EP2832879B1 - Hochfestes stahlrohr für leitungsrohr mit hervorragender beständigkeit gegen wasserstoffinduzierte rissbildung, hochfestes stahlblech für ein leitungsrohr damit und verfahren zur herstellung davon - Google Patents

Hochfestes stahlrohr für leitungsrohr mit hervorragender beständigkeit gegen wasserstoffinduzierte rissbildung, hochfestes stahlblech für ein leitungsrohr damit und verfahren zur herstellung davon Download PDF

Info

Publication number
EP2832879B1
EP2832879B1 EP13768001.3A EP13768001A EP2832879B1 EP 2832879 B1 EP2832879 B1 EP 2832879B1 EP 13768001 A EP13768001 A EP 13768001A EP 2832879 B1 EP2832879 B1 EP 2832879B1
Authority
EP
European Patent Office
Prior art keywords
steel
less
steel plate
line pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13768001.3A
Other languages
English (en)
French (fr)
Other versions
EP2832879A1 (de
EP2832879A4 (de
Inventor
Takuya Hara
Taishi Fujishiro
Taro Muraki
Go Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of EP2832879A1 publication Critical patent/EP2832879A1/de
Publication of EP2832879A4 publication Critical patent/EP2832879A4/de
Application granted granted Critical
Publication of EP2832879B1 publication Critical patent/EP2832879B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel

Definitions

  • HIC resistance hydrogen induced crack resistance
  • H 2 S wet hydrogen sulfide
  • a sour environment An environment in which wet hydrogen sulfide (H 2 S) gas is present (below, referred to as a "sour environment") is formed in the drilling, production, and transportation of oil and natural gas.
  • the steel pipe which is used there is exposed to the sour environment. If the line pipe for transportation of oil, natural gas, etc. is exposed to a sour environment, hydrogen induced cracking (below, referred to as "HIC”) may occur. This is because in a sour environment, hydrogen easily penetrates the steel from its surface.
  • HIC hydrogen induced cracking
  • HIC is due to the hydrogen which accumulates around the elongated MnS which is present at the centerline segregation of steel, accumulated carbonitrides of Ti or Nb or oxide-based inclusions in the oxide accumulation zone, and other defects in the steel.
  • PLTs 1 to 3 disclose methods of improving the HIC resistance by suppressing the segregation of Mn at the center of the steel plate.
  • PLT 1 proposes steel plate which suppresses the ratio of Mn content of the segregated part to the average Mn content in the steel.
  • PLTs 2 and 3 disclose limiting not only the size of Mn segregated spots but also the concentration of P of the segregated part and, furthermore, high strength line pipe using Ca.
  • PLT 4 discloses hot rolled steel plate excellent in HIC resistance which focuses on not only segregation of Mn, but also segregation of Nb.
  • PLTs 5 and 6 a method of suppressing inclusions of carbides, nitrides, etc. of Ti and Nb to improve the HIC resistance is disclosed.
  • PLTs 7 and 8 disclose steel pipes which suppress the segregation of Mn, Nb, and Ti and, furthermore, make the maximum hardness of the centerline segregation 300Hv or less to thereby prevent the occurrence of HIC.
  • High-strength steel pipes are disclosed in WO 2010/093057 and WO 2010/052928 .
  • the present invention was made in consideration of the above actual situation and has as its object the provision of steel pipe for line pipe use which is extremely high in t/D, has excellent HIC resistance as steel pipe as a whole, and prevents HIC at the surface layer of the steel plate and therefore is optimal for steel pipe which is used for line pipe laid across deep ocean floors etc. and line pipe steel plate which is used for the same.
  • the inventors engaged in intensive studies on the conditions for obtaining steel pipe for high strength line pipe use excellent in hydrogen induced crack resistance which has excellent HIC resistance near the inside and outside surfaces of the steel pipe and can prevent HIC at the surface layer even if the t/D is high and the steel plate used for the same.
  • the surface layer region is fast in cooling rate and easily hardens.
  • the inventors discovered that by optimizing the cooling conditions after rolling steel plate, it becomes possible to make the hardness of the surface layer region of steel plate, which in the past was about 350Hv, 300Hv or less and, as a result, suppress the occurrence of HIC from inclusions near the inside and outside surfaces even with high t/D steel pipe and obtain steel pipe which has excellent HIC resistance near the inside and outside surfaces of steel pipe.
  • the present invention was made based on this discovery and has as its gist the following:
  • the steel pipe for high strength line pipe use and steel plate for high strength line pipe use of the present invention have little segregation of Mn, Nb, and Ti, are suppressed in length of non-pressed bonded parts of the centerline segregation and maximum hardness, and further are suppressed in hardness of surface layer region.
  • the HIC resistance is reliable and sufficiently excellent and is extremely excellent as a material of line pipe which is used in a sour environment.
  • the steel pipe for line pipe use of the present invention has a thickness "t" of steel plate [mm] and outside diameter D of steel pipe after pipemaking [mm] satisfying t ⁇ 25 and t/D ⁇ 0.035.
  • the segregation ratios of Mn, Nb, and Ti, the length and maximum hardness of the non-press-bonded part at the centerline segregation and the maximum hardness and structure of the surface layer region from the two front and back surfaces down to a depth of 5 mm are suitably prescribed.
  • C is an element which improves the strength of steel. 0.02% or more has to be added. If the amount of C exceeds 0.08%, the formation of carbides is promoted and the HIC resistance deteriorates. To secure a more superior HIC resistance and suppress the drop in weldability and toughness, the amount of C is preferably made 0.06% or less.
  • Si is a deoxidizing element. 0.01% or more has to be added. If the amount of Si exceeds 0.5%, the toughness of the heat affected zone (HAZ) deteriorates.
  • Mn is an element which improves the strength and toughness. 0.8% or more has to be added. If the amount of Mn exceeds 1.8%, the HIC resistance deteriorates. To further suppress HIC, the amount of Mn is preferably made 1.6% or less.
  • Nb is an element which forms carbides and nitrides, promotes finer grains of the steel plate as rolled, and contributes to the improvement of strength. To obtain this effect, 0.0001% or more of Nb has to be added. If excessively adding Nb, the maximum Nb segregation ratio increases, the accumulation of carbonitrides of Nb is invited, and the HIC resistance deteriorates, so the upper limit of the amount of Nb is made 0.10%. If improving the HIC resistance more, the amount of Nb is preferably made 0.05% or less.
  • Ca is an element which forms the sulfide CaS, suppresses the formation of MnS which flattens in the rolling direction, and remarkably contributes to improvement of the HIC resistance. If the amount of addition of Ca is less than 0.0005%, the effect is not obtained. If the amount of addition of Ca exceeds 0.0050%, the oxides accumulate and the HIC resistance deteriorates.
  • N is an element which forms TiN, NbN, and other nitrides.
  • the amount of addition of N has to be made 0.0010% or more. If the content of N exceeds 0.0060%, carbonitrides of Ti and Nb easily accumulate and the HIC resistance deteriorates.
  • the amount of N is preferably made 0.0035% or less.
  • O is an impurity. To suppress the accumulation of oxides and improve the HIC resistance, it is restricted to 0.0035% or less. To suppress the formation of oxides and improve the base material and HAZ toughness, the amount of O is preferably made 0.0035% or less, more preferably 0.0020% or less. The smaller the amount of O the better, but to make it less than 0.0001%, the refining time becomes long and the cost rises, so the lower limit is made 0.0001%.
  • P is an impurity. If the content exceeds 0.01%, the HIC resistance deteriorates. Further, the HAZ toughness deteriorates. Therefore, the content of P is restricted to 0.01% or less.
  • the amount of S is an element which forms MnS which is elongated in the rolling direction at the time of hot rolling and thereby lowers the HIC resistance.
  • the amount of S has to be reduced to 0.0020% or less.
  • the amount of S is preferably made 0.0010% or less. The smaller the amount of S, the better, but making it less than 0.0001% is difficult. From the viewpoint of the manufacturing cost, the lower limit is preferably made 0.0001% or more.
  • Al is a deoxidizing element, but if the amount of addition exceeds 0.030%, accumulated clusters of Al oxides are formed.
  • the amount of Al is preferably made 0.017% or less.
  • the lower limit value of the amount of Al is not particularly set, but to reduce the amount of oxygen in the molten steel, Al is preferably added in an amount of 0.0005% or more.
  • Ti is an element which is usually utilized as a deoxidizing agent or for refinement of the crystal grains as a nitride-forming element, but is an element which lowers the HIC resistance and toughness due to formation of carbonitrides. Therefore, the content of Ti is restricted to 0.030% or less.
  • FIG. 1 shows the relationship between the CLR (length ratio of HIC) and S/Ca in an HIC test of 0.04%C-1.25%Mn steel. As shown in FIG. 1 , if the ratio of S/Ca becomes 0.5 or more, HIC is formed. If the ratio of S/Ca becomes 0.5 or more, MnS is formed and MnS which is elongated at the time of rolling is formed. As a result, the HIC resistance deteriorates. Therefore, the ratio of S/Ca has to be made less than 0.5.
  • the steel pipe for line pipe use and the steel plate for line pipe use of the present invention may, in accordance with need, have one type or two types or more of elements selected from Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B added to them as elements which improve the strength and toughness.
  • elements selected from Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B added to them as elements which improve the strength and toughness.
  • the reasons for limitation of the amounts of addition of these optional added elements are as follows:
