EP2836304B1 - Séparateur par courant de foucault - Google Patents
Séparateur par courant de foucault Download PDFInfo
- Publication number
- EP2836304B1 EP2836304B1 EP13723828.3A EP13723828A EP2836304B1 EP 2836304 B1 EP2836304 B1 EP 2836304B1 EP 13723828 A EP13723828 A EP 13723828A EP 2836304 B1 EP2836304 B1 EP 2836304B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conveyor belt
- endless conveyor
- section
- separator
- endless belt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 230000005291 magnetic effect Effects 0.000 claims description 58
- 239000000203 mixture Substances 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 21
- 230000001133 acceleration Effects 0.000 claims description 14
- 230000005405 multipole Effects 0.000 claims description 11
- 229910001220 stainless steel Inorganic materials 0.000 claims description 9
- 239000010935 stainless steel Substances 0.000 claims description 9
- 230000000750 progressive effect Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 description 12
- 230000005294 ferromagnetic effect Effects 0.000 description 10
- 239000002699 waste material Substances 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 229910000619 316 stainless steel Inorganic materials 0.000 description 5
- 241001417494 Sciaenidae Species 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011111 cardboard Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/23—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
- B03C1/24—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
- B03C1/247—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/16—Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
- B03C1/18—Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/20—Magnetic separation of bulk or dry particles in mixtures
Definitions
- Eddy current separation is employed to separate the conductive and non-magnetizable elements from an inert, i.e. nonconductive, fraction, in which can be found cardboard, plastics, ceramics, etc. Eddy current separation can also be used to sort non-magnetizable fragments based on their electrical conductivities.
- An eddy current separator of the aforementioned type is described in US Pat. US 3,448,857 United States of America. It comprises an endless belt conveying the mixture to be treated to an end, where this band performs a half-turn on an output drum. In this output drum, a multipole magnetic rotor is driven at high speed, so as to generate an alternating magnetic field which rotates faster than the output drum. The mixture is swept by this magnetic field which induces eddy currents in the conductive fragments of the mixture and which also exerts a repulsion as a function of these eddy currents.
- the most conductive fragments are the seat of the most intense eddy currents and are the object of the most important repulsion, so that their output paths are the most deviated in the direction of elongation.
- the fragments not or little conductors fall from the endless band without deviating much from this one.
- the magnetic rotor must be closer to the endless belt and therefore the output drum, while it rotates at a much higher speed than the output drum. This is achieved only at the cost of a complex mechanical assembly, which operates in a dusty and demanding environment for the equipment.
- the endless band is predominantly made of polymer capable of melting at low temperature. It can therefore be damaged by local heating caused by a captive ferromagnetic particle.
- the problem of a melting or other damage by locally induced heating by a captive ferromagnetic particle also arises. for the output drum, whose constituent material must not be conductive and which is often made of composite material. The ferromagnetic particles trapped on the exit drum cause damage that generates both premature and costly repairs.
- An eddy current separator comprising the technical features of the preamble of claim 1 is known from the document DE4223812C1 .
- the object of the invention is at least to allow easier and more reliable operation of an eddy current separator of the aforementioned type.
- the forward path of the endless belt has a sorting section downstream of the acceleration section in which the endless belt follows a straight downward trajectory with respect to the trajectory in the acceleration section, the magnetic rotor multipolar being disposed opposite the sorting section so as to deflect non-magnetizable conductive elements as they pass through the sorting section.
- the multipolar magnetic rotor is disposed opposite the endless belt at the sorting section so that the endless belt is separated from the multipole magnetic rotor by a gap.
- the eddy current separator defined above may incorporate one or more other advantageous characteristics, alone or in combination, in particular from those defined hereinafter.
- the slope of the sorting section is less than 45 °.
- the routing of the endless belt comprises a connecting section having a progressive downward inflection and connecting the acceleration section to the sorting section.
- the path of the endless belt is above a take-off path of the material mixture under the effect of an inertia that this mixture has when said mixture is driven along said path at a maximum speed of the endless belt.
