans les moteurs à combustion interne thermique desdits véhicules.
De façon surprenante, la demanderesse a constaté que l'utilisation, dans les moteurs à combustion interne thermique des véhicules à motorisations hybrides et micro-hybrides équipés du système Stop-and-Start, de certains polyalkylène glycols permet de diminuer considérablement l'usure des coussinets présents dans lesdits moteurs, ce qui permet d'augmenter la durée de vie du moteur, d'augmenter l'intervalle de temps entre les changements de pièces du moteur.
La société demanderesse a donc mis au point de nouvelles compositions lubrifiantes comprenant au moins un polyalkylène glycol obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène, dont au moins un oxyde de butylène, et comprenant aussi au moins un polymère améliorant l'indice de viscosité. De plus, la quantité de polyalkylène glycol dans les compositions lubrifiantes selon l'invention est comprise entre 1 à 28% en masse, par rapport à la masse totale de composition lubrifiante. Ces quantités particulières permettent de réduire l'usure des moteurs à combustion interne thermique. En particulier, les compositions selon l'invention permettent de réduire l'usure des coussinets présents dans les moteurs, notamment des moteurs de véhicules à motorisation hybride et de véhicules à motorisation microhybride, dont notamment les moteurs de véhicules à motorisation micro-hybride équipés du système «Stop-and-Start».
Par ailleurs, la société demanderesse a constaté de manière surprenante que l'association de ces polyalkylène glycols et de certains modificateurs de frottement inorganiques, en particulier de composés organomolybdène, permet avantageusement de réduire encore plus l'usure des coussinets des moteurs.
Il est connu du document WO11011656 des polyalkylène glycols utilisés comme additifs de compositions lubrifiantes. Ces composés présentent l'avantage d'être biodégradables et solubles dans les quatre groupes d'huile de bases utilisées pour la fabrication de compositions lubrifiantes.
Le document US 6,458,750 décrit une composition huile-moteur pour réduire la formation de dépôt, cette composition comprenant au moins une huile de base et au moins un alkoxylate d'alkyle de formule (I),
R, -f (CR2R3)„ ]— L -A— R4
(I) dans laquelle:
- Ri, R2, R3 représentent indépendamment un atome d'hydrogène ou un groupe hydrocarboné ayant jusqu'à 40 atomes de carbone,
- R4 est un atome d'hydrogène, un groupement méthyle ou un groupement éthyle,
- L est un groupe de liaison,
- n est un nombre entier compris entre 4 et 40,
- A est un groupe alcoxy ayant de 2 à 25 unités dérivées d'oxyde d'éthylène, d'oxyde de propylène et/ou d'oxyde de butylène et comprend des homopolymères et des copolymères statistiques d'au moins deux des unités ci-dessus et
- z est 1 ou 2.
Cette composition peut également comprendre un polymère améliorant l'indice de viscosité. Toutefois, ce document ne décrit pas une composition lubrifiante pour moteur comprenant au moins un composé organomolybdène.
Le document EP0438709 décrit une huile pour moteur comprenant au moins une huile de base, au moins un polymère améliorant l'indice de viscosité et au moins un produit résultant de la réaction d'alkylphénols ou de bisphénol A avec au moins un oxyde de butylène ou un oxyde de butylène/propylène pour améliorer la propreté des pistons des moteurs automobiles. Toutefois, ce document ne décrit pas une composition lubrifiante pour moteur comprenant au moins un composé organomolybdène.
En outre, aucun de ces documents ne décrit l'utilisation de polyalkylène glycols dans une composition lubrifiante pour réduire l'usure de moteurs à combustion interne thermique des véhicules à motorisation hybride ou micro-hybride et notamment pour réduire l'usure des coussinets. Brève description
L'invention a pour objet une composition lubrifiante pour moteur comprenant au moins une huile de base, au moins un polymère améliorant l'indice de viscosité, au moins un composé organomolybdène et au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène, la quantité de polyalkylène glycol étant de 1 à 28% en masse, par rapport à la masse totale de composition lubrifiante.
De préférence, la composition lubrifiante comprend de 0,1 à 10% en masse, par rapport à la masse totale de composition lubrifiante, de composé organomolybdène, de préférence de 0,5 à 8%, plus préférentiellement de 1 à 5%.
De préférence, le composé organomolybdène est choisi parmi les dithiocarbamates et/ou les dithiophosphates de molybdène, pris seuls ou en mélange.
De préférence, le polyalkylène glycol est un copolymère d'oxyde de butylène et d'oxyde de propylène.
De préférence, le rapport massique oxyde de butylène sur oxyde de propylène est d'une valeur allant de 3 :1 à 1 :3, de préférence de 3 :1 à 1 :1.
De préférence, le polyalkylène glycol a une masse molaire mesurée selon la norme ASTM D4274 de 300 à 1000 grammes par mole, de préférence de 500 à 750 grammes par mole.
De préférence, le polyalkylène glycol a une viscosité cinématique à 100°C mesurée selon la norme ASTM D445 de 1 à 12 cSt, de préférence de 3 à 7 cSt, plus préférentiellement de 3,5 à 6,5 cSt.
De préférence, la composition lubrifiante comprend de 2 à 20% en masse de polyalkylène glycol, par rapport à la masse totale de la composition lubrifiante, de préférence de 3 à 15% encore plus préférentiellement de 5 à 12%, encore plus préférentiellement de 6 à 10%.
De préférence, le polymère améliorant l'indice de viscosité est choisi dans le groupe constitué par les oléfines copolymères, les copolymères d'éthylène et d'alpha- oléfine, les copolymères de styrène et d'oléfine, les polyacrylates pris seuls ou en mélange.
De préférence, la composition lubrifiante comprend de 1 à 15% en masse de polymère améliorant l'indice de viscosité, par rapport à la masse totale de la composition lubrifiante, de préférence de 2 à 10%, plus préférentiellement de 3 à 8%. Dans un mode de réalisation, la composition lubrifiante consiste en :
de 40 à 80% en masse d'huile de base,
de 1 à 28% en masse de polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène,
de 1 à 15% en masse de polymère améliorant l'indice de viscosité,
de 1 à 15% en masse d'additifs choisis parmi les additifs antiusure, les détergents, les dispersants, les anti-oxydants, les modificateurs de frottement, les abaisseurs de point d'écoulement, pris seuls ou en mélange,
de 0,1 à 10% en masse d'au moins un composé organomolybdène,
la somme des constituants étant égale à 100% et les pourcentages étant exprimés par rapport à la masse totale de composition lubrifiante.
L'invention a aussi pour objet l'utilisation d'au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène dans une composition lubrifiante pour la lubrification de surfaces métalliques, de surfaces polymériques et/ou de surfaces de carbone amorphe, des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride.
De préférence, dans cette utilisation ledit polyalkylène glycol est combiné à au moins un composé organomolybdène.
De préférence, cette utilisation vise à réduire l'usure du moteur à combustion interne thermique, en particulier l'usure des coussinets du moteur à combustion interne thermique, en particulier l'usure des coussinets de bielle du moteur à combustion interne thermique.
Un autre objet de l'invention est un procédé de lubrification d'au moins une pièce d'un moteur de véhicules à motorisation hybride et ou micro-hybride, ledit procédé comprenant au moins une étape de mise en contact de la composition lubrifiante telle que définie ci-dessus avec au moins une pièce dudit moteur, ladite pièce comprenant au moins une surface métallique ou une surface polymérique et /ou une surface de carbone amorphe.
Dans un mode de réalisation dudit procédé, ladite pièce est un coussinet, de préférence un coussinet de bielle. Description détaillée
La présente invention concerne le domaine de la lubrification des moteurs à combustion interne thermique des véhicules à motorisation hybride ou micro-hybride.
On entend ici par véhicules à motorisation hybride, les véhicules faisant appel à deux stockages d'énergie distincts capables de mouvoir lesdits véhicules. En particulier, les véhicules hybrides associent un moteur à combustion interne thermique et un moteur électrique, ledit moteur électrique participant à la traction du véhicule. Le principe de fonctionnement des véhicules hybrides est le suivant:
lors des phases stationnaires (où le véhicule est immobile), les deux moteurs sont à l'arrêt,
au démarrage, c'est le moteur électrique qui assure la mise en mouvement de la voiture, jusqu'à des vitesses plus élevées (25 ou 30 km/h),
lorsque des vitesses plus élevées sont atteintes, le moteur à combustion interne thermique prend le relais,
en cas de grande accélération, on observe la mise en marche des deux moteurs à la fois, qui permet d'avoir des accélérations équivalentes au moteur de même puissance, voire supérieures,
