EP2837497B1 - Appareil d'éjection de gouttelettes liquides et procédé de récupération de buse d'un appareil d'éjection de gouttelettes liquides - Google Patents

Appareil d'éjection de gouttelettes liquides et procédé de récupération de buse d'un appareil d'éjection de gouttelettes liquides Download PDF

Info

Publication number
EP2837497B1
EP2837497B1 EP14172583.8A EP14172583A EP2837497B1 EP 2837497 B1 EP2837497 B1 EP 2837497B1 EP 14172583 A EP14172583 A EP 14172583A EP 2837497 B1 EP2837497 B1 EP 2837497B1
Authority
EP
European Patent Office
Prior art keywords
ink
nozzle
micro
liquid droplet
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14172583.8A
Other languages
German (de)
English (en)
Other versions
EP2837497A3 (fr
EP2837497A2 (fr
Inventor
Ryohei Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of EP2837497A2 publication Critical patent/EP2837497A2/fr
Publication of EP2837497A3 publication Critical patent/EP2837497A3/fr
Application granted granted Critical
Publication of EP2837497B1 publication Critical patent/EP2837497B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/1652Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head
    • B41J2/16526Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head by applying pressure only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04596Non-ejecting pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16585Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads

Definitions

  • the present invention relates to a liquid droplet ejection apparatus and a method for recovering a nozzle of the liquid droplet ejection apparatus, and more particularly to a liquid droplet ejection apparatus that can suppress sedimentation of solid particles contained in an ink and stably eject liquid droplets for a long time and a method for recovering a nozzle of the liquid droplet ejection apparatus.
  • a liquid droplet ejection apparatus that performs printing by ejecting liquid droplets from a head is generally used for various industrial purposes as an inkjet printer.
  • Applications of this industrial inkjet increases year by year, and the inkjet printer is used for not only performing printing on paper sheets, fabric, plastic sheets, and others but also performing printing a design on a surface of a ceramic tile in recent years. Accordingly, performance that enables stably ejecting various kinds of inks for a long time has been demanded with respect to the liquid droplet ejection apparatus.
  • Patent Document 1 a technology that circulates the ink by using a pressure difference between a head and an ink tank has been suggested.
  • the ink on the ink side that is circulated by this technology is an ink in a common ink chamber that exclusively supplies the ink to respective ink chambers in common, and the ink supplied to the respective ink chamber cannot be circulated. Therefore, at a print pause time, the sedimentation of the solid particles that occurs in the ink chambers cannot be suppressed.
  • Patent Document 2 As a countermeasure for nozzle clogging during the printing pause, there has been known a technology that applies a preliminary waveform to each ink chamber to vibrate a meniscus immediately before restarting ejection and allows the ink in the ink chambers to flow (Patent Document 2) .
  • Patent Document 2 a technology that applies a preliminary waveform to each ink chamber to vibrate a meniscus immediately before restarting ejection and allows the ink in the ink chambers to flow.
  • Patent Document 2 a technology that applies a preliminary waveform to each ink chamber to vibrate a meniscus immediately before restarting ejection and allows the ink in the ink chambers to flow.
  • Patent Document 2 As a countermeasure for nozzle clogging during the printing pause, there has been known a technology that applies a preliminary waveform to each ink chamber to vibrate a meniscus immediately before restarting ejection and allows the ink in the ink chambers to flow.
  • Patent Document 3 there has been also known detecting viscosity of an ink and adjusting intensity of micro-vibration and an amount of liquid droplets at the time of discharging an ink.
  • Patent Document 3 this technology prevents nozzle clogging caused due to evaporation of a liquid and an increase in viscosity of the ink, and does not solve a problem caused by the sedimentation of the solid particles contained in the ink.
  • US 2009/160887 A1 discloses a liquid droplet ejection head comprising an ejector, a liquid viscosity-increase prevention structure and a liquid viscosity-increase prevention controller.
  • the ejector includes a nozzle for ejecting a liquid droplet, a pressure chamber communicating with the nozzle through a communication path, and an actuator for applying pressure to a liquid in the pressure chamber.
  • the liquid viscosity-increase prevention structure prevents an increase of viscosity of the liquid in the ejector.
  • the liquid viscosity-increase prevention controller changes the operation frequency of the liquid viscosity-increase prevention structure between when the liquid droplet is ejected from the nozzle and when ejection of the liquid droplet is paused and no liquid droplet is being ejected from the nozzle.
  • US 2002/171704 A1 discloses a liquid jetting apparatus including a head member having a nozzle, a supporting member that can support a medium, a scanning mechanism that can cause the head member to relatively move with respect to the medium, and a liquid jetting unit that can jet liquid from the nozzle.
  • An area storing unit stores a relative area to which liquid can be jetted from the nozzle while the head member is caused to relatively move by the scanning mechanism.
  • An out-of-jetting micro-vibrating-area setting unit can set out-of-jetting micro-vibrating areas before and after the relative area.
  • a micro-vibrating unit causes liquid in the nozzle to minutely vibrate.
  • An out-of-jetting micro-vibrating controlling unit causes the micro-vibrating unit to operate when the head member is located in the out-of-jetting micro-vibrating areas, while the head member is caused to relatively move by the scanning mechanism, based on the out-of-jetting micro-vibrating areas and head-position information.
  • EP 2 127 882 A1 discloses a fluid ejecting apparatus that ejects fluid including a pressure chamber that is filled with the fluid, a pressure generating element that deforms a wall face of the pressure chamber to change a volume of the pressure chamber, a nozzle that is in fluid communication with the pressure chamber and that is used for ejecting the fluid, and a control unit that generates a drive pulse for controlling the pressure generating element.
  • the liquid droplet ejection apparatus that can effectively eliminate the sedimentation of solid particles contained in an ink and stably eject liquid droplets for a long time.
  • FIG. 1 is a perspective view showing an example of a liquid droplet ejection apparatus
  • FIG. 2 is a cross-sectional view showing an example of a head.
  • reference numeral 100 denotes a liquid droplet ejection apparatus; 1, a head; and 2, a conveyance belt.
  • ceramic tiles C as recording mediums are mounted at intervals on a conveyance surface 2a of a conveyance belt 2 that is driven to rotate in one direction, and they are conveyed in an arrow direction in the drawing.
  • a plurality of nozzles 12 are aligned along an X direction in the drawing parallel to a width direction of the conveyance belt 2, and nozzle surfaces are arranged to be vertically downward directed so that they face the conveyance surface 2a.
  • a ceramic ink containing, e.g., ceramic particles having specific gravity higher than that of dispersion medium is ejected as solid particles from the respective nozzles 12 to a print region on a front surface of each ceramic tile C that is conveyed at a fixed speed by the conveyance belt 2 based on print data, thereby forming a predetermined image.
  • a plurality of ink chambers 11 are aligned along the X direction.
  • all the ink chambers 11 are ink chambers that can eject liquid droplets from the nozzles 12 provided in accordance with the respective ink chambers 11 when the ink in a common ink chamber 13 provided to communicate with the respective ink chambers 11 is supplied thereto.
  • each partition wall 14 that separates the neighboring ink chambers 11, 11 from each other is formed of a piezoelectric element.
  • Drive electrodes (not shown) are formed on surfaces of the partition walls 14 facing the inside of the ink chambers 11.
  • each partition wall 14 deforms, and a capacity of each ink chamber 11 changes.
  • this change in capacity increases to eject the ink in each ink chamber 11 from each nozzle 12 formed on a nozzle plate 15, ejection energy is given to the ink in each ink chamber 11, and liquid droplets are ejected from each nozzle 12.