- the path of the endless belt comprises a discharge zone which follows the sorting section.
- the separator comprises in this spill area a return piece defining a slip ramp on which the path of the endless belt bends downwards.
- the fixed return piece is made of stainless steel and more preferably of 316L stainless steel.
- the endless belt is stretched longitudinally between the connecting section and the discharge section, so as to act against a depression of the endless belt in the gap at the sorting section under the action of gravitation.
- the separator comprises at least one support pad of the endless belt away from the rotating rotor, at the sorting section.
- an eddy current separator comprises a belt conveyor 1 whose endless belt 2 is stretched by two end drums opposite one another, namely a drum of return 3 input and a return drum 4 output.
- the arrow P symbolizes the direction of progression of the endless belt 2 driven at least by the drum 3.
- the endless belt 2 is stretched between the rotary drums 3 and 4 on which it rolls. At least one of the drums, for example the drum 3 drives the endless belt 2 in the direction of progression P.
- the endless belt 2 follows a path going in the direction of progression P between respectively drums 3 and 4.
- the path to go comprises an acceleration section 20 in which the material mixture is received and stabilized on the endless belt 2.
- the acceleration section 20 is configured to drive the mixing of materials at the speed of the endless belt 2 .
- upstream refers to the direction of progression P of the endless band along its forward path.
- a vibrating feed trough 5 is arranged to discharge, to an inlet of the conveyor 2, a mixture of heterogeneous solid materials, such as ground waste.
- a magnetic roller 6 for extracting the ferromagnetic elements possibly present in the mixture of materials is on the drop trajectory of this mixture from the trough 5.
- the endless belt 2 conveys the mixture of heterogeneous materials to the level of a multipole magnetic rotor 7, which is rotatably mounted inside the endless belt 2, between the drums 3 and 4.
- this magnetic rotor 7 comprises an annular succession of magnets which are arranged in such a way that magnetic poles north N and south magnetic poles S alternate peripherally.
- the magnetic rotor 7 is schematized on the Figures 1 to 3 , for the sake of clarity.
- a motor 8 drives the magnetic rotor 7 at a high speed, for example of the order of 3000 rpm.
- the magnetic rotor 7 can be driven by the motor 8 via, for example, a coupling belt 9.
- the magnetic rotor 7 and in particular the motor 8 which drives it are configured so that the magnetic rotor 7 generates a rotating magnetic field passing through the endless belt 2, to sweep above this band 2.
- the mixture of materials is subjected to an alternating magnetic field which deflects non-magnetizable conductive elements C.
- the endless belt 2 slides on a support ramp 10, which guides it and whose function is to take charge of the weight of the mixture of heterogeneous materials during the passage thereof.
- the endless belt 2 is stretched between the support ramp 10 and a fixed return piece 11.
- the support ramp 10 guides the endless belt 2 and, in so doing, defines the shape of an upstream portion of the forward path of this endless belt 2.
- This forward path of the endless belt 2 comprises: the upstream section 20 of accelerating the mixing of materials, preferably a connecting section and progressive inflection 21, and a sorting section 22, which succeed one another.
- the acceleration section 20 is substantially horizontal.
- the acceleration section 20 is configured so that the material mixture starts at the speed of the endless belt 2 at this section.
- the magnetic rotor 7 is at the sort section 22, where a separation among the materials of the mixture takes place.
- the mixture of heterogeneous materials comprises electrically conductive elements C and elements I which are of little or no conductor.
- the conductive elements C may comprise non-ferrous metal parts, for example aluminum.
- the little or no conductive elements there may be cardboard, plastic and / or ceramics, for example.