optionnellement, en phase de décélération et de freinage, l'énergie cinétique est utilisée pour recharger les batteries.
Ainsi, dans les véhicules hybrides, le moteur à combustion interne thermique subit, au cours de sa durée de vie, un nombre d'arrêts et de démarrages beaucoup plus important que dans un véhicule classique (phénomène de «Stop-and-Start»).
On entend ici par véhicule à motorisation micro-hybride, des véhicules comprenant un moteur à combustion interne thermique, mais pas de moteur électrique comme les véhicules hybrides, le caractère « hybride » étant apporté par la présence du système Stop and Start apporté par un alterno-démarreur ou un démarreur renforcé qui assurent l'arrêt et le redémarrage du moteur thermique lorsque le véhicule s'immobilise puis redémarre.
La présente invention concerne plus préférentiellement la lubrification des moteurs à combustion interne thermique des véhicules équipés de systèmes hybrides ou micro-hybrides circulant en milieu urbain, où le phénomène Stop-and-Start et l'usure résultante sont accrus.
L'usure engendrée par ces arrêts et redémarrages fréquents est visible au niveau des différentes pièces en contact avec le lubrifiant : piston, segment, axe de piston, bossage d'axe de piston, pied de bielle, tête de bielle, coussinets de bielle, maneton, tourillon, palier de ligne d'arbre, coussinets de ligne d'arbre ou coussinets de tourillon ou coussinets de vilebrequin, axe de chaîne, denture de pompe à huile, engrenage, arbre à came, palier d'arbre à came, poussoirs de distribution, rouleau de linguet, butée hydraulique pour rattrapage de jeu, axe de turbocompresseur, palier de turbocompresseur.
Dans un moteur automobile, il existe une partie fixe comprenant le bloc-moteur, la culasse, le joint de culasse, la chemise et diverses pièces assurant l'assemblage et l'étanchéité de ces différentes pièces. Il existe aussi une partie mobile comprenant le vilebrequin, la bielle et ses coussinets, le piston et ses segments.
Le rôle de la bielle est de transmettre au vilebrequin les efforts reçus par le piston, en transformant un mouvement rectiligne alternatif en un mouvement circulaire dans un seul sens.
Une bielle comporte deux alésages circulaires, l'un de petit diamètre, appelé pied de bielle, et l'autre de grand diamètre appelé tête de bielle. Entre ces deux alésages, se trouve le corps de la bielle qui relie le pied de bielle et la tête de bielle.
Le pied de bielle est engagé autour de l'axe du piston, la friction entre le pied de bielle et l'axe du piston est réduite par l'interposition entre les deux pièces mobiles d'une bague circulaire recouverte ou constituée de métal anti-friction (bronze, par exemple), ou de roulements (à aiguilles le plus souvent).
La tête de bielle, elle, enserre le maneton du vilebrequin. La friction entre l'ensemble tête de bielle et maneton est réduite par l'existence d'un film d'huile et l'interposition entre la tête de bielle et le maneton, de coussinets. On parle dans ce cas de coussinets de tête de bielle.
Le vilebrequin est une pièce en rotation. Son positionnement et son maintien sont réalisés par un certain nombre de paliers, dits tourillons. On a donc une pièce fixe, le palier de vilebrequin, qui enserre une partie mobile, le tourillon de vilebrequin. Une lubrification entre ces deux pièces est impérative et des coussinets sont mis en place afin de permettre de résister aux efforts appliqués sur ces paliers. On parle dans ce cas de coussinets de tourillon (ou coussinets de ligne d'arbre ou coussinets de vilebrequin).
Le rôle du coussinet dans le cas d'une tête de bielle ou d'un tourillon, est de permettre une bonne rotation de l'arbre du vilebrequin. Les coussinets sont des coquilles minces ayant la forme d'un demi-cylindre. Ce sont des pièces qui sont extrêmement sensibles aux conditions de lubrification. S'il y a un contact entre le coussinet et l'arbre tournant, maneton ou tourillon, l'énergie dégagée entraîne de manière systématique une usure importante ou une casse du moteur. L'usure générée peut en outre jouer le rôle d'amplificateur du phénomène et de la gravité du contact. Dans le cadre d'arrêts et de redémarrage fréquents, comme c'est le cas pour les véhicules à motorisation hybride ou micro-hybride, les coussinets sont soumis à des ruptures et réamorçages fréquents du film d'huile. Ainsi à chaque arrêt/redémarrage a lieu un contact entre les interfaces métalliques et c'est la fréquence d'occurrence de ces contacts qui est problématique pour les coussinets.
Les coussinets sont soumis à plusieurs types d'usure dans les moteurs. Les différents types d'usure rencontrés dans les moteurs sont : l'usure adhésive ou l'usure par contact métal-métal, l'usure abrasive, l'usure corrosive, l'usure par fatigue, ou les formes complexes d'usure (corrosion de contact, érosion par cavitation, usures d'origine électrique). Les coussinets sont soumis en particulier à l'usure adhésive, l'invention est plus particulièrement utile pour améliorer ce type d'usure mais l'invention peut néanmoins s'appliquer aux autres types d'usure citées ci dessus.
Les surfaces qui sont sensibles à l'usure, en particulier la surface des coussinets, sont des surfaces de type métallique, ou des surfaces de type métalliques revêtues d'une autre couche qui peut être, soit un polymère, soit une couche de carbone amorphe. L'usure se produit à l'interface entre lesdites surfaces qui entrent en contact lorsque le film d'huile devient insuffisant.
La surface de type métallique peut être une surface constituée d'un métal pur tel que l'étain (Sn) ou le plomb (Pb). La plupart du temps, la surface de type métallique est un alliage de type métallique, à base d'un métal et d'au moins un autre élément métallique ou non. Un alliage fréquemment utilisé est l'acier, alliage de fer (Fe) et de carbone (C). Les coussinets utilisés dans l'industrie automobile, sont la plupart du temps des coussinets dont le support est en acier, support revêtu ou non d'un autre alliage métallique.
Les autres alliages métalliques constituant les surfaces métalliques selon l'invention, sont des alliages comprenant comme élément de base de l'étain (Sn), du plomb (Pb), du cuivre (Cu) ou de l'aluminium (Al). Le cadmium (Cd), l'argent (Ag) ou le zinc (Zn) peuvent aussi être des éléments de base des alliages métalliques constituant les surfaces métalliques selon l'invention. A ces éléments de base vont s'ajouter d'autres éléments choisis parmi l'antimoine (Sb), l'arsenic (As), le chrome (Cr), l'indium (In), le magnésium (Mg), le nickel (Ni), le platine (Pt) ou le silicium (Si).
Des alliages préférés sont basés sur les combinaisons suivantes Al/Sn, Al/Sn/Cu, Cu/Sn, Cu/AI, Sn/Sb/Cu, Pb/Sb/Sn, Cu/Pb, PB/Sn/Cu, Al/Pb/Si, Pb/Sn, Pb/ln, Ai/Si, Al/Pb. Les combinaisons préférées sont les combinaisons Sn/Cu, Sn/AI, Pb/Cu ou Pb/AI.
Les alliages à base de cuivre et de plomb sont des alliages préférés, ils sont aussi appelés alliages en cupro-plomb ou métal blanc. Selon un autre mode de réalisation, les surfaces concernées par l'usure sont des surfaces de type polymérique. La plupart du temps, les coussinets sont en acier et comprennent en plus cette surface polymérique. Les polymères utilisables, sont soit des thermoplastiques tels que les polyamides, les polyéthylènes, les fluoropolymères tels que les tétrafluoroéthylènes, en particulier les polytétrafluoroéthylènes (PTFE), soit des thermodurcissables tels que les polyimides, les phénoplastes (ou résines phénol- formaldéhydes PF).
Selon un autre mode de réalisation, les surfaces concernées par l'usure sont des surfaces de type carbone amorphe. La plupart du temps, les coussinets sont en acier et comprennent en plus cette surface de type carbone amorphe. Les surfaces de type carbone amorphe sont aussi appelées DLC, ou Diamond Like Carbon ou Diamond Like Coating, dont les carbones sont d'hybridations sp2 et sp3.
Polyalkylène glycols
Les polyalkylène glycols utilisés dans le cadre de la présente invention ont des propriétés adaptées à une utilisation dans une huile moteur. Ce sont des polymères ou copolymères (statistiques ou blocs) d'oxydes d'alkylènes, qui peuvent être préparés selon les méthodes connues décrites dans la demande WO 2009/134716, page 2 ligne 26 à page 4 ligne 12, par exemple par attaque d'un initiateur alcool sur la liaison époxy d'un oxyde d'alkylène et propagation de la réaction.
Les polyalkylène glycols (PAG) selon l'invention répondent notamment à la formule générale (A) :
2x-1 R 2x
(A)
ou
-Yi et Y2 sont, indépendamment l'un de l'autre, l'hydrogène, ou un groupe hydrocarboné, par exemple un groupe alkyl ou alkylphényl, ayant entre 1 et 30 atomes de carbone,
-n représente un entier supérieur ou égal à 2, préférentiellement inférieur à 60, préférentiellement allant de 5 à 30, préférentiellement allant de 7 à 15,