  • Ni is an element which is effective for improvement of toughness and strength. To obtain this effect, 0.01% or more has to be added. If the amount of addition of Ni exceeds 2.0%, the HIC resistance and weldability deteriorate.
  • Cu is an element which is effective for improvement of the strength without causing a drop in toughness. To obtain this effect, 0.01% or more has to be added. If the amount of addition of Cu exceeds 1.0%, cracking easily occurs at the time of heating a steel slab or at the time of welding.
  • Cr is an element which improves the strength of steel by precipitation strengthening. To obtain this effect, 0.01% or more has to be added. If the amount of addition of Cr exceeds 1.0%, the hardenability rises, a bainite structure is formed, and as a result the HIC resistance and toughness fall.
  • Mo is an element which improves the hardenability and simultaneously forms carbonitrides and improves the strength. To obtain this effect, 0.01% or more has to be added. If the amount of addition of Mo exceeds 0.60%, the cost rises. If the steel excessively rises in strength, the HIC resistance and toughness sometimes deteriorate, so the amount of addition of Mo is 0.20% or less.
  • W is an element which is effective for improvement of strength. To obtain this effect, 0.01% or more has to be added. If the amount of addition of W exceeds 1.0%, the toughness sometimes deteriorates.
  • Zr like V, is an element which forms carbides and nitrides and contributes to improvement of the strength. To obtain this effect, 0.0001% or more has to be added. If the amount of addition of Zr exceeds 0.050%, the toughness sometimes deteriorates.
  • Ta 0.0001 to 0.050%
  • Ta also, like V, is an element which forms carbides and nitrides and contributes to improvement of the strength. To obtain this effect, 0.0001% or more has to be added. If the amount of addition of Ta exceeds 0.050%, the toughness sometimes deteriorates.
  • B is an element which segregates at the grain boundaries of the steel and remarkably contributes to improvement of the hardenability. To obtain this effect, 0.0001% or more of B has to be added. B is an element which forms BN, causes solid solution N to fall, and contributes to improvement of the toughness of the heat affected zone, so 0.0005% or more is preferably added. If the amount of addition of B exceeds 0.0020%, segregation at the grain boundaries is suppressed and the toughness sometimes deteriorates.
  • the steel pipe for line pipe use and steel plate for line pipe use of the present invention may in accordance with need have one type or two types or more of a REM (rare earth metal), Mg, Y, Hf, and Re added to them so as to control the oxides, sulfides, and other inclusions.
  • REM rare earth metal
  • Mg, Y, Hf, and Re added to them so as to control the oxides, sulfides, and other inclusions.
  • REM Rotary Earth Metal: 0.0001 to 0.01%
  • An REM is an element which is added as a deoxidizing agent and a desulfurizing agent. To obtain this effect, 0.0001% or more has to be added. If the amount of addition of REM exceeds 0.010%, coarse oxides are formed and the HIC resistance and the toughness of the base material and HAZ sometimes fall.
  • Mg is an element which is added as a deoxidizing agent and a desulfurizing agent. In particular, it forms fine oxides which contributes to improvement of the HAZ toughness. To obtain this effect, adding 0.0001% or more of Mg is necessary. If the amount of addition of Mg exceeds 0.010%, oxides easily accumulate and coarsen and the HIC resistance and base material and HAZ toughness sometimes fall.
  • Y like Ca, is an element which forms sulfides, suppresses the formation of MnS elongated in the rolling direction, and contributes to improvement of the HIC resistance. To obtain such an effect, it is necessary to add Y in an amount of 0.0001% or more. If the amount of addition of Y exceeds 0.005%, oxides increase, accumulate, and coarsen and the HIC resistance deteriorates.
  • Hf like Ca
  • Hf is an element which forms sulfides, suppresses the formation of MnS elongated in the rolling direction, and contributes to improvement of the HIC resistance.
  • the amount of addition of Hf exceeds 0.005%, oxides increase, accumulate, and coarsen and the HIC resistance deteriorates.
  • Re like Ca, is an element which forms sulfides, suppresses the formation of MnS elongated in the rolling direction, and contributes to improvement of the HIC resistance. To obtain such an effect, it is necessary to add Re in an amount of 0.0001% or more. If the amount of addition of Re exceeds 0.005%, oxides increase, accumulate, and coarsen and the HIC resistance deteriorates.
  • the balance other than the above elements is Fe and unavoidable impurities.
  • the above-mentioned Ni, Cu, Cr, Mo, W, V, Zr, Ta, and B may all be contained in fine amounts of less than the above lower limit values as impurities.
  • REM, Mg, Y, Hf, and Re may also be contained in extremely fine amounts of less than the lower limit values as impurities.
  • Mn Segregation Ratio 2.0 or less, Nb Segregation Ratio: 4.0 or less, Ti Segregation Ratio: 4.0 or less HIC is due to the hydrogen which accumulates around the elongated MnS present at the centerline segregation of the steel, the accumulated carbonitrides of Ti and NB, etc.
  • the maximum Mn segregation ratio of the steel plate and steel pipe has to be made 2.0 or less. Furthermore, by suppressing segregated carbonitrides of Ti and Nb, it is possible to remarkably prevent the occurrence of HIC of the steel pipe for line pipe use and steel plate for line pipe use.
  • N 0.0050% or less the amount of C 0.06% or less, and the maximum segregation ratio of Nb and Ti 4.0 or less.
  • the “maximum Mn segregation ratio” is the maximum amount of Mn at the centerline segregation compared with the average amount of Mn in the distribution of concentration of Mn in the plate thickness direction of steel plate and in the distribution of concentration of Mn in the thickness direction of the pipe wall of steel pipe.
  • the Nb segregation ratio and the Ti segregation ratio are the averaged maximum amount of Nb (amount of Ti) at the centerline segregation compared with the average amount of Nb (amount of Ti) in the distributions of concentration of Nb and Ti in the plate thickness direction of steel plate and in the distributions of concentration of Nb and Ti in the thickness direction of the pipe wall of steel pipe.
  • the maximum Mn segregation ratio is found by measuring the distribution of concentration of Mn of steel plate and steel pipe by an EPMA (electron probe micro analyzer) or CMA (computer aided micro analyzer) able to perform image processing on the measurement results of the EPMA.
  • the measured object is an HIC test piece (20 mm width ⁇ 20mm thickness machined from both surface of full thickness ⁇ 100 mm length), while a region of the HIC test piece of 20 mm width (test piece width) ⁇ 20mm thickness machined from both surface of full thickness (HIC) test piece thickness was made the measurement region.
  • the same region may be measured by EPMA or CMA to measure the distribution of concentration of Nb and the distribution of concentration of Ti.
  • the probe diameter of the EPMA (or CMA) is made 2 ⁇ m.
  • the maximum Mn segregation ratio is found by measuring the concentration of Mn using an EPMA by a 50 ⁇ m beam diameter in a measurement region of a 20 mm width (HIC test piece width) ⁇ 20mm thickness machined from both surface of full thickness (HIC test piece thickness) at equal intervals in the plate thickness direction and plate width direction to measure the distribution of concentration of Mn and make the average value at the measured distribution of concentration of Mn the average Mn concentration.
  • a region of 1 mm (width) ⁇ 1 mm (thickness) including the location of the greatest concentration of the amount of Mn was measured for 50 points ⁇ 50 points of Mn concentration at equal intervals in the plate thickness direction and plate width direction while changing the beam diameter to 2 ⁇ m.
  • the maximum Mn concentration was found from the distribution. Further, the ratio of the maximum Mn concentration which is obtained by a 2 ⁇ m beam diameter and the average Mn concentration which is obtained by a 50 ⁇ m beam diameter is defined as the "maximum Mn segregation ratio".
  • the Nb segregation ratio and the Ti segregation ratio are similarly found by measuring the distributions of concentration of Nb and Ti using an EPMA by a 50 ⁇ m beam diameter in a measurement region of a 20 mm width (HIC test piece width) ⁇ 20mm thickness machined from both surface of full thickness (HIC test piece thickness), then measuring the concentrations of Nb and Ti by a 2 ⁇ m beam diameter in the region of 1 mm (width) ⁇ 1 mm (thickness) of the locations where the amounts of Nb and Ti are most concentrated.
  • the segregation ratio sometimes becomes larger in appearance, but if there are inclusions, it is possible to judge these as regions where the peaks sharply rise in the distributions of concentration of Nb and Ti, so the segregation ratios are found after subtracting the measurement values of these regions.
  • soft reduction at the time of the final solidification at continuous casting is optimum.
  • the soft reduction at the time of final solidification is performed for eliminating the mixture of solidified parts and nonsolidified parts due to uneven cooling during casting. Due to this, it is possible to eliminate the spaces accompanying shrinkage upon solidification to keep down the flow of molten steel at the unsolidified parts to cause uniform solidification of the steel slab.
  • centerline segregation of the steel plate has a center-porosity of a length of 0.1 mm or more, it becomes a starting point of HIC and the HIC resistance deteriorates.
  • a "center-porosity" is a space which is formed in a steel slab at the time of solidification which is not press-bonded due to hot rolling, but remains in the steel plate. The length of a center-porosity can be measured by an ultrasonic or other nondestructive test.
  • the cause of center-porosities remaining at the centerline segregation is mainly the hydrogen which is contained in the steel slab before hot rolling.
  • the steel solidifies and shrinks upon cooling, so spaces are easily formed in particular at the center part of the steel slab. If the spaces are negative in pressure, if the amount of hydrogen which is contained in the steel slab is large, the hydrogen gas will penetrate into the spaces.
  • the hydrogen which is contained in the steel when produced by secondary refining remains almost as is in the spaces in the steel slab after continuous casting.
  • the structure of the steel slab is austenite with a large amount of hydrogen which can form a solid solution in a face-centered cubic structure, so the hydrogen is not dispersed to the outside of the steel slab. If heating the steel slab and reducing it by hot rolling, the spaces inside the steel slab become smaller, but the pressure of the hydrogen gas which is contained in the spaces becomes higher in reverse proportion to the size of the spaces. Therefore, it is not possible to press bond the spaces due to the hot rolling. Center-porosities remain inside the steel plate, in particular, the centerline segregation.
  • the amount of hydrogen in the steel which is referred to here was found by measuring the molten steel which was sampled after secondary refining by the combustion method.
  • the amount of hydrogen which remains in the steel plate after hot rolling decreases compared with the amount of hydrogen after the secondary refining since the hydrogen is dispersed to the outside if the steel plate is cooled and the metal structure transforms from austenite to ferrite, bainite, martensite, pearlite, etc.
  • the HIC resistance it is effective to make the maximum hardness of the centerline segregation 300Hv or less.
  • the maximum hardness of the centerline segregation is measured by a Vicker's hardness test at a 25 g load based on JIS Z 2244 after corrosion by a Nital solution which consists of 3% nitric acid and 97% ethanol.
  • the "centerline segregation" is a portion where the concentration of Mn which is measured by EPMA or CMA becomes maximum.
  • the HIC resistance can be reliably raised. That is, by making the upper limit of the maximum hardness of the surface layer region from the topmost surface down to 5 mm 300Hv or less, even in steel pipe for line pipe use with a high t/D of 0.035 or more, it is possible to reliably prevent the occurrence of HIC due inclusions, blisters, etc. at the surface layer.
  • the maximum hardness of the surface layer region is found by conducting a Vicker's hardness test at predetermined intervals in the depth direction (for example, 0.1 mm intervals) from the topmost surface to a position of a depth of 5 mm and using the highest value among the values as the maximum hardness. Specifically, this is investigated by corroding the surface by a Nital solution which consists of 0.13% nitric acid and 97% ethanol, then conducting a Vicker's hardness test based on JIS Z 2244 by a 25 g load at 50 points x 50 points at 0.1 mm intervals from the topmost surface to a position at a depth of 5 mm.
  • the steel structure of the base material is preferably a uniform and fine acicular ferrite or bainite structure. Therefore, the structure of the steel base material for high strength line pipe of the present invention considering the HIC resistance is basically preferably bainite or acicular ferrite.
  • heavy wall pipe for line pipe use often is required to have properties able to withstand a drop weight test such as DWTT.
  • FIG. 2 shows a relationship between a total area rate of polygonal ferrite and deformed ferrite at the surface layer of steel pipe and an area rate of HIC.
  • 3 o'clock, 6 o'clock, and 9 o'clock are positions in the circumferential direction of the steel pipe from which the test piece is taken. The weld zone was made 0 o'clock. Test pieces were taken from positions of 3 o'clock (90°), 6 o'clock (180°), and 9 o'clock (270°) as seen from the bottom part of the steel pipe and observed for structure.
  • the HIC area ratio greatly exceeds 3%. Therefore, even when the surface layer region contains polygonal ferrite and deformed ferrite, to reliably improve the HIC resistance, it is preferable to suppress the total fraction of the polygonal ferrite and the deformed ferrite to an area ratio of 20% or less. From the viewpoint of the HIC resistance, the smaller the deformed ferrite the better.
  • the fraction of the deformed ferrite is preferably an area ratio of 10% or less. Absence is more preferable.
  • the method of measurement of the fractions of the polygonal ferrite and deformed ferrite is to take five 200X optical micrographs, extract the polygonal ferrite and deformed ferrite, and find the values by image analysis.
  • the white regions are polygonal ferrite or deformed ferrite. Regions with an aspect ratio (ratio of horizontal length and vertical length) of less than 3 are defined as polygonal ferrite, while regions with an aspect ratio of 3 or more are defined as deformed ferrite.
  • the later explained method of production may be used. That is, if making the rolling end temperature and/or water cooling start temperature 750°C or more, it is possible to make the fraction of the polygonal ferrite and deformed ferrite at the surface layer region 20% or less. However, if the rolling end temperature and/or the water cooling start temperature decreases below 750°C, the polygonal ferrite and deformed ferrite of the surface layer region increase exceeding 20% as a general trend, so the rolling end temperature and/or the water cooling start temperature preferably is made 750°C or more. Further, to make the fraction of the polygonal ferrite and deformed ferrite 10% or less, it is more preferable to make the rolling end temperature or the water cooling start temperature 770°C or more.
  • the above “fraction” means the area rate when observing the L cross-section (surfaces in plate thickness direction and rolling direction). Further, the structure other than the above polygonal ferrite and deformed ferrite, that is, the structure accounting for 80% or more of the area of the surface layer region, should be bainite and/or acicular ferrite.
  • the structure at the inside from the above surface layer region is not particularly limited, but to secure properties for steel plate and steel pipe for high strength line pipe use with a tensile strength of 500 MPa or more such as base material high strength, base material toughness, HAZ toughness, weldability, etc., it is sufficient to make the structure mainly acicular ferrite or bainite.
  • steel which has the above-mentioned chemical composition is produced by an ordinary method so that the amount of hydrogen in the molten steel after secondary refining becomes 2.5 ppm or less, then is continuously cast to obtain a steel slab, then the steel slab is reheated and rolled by heavy plate rolling to obtain steel plate.
  • the steel plate After finishing rolling, the steel plate is water cooled by a start temperature of 750°C or more and a stop temperature of 400 to 600°C.
  • the "stop temperature" of water cooling referred to here means the highest temperature of the temperature of the steel plate which rises due to reheating after the cooling water is stopped.
  • the recrystallization temperature region is the temperature region where recrystallization occurs after rolling. With the components of the steel of the present invention, it is generally over 900°C.
  • the non-recrystallization temperature region is a temperature region where no recrystallization or ferrite transformation occurs after rolling and is generally 750 to 900°C with the components of the steel of the present invention.
  • the rolling in the recrystallization temperature region is called “recrystallization rolling" or "rough rolling”
  • the rolling in the non-recrystallization temperature region is called the “non-recrystallization rolling" or "final rolling".
  • the maximum hardness of the centerline segregation can be suppressed to 300Hv or less. If making the water cooling start temperature less than 750°C, a large amount of ferrite is formed before the start of cooling, C (carbon) is discharged from the ferrite to the austenite, and C is concentrated at the austenite phase. As a result, the austenite phase where C concentrates transforms to hard martensite which contains a large amount of C in the cooling process.
  • the water cooling start temperature 750°C or more it is possible to suppress the formation of hard martensite, so it is possible to suppress the maximum hardness of the centerline segregation to 300Hv or less. Further, if making the water cooling stop temperature 400°C or more, after the transformation, the hard martensite partially breaks down, so the maximum hardness of the centerline segregation can be suppressed to 300Hv or less. If the water cooling stop temperature is too high, the steel pipe deteriorates in strength, so the water cooling stop temperature is made 600°C or less.
  • the maximum hardness of the surface layer region from the topmost surface down 5 mm to 300Hv or less, in addition to making the water cooling stop temperature 400°C to 600°C or less, it is necessary to optimize the cooling pattern of the surface layer. Specifically, when cooling the surface layer, by performing reheating treatment at least two times, it is possible to make the maximum hardness from the topmost layer down to 5 mm 300Hv or less. This is because by performing reheating, a tempering effect is exhibited and the surface layer region can be lowered in hardness.
  • the lower limit of the reheating temperature is preferably made 300°C, while the upper limit temperature is preferably 750°C.
  • the reheating temperature becomes less than 300°C, 50% or more of martensite is formed and hardens and the surface layer no longer deteriorates in hardness. If the reheating temperature exceeds 750°C, the surface layer region deteriorates too much in hardness.
  • FIG. 3A and FIG. 3B show examples of cooling patterns of the cooling step in the present invention.
  • 1 is the change in temperature due to self-reheating treatment
  • the temperature of 2 is the reheating start temperature
  • the temperature of 3 is the reheating end temperature.
  • the temperature of 4 is the water cooling stop temperature.
  • Such a cooling pattern can be controlled by switching the nozzle for spraying cooling water on and off and adjusting the amount of water.
  • FIG. 3C shows the cooling pattern by the conventional method of production. After stopping the cooling water, the steel plate rises in temperature, so a single reheating is included.
  • the structure of the surface layer region from the topmost surface down to 5 mm can be suppressed to a total fraction of polygonal ferrite and deformed ferrite of 20% or less. If the water cooling start temperature becomes lower than 750°C, it becomes lower than the ⁇ / ⁇ -transformation temperature of 500 MPa or more steel, so polygonal ferrite or deformed ferrite is easily formed and the total fraction of polygonal ferrite and deformed ferrite exceeds 20%.
  • the base material steel plate need only be shaped into a tube, then arc welded at both plate edge beveled to obtain a welded steel pipe.
  • a UOE step of shaping steel plate by a C-press, U-press, and O-press is preferable.
  • arc welding from the viewpoint of the toughness of the weld metal and productivity, it is preferable to employ submerged arc welding.
  • the input heat at the time of arc welding is not particularly limited, but is usually preferably 2.0 to 15.0kJ/mm.
  • the Steels 1 to 35 which have the chemical compositions which are shown in Table 1A to Table 1C were produced and continuously cast to thickness 240 mm or 300 mm steel slabs. Further, Table 1A to Table 1C show analysis values of the amounts of hydrogen of the molten steel.
  • the first reheating start and end temperatures and the second reheating start temperature are shown in Table 2A.
  • the second reheating end temperature (when there is a single reheating treatment, the first reheating end temperature) is the cooling end temperature.
  • Each obtained steel plate was shaped into a tube by a C press, U press, or O press, the end faces were tack welded, main welding was performed from the inside and outside surfaces, then the tube was expanded to obtain steel pipe for line pipe use. Note that, for the main welding, submerged arc welding was applied.
  • Tensile test pieces, HIC test pieces, and macro test pieces were taken from the obtained steel plates and steel pipes and used for the respective tests.
  • the HIC test was performed based on NACETM0284.
  • the macro test pieces were measured for segregation ratios of Mn, Nb, and Ti by EPMA.
  • the segregation ratio was measured by EPMA by probe diameters of 50 ⁇ m and 2 ⁇ m.
  • Vicker's hardness of the centerline segregation and the Vicker's hardness at the surface layer region from the topmost surface of the steel plate and steel pipe down to a depth of 5 mm were measured based on JIS Z 2244.
  • the Vicker's hardness was measured using a 25 g load at the portion of the highest Mn concentration in the distribution of concentration of Mn in the thickness direction measured by EPMA.
  • Table 2A to Table 2C show the thickness of the steel plate, maximum Mn segregation ratio, Nb segregation ratio, Ti segregation ratio, length of center-porosities, maximum hardness of centerline segregation, maximum hardness of surface region, tensile strength and length ratio of HIC (CLR) found by HIC test, and total fraction of polygonal ferrite and deformed ferrite in surface layer region.
  • CLR HIC
  • Table 3 shows the thickness of steel pipe, heat input of main welding, and length ratio of HIC (CLR) found from an HIC test. Note that, the maximum Mn segregation ratio in the steel pipe, Nb segregation ratio, Ti segregation ratio, length of center-porosities, and maximum hardness of centerline segregation are all the same as the steel plate. Further, the tensile strength of steel pipe becomes 10 to 20 MPa or more larger than steel plate.
  • Table 1A Components (mass%) C Si Mn P S Al Ti Nb N Ca 1 0.040 0.10 1.32 0.005 0.0005 0.004 0.012 0.030 0.0025 0.0015 2 0.052 0.13 1.35 0.008 0.0006 0.013 0.003 0.040 0.0030 0.0017 3 0.046 0.08 1.45 0.003 0.0008 0.008 0.012 0.030 0.0021 0.0021 4 0.060 0.07 1.48 0.004 0.0003 0.010 0.016 0.060 0.0018 0.0011 5 0.052 0.25 1.47 0.009 0.0006 0.007 0.012 0.054 0.0015 0.0017 6 0.046 0.10 1.25 0.008 0.0004 0.016 0.012 0.026 0.0023 0.0013 7 0.042 0.02 1.36 0.006 0.0006 0.005 0.013 0.030 0.0031 0.0017 8 0.035 0.15 1.38 0.007 0.0005 0.013 0.008 0.050 0.0035 0.0015
  • Steel Plates 1 to 23 are invention examples. As shown in Table 2A to Table 2C, these steel plates had a maximum Mn segregation ratio of 1.6 or less, Nb segregation ratio of 4.0 or less, and Ti segregation ratio of 4.0 or less. Further, the maximum hardness from the topmost layers of the top and bottom surfaces of the steel plate and the inside and outside surfaces of the steel pipe down to 5 mm are 300Hv or less, while the maximum hardness of the centerline segregation was 300Hv or less. Furthermore, the total fraction of the polygonal ferrite and the deformed ferrite was 20% or less. Therefore, no HIC occurred due to the HIC test. The steel pipes made using these Steel Plates 1 to 23 as materials also gave similar results as shown in Table 3.
  • Steel Plates 24 to 43 are comparative examples outside the scope of the present invention.
  • Steel Plates 24 to 35 have one of the elements among the basic components or optional added elements outside the scope of the present invention.
  • Steel Plates 36 to 43 do not satisfy the production conditions of the present invention.
  • HIC occurred in HIC tests, the CLR exceeded 3%, or the ductile fracture rate of DWTT at 0°C was less than 85%.
  • FIG. 4A shows the hardness distribution from the topmost layer down to 5 mm of the Steel 11 produced by the method of production of the present invention
  • FIG. 4B shows a photo of the structure of the surface layer of the Steel 11.
  • FIG. 5A shows the hardness distribution from the topmost layer down to 5 mm of the Steel 40 produced by the conventional method of production of the present invention
  • FIG. 5B shows a photo of the structure of the surface layer of the Steel 40.
  • the hardness distribution of the steel plate of the present invention which is shown in FIG. 4A has a maximum hardness of a low 245Hv, but the hardness distribution of the steel plate which was produced by the conventional method which is shown in FIG. 5A has a part where the hardness locally exceeds 300Hv. This can become the starting point of HIC.
  • the steel plate which was produced by the conventional method which is shown in FIG. 5B was treated for reheating one time, so the base material was not sufficiently tempered and a hard structure was formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Claims (7)

  1. Ein Stahlrohr zur Verwendung als hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung,
    wobei
    das Stahlrohr aus einem Stahlblech hergestellt ist, bestehend aus, in Massen-%,
    C: 0,02 bis 0,08%,
    Si: 0,01 bis 0,5%,
    Mn: 1,2 bis 1,8%,
    Nb: 0,001 bis 0,10%,
    Ca: 0,0005 bis 0,0050%,
    N: 0,0010 bis 0,0060%,
    O: 0,0001 bis 0,0035 %, und
    gegebenenfalls ferner enthaltend, in Massen-%, eines oder mehrere von
    Ni: 0,01 bis 2,0%,
    Cu: 0,01 bis 1,0%,
    Cr: 0,01 bis 1,0%,
    Mo: 0,01 bis 0,60%,
    W: 0,01 bis 1,0%,
    V: 0,01 bis 0,10%,
    Zr: 0,0001 bis 0,050%,
    Ta: 0,0001 bis 0,050%,
    B: 0,0001 bis 0,0020%,
    Seltenerdmetalle: 0,0001 bis 0,01%,
    Mg: 0,0001 bis 0,01%,
    Y: 0,0001 bis 0,005%,
    Hf: 0,0001 bis 0,005% und
    Re: 0,0001 bis 0,005% und
    einem Rest bestehend aus Fe und unvermeidbaren Verunreinigungen, wobei Gehalte beschränkt sind auf
    P: 0,01% oder weniger,
    S: 0,0020% oder weniger,
    Al: 0,030% oder weniger, und
    Ti: 0,030% oder weniger, und
    Gehalte von S und Ca
    S/Ca<0,5
    erfüllen;
    das Stahlblech erfüllt:
    maximales Mn-Seigerungsverhältnis: 2,0 oder weniger,
    Nb-Seigerungsverhältnis: 4,0 oder weniger,
    Ti-Seigerungsverhältnis: 4,0 oder weniger,
    Länge der Zentrums-Porositäten an der Mittellinienseigerung: 0,1 mm oder weniger,
    maximale Härte der Mittellinienseigerung: 300 HV oder weniger,
    maximale Härte des Oberflächenschichtbereichs von der obersten Oberfläche von zwei Vorder- und Rückblechoberflächen bis zu einer Tiefe von 5 mm: 300 HV oder weniger, und
    einen Gesamtanteil an polygonalem Ferrit und verformtem Ferrit mit einem Seitenverhältnis von 3 oder mehr im Oberflächenschichtbereich von der obersten Oberfläche von zwei Vorder- und Rückblechoberflächen bis zu einer Tiefe von 5 mm: 0,1 bis 20%, wobei die von polygonalem Ferrit und verformtem Ferrit verschiedene Struktur Bainit- und/oder nadelförmiger Ferrit ist;
    wobei der Gesamtanteil von polygonalem Ferrit und verformtem Ferrit mit einem Seitenverhältnis von 3 oder mehr im Oberflächenschichtbereich von der obersten Oberfläche von zwei Vorder- und Rückblechoberflächen bis zu einer Tiefe von 5 mm gemessen wird, indem fünf 200X optische Mikroskopieaufnahmen in Oberflächen in Blechdickenrichtung und Walzrichtung aufgenommen werden, die Flächenanteile des polygonalen Ferrits und verformten Ferrits gemessen werden und ihr Gesamtanteil berechnet wird, und
    Dicke "t"[mm] des Stahlblechs und Außendurchmesser D [mm] des Stahlrohres nach der Rohrherstellung
    t≥25 und
    t/D≥0,035 entspricht.
  2. Das Stahlrohr zur Verwendung als hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung nach Anspruch 1, wobei das Stahlblech in Massen-% einen oder mehrere enthält:
    Ni: 0,01 bis 2,0%,
    Cu: 0,01 bis 1,0%,
    Cr: 0,01 bis 1,0%,
    Mo: 0,01 bis 0,60%,
    W: 0,01 bis 1,0%,
    V: 0,01 bis 0,10%,
    Zr: 0,0001 bis 0,050%,
    Ta: 0,0001 bis 0,050%,
    B: 0,0001 bis 0,0020%,
    Seltenerdmetalle: 0,0001 bis 0,01%,
    Mg: 0,0001 bis 0,01%,
    Y: 0,0001 bis 0,005%,
    Hf: 0,0001 bis 0,005% und
    Re: 0,0001 bis 0,005%.
  3. Das Stahlrohr zur Verwendung als hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung nach Anspruch 1 oder 2, wobei es kein verformtes Ferrit mit einem Seitenverhältnis von 3 oder mehr im Oberflächenschichtbereich von der obersten Oberfläche von zwei Vorder- und Rückblechoberflächen bis zu einer Tiefe von 5 mm gibt.
  4. Ein Stahlblech zur Verwendung für ein hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung, wobei das Stahlblech, verwendet für das Stahlrohr zur Verwendung als hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung, nach einem der Ansprüche 1 bis 3 ist.
  5. Ein Verfahren zur Herstellung eines Stahlblechs zur Verwendung für ein hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung nach Anspruch 4, wobei das Verfahren die Schritte umfasst:
    einen Schritt des Herstellens von geschmolzenem Stahl, bestehend aus, in Massen-%,
    C: 0,02 bis 0,08%,
    Si: 0,01 bis 0,5%,
    Mn: 1,2 bis 1,8%,
    Nb: 0,001 bis 0,10%,
    Ca: 0,0005 bis 0,0050%,
    N: 0,0010 bis 0,0060%,
    O: 0,0001 bis 0,0035 %, und
    gegebenenfalls ferner enthaltend, in Massen-%, eines oder mehrere von
    Ni: 0,01 bis 2,0%,
    Cu: 0,01 bis 1,0%,
    Cr: 0,01 bis 1,0%,
    Mo: 0,01 bis 0,60%,
    W: 0,01 bis 1,0%,
    V: 0,01 bis 0,10%,
    Zr: 0,0001 bis 0,050%,
    Ta: 0,0001 bis 0,050%,
    Seltenerdmetalle: 0,0001 bis 0,01%,
    B: 0,0001 bis 0,0020%,
    Mg: 0,0001 bis 0,01%,
    Y: 0,0001 bis 0,005%,
    Hf: 0,0001 bis 0,005% und
    Re: 0,0001 bis 0,005% und
    einem Rest bestehend aus Fe und unvermeidbaren Verunreinigungen, wobei
    Gehalte beschränkt sind auf
    P: 0,01% oder weniger,
    S: 0,0020% oder weniger,
    Al: 0,030% oder weniger, und
    Ti: 0,030% oder weniger,
    Gehalte von S und Ca
    S/Ca<0,5
    erfüllen, und
    ein Gehalt an Wasserstoff nach dem Sekundärfrischen 2,5 ppm oder weniger beträgt;
    einen Schritt des Herstellens einer Stahlbramme aus dem geschmolzenen Stahl durch Stranggießen;
    einen Schritt des Erwärmens der Stahlbramme auf 1000°C oder mehr;
    einen Schritt des Warmwalzens der erwärmten Stahlbramme bei einer Reduktionsrate in einem Rekristallisationstemperaturbereich von 2 oder mehr und einer Reduktionsrate in dem Nicht-Rekristallisationstemperaturbereich von 3 oder mehr, um ein Stahlblech zu erhalten; und
    einen Abkühlschritt des Wasserkühlens des Stahlblechs von 750°C oder mehr auf 400 bis 600°C, wobei der Abkühlschritt mindestens zwei Selbstwiedererwärmungsbehandlungen beinhaltet, welche die Temperatur des Stahlblechs erhöhen, und
    bei der Selbstwiedererwärmungsbehandlung eine Anfangstemperatur einer ersten Selbstwiedererwärmungsbehandlung 300°C oder mehr beträgt und eine Endtemperatur aller Selbstwiedererwärmungsbehandlungen weniger als 750°C beträgt.
  6. Ein Verfahren zur Herstellung eines Stahlblechs zur Verwendung für ein hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung, nach Anspruch 5, wobei der geschmolzene Stahl in Massen-% einen oder mehrere von
    Ni: 0,01 bis 2,0%,
    Cu: 0,01 bis 1,0%,
    Cr: 0,01 bis 1,0%,
    Mo: 0,01 bis 0,60%,
    W: 0,01 bis 1,0%,
    V: 0,01 bis 0,10%,
    Zr: 0,0001 bis 0,050%,
    Ta: 0,0001 bis 0,050%,
    B: 0,0001 bis 0,0020%,
    Seltenerdmetalle: 0,0001 bis 0,01%,
    Mg: 0,0001 bis 0,01%,
    Y: 0,0001 bis 0,005%,
    Hf: 0,0001 bis 0,005% und
    Re: 0,0001 bis 0,005%
    enthält.
  7. Ein Verfahren zur Herstellung eines Stahlrohres zur Verwendung für ein hochfestes Leitungsrohr mit hervorragender Beständigkeit gegen wasserstoffinduzierte Rissbildung nach Anspruch 1, wobei das Verfahren die Schritte umfasst:
    zuerst Ausführen des Verfahrens nach Anspruch 5 zum Herstellen eines Stahlblechs, gefolgt von den Schritten:
    einen Schritt des Formens des Stahlblechs zu einer Röhrenform; und
    einen Schritt des Verschweißens beider abgeschrägten Blechkanten;
    wobei eine Dicke "t" [mm] des Stahlblechs und ein Außendurchmesser D [mm] des Stahlrohres nach der Rohrherstellung
    t≥25 und
    t/D≥0,035
    erfüllen.
EP13768001.3A 2012-03-30 2013-03-29 Hochfestes stahlrohr für leitungsrohr mit hervorragender beständigkeit gegen wasserstoffinduzierte rissbildung, hochfestes stahlblech für ein leitungsrohr damit und verfahren zur herstellung davon Active EP2832879B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012079554 2012-03-30
PCT/JP2013/059617 WO2013147197A1 (ja) 2012-03-30 2013-03-29 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼管及びこれに用いる高強度ラインパイプ用鋼板、並びにこれらの製造方法