- the magnetic rotor 7 At the sorting section 22, the magnetic rotor 7 generates a rotating magnetic field, which passes through the endless belt 2 and sweeps over this band 2. This scan is faster than the endless band 2, so that the material mixture is subjected to an alternating magnetic field which induces eddy currents in the conductive elements C. The same alternating field deflects the conducting elements C traversed by such eddy currents and thus transformed temporarily in electric magnets. The deviation by the magnetic field is effected in the direction of an elongation of the flight paths that the conductive elements C possess after having taken off from the endless belt 2. These conducting elements C and the other elements I of the mixture are not propelled at the same distance from the exit of the conveyor 1 and land in two distinct reception areas, a distributor flap 23 separates one from the other. In this way, the conductive elements C present in the mixture of materials are separated and discharged out of this mixture.
- the endless belt 2 follows, in the sorting section 22, a straight downward trajectory downstream of the acceleration section 20. Indeed, as illustrated in FIG. figure 2 the path of the endless belt 2 has a descending downward slope at the sorting section 22.
- the take-off of the conductive elements C away from the endless belt 2 takes place in a direction which is tilted upwards from the horizontal.
- the downward slope of the sorting section 22 advantageously reduces the inclination of the take-off direction of the conducting elements C so that they have flight paths that are as long as possible.
- the multipolar magnetic rotor 7 is disposed opposite the endless belt 2 at the sorting section 22 so that the endless belt 2 is separated from the multipole magnetic rotor 7 by an air gap.
- An endless band stretched through a rectilinear sorting section avoids the use of return parts to direct the path of the endless band at the sorting section. Indeed, for a sorting section having the curved shape, the use of return parts in contact with the endless belt is necessary. Furthermore, a contact between the endless belt and return parts at a sorting section traversed by a rotating magnetic field promotes the trapping of particles.
- this clever configuration of the separator advantageously makes it possible to minimize the trapping of particles in the different elements of the separator arranged at the sorting section 22, thus making it possible to improve the reliability of the separator.
- the trapped particles in particular the ferromagnetic particles, degrade and wear the various elements of the separator, in particular the endless band, the return pieces, the drums, etc.
- the ferromagnetic particles possibly seeping under the endless belt 2 are advantageously repelled by the ventilation produced by the rotation of the magnetic rotor 7, which does not rotate in a confined space. If ferromagnetic particles nevertheless reach the magnetic rotor 7, they attach to this magnetic rotor 2 and rotate with it, without being able to heat up by induction. Thus, there is, or virtually no risk that the endless belt 2 is degraded due to heating of a trapped ferromagnetic particle.
- the downward slope of the path of the endless belt 2 in the sorting section 22, results in an angle ⁇ between this path and the horizontal.
- This angle ⁇ is advantageously less than 45 °, preferably between 15 ° and 35 °, and even more preferably of the order of 25 °.
- the path of the endless belt 2 comprises the connecting section 21 connecting the acceleration section 20 to the sorting section 22.
- the connecting section is shaped so as to have a progressive downward inflection.
- the path of the endless belt 2 preferably passes from a substantially zero slope to the slope of the sorting section 22, gradually bending downwards as the 'we advance downstream.
- the path of the endless belt 2 acquires a descending slope downstream, which is progressively increasing downstream along this connecting section 21.
- This progressive increase in slope is chosen to prevent, under the effect of its inertia, the mixture of materials losing its adhesion to the endless belt 2.
- the path of the endless belt 2 comprises inclined connecting sections 21 sorting 22.
- L inclination of a path and speed of an endless belt ie the stroke of the waste, are two key parameters that have a major influence on the inertia of a waste mixture and defining thus its trajectory .
- trajectory of a waste we mean a curve described by the center of gravity of the waste.
- the routing of the endless belt 2 at the connecting section 21 is determined by successive iterations downstream from the inlet of this connecting section 21, so that at any point along of the gradual increase of downward slope, the progression of the endless band is a little above a trajectory takeoff of the mixture of material under the effect of its inertia at a maximum speed of the endless belt 2.
- a slope increase occurring very slowly results in a long connecting section 21 and therefore a large footprint.
- the path of the endless belt has a smaller inclination with respect to the horizontal, of a non-zero quantity y, than the take-off path of the material mixture under the the effect of its inertia at a maximum speed of the endless belt 2.