-x représente un ou plusieurs entiers allant de 1 à n, -les groupements R2x-i et R2x sont, indépendamment les uns des autres, l'hydrogène, ou des radicaux hydrocarbonés, comprenant entre 1 et 6 atomes de carbone, préférentiellement alkyl.
R2x_i et R2xsont de préférence linéaires.
De préférence au moins, l'un au moins de R2x_i et R2xest l'hydrogène.
R2x est préférentiellement l'hydrogène.
La somme des nombres d'atomes de carbone de R2x_i et R2x est d'une valeur allant de 1 à 6.
Pour au moins une valeur de x, la somme des nombres d'atomes de carbone de R2x-i et R2x est égale à 2. Le monomère oxyde d'alkylène correspondant est l'oxyde de butylène.
Les oxydes d'alkylène entrant dans la structure des PAG utilisés dans les compositions selon l'invention comportent de 3 à 8 atomes de carbone. Au moins un des oxydes d'alkylène entrant dans la structure de ces PAG est un oxyde de butylène, ledit oxyde de butylène étant du 1,2-oxyde de butylène ou du 2,3-oxyde de butylène, de préférence du 1,2-oxyde de butylène.
En effet, les PAG obtenus, en partie ou en totalité, à partir d'oxyde d'éthylène ne présentent pas un caractère lipophile suffisant pour être employés dans des formules d'huile moteur. En particulier, ils ne peuvent être utilisés en combinaison avec d'autres huiles de base minérale, synthétique ou naturelle.
L'utilisation d'oxydes d'alkylène comprenant plus de 8 atomes de carbone n'est pas non plus souhaitée car, pour réaliser des bases ayant la masse molaire et donc le grade viscosimétrique ciblé pour les applications moteurs, on aura alors un nombre de monomères réduits (n faible dans la formule (A) ci-dessus), avec des chaînes latérales R2x-i et R2x longues. Ceci nuit au caractère linéaire global de la molécule de PAG et conduit à des indices de viscosité (VI) trop faibles pour une application en huile moteur.
Préférentiellement, l'indice de viscosité VI (mesuré selon la norme NFT 60136) des PAG de formule (A) utilisés dans l'invention est supérieur ou égal à 100, préférentiellement supérieur ou égal à 120.
De manière à leur conférer un caractère lipophile suffisant, et donc une bonne solubilité dans les huiles de bases synthétique, les huiles de base minérale ou naturelle, et une bonne compatibilité avec certains additifs indispensables aux huiles moteurs, les PAG selon l'invention sont obtenus à partir d'oxydes d'alkylène comprenant au moins un oxyde de butylène.
Parmi ces PAG, les copolymères d'oxyde de butylène (BO) et d'oxyde de propylène (PO) sont particulièrement préférés, car ils présentent à la fois les bonnes propriétés tribologiques et rhéologiques des PAG contenant des motifs oxyde d'éthylène et/ou de polypropylène, et une bonne solubilité dans les bases minérales, synthétiques, et naturelles classiques, et autres composés huileux.
La demande WO2011/011656, paragraphes [011] à [014] décrit le mode de préparation, les caractéristiques, et les propriétés (notamment de solubilité et de miscibilité dans les huiles de base) de tels PAG copolymères d'oxyde de butylène et d'oxyde de propylène.
Ces PAG sont préparés, par réaction d'un ou plusieurs alcools avec un mélange d'oxyde de butylène et d'oxyde de propylène.
De manière à conférer aux PAG une bonne solubilité et une bonne miscibilité dans les huiles de base minérale, synthétique et naturelle, on préfère utiliser, dans les compositions selon l'invention, des PAG préparés avec un mélange d'oxyde de butylène et d'oxyde de propylène où le rapport massique entre oxyde de butylène et oxyde de propylène est d'une valeur de 3 :1 à 1 :3. Les PAG préparés avec un mélange où ce rapport est d'une valeur de 3 :1 à 1 :1 sont particulièrement bien miscibles et solubles dans les huiles de base, y compris les huiles synthétiques de groupe IV (polyalphaoléfines).
Selon un mode préféré, les PAG selon l'invention sont préparés à partir d'alcool comportant de 8 à 12 atomes de carbone. Le 2-éthylhexanol et le dodécanol, seuls ou en mélange, et en particulier le dodécanol, sont particulièrement préférés, car les PAG préparés à partir de ces alcools ont des coefficients de traction très bas.
Selon un mode préféré, les PAG selon l'invention sont telles que leur rapport molaire carbone sur oxygène est supérieur à 3 :1, préférentiellement allant de 3 :1 à 6 :1. Ceci confère auxdits PAG des propriétés de polarité et d'indice de viscosité particulièrement adaptés à une utilisation en huile moteur.
La masse molaire, mesurée selon la norme ASTM D2502, des PAG selon l'invention est préférentiellement comprise entre 300 et 1000 grammes par mole (g/mol), préférentiellement entre 350 et 600 g/mol (c'est pourquoi ils contiennent un nombre de motifs oxyde d'alkylène n limité comme décrit ci-dessus dans la formule (A)).
La masse molaire, mesurée selon la norme ASTM D4274, des PAG selon l'invention a une valeur préférentiellement allant de 300 à 1000 grammes par mole (g/mol), préférentiellement allant de 500 à 750 g/mol.
Ceci leur confère des viscosités cinématiques à 100°C (KV100) généralement allant de 1 à 12 cSt, préférentiellement de 3 à 7 cSt, préférentiellement de 3,5 à 6,5 cSt, ou de 4 à 6 cSt ou de 3,5 à 4,5 cSt. Le KV100 des compositions est mesuré selon la norme ASTM D445. On choisit préférentiellement l'utilisation de PAG légers (KV100 approximativement de 2 à 6,5 cSt), pour pouvoir formuler plus facilement des huiles multigrades de grade à froid 5W ou 0W selon la classification SAEJ300, car les PAG (a) plus lourds ont des propriétés à froid (CCS élevé) qui ne permettent pas facilement d'atteindre ces grades.
Composition lubrifiante
Un autre objet de l'invention est une composition lubrifiante pour moteur, notamment pour moteur hybride ou micro-hybride, ladite composition lubrifiante comprenant au moins une huile de base,au moins un composé organomolybdène et de l à 28% en masse d'un ou plusieurs polyalkylènes glycols décrits ci-dessus, par rapport à la masse totale de composition lubrifiante.
De préférence, les compositions lubrifiantes selon l'invention comprennent de 2 à 20% en masse d'un ou plusieurs polyalkylènes glycols décrits ci-dessus, par rapport à la masse totale de composition lubrifiante, plus préférentiellement de 3 à 15%, encore plus préférentiellement de 5 à 12%, encore plus préférentiellement de 6 à 10%.
Huiles de base
Les compositions lubrifiantes utilisées selon la présente invention comprennent une ou plusieurs huiles de base, représentant généralement de 50% à 90% en masse, par rapport à la masse totale de la composition lubrifiante, de préférence de 60% à 85%, plus préférentiellement de 65 à 80%, encore plus préférentiellement de 70 à 75%.
La ou les huiles de base utilisées dans les compositions lubrifiantes selon la présente invention peuvent être des huiles d'origine minérale ou synthétique des groupes I à V selon les classes définies dans la classification API (ou leurs équivalents selon la classification ATIEL) telle que résumée ci-dessous, seules ou en mélange. En outre, la ou les huile de base utilisées dans les compositions lubrifiantes selon l'invention peuvent être choisies parmi les huiles d'origine synthétique du groupe VI selon la classification ATIEL.
Teneur en saturés Teneur en Indice de viscosité soufre (VI)
Groupe 1 Huiles minérales < 90 % > 0.03 % 80 < Vl < 120
Groupe II Huiles > 90 % < 0.03 % 80 < Vl < 120 hydrocraquées
Groupe III > 90 % < 0.03 % > 120
Huiles hydrocraquées ou
hydro-isomérisées
Groupe IV (PAO) Polyalphaoléfines
Groupe V Esters et autres bases non incluses dans les groupes 1 à IV
Groupe VI* (PIO) Polyoléfines internes (en terme anglo-saxon Poly
Internai Olefins)
pour la classification ATIEL seulement
Ces huiles peuvent être des huiles d'origine végétale, animale, ou minérale. Les huiles de base minérale selon l'invention incluent tous types de bases obtenues par distillation atmosphérique et sous vide du pétrole brut, suivies d'opérations de raffinage tels qu'extraction au solvant, désasphaltage, déparaffinage au solvant, hydrotraitement, hydrocraquage et hydroisomérisation, hydrofinition.
Les huiles de base des compositions selon la présente invention peuvent également être des huiles synthétiques, tels certains esters d'acides carboxyliques et d'alcools, ou des polyalphaoléfines. Les polyalphaoléfines utilisées comme huiles de base, sont par exemple obtenues à partir de monomères ayant de 4 à 32 atomes de carbone (par exemple octène, decène), et une viscosité à 100°C comprise entre 1,5 et 15 cSt (ASTM D445). Leur masse moléculaire moyenne en poids est typiquement comprise entre 250 et 3000 (ASTM D5296).
Des mélanges d'huiles synthétiques et minérales peuvent également être employés, par exemple lorsqu'on formule des huiles multigrades permettant d'éviter les problèmes de démarrage à froid.
Composés organomolybdène
Les compositions lubrifiantes selon l'invention comprennent aussi au moins un modificateur de frottement inorganique choisi parmi les composés organomolybdène.