  • the partition walls 14 having the drive electrodes formed thereon constitute energy giving means for giving the ink in the ink chambers 11 the energy.
  • the ink to be used in the present invention contains dispersion medium as well as solid particles having higher specific gravity than that of the dispersion medium.
  • the dispersion medium is out of the question.
  • the solid particles there are ceramic particles in the ceramic ink, pigment particles of a titanium oxide, and others.
  • the specific gravity difference between the dispersion medium and the solid particles in the present invention is 0.2 or more since an effect of the present invention can be considerably provided, which is preferable.
  • the ink that does not volatilize by drying at an ordinary temperature under an ordinary pressure is used.
  • the ink that does not volatilize means an ink in which the content of a material, whose steam pressure at an ordinary temperature is higher than that of water, is 10% or less or preferably 5% or less.
  • Such an ink does not have a problem of an increase in viscosity due to evaporation of a volatile component that can be observed when a volatile ink such as an aqueous ink is used at the time of use.
  • an ink for example, there are a UV ink, an oil ink, and others.
  • FIG. 3 is a block diagram showing an outline configuration of the inside of the liquid droplet ejection apparatus 100.
  • Reference numeral 101 denotes a CPU that controls the entire liquid droplet ejection apparatus 100; 102, a print data memory that stores print data to be formed in a print region on the surface of each ceramic tile C; 103, an encoder that detects a moving length of the conveyance belt 2; 104, a belt conveyance motor that drives the conveyance belt 2 to rotate; 105, a head driver that gives a pulse to the drive electrodes of the head 1 to deform the partition walls 14; 106, a drive pulse generation unit that is provided in the head driver 105 and generates a drive pulse as a drive signal to be supplied to the head 1; 107, a micro-vibration control unit that is provided in the CPU 101 and controls a micro-vibration operation for micro-vibrating the ink in the ink chambers 11; and 108, an ejection control unit that is provided in the CPU 101 and controls an ejection operation of ejecting the ink in the ink chambers 11.
  • the micro-vibration control unit 107 controls drive of the head 1 through the head driver 105 so as to perform a micro-vibration operation for micro-vibrating the ink in the ink chambers 11 and providing the solid particles with kinetic energy to facilitate dispersion.
  • this micro-vibration control unit 107 constitutes micro-vibrating means.
  • the ejection control unit 108 controls drive of the head 1 through the head driver 105 so as to perform an ejection operation for forcibly ejecting the ink in the ink chambers 11 and replacing the ink in the ink chambers 11 with a new ink.
  • the micro-vibration control unit 107 and the ejection control unit 108 constitute refreshing means.
  • a pulse generated by the drive pulse generating unit 106 includes an ejection pulse P1 for ejecting liquid droplets from the nozzles 12 like an example shown in FIG. 4(a) and a micro-vibration pulse P2 for micro-vibrating the ink in the ink chambers 11 so as not to eject liquid droplets from the nozzles 12 like an example shown in FIG. 4(b) .
  • the drive pulse generating unit 106 selects one of these drive pulses in accordance with an instruction from the CPU 101 and applies the drive pulse to the drive electrodes formed on the partition walls 104 of the head 1.
  • sedimentation of the solid particles may possibly cause an ejection failure such as nozzle clogging if a period during which ejection from the nozzle 12 pauses when the head 1 is in the print region or a small period during which ejection pauses when the head 1 is in the non-print region has been passed.
  • refresh for ejecting liquid droplets from the respective nozzles 12 to eject the ink is performed under control of the CPU 101, thereby stabilizing the ejection.
  • the non-print region is a region which deviates from the recording medium has no print data and in which printing based on this print data is not performed.
  • the head 1 print regions and non-print regions alternately fed.
  • a space between the ceramic tiles C, C continuously mounted on the conveyance surface 2a at an interval is the non-print region where printing based on print data is not carried out.
  • Arrival of the head 1 at the non-print region is detected by a moving length of the conveyance belt 2 detected by the encoder 103.
  • the refresh of the head 1 executed by the CPU 101 is performed by the micro-vibration operation under control of the micro-vibration control unit 107 and the ejection operation performed after this micro-vibration operation under control of the ejection control unit 108. That is, when the head 1 is present in the non-print region during a period from passage of one ceramic tile C through a position immediately below the head 1 to arrival of the subsequent ceramic tile C at the position immediately below the head 1, the refresh is constituted of the micro-vibration operation for applying the plurality of micro-vibration pulses P2 to the drive electrodes of the partition walls 14 and micro-vibrating the ink in the ink chambers 11 so as not to eject the liquid droplets from the nozzles 12 under control of the micro-vibration control unit 107 and the ejection operation for applying the plurality of ejection pulses P1 to the drive electrodes of the partition walls 14 after effecting the micro-vibration operation and ejects the liquid droplets from the nozzles 12 to provide a
  • the capacity of the ink chamber 11 means a capacity of an ink channel between a boundary relative to the common ink chamber 13 and an end opening portion of each nozzle 12. Therefore, this capacity does not include a capacity in the common ink chamber 13.
  • this capacity is a capacity of a space with a distance D that serves as an ink channel from an opening portion 11a of the ink chamber 11 that is a boundary relative to the common ink chamber 13 between both the partition walls 14 defining each ink chamber 11 to an end opening portion 12a of the nozzle 12 that is opened in a surface (a nozzle surface) of the nozzle plate 15.
  • the liquid droplet amount that is equal to or greater than the capacity of the ink chamber 11 can be defined by the total number of times of applying the ejection pulses P1.
  • the solid particles is provided with kinetic energy, and hence the settled and aggregated solid particles in the ink before ejection are apt to be dispersed, thereby smoothly discharging the ink from the nozzles 12 by the energy given at the time of subsequent ejection. Therefore, the settled solid particles do not remain in the ink chambers 11, and a total amount of the ink in the ink chambers 11 can be efficiently replaced.
  • FIG. 6 shows an example of an application pattern of the ejection pulse P1 and the micro-vibration pulse P2 at the time of performing the refresh.
  • a micro-vibration pulse applying operation for continuously applying the plurality of micro-vibration pulses P2 is first continued for a predetermined time t1, and then an ejection pulse applying operation for continuously applying the plurality of ejection pulses P1 is continued for a predetermined time t2.
  • the micro-vibration pulse applying operation of the time t1 and the ejection pulse applying operation of the time t2 are continuously alternately repeated three times.
  • the liquid droplets can be ejected so that a total liquid droplet amount of the liquid droplets ejected by the ejection pulse applying operation performed more than once can be a liquid droplet amount equal to or above the capacity of the ink chamber 11.
  • the liquid droplets can be ejected so as to provide an amount of liquid droplets that is equal to or greater than the capacity of each ink chamber 11 in accordance with each single ejection pulse applying operation in one non-print region. In this case, a total amount of the ink is replaced more than once in one non-print region. According to this operation, since a flowing amount of the ink around the ink chambers 11 including the common ink chamber 13 in the head 1 increases, an effect for enabling supply of the ink in which the solid particles are uniformly dispersed into the ink chambers 11 can be improved.
  • the number of times of occurrence of the micro-vibration pulse applying operation of the time t1 and the ejection pulse applying operation of the time t2 in one non-print region is out of the question as long as the micro-vibration pulse applying operation is carried out immediately before the ejection pulse applying operation.