- This advantageous configuration of the connecting section 21, allows the waste mixture to be conveyed to the inclined sorting section 22 with optimum speed while avoiding take-off. waste from the endless band 2.
- the path of the endless belt 2 comprises a discharge zone 24, where the spill of the elements I is carried out.
- This spill zone 24 immediately follows the sorting section 22.
- the flow of the endless belt 2 knows an inflection therein. downwards that determines a sliding ramp 25, for the sliding of this endless belt 2. This inflection leads to a descent which forms a non-zero angle ⁇ with the vertical.
- the sliding ramp 25 is constitutive of the fixed piece of return 11.
- the endless belt 2 Due to its tension, the endless belt 2 exerts a large thrust on the fixed return piece 11, which must be strong enough to be able to contain this thrust. In addition, significant friction takes place between the sliding ramp 25 and the endless belt 2.
- 316L stainless steel according to the standard established by the American Iron and Steel Institute, also called AISI standard.
- AISI standard is stainless steel Z2CND17-12 according to the French standard NF A 35573. It is also stainless steel X2CrNiMo18-10 1.4404 according to the European standard EN 10027.
- the fixed return piece 11 has two transverse wings 30 and 31 connected by a fold.
- the upstream portion of the sliding ramp 25 is connected to the longitudinal wing 30.
- plates 29 form reinforcing gussets connecting the sliding ramp 25 to each of the wings 30 and 31.
- the magnetic rotor 7 is engaged in a space that the downstream end of the structure defining the support ramp 10 and the fixed return part 11 delimit between them, in other words between the connection section 21 and the discharge zone 24.
- an upstream pad 32 and a downstream pad 33 have an upper face along the path of the endless belt 2.
- these pads 32 and 33 are intended to provide a support for the endless band 2 in the case of the passage excessive load, so as to maintain this endless belt 2 away from the magnetic rotor 7 in such a case.
- a transverse slot 34 releases a free space between a rear face of the endless belt 2 and an upper portion of the magnetic rotor 7.
- the air gap separating the magnetic rotor 7 and the endless belt 2 is disposed between the pads 32 and 33.
- the absence of return drum between the endless belt 2 and the magnetic rotor 7 offers several new possibilities, which is advantageous.
- the magnetic rotor 7 can be brought closer to the endless belt 2, so that a stronger magnetic field acts on the mixture of materials at the separation.
- Another possibility is to increase the thickness of the endless belt 2.
- Another possibility is to maintain a large safety distance between the endless belt 2 and the magnetic rotor 7.
- the fixed return piece 21 may not be made of 316L stainless steel.
- this fixed return part 21 may be made in whole or part of ceramic.
- it can result from the assembly of several elements made of different materials.
- a first and a second portion of the fixed return piece 21 may be respectively made of ceramic and 316L stainless steel.