Ces composés sont comme leur nom l'indique des composés à base de molybdène, de carbone et d'hydrogène, mais on trouve aussi dans ces composés du soufre et du phosphore, et aussi de l'oxygène et de l'azote. Les composés organomolybdène utilisés dans les compositions selon l'invention sont par exemple, les dithiophosphates de molybdène, les dithiocarbamates de molybdène, les dithiophosphinates de molybdène, les xanthates de molybdène, les thioxanthates de molybdène, et divers complexes organique du molybdène tels que les carboxylates de molybdène, les esters de molybdène, les amides de molybdène, pouvant être obtenu par réaction d'oxyde de molybdène ou de molybdates d'ammonium avec des corps gras, des glycérides ou des acides gras, ou des dérivés d'acides gras (esters, aminés, amides...).
Des composés organomolybdène convenant pour les compositions lubrifiantes selon la présente invention sont par exemple décrits dans la demande EP2078745, du paragraphe [0036] au paragraphe [062].
Les composés organomolybdène préférés sont les dithiophosphates de molybdène et/ou les dithiocarbamates de molybdène.
En particulier, les dithiocarbamates de molybdène se sont avérés très efficaces pour réduire l'usure des coussinets. Ces dithiocarbamates de molybdène ont pour formule générale la formule générale (I) suivante dans laquelle Ri, R2, R3 ou R4 sont indépendamment l'un de l'autre des groupements alkyles linéaires ou ramifiés, saturés ou insaturés, com renant de 4 à 18 atomes de carbone, préférentiellement de 8 à 13.
De même pour les dithiophosphates de molybdène. Ces dithiophosphates de molybdène ont pour formule générale la formule générale (II) suivante dans laquelle R5, R6, R7 ou R8 sont indépendamment l'un de l'autre des groupements alkyles linéaires ou ramifiés, saturés ou insaturés, comprenant de 4 à 18 atomes de carbone, préférentiellement de 8 à 13.
Les compositions lubrifiantes selon l'invention peuvent comprendre entre 0,1 et 10% en masse, par rapport à la masse totale de composition lubrifiante, de composé organomolybdène, de préférence entre 0,5 et 8%, plus préférentiellement entre 1 et 5%, encore plus préférentiellement entre 2 et 4%. De façon surprenante, la demanderesse a mis en évidence que l'emploi des polyalkylène glycols décrits ci-dessus en combinaison avec ces composés organomolybdène, dans une huile moteur, permet de réduire considérablement l'usure des coussinets de bielle des moteurs de véhicules hybrides ou micro-hybrides, sans modifier la consommation de carburant ou en réduisant la consommation de carburant.
Les composés organomolybdène utilisables dans les compositions selon l'invention comprennent de 1 à 30% en masse de molybdène, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 20%, plus préférentiellement de 4 à 10%, encore plus préférentiellement de 8 à 5%.
Les composés organomolybdène utilisables dans les compositions selon l'invention comprennent de 1 à 30% en masse de soufre, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 20%, plus préférentiellement de 4 à 10%, encore plus préférentiellement de 8 à 5%.
Les composés organomolybdène utilisables dans les compositions selon l'invention comprennent de 1 à 10% en masse de phosphore, par rapport à la masse totale de composé organomolybdène, de préférence de 2 à 8%, plus préférentiellement de 3 à 6%, encore plus préférentiellement de 4 à 5%.
Polymère améliorant l'indice de viscosité
Les compositions lubrifiantes peuvent comprendre au moins un ou plusieurs polymères améliorants l'indice de viscosité (VI), tels que par exemple les Oléfines Copolymères (OCP), les copolymères d'éthylène et d'alpha-oléfine, les copolymères de styrène et d'oléfine tels que les copolymères de styrène et d'isoprène, les polyacrylates tels que les polyméthacrylates (PMA).
Les compositions lubrifiantes selon la présente invention peuvent contenir de l'ordre de 1 à 15 % en masse, par rapport à la masse totale de la composition lubrifiante, d'au moins un polymère améliorant l'indice de viscosité, de préférence de 2 à 10%, plus préférentiellement de 3 à 8%.
Préférentiellement, les compositions lubrifiantes selon l'invention ont préférentiellement une valeur d'indice de viscosité ou VI, mesuré selon ASTM D2270 supérieur à 130, préférentiellement supérieur à 140, préférentiellement supérieur à 150.
Préférentiellement, les compositions lubrifiantes selon l'invention ont une viscosité cinématique (KVlOO) à 100°C mesurée selon la norme ASTM D445, comprise entre 3,8 cSt et 26,1 cSt, de préférence entre 5,6 et 12,5 cSt, ce qui correspond d'après la classification SAE J 300 à des grades 20 (5,6 à 9,3 cSt) ou 30 (9,3 à 12,5 cSt) à chaud. Préférentiellement, les compositions lubrifiantes selon l'invention sont des huiles moteur multigrades de grade 0W ou 5W à froid, et 20 ou 30 à chaud selon la classification SAE J 300.
Autres additifs
Les compositions lubrifiantes pour moteurs utilisées selon l'invention peuvent en outre contenir tous types d'additifs adaptés à une utilisation comme huile moteur. Ces additifs peuvent être introduits isolément et/ou inclus dans des paquets d'additifs utilisés dans les formulations des lubrifiants commerciaux, de niveaux de performance tels que définis par l'ACEA (Association des constructeurs Européens d'Automobiles) et/ou l'API (American Petroleum Institute). Ces paquets d'additifs (ou compositions additives) sont des concentrés comportant environ 30% en poids d'huile de base de dilution.
Ainsi, les compositions lubrifiantes selon l'invention peuvent contenir notamment et non limitativement des additifs anti-usure et extrême pression, des antioxydants, des détergents surbasés ou non, des améliorants de point d'écoulement, des dispersants, des anti mousse, des épaississants...
Les additifs anti-usure et extrême-pression protègent les surfaces en frottement par formation d'un film protecteur adsorbé sur ces surfaces. Le plus couramment utilisé est le dithiophosphate de zinc ou ZnDTP. On trouve également dans cette catégorie divers composés phosphorés, soufrés, azotés, chlorés et borés.
Il existe une grande variété d'additifs anti-usure, mais la catégorie la plus utilisée dans les huiles pour moteur est celle des additifs phosphosoufrés comme les alkylthiophosphates métalliques, en particulier les alkylthiophosphates de zinc, et plus spécifiquement les dialkyldithiophosphates de zinc ou ZnDTP. Les composés préférés sont de formule Zn((SP(S)(OR9)(ORio))2, ou Rg et Rio sont des groupements alkyl, linéaires ou ramifiés, saturés ou insaturés, comportant préférentiellement de 1 à 18 atomes de carbones. Le ZnDTP est typiquement présent à des teneurs de l'ordre de 0,1 à 2% en masse, par rapport à la masse totale de la composition lubrifiante.
Les phosphates d'amines, les polysulfures, notamment oléfines soufrées, sont également des additifs anti-usure employés couramment.
Les additifs anti-usure et extrême-pression sont généralement présents dans les compositions pour lubrifiants moteur à des teneurs comprises entre 0,5 et 6% en masse, préférentiellement comprises entre 0,7 et 2%, préférentiellement entre 1 et 1,5%, par rapport à la masse totale de la composition lubrifiante.
Les antioxydants retardent la dégradation des huiles en service, dégradation qui peut se traduire par la formation de dépôts, la présence de boues, ou une augmentation de la viscosité de l'huile. Ils agissent comme inhibiteurs radicalaires ou destructeurs d'hydropéroxydes. Parmi les antioxydants couramment employés on trouve les antioxydants de type phénolique et/ou aminés.
Les antioxydants phénoliques peuvent être sans cendre, ou bien être sous forme de sels métalliques neutres ou basiques. Typiquement, ce sont des composés contenant un groupement hydroxyle stériquement encombré, par exemple lorsque deux groupements hydroxyles sont en position ortho ou para l'un de l'autre, ou que le phénol est substitué par un groupe alkyl comportant au moins 6 atomes de carbone.
Les composés aminés sont une autre classe d'antioxydants pouvant être utilisés, seuls ou éventuellement en combinaison avec les composés phénoliques. Des exemples typiques sont les aminés aromatiques, de formule R11R12 13N, où Ru est un groupement aliphatique, ou un groupement aromatique éventuellement substitué, Ri2 est un groupement aromatique éventuellement substitué, Ri3 est l'hydrogène, ou un groupement alkyl ou aryl, ou un groupement de formule Ri4S(0)xRi5, où Ri4 et Ri5 sont des groupes alkylène, alkenylène, ou aralkylène, et x est un nombre entierégal à 0, 1 ou 2.
Des alkyl phénols sulphurisés ou leurs sels de métaux alcalins et alcalino terreux sont également utilisés comme antioxydants.
Une autre classe d'antioxydants est celle des composés cuivrés solubles dans l'huile, par exemples les thio- ou dithiophosphates de cuivre, les sels de cuivre et d'acides carboxyliques, les dithiocarbamates, sulphonates, phénates, acétylacétonates de cuivre. Les sels de cuivre I et II, d'acide ou d'anhydride succiniques sont utilisés.
Les antioxydants, seuls ou en mélange, sont typiquement présents dans les compositions lubrifiantes pour moteur dans des quantités comprises entre 0,1 et 5% en masse, préférentiellement entre 0,3 et 2%, encore plus préférentiellement entre 0,5 et 1,5%, par rapport à la masse totale de la composition lubrifiante.
Les détergents réduisent la formation de dépôts à la surface des pièces métalliques par dissolution des produits secondaires d'oxydation et de combustion, et permettent la neutralisation de certaines impuretés acides provenant de la combustion et se retrouvant dans l'huile.
Les détergents communément utilisés dans la formulation de compositions lubrifiantes sont typiquement des composés anioniques comportant une longue chaîne hydrocarbonée lipophile et une tête hydrophile. Le cation associé est typiquement un cation métallique d'un métal alcalin ou alcalino-terreux. Les détergents sont préférentiellement choisis parmi les sels de métaux alcalins ou alcalino-terreux d'acides carboxyliques, sulfonates, salicylates, naphténates, ainsi que les sels de phénates, préférentiellement de calcium, magnésium, sodium ou baryum.
Ces sels métalliques peuvent contenir le métal en quantité approximativement stoechiométrique ou bien en excès (en quantité supérieure à la quantité stoechiométrique). Dans ce dernier cas, on a affaire à des détergents dits surbasés.
Le métal en excès apportant le caractère surbasé au détergent se présente sous la forme de sels métalliques insolubles dans l'huile, par exemple carbonate, hydroxyde, oxalate, acétate, glutamate, préférentiellement carbonate, préférentiellement de calcium, magnésium, sodium ou baryum.
Les compositions lubrifiantes selon la présente invention peuvent contenir tous types de détergents connus de l'homme du métier, neutres ou bien surbasés. Le caractère plus ou moins surbasé des détergents est caractérisé par le BN (base number), mesuré selon la norme ASTM D2896, et exprimé en mg de KOH par gramme. Les détergents neutres ont un BN compris environ entre 0 et 80 mg KOH/g. Les détergents surbasés ont, eux, des valeurs de BN typiquement de l'ordre de 150 mg KOH/g et plus, voire 250 mg KOH/g ou 450 mg KOH/g ou plus. Le BN de la composition lubrifiante contenant les détergents est mesuré par la norme ASTM D2896 et exprimé en mg de KOH par gramme de lubrifiant.
Préférentiellement, les quantités de détergents inclus dans les huiles moteur selon l'invention sont ajustées de manière à ce que le BN desdites huiles, mesuré selon la norme ASTM D2896, soit compris entre 5 et inférieur ou égal à 20 mg de KOH par gramme d'huile moteur, préférentiellement entre 8 et 15 à mg de KOH par gramme d'huile moteur.
Les additifs abaisseurs de point d'écoulement améliorent le comportement à froid des huiles, en ralentissant la formation de cristaux de paraffine. Ce sont par exemple des polyméthacrylates d'alkyle, polyacrylates, polyarylamides, polyalkylphénols, polyalkylnaphtalènes, polystyrène alkylé. Ils sont généralement présents dans les huiles selon l'invention à des teneurs comprises entre 0,1 et 0,5% en masse, par rapport à la masse de composition lubrifiante.
Les dispersants comme par exemples des succinimides, des PIB (polyisobutène) succinimides, des Bases de Mannich assurent le maintien en suspension et l'évacuation des contaminants solides insolubles constitués par les produits secondaires d'oxydation qui se forment lorsque l'huile moteur est en service. Le taux de dispersant est typiquement compris entre 0,5 et 10% en masse, préférentiellement entre 1 et 5%, par rapport à la masse totale de la composition lubrifiante. Un autre objet de l'invention est un procédé de lubrification d'au moins une pièce d'un moteur de véhicule à motorisation hybride et/ou micro-hybride, ledit procédé comprenant au moins une étape de mise en contact de la composition lubrifiante telle que définie ci-dessus avec au moins une pièce dudit moteur, ladite pièce comprenant au moins une surface métallique ou une surface polymériques et /ou une surface de carbone amorphe.
Dans un mode de réalisation dudit procédé, la pièce moteur est un coussinet, de préférence un coussinet de bielle.
Le procédé selon l'invention permet de réduire l'usure du moteur à combustion interne de véhicules à motorisation hybride ou micro-hybride. Avantageusement, le procédé selon l'invention permet de réduire l'usure des coussinets, notamment des coussinets de bielle.
Exemples
On a simulé l'aggravation sur l'usure des coussinets d'un moteur muni d'un système Stop-and-Start par un essai consistant en une succession de 12000 cycles arrêt/démarrage pendant 150 heures:
1) Démarrage moteur,
2) Fonctionnement 10 secondes sur point de ralenti,
3) Arrêt moteur,
Reprise de la séquence 1 à 3.
Le système testé comprend un moteur diesel 4 cylindres de couple maximum 200 N .m de 1750 à 2500 tours/min. Il est de type Stop-and-Start et comprend un alterno-démarreur entre l'embrayage et la boite de vitesse du véhicule. L'huile moteur est maintenue aux environs de 100°C dans ces essais. L'usure est suivie par une technique usuelle de radiotraceurs, consistant à irradier la surface des coussinets de bielle dont on veut tester l'usure, et à mesurer en cours d'essai l'augmentation en radioactivité de l'huile moteur, c'est-à-dire la vitesse de chargement de l'huile en particules métalliques irradiées. Cette vitesse est directement proportionnelle à la vitesse d'usure des coussinets.
Les résultats se basent sur l'analyse comparative de ces vitesses d'endommagement (huile de référence et huile à tester) et sont validés par un encadrement avec une huile de référence afin d'intégrer des éléments d'adaptation de surface positif ou négatif à la vitesse d'endommagement. Les vitesses d'endommagement des huiles testées sont toutes comparées à la vitesse d'endommagement de l'huile de référence et quantifiées sous forme de ratio % de vitesse nommé Usure dans le Tableau I ci-dessous.
La composition lubrifiante A est une composition lubrifiante de référence de grade 5W-30.
Les compositions lubrifiantes B et C sont des compositions lubrifiantes selon l'invention additivées avec un polyalkylène glycol qui est un PAG BO/PO (oxyde de butylène/oxyde de propylène) ayant un ratio massique 50/50, de KV100 égal à 6 cSt (mesurée selon la norme ASTM D445) et de masse molaire égale à 750 g/mol (mesurée selon la norme ASTM D4274).
La composition lubrifiante D est une composition lubrifiante selon l'invention additivée avec le PAG décrit ci-dessus et un composé organomolybdène de formule générale (I) avec R R2, R3, R4 qui sont des groupes alkyles de 13 et/ou 18 atomes de carbone, la quantité de molybdène en masse, par rapport à la masse du composé, est de 10%, la quantité de soufre en masse, par rapport à la masse du composé, est de 11%.
La composition lubrifiante E est une composition lubrifiante selon l'invention additivée avec le PAG décrit ci-dessus et un composé organomolybdène de formule générale (II) avec R5, R6, R7, Rs qui sont des groupes alkyles de 8 atomes de carbone, la quantité de molybdène en masse, par rapport à la masse du composé, est de 9%, la quantité de soufre en masse, par rapport à la masse du composé, est de 10,1%, la quantité de phosphore en masse, par rapport à la masse du composé, est de 3,2%.
Les compositions lubrifiantes F et G sont des compositions témoins comprenant respectivement un composé organomolybdène de formule générale (I) et un composé organomolybdène de formule générale (II) tels que décrits ci-dessus.
Les compositions massiques et propriétés des compositions lubrifiantes testées sont regroupées dans le tableau I ci-dessous :
Tableau I
hors huile de base de dilution du paquet d'additifs
L'huile de base utilisée est un mélange d'huiles de base de groupe III, d'indice de viscosité égal à 171.
Le polymère améliorant l'indice de viscosité utilisé est un polymère styrène/butadiène linéaire de masse Mw égale à 139 700 (mesurée selon la norme ASTM D5296), de masse Mn égale à 133 000 (mesurée selon la norme ASTM D5296), d'indice de polydispersité égal à 1,1, à 8% de matière active dans une huile de base de groupe III.
L'anti-oxydant est un anti-oxydant aminé de structure alkylarylamine. Le PPD ou Pour Point Depressant ou Abaisseur de Point d'Ecoulement est de type polyméthacrylate.
Le paquet d'additifs utilisé comprend des additifs anti-usure, anti-oxydants, dispersants et détergents classiques.
La composition lubrifiante A est prise comme référence.
On constate que l'utilisation d'un polyalkylène glycol permet de réduire l'usure dans les compositions B et C. Par ailleurs l'utilisation conjointe d'un polyalkylène glycol et d'un composé organomolybdène permet de réduire encore plus le taux d'usure dans les compositions D et E.

Claims

Revendications :
1. Composition lubrifiante pour moteur comprenant au moins une huile de base, au moins un polymère améliorant l'indice de viscosité, au moins un composé organomolybdène et au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène, la quantité de polyalkylène glycol étant de 1 à 28% en masse, par rapport à la masse totale de composition lubrifiante.
2 Composition lubrifiante selon la revendication 1 comprenant de 0,1 à 10% en masse, par rapport à la masse totale de composition lubrifiante, de composé organomolybdène, de préférence de 0,5 à 8%, plus préférentiellement de 1 à 5%.
3. Composition lubrifiante selon la revendication 1 ou 2 dans laquelle le composé organomolybdène est choisi parmi les dithiocarbamates et/ou les dithiophosphates de molybdène, pris seuls ou en mélange.
4. Composition lubrifiante selon l'une quelconque des revendications 1 à 3 dans laquelle le polyalkylène glycol est un copolymère d'oxyde de butylène et d'oxyde de propylène.
5. Composition lubrifiante selon l'une quelconque des revendications 1 à 4 dans laquelle le rapport massique oxyde de butylène sur oxyde de propylène est d'une valeur allant de 3 :1 à 1 :3, de préférence de 3 :1 à 1 :1.
6. Composition lubrifiante selon l'une quelconque des revendications 1 à 5 dans laquelle le polyalkylène glycol a une masse molaire mesurée selon la norme ASTM D4274 de 300 à 1000 grammes par mole, de préférence de 500 à 750 grammes par mole.
7. Composition lubrifiante selon l'une quelconque des revendications 1 à 6 dans laquelle le polyalkylène glycol a une viscosité cinématique à 100°C mesurée selon la norme ASTM D445 de 1 à 12 cSt, de préférence de 3 à 7 cSt, plus préférentiellement de 3,5 à 6,5 cSt.
8. Composition lubrifiante selon l'une quelconque des revendications 1 à 7 comprenant de 2 à 20% en masse de polyalkylène glycol, par rapport à la masse totale de la composition lubrifiante, de préférence de 3 à 15%, , encore plus préférentiellement de 5 à 12%, encore plus préférentiellement de 6 à 10%.
9. Composition lubrifiante selon l'une quelconque des revendications 1 à 8 dans laquelle le polymère améliorant l'indice de viscosité est choisi dans le groupe constitué par les oléfines copolymères, les copolymères d'éthylène et d'alpha-oléfine, les copolymères de styrène et d'oléfine, les polyacrylates pris seuls ou en mélange.
10. Composition lubrifiante selon l'une quelconque des revendications 1 à 9 comprenant de 1 à 15% en masse de polymère améliorant l'indice de viscosité, par rapport à la masse totale de la composition lubrifiante, de préférence de 2 à 10%, plus préférentiellement de 3 à 8%.
11. Composition lubrifiante selon l'une quelconque des revendications 1 à 10 consistant en :
de 40 à 80% en masse d'huile de base,
de 1 à 28% en masse de polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène,
de 1 à 15% en masse de polymère améliorant l'indice de viscosité,
de 1 à 15% en masse d'additifs choisis parmi les additifs antiusure, les détergents, les dispersants, les anti-oxydants, les modificateurs de frottement, les abaisseurs de point d'écoulement, pris seuls ou en mélange,
de 0,1 à 10% en masse d'au moins un composé organomolybdène,
la somme des constituants étant égale à 100% et les pourcentages étant exprimés par rapport à la masse totale de composition lubrifiante.
12. Utilisation d'au moins un polyalkylène glycol, obtenu par polymérisation ou copolymérisation d'oxydes d'alkylène comprenant de 3 à 8 atomes de carbone, dont au moins un oxyde de butylène dans une composition lubrifiante pour la lubrification de surfaces métalliques, de surfaces polymériques et/ou de surfaces de carbone amorphe, des moteurs à combustion interne thermique des véhicules à motorisation hybride et/ou microhybride.
13. Utilisation selon la revendication 12 dans laquelle ledit polyalkylène glycol est combiné à au moins un composé organomolybdène.
14. Utilisation selon la revendication 12 ou 13 pour réduire l'usure du moteur à combustion interne thermique, en particulier l'usure des coussinets du moteur à combustion interne thermique, en particulier l'usure des coussinets de bielle du moteur à combustion interne thermique.
EP13723047.0A 2012-05-04 2013-05-03 Composition lubrifiante pour moteur Active EP2844726B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1254149A FR2990213B1 (fr) 2012-05-04 2012-05-04 Composition lubrifiante pour moteur
PCT/EP2013/059267 WO2013164457A1 (fr) 2012-05-04 2013-05-03 Composition lubrifiante pour moteur

Publications (2)

Publication Number Publication Date
EP2844726A1 true EP2844726A1 (fr) 2015-03-11
EP2844726B1 EP2844726B1 (fr) 2019-09-11

Family

ID=48446280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13723047.0A Active EP2844726B1 (fr) 2012-05-04 2013-05-03 Composition lubrifiante pour moteur

Country Status (16)

Country Link
US (1) US10604717B2 (fr)
EP (1) EP2844726B1 (fr)
JP (1) JP6295248B2 (fr)
KR (1) KR102125478B1 (fr)
CN (1) CN104334699B (fr)
AR (1) AR092004A1 (fr)
BR (1) BR112014027292B1 (fr)
CA (1) CA2871433A1 (fr)
ES (1) ES2757098T3 (fr)
FR (1) FR2990213B1 (fr)
HU (1) HUE047063T2 (fr)
IN (1) IN2014DN09368A (fr)
MX (1) MX358778B (fr)
PT (1) PT2844726T (fr)
RU (1) RU2635569C2 (fr)
WO (1) WO2013164457A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2998303B1 (fr) 2012-11-16 2015-04-10 Total Raffinage Marketing Composition lubrifiante
FR3000103B1 (fr) 2012-12-21 2015-04-03 Total Raffinage Marketing Composition lubrifiante a base d'ether de polyglycerol
FR3018079B1 (fr) 2014-02-28 2017-06-23 Total Marketing Services Composition lubrifiante a base de nanoparticules metalliques
CN106414686A (zh) * 2014-06-19 2017-02-15 国际壳牌研究有限公司 润滑组合物
EP3262145B1 (fr) * 2015-02-26 2018-12-26 Dow Global Technologies LLC Formulations lubrifiantes sous pression extrême améliorées
EP3262146B1 (fr) * 2015-02-26 2018-12-26 Dow Global Technologies LLC Formulations lubrifiantes douées d'une performance anti-usure et sous pression extrême améliorée
EP3124580A1 (fr) 2015-07-31 2017-02-01 Total Marketing Services Diesters ramifiés destinés à la réduction de la consommation de carburant d'un moteur
EP3124579A1 (fr) 2015-07-31 2017-02-01 Total Marketing Services Composition de lubrifiant contenant des diesters ramifiés et agent améliorant l'indice de viscosité
FR3039834B1 (fr) 2015-08-06 2018-08-31 Total Marketing Services Compositions lubrifiantes pour prevenir ou diminuer le pre-allumage dans un moteur
JP6581452B2 (ja) * 2015-09-17 2019-09-25 シェルルブリカンツジャパン株式会社 ポリアルキレングリコール及び酸性の含酸素系有機化合物を用いた潤滑油組成物が存在する低摩擦摺動機構
JP6605948B2 (ja) * 2015-12-24 2019-11-13 シェルルブリカンツジャパン株式会社 内燃機関用潤滑油組成物
FR3048976B1 (fr) * 2016-03-15 2020-02-07 Total Marketing Services Composition lubrifiante a base de polyalkylene glycols
US10800993B2 (en) * 2016-04-08 2020-10-13 Croda International Plc Lubricated system comprising a DLC surface
JP6882343B2 (ja) * 2016-06-02 2021-06-02 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 潤滑剤組成物
FR3058156B1 (fr) * 2016-10-27 2022-09-16 Total Marketing Services Composition pour vehicule electrique
US10160926B2 (en) * 2016-11-25 2018-12-25 Hyundai Motor Company Axle oil composition having enhanced fuel efficiency and low viscosity
US10876062B2 (en) * 2017-03-24 2020-12-29 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10858610B2 (en) * 2017-03-24 2020-12-08 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity boosting base stocks and lubricating oil formulations containing the same
US10808196B2 (en) * 2017-03-28 2020-10-20 Exxonmobil Chemical Patents Inc. Cold cranking simulator viscosity reducing base stocks and lubricating oil formulations containing the same
JP7147132B2 (ja) * 2017-05-31 2022-10-05 セイコーエプソン株式会社 発光装置、プロジェクター、および発光装置の製造方法
FR3072685B1 (fr) * 2017-10-20 2020-11-06 Total Marketing Services Composition pour refroidir et lubrifier un systeme de motorisation d'un vehicule
US11753599B2 (en) 2021-06-04 2023-09-12 Afton Chemical Corporation Lubricating compositions for a hybrid engine

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072619A (en) 1976-08-30 1978-02-07 The Dow Chemical Company Ester lubricants containing polyoxyalkylene phenothiazines
JPS54159411A (en) 1978-06-07 1979-12-17 Nippon Oil & Fats Co Ltd Engine oil composition
JPS6088094A (ja) * 1983-10-20 1985-05-17 Nippon Oil & Fats Co Ltd 潤滑油組成物
DE4001043A1 (de) * 1990-01-16 1991-07-18 Basf Ag Motorenoel mit einem gehalt an phenolalkoxylaten
JPH07197068A (ja) 1993-12-30 1995-08-01 Tonen Corp 潤滑油組成物
JP3454593B2 (ja) 1994-12-27 2003-10-06 旭電化工業株式会社 潤滑油組成物
JP3941889B2 (ja) * 1995-06-15 2007-07-04 新日本石油株式会社 エンジン油組成物
JPH0931483A (ja) 1995-07-20 1997-02-04 Tonen Corp 潤滑油組成物
JP3497952B2 (ja) 1996-08-02 2004-02-16 東燃ゼネラル石油株式会社 潤滑油組成物
KR100516268B1 (ko) 1996-12-13 2005-09-20 엑손 리써치 앤드 엔지니어링 컴파니 유기 몰리브덴 착체를 함유하는 윤활유 조성물
US6110878A (en) * 1997-12-12 2000-08-29 Exxon Chemical Patents Inc Lubricant additives
JP4201902B2 (ja) 1998-12-24 2008-12-24 株式会社Adeka 潤滑性組成物
US6458750B1 (en) * 1999-03-04 2002-10-01 Rohmax Additives Gmbh Engine oil composition with reduced deposit-formation tendency
JP2001283614A (ja) 2000-03-31 2001-10-12 Stanley Electric Co Ltd 光導管、光導管装置および該光導管、光導管装置を具備する車両用灯具
KR100812577B1 (ko) 2000-12-15 2008-03-13 니혼 유피카 가부시키가이샤 O/w형 열경화성 수지 수성분산체, 이 수성분산체를사용하여 이루어지는 frp정밀여과재 및 그의 제조방법
RU2266912C2 (ru) * 2001-07-18 2005-12-27 Кромптон Корпорейшн Молибденоорганические комплексы, присадка для смазочного материала, способ снижения коэффициента трения
EP1406912B1 (fr) 2001-07-18 2004-12-01 Crompton Corporation Complexes d'organomolybdene comme modificateurs de frottement
US7790659B2 (en) 2002-06-28 2010-09-07 Nippon Oil Corporation Lubricating oil compositions
US20060116298A1 (en) 2002-09-10 2006-06-01 Laurent Chambard Lubricating oil compositions
FR2848668B1 (fr) 2002-12-16 2005-03-18 Totalfinaelf France Procede et dispositif pour la determination en continu de la degradation des systemes de post-traitement des gaz d'echappement de moteur thermique
US7662881B2 (en) 2004-03-17 2010-02-16 Dow Global Technologies Inc. Viscosity index improver for lubricant compositions
MX221601B (en) 2004-05-14 2004-07-22 Basf Ag Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity
JP2007224887A (ja) * 2006-02-27 2007-09-06 Toyota Motor Corp 油圧システム
JP5137314B2 (ja) 2006-03-31 2013-02-06 Jx日鉱日石エネルギー株式会社 潤滑油基油
JP5175462B2 (ja) * 2006-09-04 2013-04-03 出光興産株式会社 内燃機関用潤滑油組成物
JP5047600B2 (ja) * 2006-12-08 2012-10-10 Jx日鉱日石エネルギー株式会社 内燃機関用潤滑油組成物
WO2008072526A1 (fr) * 2006-12-08 2008-06-19 Nippon Oil Corporation Composition d'huile lubrifiante pour moteur à combustion interne
CN104212538A (zh) 2007-07-13 2014-12-17 陶氏环球技术有限责任公司 润滑剂组合物的粘度指数改性剂
CN103865619B (zh) 2007-07-13 2016-06-08 陶氏环球技术有限责任公司 润滑剂组合物的粘度指数改性剂
US20090093384A1 (en) 2007-10-03 2009-04-09 The Lubrizol Corporation Lubricants That Decrease Micropitting for Industrial Gears
FR2924439B1 (fr) 2007-12-03 2010-10-22 Total France Composition lubrifiante pour moteur quatre temps a bas taux de cendres
US20090163392A1 (en) * 2007-12-20 2009-06-25 Boffa Alexander B Lubricating oil compositions comprising a molybdenum compound and a zinc dialkyldithiophosphate
WO2009134716A1 (fr) 2008-04-28 2009-11-05 Dow Global Technologies Inc. Composition de lubrifiant à base de polyalkylèneglycol
FR2932813B1 (fr) 2008-06-18 2010-09-03 Total France Lubrifiant cylindre pour moteur marin deux temps
FR2936812B1 (fr) 2008-10-03 2010-10-15 Total France Compositions lubrifiantes pour transmissions.
EP2177596A1 (fr) * 2008-10-20 2010-04-21 Castrol Limited Procédé de l'opération d'un moteur hybride
FR2942627B1 (fr) 2009-02-27 2011-05-06 Total Raffinage Marketing Composition de graisse
KR20100108905A (ko) 2009-03-31 2010-10-08 장암엘에스 주식회사 내열성 및 저마찰력이 우수한 등속조인트용 그리스 조성물
JP5402312B2 (ja) 2009-06-26 2014-01-29 住友化学株式会社 積層フィルム、包装材およびスタンディングパウチ
EP2456845B2 (fr) 2009-07-23 2020-03-25 Dow Global Technologies LLC Polyalkylène glycols utiles comme additifs lubrifiants pour des huiles hydrocarbonées des groupes i-iv
JP5507933B2 (ja) * 2009-09-07 2014-05-28 Jx日鉱日石エネルギー株式会社 エンジン油組成物
EP2480642A1 (fr) 2009-09-24 2012-08-01 Dow Global Technologies LLC Compositions à base d'estolides présentant de remarquables propriétés à basse température
US8455415B2 (en) * 2009-10-23 2013-06-04 Exxonmobil Research And Engineering Company Poly(alpha-olefin/alkylene glycol) copolymer, process for making, and a lubricant formulation therefor
FR2961823B1 (fr) 2010-06-25 2013-06-14 Total Raffinage Marketing Compositions lubrifiantes pour transmissions automobiles
US9057038B2 (en) 2010-08-31 2015-06-16 Dow Global Technologies Llc Corrosion inhibiting polyalkylene glycol-based lubricant compositions
JP5973446B2 (ja) 2010-09-24 2016-08-23 ダウ グローバル テクノロジーズ エルエルシー 潤滑剤用の非芳香族系酸化防止剤
FR2965274A1 (fr) 2010-09-28 2012-03-30 Total Raffinage Marketing Composition lubrifiante
FR2968011B1 (fr) 2010-11-26 2014-02-21 Total Raffinage Marketing Composition lubrifiante pour moteur
FR2968669B1 (fr) 2010-12-13 2014-02-28 Total Raffinage Marketing Composition de graisse
JP2014511913A (ja) 2011-03-23 2014-05-19 ダウ グローバル テクノロジーズ エルエルシー ポリアルキレングリコール系伝熱流体及び単一流体のエンジンオイル
US20140018273A1 (en) 2011-03-29 2014-01-16 Dow Global Technologies Llc Lubricant compositions
CA2831596C (fr) 2011-04-15 2015-11-24 Vanderbilt Chemicals, Llc. Compositions de dialkyldithiocarbamate de molybdene et compositions lubrifiantes les contenant
FR2980799B1 (fr) 2011-09-29 2013-10-04 Total Raffinage Marketing Composition lubrifiante pour moteur marin
FR2990215B1 (fr) 2012-05-04 2015-05-01 Total Raffinage Marketing Composition lubrifiante pour moteur
FR2998303B1 (fr) 2012-11-16 2015-04-10 Total Raffinage Marketing Composition lubrifiante
US9973266B1 (en) 2017-06-12 2018-05-15 Ast & Science, Llc System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2013164457A1 *

Also Published As

Publication number Publication date
RU2635569C2 (ru) 2017-11-14
MX358778B (es) 2018-09-04
CN104334699B (zh) 2017-07-21
FR2990213A1 (fr) 2013-11-08
JP2015516007A (ja) 2015-06-04
AR092004A1 (es) 2015-03-18
ES2757098T3 (es) 2020-04-28
CA2871433A1 (fr) 2013-11-07
BR112014027292A2 (pt) 2017-06-27
CN104334699A (zh) 2015-02-04
WO2013164457A1 (fr) 2013-11-07
EP2844726B1 (fr) 2019-09-11
JP6295248B2 (ja) 2018-03-14
MX2014013431A (es) 2015-04-14
RU2014147250A (ru) 2016-06-27
US10604717B2 (en) 2020-03-31
PT2844726T (pt) 2019-12-16
FR2990213B1 (fr) 2015-04-24
KR102125478B1 (ko) 2020-07-08
IN2014DN09368A (fr) 2015-07-17
US20150126419A1 (en) 2015-05-07
KR20150015455A (ko) 2015-02-10
BR112014027292B1 (pt) 2020-10-27
HUE047063T2 (hu) 2020-04-28

Similar Documents

Publication Publication Date Title
EP2844726B1 (fr) Composition lubrifiante pour moteur
EP2986693B1 (fr) Composition lubrifiante a base de nanoparticules metalliques
WO2019077105A1 (fr) Composition pour refroidir et lubrifier un système de motorisation d&#39;un véhicule
EP3274432A1 (fr) Composition lubrifiante
EP2844725A1 (fr) Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
FR2998303A1 (fr) Composition lubrifiante
WO2018210829A1 (fr) Utilisation de compositions lubrifiantes pour ameliorer la proprete d&#39;un moteur de vehicule 4-temps
EP2958980A1 (fr) Composition lubrifiante a base de composes amines
EP2788462B1 (fr) Lubrifiant moteur pour vehicules a motorisation hybride ou micro-hybride
WO2016102529A1 (fr) Composition lubrifiante a matériau a changement de phase
EP2488618B1 (fr) Utilisation d&#39;un lubrifiant moteur
EP3529341B1 (fr) Composition lubrifiante
WO2019202150A1 (fr) Composition lubrifiante pour moteurs industriels a potentiel fe amplifie
WO2024056827A1 (fr) Utilisation d&#39;un monoester dans une composition lubrifiante pour transmissions de
FR3011246A1 (fr) Composition lubrifiante a base de copolymeres ethylene/propylene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VALADE, JEROME

Inventor name: KHELIDJ, NADJET

Inventor name: LERASLE, OLIVIER

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180905

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1178456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013060338

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2844726

Country of ref document: PT

Date of ref document: 20191216

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191206

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E047063

Country of ref document: HU

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2757098

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013060338

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200616

Year of fee payment: 8

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20200519

Year of fee payment: 8

Ref country code: HU

Payment date: 20200422

Year of fee payment: 8

Ref country code: IT

Payment date: 20200513

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200424

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1178456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200503

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1178456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013060338

Country of ref document: DE

Owner name: TOTALENERGIES ONETECH, FR

Free format text: FORMER OWNERS: DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, MICH., US; TOTAL MARKETING SERVICES, PUTEAUX, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602013060338

Country of ref document: DE

Owner name: DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, US

Free format text: FORMER OWNERS: DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, MICH., US; TOTAL MARKETING SERVICES, PUTEAUX, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240424

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240523

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240513

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240411

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240503

Year of fee payment: 12