  • three sets of the time t1 of the micro-vibration pulse P2 are all uniform and three sets of the time t2 of the respective ejection pulse P1 are also uniform, but the time t1 and the time t2 may be set to be non-uniform in each applying operation. That is, the number of times of applying the ejection pulse P1 or the micro-vibration pulse P2 in each applying operation may differ in accordance with each applying operation.
  • the refresh that the micro-vibration operation and the ejection operation are carried out can be effected every time the head 1 reaches the non-print region, there might be a case that sedimentation of the solid particles in the ink in the ink chambers 11 does not substantially advance like a situation where a large amount of liquid droplets are continuously ejected from the nozzle 12 in the print region or where a specific gravity difference of the dispersion medium and the solid particles is relatively small depending on a type of ink.
  • the ink ejection operation is carried out every time the head 1 reaches the non-print region, the ink is wastefully consumed.
  • the liquid droplets containing the solid particles is apt to produce a satellite, there is concern that the generated satellite turns to mist and scatters at the time of ejection, leading to contamination of the periphery.
  • the CPU 101 select whether the refresh is to be carried out in accordance with a sedimentation state, i.e., a state of progress of sedimentation of the solid particles in the ink in the ink chambers 11 when the head 1 is present in the non-print region.
  • a sedimentation state i.e., a state of progress of sedimentation of the solid particles in the ink in the ink chambers 11 when the head 1 is present in the non-print region.
  • an ejection speed of the liquid droplets ejected from the nozzles 12 is lowered as a quantity of the solid particles contained in the liquid droplets increases. Therefore, it is possible to estimate of a state of progress of sedimentation of the solid particles in the ink near the nozzles 12 in the ink chamber 11.
  • FIG. 7 shows a liquid droplet speed detection apparatus 3 which is an example of detecting means for detecting an ejection speed of the liquid droplets.
  • This liquid droplet speed detection apparatus 3 is configured to operate in response to an instruction from the CPU 101 and transmit a result to the CPU 101 as shown in FIG. 3 .
  • the liquid droplet speed detection apparatus 3 has a light projection unit 31 formed of an LED or a laser that emits detection light L and a light receiving unit 32 formed of a photosensor or the like that receives this detection light L, and the liquid droplet speed detection apparatus 3 is arranged near a position immediately below nozzles 12 in such a manner that an optical axis of the detection light L becomes parallel to the X direction as an alignment direction of the nozzles 12 and also becomes parallel to the nozzle surface. As a result, the liquid droplet ejected from each nozzle 12 crosses the detection light L, and a shade when the liquid droplet a passes is captured by the light receiving unit 32.
  • the liquid droplet speed detection apparatus 3 calculates an ejection speed of the liquid droplet a from a time required to capture a shade of the liquid droplet a from application of the ejection pulse P1 and a distance to the optical axis of the detection light L from the nozzle 12.
  • a threshold value indicative of a lower limit of a preferred ejection speed of the liquid droplet a is preset to one of the CPU 101 and the liquid droplet speed detection apparatus 3.
  • the ejection speed of the liquid droplet a detected in a case where the head 1 is present in the non-print region falls below this threshold value, sedimentation of the solid particles in the ink in the corresponding ink chamber 11 is progressing, and it is possible to determine that the refresh should be carried out.
  • FIG. 8 shows an example of a flow for detecting a speed of the liquid droplet a by the liquid droplet speed detection apparatus 3 prior to the refresh when the head 1 reaches the non-print region.
  • the liquid droplet a is first ejected from each nozzle 12 in the head 1, and the liquid droplet speed detection apparatus 3 detects an ejection speed of the liquid droplet a (S1).
  • a detection result is transmitted to the CPU 101, and the CPU 101 determines whether the ejection speed of the liquid droplet a is lower than the threshold value and sedimentation of the solid particles is advancing from this result (S2) and then starts the refresh constituted of the micro-vibration operation and the ejection operation if the ejection speed was determined to be lower than the threshold value (S3).
  • the ejection speed of the liquid droplet a is not lower than the threshold value, it is determined that sedimentation of the solid particles in the ink chamber 11 has not advanced and ejection is not required, and the refresh in the non-print region is not carried out. Therefore, the unnecessary consumption of the ink and the contamination of the periphery due to the satellite can be suppressed.
  • the refresh after detecting the liquid droplet speed may be performed with respect to all the ink chambers 11 in the head 1 or individually performed with respect to the ink chamber 11 that has ejected the liquid droplet a whose ejection speed was lower than the threshold value when it was determined that the ejection speed of the liquid droplet a ejected from any nozzle 12 in the head 1 fell below the threshold value. In the latter case, the unnecessary consumption of the ink and the contamination of the periphery due to the satellite can be further suppressed.
  • detecting an ejection speed of the liquid droplet in accordance with each head 1 and determining whether the refresh is to be performed enables carrying out an appropriate nozzle recovery operation in accordance with each head 1.
  • the sedimentation of the solid particles in the ink in each ink chamber 11 advances when a period that no print data is provided continues for a long time even in the print region. If the plurality of heads 1 are provided in accordance with the respective colors, a head that ejects a white ink that is often used as a base may not be used for a long time. Therefore, it is also possible to estimate how the sedimentation of the solid particles in the ink has advanced near the nozzle 12 in the ink chamber 11 from a liquid droplet ejection pause period of the ink chamber 11 in the print region.
  • the ejection operation is also preferable to select whether the ejection operation is to be performed in accordance with a pause period of ejection of the ink droplets from the nozzle 12 when the head 1 is present in the print region where printing is carried out.
  • the unnecessary refresh can be prevented from being effected, and the wasteful consumption of the ink and the contamination of the periphery due to the satellite can be suppressed.
  • FIG. 9 shows an example of a flow of selecting whether the refresh is to be performed in accordance with a liquid droplet ejection pause period.
  • a liquid droplet ejection pause period of each nozzle 12 in the print region is first detected (S10).
  • the ejection pause period of the liquid droplets from each nozzle 12 can be obtained by analyzing print data stored in the print data memory 102 in the CPU 101, for example. A detection result is transmitted to the CPU 101 .
  • a threshold value indicative of an upper limit of the ejection pause period is preset in the CPU 101.
  • the CPU 101 determines from the detection result whether the sedimentation of the solid particles has advanced so that the refresh should be carried out since the ejection pause period is long beyond the threshold value (S11). Additionally, if the ejection pause period was determined to exceed the threshold value, then the refresh constituted of the micro-vibration operation and the ejection operation is started (S12) . On the other hand, if the ejection pause period is lower than the threshold value, it is determined that the sedimentation of the solid particles in the ink chamber 11 has not advanced and the refresh is not required, and the refresh in the non-print region is not carried out. Therefore, the wasteful consumption of the ink and the contamination of the periphery due to the satellite can be suppressed.
  • the refresh after detecting the ejection pause period may be performed with respect to all the ink chambers 11 in the head 1 or may be individually performed with respect to the ink chamber 11 having the ejection pause period exceeding the threshold value when the ejection pause period of any nozzle 12 in the head 1 was determined to exceed the threshold value. In the latter case, the wasteful consumption of the ink and the contamination of the periphery due to the satellite can be further suppressed.