Landscapes
- Sorting Of Articles (AREA)
- Electrostatic Separation (AREA)
- Belt Conveyors (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL13723828T PL2836304T3 (pl) | 2012-04-12 | 2013-04-12 | Separator wykorzystujący prądy wirowe |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1201088A FR2989288B1 (fr) | 2012-04-12 | 2012-04-12 | Separateur par courant de foucault |
PCT/FR2013/000100 WO2013153296A1 (fr) | 2012-04-12 | 2013-04-12 | Séparateur par courant de foucault |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2836304A1 EP2836304A1 (fr) | 2015-02-18 |
EP2836304B1 true EP2836304B1 (fr) | 2018-12-26 |
Family
ID=48468610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13723828.3A Not-in-force EP2836304B1 (fr) | 2012-04-12 | 2013-04-12 | Séparateur par courant de foucault |
Country Status (7)
Country | Link |
---|---|
US (1) | US9950324B2 (es) |
EP (1) | EP2836304B1 (es) |
ES (1) | ES2713089T3 (es) |
FR (1) | FR2989288B1 (es) |
MX (1) | MX345840B (es) |
PL (1) | PL2836304T3 (es) |
WO (1) | WO2013153296A1 (es) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104888955B (zh) * | 2015-06-17 | 2017-08-01 | 嘉诺资源再生技术(苏州)有限公司 | 一种高频涡流有色金属分选机 |
US10675638B2 (en) * | 2016-09-21 | 2020-06-09 | Magnetic Systems International | Non contact magnetic separator system |
CN109622361A (zh) * | 2018-12-20 | 2019-04-16 | 重庆科技学院 | 一种冶金废渣处理回收方法 |
CN111644268A (zh) * | 2020-06-05 | 2020-09-11 | 辽宁品诺环保科技有限公司 | 一种具有自动纠偏功能的涡流分选机及其使用方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3448857A (en) | 1966-10-24 | 1969-06-10 | Eriez Magnetics | Electrodynamic separator |
DE3823944C1 (es) | 1988-04-25 | 1989-11-30 | Steinert Elektromagnetbau Gmbh, 5000 Koeln, De | |
DE3906422C1 (es) * | 1989-03-01 | 1990-10-18 | Lindemann Maschinenfabrik Gmbh, 4000 Duesseldorf, De | |
FR2657544B1 (fr) * | 1990-01-29 | 1992-04-17 | Andrin G | Separateur magnetique de particules et morceaux en metal non-ferreux. |
DE4031585A1 (de) * | 1990-10-05 | 1992-04-09 | Lindemann Maschfab Gmbh | Vorrichtung zum abtrennen von nichtmagnetisierbaren stoffen aus einem gemisch |
FR2671291B1 (fr) * | 1991-01-04 | 1993-04-09 | Andrin Fils Ets G | Separateur magnetique pour particules en metal non ferreux. |
DE4223812C1 (es) * | 1992-07-20 | 1993-08-26 | Lindemann Maschinenfabrik Gmbh, 4000 Duesseldorf, De | |
DE4317640A1 (de) | 1993-05-27 | 1994-12-08 | Nsm Magnettechnik Gmbh | Einrichtung zur Lagebeeinflussung von Teilen aus elektrisch leitenden, nicht-ferromagnetischen Materialien, insbesondere zum Transportieren und/oder Sortieren von solchen Teilen |
FR2712208B1 (fr) * | 1993-11-10 | 1996-02-02 | Fcb | Appareil pour séparer des particules électriquement conductrices d'un mélange de particules solides. |
DE19838170C2 (de) * | 1998-08-21 | 2001-06-07 | Meier Staude Robert | Verfahren und Vorrichtung zur Wirbelstromscheidung von Materialgemischen in Teilchenform |
ES2182716B1 (es) * | 2001-07-25 | 2004-06-01 | Virginia Campins Bagur | Separador magnetico de cuerpos metalicos no ferromagneticos. |
FR2915407A1 (fr) * | 2007-04-27 | 2008-10-31 | Andrin Sa Sa | Dispositif de tri comportant un separateur magnetique de particules et morceaux en metal non ferreux |
EP2289628B1 (fr) * | 2009-08-27 | 2014-06-18 | Lux Magnet | Séparateur magnétique à courant de foucault avec zone d'interaction et trajectoire optimisées des particules |
-
2012
- 2012-04-12 FR FR1201088A patent/FR2989288B1/fr not_active Expired - Fee Related
-
2013
- 2013-04-12 MX MX2014012145A patent/MX345840B/es active IP Right Grant
- 2013-04-12 US US14/394,447 patent/US9950324B2/en not_active Expired - Fee Related
- 2013-04-12 PL PL13723828T patent/PL2836304T3/pl unknown
- 2013-04-12 EP EP13723828.3A patent/EP2836304B1/fr not_active Not-in-force
- 2013-04-12 WO PCT/FR2013/000100 patent/WO2013153296A1/fr active Application Filing
- 2013-04-12 ES ES13723828T patent/ES2713089T3/es active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
MX345840B (es) | 2017-02-20 |
FR2989288A1 (fr) | 2013-10-18 |
US20150076039A1 (en) | 2015-03-19 |
ES2713089T3 (es) | 2019-05-17 |
US9950324B2 (en) | 2018-04-24 |
EP2836304A1 (fr) | 2015-02-18 |
FR2989288B1 (fr) | 2015-01-16 |
PL2836304T3 (pl) | 2019-06-28 |
MX2014012145A (es) | 2015-05-12 |
WO2013153296A1 (fr) | 2013-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2836304B1 (fr) | Séparateur par courant de foucault | |
EP2289628B1 (fr) | Séparateur magnétique à courant de foucault avec zone d'interaction et trajectoire optimisées des particules | |