Publications (3)

Publication Number Publication Date
EP2832879A1 EP2832879A1 (de) 2015-02-04
EP2832879A4 EP2832879A4 (de) 2016-01-13
EP2832879B1 true EP2832879B1 (de) 2019-11-20

Family

ID=49260438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13768001.3A Active EP2832879B1 (de) 2012-03-30 2013-03-29 Hochfestes stahlrohr für leitungsrohr mit hervorragender beständigkeit gegen wasserstoffinduzierte rissbildung, hochfestes stahlblech für ein leitungsrohr damit und verfahren zur herstellung davon

Country Status (5)

Country Link
EP (1) EP2832879B1 (de)
JP (1) JP5392441B1 (de)
KR (1) KR101615842B1 (de)
CN (1) CN104024461B (de)
WO (1) WO2013147197A1 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125137A (ja) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
WO2016104527A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
WO2016104526A1 (ja) * 2014-12-26 2016-06-30 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
JP6584912B2 (ja) * 2014-12-26 2019-10-02 株式会社神戸製鋼所 耐水素誘起割れ性に優れた鋼板およびラインパイプ用鋼管
CN104846260A (zh) * 2015-04-20 2015-08-19 杭州科明电子有限公司 一种工具开关的扳机
CN104928568B (zh) * 2015-06-30 2017-07-28 宝山钢铁股份有限公司 一种铁素体低密度高强钢及其制造方法
CN104988401B (zh) * 2015-07-03 2017-07-07 中国石油大学(华东) 一种含钽起重机悬臂
CN107614730A (zh) * 2015-07-27 2018-01-19 新日铁住金株式会社 管线管用钢管以及其的制造方法
JP2017078221A (ja) * 2015-10-21 2017-04-27 株式会社神戸製鋼所 鋼板及び接合体
US20170333955A1 (en) 2016-05-23 2017-11-23 Robowash Pty Ltd. Apparatus and method for cleaning machines
JP6869151B2 (ja) * 2016-11-16 2021-05-12 株式会社神戸製鋼所 鋼板およびラインパイプ用鋼管並びにその製造方法
US10744538B2 (en) 2016-12-13 2020-08-18 Robowash Pty Ltd. Apparatus and method for cleaning industrial parts
KR101889189B1 (ko) * 2016-12-22 2018-08-16 주식회사 포스코 수소유기균열 저항성이 우수한 인장강도 450MPa급 후육 강재 및 그 제조방법
JP6428968B1 (ja) * 2017-02-20 2018-11-28 新日鐵住金株式会社 鋼板
WO2019058422A1 (ja) * 2017-09-19 2019-03-28 新日鐵住金株式会社 鋼管及び鋼板
KR102364255B1 (ko) * 2017-09-19 2022-02-17 닛폰세이테츠 가부시키가이샤 강관 및 강판
KR102379985B1 (ko) * 2017-09-19 2022-03-29 닛폰세이테츠 가부시키가이샤 강관 및 강판
JP6866855B2 (ja) * 2018-01-29 2021-04-28 Jfeスチール株式会社 耐サワーラインパイプ用高強度鋼板の製造方法、及び耐サワーラインパイプ用高強度鋼板、並びに耐サワーラインパイプ用高強度鋼板を用いた高強度鋼管
CN108456834B (zh) * 2018-03-05 2020-04-24 白婷婷 一种具有含Ti析出物的高强度管线钢及其制备方法
KR102457409B1 (ko) * 2018-06-29 2022-10-24 닛폰세이테츠 가부시키가이샤 강관 및 강판
JP7155702B2 (ja) * 2018-07-19 2022-10-19 日本製鉄株式会社 耐サワーラインパイプ用厚鋼板およびその製造方法
KR102131537B1 (ko) * 2018-11-30 2020-07-08 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
JP7248885B2 (ja) * 2019-01-24 2023-03-30 日本製鉄株式会社 鋼板及び鋼板の製造方法
KR102255818B1 (ko) 2019-06-24 2021-05-25 주식회사 포스코 내부식성이 우수한 고강도 구조용 강재 및 그 제조방법
CN110735084A (zh) * 2019-09-20 2020-01-31 包头钢铁(集团)有限责任公司 一种管线钢x42m热轧钢带及其制备方法
KR102326109B1 (ko) * 2019-12-16 2021-11-16 주식회사 포스코 황화물 응력부식 균열 저항성이 우수한 강재 및 이의 제조방법
BR112022019204A2 (pt) * 2020-03-26 2022-11-08 Jfe Steel Corp Chapa de aço de alta resistência para tubo de linha resistente a ácidos e método para fabricação do mesmo, e tubo de aço de alta resistência usando chapa de aço de alta resistência para tubo de linha resistente a ácidos
CN113862572B (zh) * 2021-09-28 2022-07-26 武汉科技大学 一种海洋用抗氢致开裂x80级管线钢及其制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220577A (ja) 1993-01-26 1994-08-09 Kawasaki Steel Corp 耐hic特性に優れた高張力鋼及びその製造方法
JPH06256894A (ja) 1993-03-08 1994-09-13 Nippon Steel Corp 耐水素誘起割れ性に優れた高強度ラインパイプ
JPH06271974A (ja) 1993-03-18 1994-09-27 Nippon Steel Corp 耐水素誘起割れ性に優れたラインパイプ
JP3633515B2 (ja) 2001-06-12 2005-03-30 住友金属工業株式会社 耐水素誘起割れ性に優れた熱延鋼板およびその製造方法
US20050106411A1 (en) * 2002-02-07 2005-05-19 Jfe Steel Corporation High strength steel plate and method for production thereof
JP2006063351A (ja) 2004-08-24 2006-03-09 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた高強度鋼板および製造方法、並びにラインパイプ用鋼管
JP4725437B2 (ja) 2006-06-30 2011-07-13 住友金属工業株式会社 厚鋼板用連続鋳造鋳片及びその製造方法並びに厚鋼板
JP4900260B2 (ja) 2008-01-25 2012-03-21 Jfeスチール株式会社 延性亀裂伝播特性および耐サワー性に優れる熱延鋼板の製造方法
JP5439887B2 (ja) * 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
RU2459875C1 (ru) * 2008-11-07 2012-08-27 Ниппон Стил Корпорейшн Способ получения толстолистовой стали и стальных труб для ультравысокопрочного трубопровода
JP5423323B2 (ja) * 2009-02-12 2014-02-19 新日鐵住金株式会社 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管
JP5423324B2 (ja) 2009-02-12 2014-02-19 新日鐵住金株式会社 耐水素誘起割れ性に優れた高強度ラインパイプ用鋼板及び高強度ラインパイプ用鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104024461A (zh) 2014-09-03
CN104024461B (zh) 2016-04-06
BR112014019281A2 (de) 2017-06-20
JP5392441B1 (ja) 2014-01-22
EP2832879A1 (de) 2015-02-04
BR112014019281A8 (pt) 2017-07-11
KR101615842B1 (ko) 2016-04-26
EP2832879A4 (de) 2016-01-13
KR20140116913A (ko) 2014-10-06
JPWO2013147197A1 (ja) 2015-12-14
WO2013147197A1 (ja) 2013-10-03

Similar Documents

Publication Publication Date Title
EP2832879B1 (de) Hochfestes stahlrohr für leitungsrohr mit hervorragender beständigkeit gegen wasserstoffinduzierte rissbildung, hochfestes stahlblech für ein leitungsrohr damit und verfahren zur herstellung davon
EP3042976B1 (de) Stahlblech für dickwandiges hochfestes leitungsrohr mit aussergewöhnlicher korrosionsbeständigkeit, quetschfestigkeitseigenschaften und duktilität bei niedrigen temperaturen sowie leitungsrohr
EP2395122B1 (de) Hochfestes stahlrohr für niedertemperaturanwendung mit hervorragender knickresistenz und beständigkeit in bereichen unter schweisshitzeienwirkung sowie herstellungsverfahren dafür
EP1870484B1 (de) Hochfeste stahlplatte und herstellungsverfahren dafür und hochfestes stahlrohr
EP2264205B1 (de) Hochfeste stahlplatte mit hervorragender niedertemperatur-zähigkeit, stahlrohr und herstellungsverfahren für beide
EP2484792B1 (de) Stahlplatte mit geringem streckgrenzenverhältnis, hoher härte und hoher zähigkeit sowie verfahren zu ihrer herstellung
KR101312901B1 (ko) 내수소 유기 균열성이 우수한 고강도 라인 파이프용 강판 및 고강도 라인 파이프용 강관
EP2105513B1 (de) Hochfestes dickes Schweissstahlrohr für ein Leitungsrohr mit hervorragender Kältezähigkeit und Herstellungsverfahren dafür.
EP2505681B1 (de) Geschweisstes stahlrohr für ein leitungsrohr mit hoher druckfestigkeit und hoher härte sowie verfahren zu seiner herstellung
EP2832890B1 (de) Hochfeste stahlplatte mit niedriger streckgrenze und mit hervorragender stammalterungsbeständigkeit, herstellungsverfahren dafür und hochfestes geschweisstes stahlrohr damit
EP2397570B1 (de) Stahlplatte für leitungsrohre mit hervorragender festigkeit und duktilität und herstellungsverfahren dafür
EP2505682B1 (de) Geschweisstes stahlrohr für ein leitungsrohr mit hoher druckfestigkeit sowie verfahren zu seiner herstellung
EP2484791B1 (de) Stahlplatte mit geringem streckgrenzenverhältnis, hoher härte und hoher gleichförmiger ausdehnung sowie verfahren zu ihrer herstellung
EP2305850B1 (de) Hochfeste dicke stahlprodukte mit hervorragender zähigkeit und schweissbarkeit, hochfester ultradicker h-profilstahl und verfahren zu ihrer herstellung
EP2832889A1 (de) Hochfeste stahlplatte mit niedriger streckgrenze und mit hervorragender stammalterungsbeständigkeit, herstellungsverfahren dafür und hochfestes geschweisstes stahlrohr damit
JP6225997B2 (ja) H形鋼及びその製造方法
EP2143813A1 (de) Stahlmaterial mit hervorragenden hochtemperatureigenschaften und hervorragender zähigkeit sowie herstellungsverfahren dafür
EP2143814A1 (de) Stahlmaterial mit hervorragender hochtemperaturbeständigkeit und festigkeit sowie verfahren zu seiner herstellung
EP2990498A1 (de) H-förmiger stahl und verfahren zur herstellung davon
JP2007119861A (ja) 高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法
JP5008879B2 (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
KR20070105347A (ko) 강관용 강
JP7088235B2 (ja) 耐摩耗鋼板およびその製造方法
EP3425080A1 (de) H-förmiger stahl für niedrige temperaturen und verfahren zur herstellung davon
EP4116453A1 (de) Stahlrohr und stahlblech

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20151211

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALI20151204BHEP

Ipc: C22C 38/00 20060101AFI20151204BHEP

Ipc: C22C 38/12 20060101ALI20151204BHEP

Ipc: C22C 38/58 20060101ALI20151204BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON STEEL CORPORATION

INTG Intention to grant announced

Effective date: 20190614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013063122

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1204267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191120

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200220

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200221

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200306

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200320

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200131

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200412

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013063122

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1204267

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191120

26N No opposition filed

Effective date: 20200821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240226

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240130

Year of fee payment: 12