  • an appropriate nozzle recovery operation can be executed in accordance with each head 1 by detecting the ejection pause period in accordance with each head 1 and determining whether the refresh is to be performed.
  • the CPU 101 controls the micro-vibration control unit 107 and the ejection control unit 108 to perform the refresh.
  • the refresh involves ejection of the liquid droplets, the consumption of the ink increase. Therefore, it is also preferable to configure the liquid droplet ejection apparatus 100 to select one of a case where the refresh constituted of the micro-vibration operation and the ejection operation is performed and a case where the micro-vibration operation alone is performed without effecting liquid droplet ejecting operation by applying the plurality of micro-vibration pulses P2 to the drive electrodes on the partition walls 14 of the ink chambers 11.
  • the refresh in this conformation is as described above, thereby omitting a description thereof.
  • the micro-vibration pulse P2 shown in FIG. 4(b) alone in pulses generated by the drive pulse generation unit 106 is used.
  • FIG. 10 shows examples of an application pattern of the micro-vibration pulse P2 when the micro-vibration operation alone is performed.
  • a micro-vibration pulse applying operation for continuously applying the plurality of micro-vibration pulses P2 is continued during a period that the head 1 is present in the non-print region.
  • the micro-vibration pulse applying operation is continued for a predetermined time alone, and the micro-vibration pulse applying operation that is one segment in this predetermined time is repeated more than once at intervals.
  • a continuation time of the micro-vibration pulse applying operation as one segment may be uniformly set in one non-print region or may be non-uniformly set.
  • selecting execution of the micro-vibration operation alone or execution of the refresh constituted of the micro-vibration operation and the ejection operation may be manually set by an operator using, e.g., a changeover switch in advance, but it is preferable to automatically select and execute the operation by the CPU 101 with a progression of sedimentation of the solid particles in each ink chamber 11 when the head 1 reaches the non-print region being used as a trigger.
  • the progression of sedimentation of the solid particles in the ink in each ink chamber 11 can be detected by setting a predetermined threshold value and detecting an ejection speed of liquid droplets with the use of the liquid droplet detection apparatus 3 depicted in FIG. 7 .
  • FIG. 11 shows an example of a flow that uses a detection result of the liquid droplet speed detection apparatus 3 as a trigger at the time of selecting the micro-vibration operation or the refresh to be performed.
  • the liquid droplet speed detection apparatus 3 first ejects the liquid droplet a from each nozzle 12 in the head and detects an ejection speed (S20). A detection result is transmitted to the CPU 101.
  • a first threshold value is a threshold value that is used for determining whether the micro-vibration operation is to be performed or whether nothing has to be performed.
  • a second threshold value is a threshold value that is set to a value lower than the first threshold value, indicative of a state that sedimentation of the solid particles has advanced to some extent, and used for determining whether the micro-vibration operation alone is to be performed or whether the refresh is to be performed.
  • the CPU 101 first compares a detection result of the liquid droplet speed detection apparatus 3 with the first threshold value and determines whether the detection result is lower than the first threshold value so that sedimentation of the solid particles has advanced and hence the micro-vibration operation should be performed (S21) .
  • the detection result is not lower than the first threshold value, it is determined that sedimentation of the solid particles in the ink chambers 11 has not advanced and hence the nozzle recovery operation is not required, and the nozzle recovery operation is not carried out in the non-print region. Therefore, the wasteful consumption of the ink and the contamination of the periphery due to the satellite can be suppressed.
  • the detection result is then compared with the second threshold value (S22) .
  • the refresh constituted of the micro-vibration operation and the ejection operation is started (S23) .
  • the micro-vibration operation alone is performed (S24).
  • a detection result of the liquid droplet ejection pause period can be used as a trigger. That is, when the head 1 first reaches the non-print region, a liquid droplet ejection pause period of each nozzle 12 in the print region is first detected based on print data (S30). The detection result is transmitted to the CPU 101.
  • the CPU 101 first compares the detection result of the ejection pause period with the first threshold value and determines whether the detection result exceeds the first threshold value and sedimentation of the solid particles has advanced so that the micro-vibration operation should be performed (S31) .
  • the detection result is lower than the first threshold value, it is determined that sedimentation of the solid particles in each ink chamber 11 has not advanced so that the nozzle recovery operation does not have to be performed, and the nozzle recovery operation is not performed in the non-print region. Therefore, the wasteful consumption of the ink and the contamination of the periphery due to the satellite can be suppressed.
  • the detection result is compared with the second threshold value set to a value higher than the first threshold value (S32). As a result, if the detection result was determined to likewise exceed the second threshold value, then the refresh constituted of the micro-vibration operation and the ejection operation is started (S33). Further, if it was determined that the detection result was yet to exceed the second threshold value, the solid particles are determined to settle out to some extent, but the refresh does not have to be carried out, and then the micro-vibration operation alone is carried out (S34). As a result, the same effect as that in case of detecting an ejection speed of the liquid droplets can be provided.
  • the micro-vibration operation when the head 1 reaches the non-print region, the micro-vibration operation may be always carried out.
  • one set value can suffice as a threshold value, and whether the micro-vibration operation alone is to be performed or whether the refresh constituted of the micro-vibration operation and the ejection operation is to be performed may be determined based on comparison with this threshold value.
  • whether the micro-vibration operation alone is to be performed or whether the refresh is to be performed may be selected and executed in accordance with a preset sequence.
  • a selection trigger may be set by the number of times that the head 1 reaches the non-print region
  • the micro-vibration operation may be always performed every time the head 1 is present in the non-print region
  • the refresh constituted of the micro-vibration operation and the ejection operation may be performed every time the head 1 reaches the non-print region for the third time.
  • the selection trigger may be set by a time
  • the micro-vibration operation may be performed in a regular situation
  • the refresh constituted of the micro-vibration operation and the ejection operation alone may be effected at start of printing or every time a predetermined time passes after execution of the previous refresh.
  • a sedimentation speed of the solid particles rises as specific gravity of the solid particles relative to the dispersion medium increases, and hence sedimentation is facilitated.
  • specific gravity of the solid particles relative to the dispersion medium may differ in levels in some cases.
  • types of the solid particles contained in the ink differ depending on types (colors) of the inks for the respective heads 1, and hence the specific gravity of the solid particles relative to the dispersion medium may differ in levels .
  • the micro-vibration pulse P2 it is preferable to raise an application frequency as the specific gravity increases in accordance with a level of the specific gravity of the solid particles relative to the dispersion medium.
  • the application frequency of the micro-vibration pulse P2 is raised as the specific gravity increases, the ink in each ink chamber 11 can be efficiently micro-vibrated, and dispersion of the solid particles can be effectively facilitated.
  • a level of the specific gravity of the solid particles relative to the dispersion medium can be manually set by, e.g., providing a non-illustrated input switch to the liquid droplet ejection apparatus 100 and performing an input operation by an operator in accordance with a type of the ink at the time of setting an ink tank or an ink cartridge storing the ink to the apparatus, or it may be automatically set by recognizing identifying information of the type of the ink provided on the ink tank or the ink cartridge with the use of non-illustrated recognizing means provided to the liquid droplet ejection apparatus 100.
  • the input result or the identification result is transmitted to the CPU 101, and the micro-vibration control unit 107 controls the micro-vibration operation based on the input result or the identification result.
  • FIG. 13 shows an example of a table that is preferably used at the time of adjusting an application frequency in accordance with a level of the specific gravity of the solid particles relative to the dispersion medium.
  • a relationship between a level of the specific gravity of the solid particles relative to the dispersion medium (a ratio of a specific gravity difference of the solid particles relative to specific gravity of the dispersion medium) and an application frequency of the micro-vibration pulse, and it is stored in, e.g., the CPU 101.
  • a sedimentation speed of the solid particles is relatively slow, and hence the application frequency is reduced, and the application frequency is raised as the level of the specific gravity increases.
  • the ink in the common ink chamber 13 in the head 1 can be circulated between the common ink chamber 13 and the ink tank 4 storing the ink.
  • a supply pipe 41 and a return pipe 42 are connected between the common ink chamber 13 of the head 1 and the ink tank 4, a circulation pump 43 is provided to the return pipe 42, and the supply pipe 41, the return pipe 42, and the circulation pump 43 constitute circulating means.
  • the ink is circulated between the ink tank 4 and the common ink chamber 13 of the head 1 by drive of the circulation pump 43.
  • the ink in which the solid particles having the uniform concentration can be supplied to the ink chambers 11.
  • sedimentation of the solid particles in the ink in the ink chambers 11 can be further suppressed, and an ink replacement effect based on the refresh can be improved.
  • the ink in each ink chamber 11 can be replaced with an ink having uniform concentration at the time of refresh, and hence it is preferable to carry out the ink circulating operation at least during a period that the refresh constituted of the micro-vibration operation and the ejection operation is performed.
  • nozzle maintenance means that performs maintenance for recovery of the nozzles 12
  • a wiping operation for wiping off stains on each nozzle surface with the use of a blade
  • a removing operation for pressing a water-absorptive member such as cloth against each nozzle surface and removing the ink, and others when the head 1 is present in the non-print region
  • any one or more of these means may be provided in the liquid droplet ejection apparatus 100 and carried out.
  • the micro-vibration operation alone is performed as the nozzle recovery operation, since a meniscus in the nozzle 12 vibrates by micro-vibration, and hence the meniscus may be destroyed at the time of the wiping operation or the removing operation.
  • the liquid droplet ejection apparatus 100 the line type liquid droplet ejection apparatus that performs printing on a surface of a recording medium in one pass has been described, but the liquid droplet ejection apparatus may be a scan type liquid droplet ejection apparatus that performs printing by reciprocating the head 1 in a main scan direction.
  • FIG. 15 shows an example of such a scan type liquid droplet ejection apparatus.
  • a recording medium W is sandwiched between a pair of conveyance rollers 201 and conveyed in a direction indicated by an arrow (a sub-scan direction) by a conveyance roller 203 that is driven to rotate by a conveyance motor 202 .
  • a head 1 is provided between the conveyance roller 203 and the pair of conveyance rollers 201 so as to face a surface of the recording medium W.
  • the head 1 is arranged and mounted on a carriage 204 in such a manner that a nozzle surface side faces the recording medium W.
  • the carriage 204 is provided to enable its reciprocating motion along a left-and-right direction in the drawing (the main scan direction) substantially orthogonal to a conveyance direction (the sub-scan direction) of the recording medium W by non-illustrated driving means along guide rails 205 installed along a width direction of the recording medium W.
  • the head 1 horizontally scans and moves on the surface of the recording medium W with movement of the carriage 204 in the main scan direction, and ejecting the liquid droplets from the nozzles 12 in this scanning and moving process enables performing desired printing.
  • both lateral sides of the recording medium W are non-print regions in which no print data is provided and printing based on the print data is not performed.
  • ink receivers 206 are arranged at positions facing the nozzle surfaces of the head 1. Therefore, at the time of performing refresh when the head 1 reaches the non-print region, the liquid droplets are ejected toward the ink receivers 206.
  • this apparatus can be arranged in each of the non-print regions on both sides of the recording medium W.
  • each partition wall 14 between the neighboring ink chambers 11 and 11 is formed of a piezoelectric partition wall 14 and which ejects the ink in the ink chambers 11 as liquid droplets from the nozzles 12 by a deforming operation of each partition wall 14 has been described as the example, but a specific structure of the energy giving means for giving energy to the ink in the ink chamber is out of the question.
  • a heater may be provided in the ink chambers as the energy giving means, air bubbles may be generated in the ink by energizing the heater, and the liquid droplets may be ejected from the nozzles by a breaking function of the air bubbles, or one wall surface of the ink chamber may be formed of a diaphragm as the energy giving means, this diaphragm may be vibrated by a deforming operation of the piezoelectric element, the ink in the ink chamber may be given energy, and the liquid droplets may be ejected from the nozzles.
  • the head 1 is not restricted to a head in which nozzle surfaces are arranged to be vertically downward directed, and nozzle surfaces may be arranged in a horizontal direction or an oblique direction.
  • a scan type liquid droplet ejection apparatus having ink receivers arranged in non-print regions on both lateral sides of a recording medium was used, predetermined printing was performed in a print region of the recording medium from a head using a UV ink containing a dispersion medium and a titanium oxide in which solid particles have specific gravity higher than that of the dispersion medium (a specific gravity difference between the dispersion medium and the solid particles: 0.25, the content of a material having a steam pressure higher than that of wafer at an ordinary temperature: 5%), a micro-vibration pulse having a frequency that is a half of a liquid droplet ejection frequency at the time of printing was applied every time the head reached the non-print region in order to turn back at an end portion in a main scan direction, and then liquid droplets having the same frequency as the ejection frequency were ejected into each ink receiver.
  • the continuous operation was performed under the same conditions as those in Example 1 except that the micro-vibration pulse was not applied in each non-print region and the ejection operation alone was performed.
  • the continuous operation was performed under the same conditions as those in Example 1 except that the micro-vibration pulse alone was applied in each non-print region and the ejection operation was not performed.
  • a line type liquid droplet ejection apparatus that performs printing on a surface of each ceramic tile conveyed by a conveyance belt in one pass from a head was used, and predetermined printing was performed in a print region on the ceramic tile surface from the head using an oil ink containing a dispersion medium and pigment particles of yellow as solid particles (a specific gravity difference between the dispersion medium and the solid particles: 0.30, the content of a material having a steam pressure higher than that of water at an ordinary temperature: 3%).
  • the micro-vibration pulse having the same frequency as a liquid droplet ejection frequency at the time of printing was applied, and then liquid droplets having the same frequency as the ejection frequency were ejected into each ink receiver.
  • the continuous operation was performed under the same conditions as those in Example 2 except that the ejection operation alone was performed without applying a micro-vibration pulse in each non-print region.

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Claims (18)

  1. Appareil d'éjection de gouttelettes de liquide (100) comprenant :
    une tête (1) qui comporte une chambre d'encrage (11) qui est alimentée en encre, une buse (12) disposée en conformité avec la chambre d'encrage, et un dispositif donnant de l'énergie (14) qui réalise une excitation lorsqu'au moins une impulsion d'excitation lui est appliquée et qui donne de l'énergie à l'encre dans la chambre d'encrage, la tête réalisant une impression sur une région d'impression d'un support d'enregistrement (C) sur la base de données d'impression en éjectant des gouttelettes de liquide à partir de la buse ; et
    un dispositif de génération d'impulsion d'excitation (106) qui engendre, en tant qu'impulsion d'excitation, au moins une impulsion d'éjection qui est utilisée pour éjecter les gouttelettes de liquide à partir de la buse et au moins une impulsion de microvibration qui soumet l'encre dans la chambre d'encrage à une microvibration, de manière à ne pas éjecter les gouttelettes de liquide à partir de la buse,
    l'encre, dans lequel l'encre contient un milieu de dispersion et des particules solides ayant une densité supérieure à celle d'un milieu de dispersion, une différence entre la densité du milieu de dispersion et celle des particules solides étant supérieure ou égale à 0,2 et une teneur en un matériau, dont la pression de vapeur à une température ordinaire est supérieure à celle de l'eau, étant inférieure ou égale à 10 %,
    l'appareil d'éjection de gouttelettes de liquide comprend un dispositif de rafraîchissement (107, 108) qui est utilisé lorsque la tête est présente dans une région de non-impression où l'impression n'est pas réalisée, et
    le dispositif de rafraîchissement effectue une opération de microvibration qui applique la pluralité d'impulsions de microvibration au dispositif donnant de l'énergie, de manière que les particules solides qui se sont déposées et agrégées dans la chambre d'encrage soient amenées dans un état où les particules solides peuvent se disperser aisément, et une opération d'éjection qui applique la pluralité d'impulsions d'éjection au dispositif donnant de l'énergie après l'opération de microvibration et éjecte une quantité de gouttelettes de liquide supérieure ou égale à un volume de la chambre d'encrage à partir de la buse pour remplacer la totalité de l'encre dans la chambre d'encrage.
  2. Appareil d'éjection de gouttelettes de liquide (100) selon la revendication 1, comprenant un dispositif de détection de vitesse de gouttelettes de liquide (3) qui détecte une vitesse des gouttelettes de liquide éjectées à partir de la buse (12) lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel le dispositif de rafraîchissement (107, 108) est mis en oeuvre après qu'il a été détecté qu'un résultat de détection du dispositif de détection de vitesse de gouttelettes de liquide se situe en dessous d'une valeur de seuil prédéfinie.
  3. Appareil d'éjection de gouttelettes de liquide (100) selon la revendication 1, comprenant un dispositif de détection de période de pause qui détecte une période pendant laquelle l'éjection des gouttelettes de liquide à partir de la buse (12) est en pause lorsque la tête (1) est présente dans la région d'impression où l'impression est effectuée,
    dans lequel le dispositif de rafraîchissement (107, 108) est mis en oeuvre après qu'il a été détecté qu'un résultat de détection du dispositif de détection de période de pause dépasse une valeur de seuil prédéfinie.
  4. Appareil d'éjection de gouttelettes de liquide (100) selon la revendication 1, comprenant en outre :
    un dispositif de microvibration (107) qui réalise exclusivement l'opération de microvibration qui applique la pluralité d'impulsions de microvibration au dispositif donnant de l'énergie (14) lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée ; et
    un dispositif de sélection qui sélectionne et met en oeuvre un dispositif parmi le dispositif de microvibration et le dispositif de rafraîchissement.
  5. Appareil d'éjection de gouttelettes de liquide (100) selon la revendication 4, comprenant un dispositif de détection de vitesse de gouttelettes de liquide (3) qui détecte une vitesse des gouttelettes de liquide éjectées à partir de la buse (12) lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel le dispositif de sélection sélectionne et met en oeuvre un dispositif parmi le dispositif de microvibration (107) et le dispositif de rafraîchissement (107, 108) en fonction d'un résultat de détection du dispositif de détection de vitesse de gouttelettes de liquide (3) après qu'il a été détecté que le résultat de détection se situe en dessous d'une valeur de seuil prédéfinie.
  6. Appareil d'éjection de gouttelettes de liquide (100) selon la revendication 4, comprenant un dispositif de détection de période de pause qui détecte une période pendant laquelle l'éjection des gouttelettes de liquide à partir de la buse (12) est en pause lorsque la tête (1) est présente dans la région d'impression où l'impression est réalisée,
    dans lequel le dispositif de sélection sélectionne et met en oeuvre un dispositif parmi le dispositif de microvibration (107) et le dispositif de rafraîchissement (107, 108) en fonction d'un résultat de détection du dispositif de détection de période de pause après qu'il a été détecté que le résultat de détection dépasse une valeur de seuil prédéfinie.
  7. Appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 1 à 6,
    dans lequel, lors de l'opération de microvibration, une fréquence d'application est accrue à mesure qu'une densité des particules solides par rapport au milieu de dispersion augmente en fonction de la densité.
  8. Appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 1 à 7, comprenant :
    un réservoir d'encre (4) qui stocke l'encre qui est fournie à la tête (1) ; et
    un dispositif de circulation (43) qui fait circuler l'encre entre la tête et le réservoir d'encre,
    dans lequel le dispositif de circulation fait circuler l'encre au cours d'une période où au moins le dispositif de rafraîchissement (107, 108) est mis en oeuvre.
  9. Appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 1 à 8, comprenant un dispositif d'entretien de buse qui exécute au moins une opération parmi une opération d'essuyage pour supprimer par essuyage des taches sur une surface de buse, dans laquelle la buse (12) est ouverte, et une opération d'élimination pour éliminer l'encre sur la surface de buse lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel ni le dispositif de microvibration (107) ni le dispositif de rafraîchissement (107, 108) ne sont mis en oeuvre au cours d'une période où le dispositif d'entretien de buse est mis en oeuvre.
  10. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) comprenant :
    une tête (1) qui comporte une chambre d'encrage (11) qui est alimentée en encre, une buse (12) disposée en conformité avec la chambre d'encrage, et un dispositif donnant de l'énergie (14) qui réalise une excitation lorsqu'au moins une impulsion d'excitation lui est appliquée et qui donne de l'énergie à l'encre dans la chambre d'encrage, la tête réalisant une impression sur une région d'impression d'un support d'enregistrement (C) sur la base de données d'impression en éjectant des gouttelettes de liquide à partir de la buse ; et
    un dispositif de génération d'impulsion d'excitation (106) qui engendre, en tant qu'impulsion d'excitation, au moins une impulsion d'éjection qui est utilisée pour éjecter les gouttelettes de liquide à partir de la buse et au moins une impulsion de microvibration qui soumet l'encre dans la chambre d'encrage à une microvibration, de manière à ne pas éjecter les gouttelettes de liquide à partir de la buse,
    l'encre, dans lequel l'encre contient un milieu de dispersion et des particules solides ayant une densité supérieure à celle d'un milieu de dispersion, une différence entre la densité du milieu de dispersion et celle des particules solides étant supérieure ou égale à 0,2 et une teneur en un matériau, dont la pression de vapeur à une température ordinaire est supérieure à celle de l'eau, étant inférieure ou égale à 10 %, et
    le procédé comprend un processus de rafraîchissement (S3, S12, S23, S33) qui est exécuté lorsque la tête est présente dans une région de non-impression où l'impression n'est pas réalisée, et
    le processus de rafraîchissement effectue une opération de microvibration qui applique la pluralité d'impulsions de microvibration au dispositif donnant de l'énergie, de manière que les particules solides qui se sont déposées et agrégées dans la chambre d'encrage soient amenées dans un état où les particules solides peuvent se disperser aisément, et une opération d'éjection qui applique la pluralité d'impulsions d'éjection au dispositif donnant de l'énergie après l'opération de microvibration et éjecte une quantité de gouttelettes de liquide supérieure ou égale à un volume de la chambre d'encrage à partir de la buse pour remplacer la totalité de l'encre dans la chambre d'encrage.
  11. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon la revendication 10, comprenant un processus de détection de vitesse de gouttelettes de liquide (S1, S20) qui détecte une vitesse des gouttelettes de liquide éjectées à partir de la buse lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel le processus de rafraîchissement (S3, S23) est exécuté après qu'il a été détecté qu'un résultat de détection du processus de détection de vitesse de gouttelettes de liquide se situe en dessous d'une valeur de seuil prédéfinie (S2, S22).
  12. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon la revendication 10, comprenant un processus de détection de période de pause (S10, S30) qui détecte une période pendant laquelle l'éjection des gouttelettes de liquide à partir de la buse est en pause lorsque la tête (1) est présente dans la région d'impression où l'impression est effectuée,
    dans lequel le processus de rafraîchissement (S12, S33) est exécuté après qu'il a été détecté qu'un résultat de détection du processus de détection de période de pause dépasse une valeur de seuil prédéfinie (S11, S32).
  13. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon la revendication 10, comprenant en outre :
    un processus de microvibration (S24, S34) qui réalise exclusivement l'opération de microvibration qui applique la pluralité d'impulsions de microvibration au dispositif donnant de l'énergie (14) lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel un processus parmi le processus de microvibration et le processus de rafraîchissement (S23, S33) est sélectionné et exécuté.
  14. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon la revendication 13, comprenant un processus de détection de vitesse de gouttelettes de liquide (S20) qui détecte une vitesse de gouttelettes de liquide éjectées à partir de la buse lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel un processus parmi le processus de microvibration (S24) et le processus de rafraîchissement (S23) est sélectionné et exécuté en fonction d'un résultat de détection du processus de détection de vitesse de gouttelettes de liquide après qu'il a été détecté que le résultat de détection se situe en dessous d'une valeur de seuil prédéfinie (S22).
  15. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon la revendication 13, comprenant un processus de détection de période de pause (S30) qui détecte une période pendant laquelle l'éjection des gouttelettes de liquide à partir de la buse est en pause lorsque la tête (1) est présente dans la région d'impression où l'impression est réalisée,
    dans lequel un processus parmi le processus de microvibration (S34) et le processus de rafraîchissement (S33) est sélectionné et exécuté en fonction d'un résultat de détection du processus de détection de période de pause après qu'il a été détecté que le résultat de détection dépasse une valeur de seuil prédéfinie (S32).
  16. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 10 à 15,
    dans lequel, lors de l'opération de microvibration (S24, S34), une fréquence d'application est accrue à mesure qu'une densité des particules solides par rapport au milieu de dispersion augmente en fonction de la densité.
  17. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 10 à 16, comprenant un réservoir d'encre (4) qui stocke l'encre qui est fournie à la tête (1),
    dans lequel l'encre circule entre la tête et le réservoir d'encre au cours d'une période où au moins le processus de rafraîchissement (S3, S12, S23, S33) est exécuté.
  18. Procédé de remise en état d'une buse (12) d'appareil d'éjection de gouttelettes de liquide (100) selon l'une quelconque des revendications 10 à 17, comprenant un processus d'entretien de buse qui exécute au moins un processus parmi un processus d'essuyage pour supprimer par essuyage des taches sur une surface de buse, dans laquelle la buse est ouverte, et un processus d'élimination pour éliminer l'encre sur la surface de buse lorsque la tête (1) est présente dans la région de non-impression où l'impression n'est pas réalisée,
    dans lequel ni le processus de microvibration (S24, S34) ni le processus de rafraîchissement (S23, S33) ne sont exécutés au cours d'une période où le processus d'entretien de buse est exécuté.
EP14172583.8A 2013-06-24 2014-06-16 Appareil d'éjection de gouttelettes liquides et procédé de récupération de buse d'un appareil d'éjection de gouttelettes liquides Active EP2837497B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013131601A JP2015003495A (ja) 2013-06-24 2013-06-24 液滴射出装置及び液滴射出装置のノズル回復方法

Publications (3)

Publication Number Publication Date
EP2837497A2 EP2837497A2 (fr) 2015-02-18
EP2837497A3 EP2837497A3 (fr) 2015-05-20
EP2837497B1 true EP2837497B1 (fr) 2019-10-02

Family

ID=50976478

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14172583.8A Active EP2837497B1 (fr) 2013-06-24 2014-06-16 Appareil d'éjection de gouttelettes liquides et procédé de récupération de buse d'un appareil d'éjection de gouttelettes liquides

Country Status (3)

Country Link
EP (1) EP2837497B1 (fr)
JP (1) JP2015003495A (fr)
CN (1) CN104228349B (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611164B2 (ja) * 2015-09-25 2019-11-27 芝浦メカトロニクス株式会社 錠剤印刷装置及び錠剤印刷方法
CN105235391B (zh) * 2015-10-27 2017-08-04 深圳市润天智数字设备股份有限公司 双向抽拉式数字喷印机
DE102016100036A1 (de) * 2016-01-04 2017-07-06 Océ Holding B.V. Steuermodul zum Einfügen von Druckbild-abhängigen Pre-Fire Pulsen bei einem Inkjet-Drucksystem
US11020982B2 (en) 2016-06-27 2021-06-01 Hewlett-Packard Development Company, L.P. Printhead recirculation
JP7019303B2 (ja) * 2017-03-24 2022-02-15 東芝テック株式会社 液滴分注装置
JP6811331B2 (ja) * 2017-04-21 2021-01-13 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. プリントヘッドにおける流体の再循環
US20220184959A1 (en) * 2019-04-12 2022-06-16 Ball Corporation Method of maintaining inkjet printhead meniscus
JP7326899B2 (ja) * 2019-06-12 2023-08-16 京セラドキュメントソリューションズ株式会社 インクジェット記録装置
US20220324226A1 (en) * 2021-04-13 2022-10-13 Hewlett-Packard Development Company, L.P. Drop-based remedial actions for a printhead

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056191B1 (ja) 1999-01-12 2000-06-26 新潟日本電気株式会社 インクジェット式プリンタ用ヘッドの駆動装置および方法
JP3659494B2 (ja) * 2001-05-16 2005-06-15 セイコーエプソン株式会社 液体噴射装置
JP2008149703A (ja) * 2006-11-23 2008-07-03 Ricoh Co Ltd 画像形成装置及び印刷物
GB0724606D0 (en) 2007-12-18 2008-01-30 Xennia Technology Ltd Recirculating ink system for industrial inkjet printing
JP2009154328A (ja) * 2007-12-25 2009-07-16 Fuji Xerox Co Ltd 液滴吐出ヘッド及びこれを備えた画像形成装置
JP5239931B2 (ja) * 2008-05-30 2013-07-17 セイコーエプソン株式会社 流体噴射装置
JP2012096423A (ja) 2010-11-01 2012-05-24 Seiko Epson Corp 液体噴射装置および制御方法
US9067414B2 (en) * 2011-04-19 2015-06-30 Canon Kabushiki Kaisha Liquid ejection head and method of driving the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104228349A (zh) 2014-12-24
JP2015003495A (ja) 2015-01-08
CN104228349B (zh) 2016-07-06
EP2837497A3 (fr) 2015-05-20
EP2837497A2 (fr) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2837497B1 (fr) Appareil d'éjection de gouttelettes liquides et procédé de récupération de buse d'un appareil d'éjection de gouttelettes liquides
EP2837498B1 (fr) Appareil d'injection de gouttelettes liquides et procédé de récupération de buse d'un tel appareil
US8511793B2 (en) Ejection surface cleaning apparatus, liquid ejection apparatus and ejection surface cleaning method
US9039114B2 (en) Inkjet recording apparatus
JP2018089834A (ja) 記録装置および記録方法
US9498958B2 (en) Liquid jetting apparatus
JP2010240894A (ja) フィルター装置、流路ユニット、流体供給装置及び流体噴射装置
US11618260B2 (en) Liquid ejecting apparatus and maintenance method of liquid ejecting apparatus
JP2015174424A (ja) 液体吐出装置、および循環流速調整方法
JP2005225214A (ja) 液体噴射装置および液体噴射装置のメンテナンス方法
JP2008229863A (ja) 流体噴射装置
EP1795356A1 (fr) Procédé d'augmentation de la fiabilité d'une imprimante à jet d'encre
JP6569577B2 (ja) インクジェット記録装置及びインクジェット記録装置のリフレッシュ方法
US7384120B2 (en) Inkjet recording method and inkjet recording apparatus
JP5897886B2 (ja) インクジェット記録装置及び記録方法
JP2008246952A (ja) インクジェット記録装置用メンテナンス方法
JP2009143155A (ja) 記録装置及び記録装置の制御方法
JP2022129724A (ja) インクジェットプリンタ
JP4609101B2 (ja) 液体噴射装置および液体噴射装置のクリーニング方法
JP2007268964A (ja) インクジェット記録方法及び装置
JP2006224359A (ja) 液体噴射装置および液体噴射装置の吐出能力回復方法
JP2014024258A (ja) インクジェット記録装置
JP2006240169A (ja) インクジェット記録装置および予備吐出方法
KR20240028133A (ko) 기판 처리 장치 및 기판 처리 방법
JP2006224360A (ja) 液体噴射装置および液体噴射ヘッドのワイピング方法

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140616

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B41J 2/165 20060101AFI20150416BHEP

Ipc: B41J 2/045 20060101ALI20150416BHEP

R17P Request for examination filed (corrected)

Effective date: 20151120

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190410

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOBAYASHI, RYOHEI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1185743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014054464

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1185743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014054464

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

26N No opposition filed

Effective date: 20200703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230411

Year of fee payment: 10

Ref country code: DE

Payment date: 20230418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230427

Year of fee payment: 10