EP2731731B1 (fr) | Installation et procede pour le depot d'un film de particules ordonnees, de largeur reglable, sur un substrat en defilement | |
EP2855037B1 (fr) | Dispositif et procede de separation granulometrique de matieres riches en particules filiformes | |
EP2588395A2 (fr) | Dispositif de preparation d'elements de bouchage | |
FR3003778A1 (fr) | Procede et dispositif de tri de billes | |
FR2725704A1 (fr) | Machine et procede pour egrener des objets alimentes en vrac | |
EP2413291B1 (fr) | Dispositif de sélection d'articles de courrier en vrac | |
EP3562765B1 (fr) | Dispositif de transfert de produits | |
EP2755777A1 (fr) | Separateur de matieres granuleuses | |
FR2997928A1 (fr) | Machine de distribution d'objets avec alimentation en vrac | |
FR3058330A1 (fr) | Dispositif optimise de separation de produits | |
FR2911814A1 (fr) | Module d'alimentation comportant un dispositif de fermeture d'enveloppes evitant le maculage | |
LU81380A1 (fr) | Dispositif de chargement,notamment pour tri postal automatique | |
FR2997320A1 (fr) | Dispositif de separation magnetodynamique a courants de foucault | |
EP2210835B1 (fr) | Dispositif de séparation à billes d'objets plats | |
FR2844212A1 (fr) | Procede et installation pour le tri morphologique automatique d'objets substantiellement spheriques. | |
EP4433218A1 (fr) | Installation destinée à séparer dans un champ électrique les composants d'un mélange de fibres et de granules à l'aide d'un tribochargeur pourvu d'une grille de confinement sélectif desdits composants | |
WO2009153489A1 (fr) | Machine d'appret pour preformes | |
FR3129092A1 (fr) | Installation destinée à séparer dans un champ électrique les composants d’un mélange de fibres et de granules à l’aide d’un tribochargeur pourvu d’une grille de confinement sélectif desdits composants | |
WO2021130438A1 (fr) | Dispositif de séparation permettant de prélever un profilé sur une surface de convoyage, et machine d'extrusion pourvue d'un tel dispositif de séparation | |
WO2018134504A1 (fr) | Machine de tri et de comptage | |
FR2722434A1 (fr) | Procede et dispositif de separation d'objets ou particules en materiaux electriquement conducteurs amagnetiques | |
EP1607350A1 (fr) | Dispositif de fourniture de pièces à bol vibrant | |
EP2033714A1 (fr) | Méthode et installation de recyclage des cartouches d'encre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20141103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180405 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: M.T.B. MACHINE DE TRIAGES ET DE BROYAGES |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1080681 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013048762 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190326 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2713089 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190517 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20190425 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20190327 Year of fee payment: 7 Ref country code: ES Payment date: 20190503 Year of fee payment: 7 Ref country code: IT Payment date: 20190419 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190426 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190425 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013048762 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190429 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20190425 Year of fee payment: 7 Ref country code: GB Payment date: 20190520 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190412 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200501 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1080681 Country of ref document: AT Kind code of ref document: T Effective date: 20200412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200430 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130412 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181226 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220426 Year of fee payment: 10 Ref country code: DE Payment date: 20220427 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200412 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 1080681 Country of ref document: AT Kind code of ref document: T Effective date: 20181226 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602013048762 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |