VORRICHTUNG ZUR DURCHFÜHRUNG EINER ANÄSTHESIE ODER ANALGOSEDIERUNG UND VERFAHREN ZUM BETREIBEN EINER VORRICHTUNG ZUR DURCHFÜHRUNG EINER ANÄSTHESIE ODER ANALGOSEDIERUNG
Die Erfindung betrifft ein eine Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung sowie ein Verfahren zum Betreiben einer Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung.
Bei der Allgemeinanästhesie oder Narkose werden bestimmte Körperfunktionen ausgeschaltet zum Zwecke der Toleranz von diagnostischen oder operativen Eingriffen am bzw. in den Körper. Im Allgemeinen ist es das Ziel einer adäquaten Anästhesie, einen kombinierten Effekt von hypnotischen, analgesierenden und muskelrelaxierenden Wirkungen zu realisieren, so dass gewährleistet ist, dass sich der Patient während des Eingriffs in einem Zustand von Bewusstlosigkeit befindet und den Eingriff dementsprechend nicht wahrnimmt und dass er zudem unempfindlich ist gegenüber schmerzempfindlichen Reizen während des Eingriffs. Bei der Analgosedierung wird eine abgestufte Form der Narkosetiefe angestrebt, die ohne die Einwirkung von Muskelrelaxantien eine Kombination aus hypnotischen und analgesierenden Wirkungen darstellt.
Um die genannten Ziele zu erreichen, verabreicht der Anästhesist üblicherweise eine Kombination von anästhetischen Arzneimitteln mit unterschiedlichen Wirkungen auf das Gehirn, das Rückenmark, das autonome Nervensystem und/oder neuromuskuläre Verbindungen. In der Regel werden beispielsweise Narkotika/Sedativa für die Bewusstlosigkeit, Sedierung oder Beruhigung kombiniert mit Analgetika zur Schmerzunterdrückung eingesetzt. Ein häufig verwendeter Arzneistoff aus der Gruppe der Narkotika ist Propofol (Wirkstoff: 2,6- Diisopropylphenol), während als Analgetika typischerweise Opioide, wie beispielsweise Remifentanil, Fentanyl oder Morphin, verwendet werden.
Für den Anästhesisten besteht neben der eigentlichen Auswahl von geeigneten Medikamenten eine wesentliche Schwierigkeit darin, diese adäquat zu dosieren. In diesem Zusammenhang gilt es zum einen, Überdosierungen so weit wie möglich zu vermeiden, da diese zu unerwünschten Nebenwirkungen mit teilweise schwer- wiegenden Folgen führen können. Zudem würde eine Überdosierung die Belastung für den Patienten insgesamt unnötig erhöhen und die Narkose übermäßig verlängern. Andererseits dürfen die Dosierungen nicht zu niedrig gewählt werden, da beispielsweise eine nicht hinreichend tiefe Narkose dazu führen kann, dass der Patient den Eingriff bewusst miterlebt, was schwerwiegende Traumata zur Folge haben kann. Eine adäquate Dosierung muss während der gesamten Dauer eines diagnostischen oder invasiven chirurgischen Eingriffs gewährleistet sein.
Das Problem einer adäquaten Dosierung wird dadurch erschwert, dass dem Anästhesisten Informationen über die Konzentration der verabreichten Anästhesiemittel am eigentlichen Wirkort nur eingeschränkt zur Verfügung stehen. Bei gasförmigen Anästhetika gehört es seit vielen Jahren zum Stand der Technik, die Konzentration am Ende der Ausatmung des Patienten - endtidal - zu bestimmen. Diese Messung, die einen relativ zuverlässigen Indikator für die Beurtei- lung der Anästhesiewirkung liefert, ist vorgeschrieben und dient dem Anästhesisten zur Dosierung der Zufuhr des Anästhetikums. Für die (nicht- volatilen) intravenös verabreichten Anästhetika besteht bislang hingegen keine Möglichkeit der Konzentrationsmessung. So kann beispielsweise die Dosierung von Propofol mittels computergestützter Spritzenpumpen (Target Controlled Infusion, TCI) erfolgen, die unter Zugrundelegung von pharmakokinetischen Daten das Medikament infundieren. Der Zusammenhang zwischen der Propofol-Konzentration im Blut des Patienten und der verabreichten Dosis wird dabei ausschließlich auf Basis von demographischen Daten des Patienten, wie bspw. Größe, Gewicht, Alter, Geschlecht, berechnet. Die pharmakologischen Modelle, die in TCI- Spritzenpumpen hinterlegt sind, wie sie heutzutage im klinischen Alltag vorzufinden sind, haben eine Genauigkeit von ca. 20 % bei gesunden Patienten. Bei Patienten mit Organdysfunktionen besteht eine noch größere Abweichung. Weitere Einschränkungen bestehen beispielsweise bei
adipösen Patienten sowie bei Kindern. Dementsprechend ist eine auf diesen Modellen basierende Narkosesteuerung zwangsläufig ungenau.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung sowie ein Verfahren zum Betreiben einer Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung derart auszugestalten und weiterzubilden, dass eine Narkosesteuerung mit verbesserter Genauigkeit ermöglicht ist. Erfindungsgemäß wird die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 1 gelöst. Danach umfasst die in Rede stehende Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung eine Dosiereinrichtung zur intravenösen Verabreichung einer einstellbaren Dosis mindestens eines Anästhesiemittels an einen Patienten, eine Messeinrichtung zur Bestimmung der Konzentration des mindestens einen Anästhesiemittels in der Ausatemluft des Patienten, Mittel zur Wirkungsbestimmung des mindestens einen Anästhesiemittels auf den Patienten, vorzugsweise in Form einer Narkose- oder Analgosedierungstiefe, und eine Datenverarbeitungseinrichtung, die über Schnittstellen mit der Dosiereinrichtung, der Messeinrichtung und den Mitteln zur Wirkungsbestimmung kommuniziert, die auf Basis der ermittelten Werte der Parameter Dosierungs, Konzentration und Wirkung des mindestens einen Anästhesiemittels ein für den Patienten individualisiertes pharmakologisches Modell erstellt und die unter Zugrundelegung des erstellten individualisierten pharmakologischen Modells eine individuelle, auf den Patienten optimierte Dosierung des mindestens einen Anästhesiemittels berechnet.
In verfahrensmäßiger Hinsicht wird die voranstehende Aufgabe durch die Merkmale des Patentanspruchs 15 gelöst. Hiernach umfasst das Verfahren zum Betreiben einer Vorrichtung zur Durchführung einer Anästhesie die Schritte:
Intravenöse Verabreichung einer einstellbaren Dosis mindestens eines
Anästhesiemittels an einen Patienten;
Bestimmung der Konzentration des mindestens einen Anästhesiemittels in der Ausatemluft des Patienten;
Bestimmung der Wirkung des mindestens einen Anästhesiemittels auf den Patienten, vorzugsweise in Form einer Narkosetiefe,
Erstellung eines für den Patienten individualisierten pharmakologischen Modells auf Basis der für die Parameter Dosierungs, Konzentration und Wirkung des mindestens einen Anästhesiemittels jeweils ermittelten Werte, und
Bestimmung einer individuellen, auf den Patienten optimierten Dosierung des mindestens einen Anästhesiemittels unter Zugrundelegung des erstellten individualisierten pharmakologischen Modells. In erfindungsgemäßer Weise ist zunächst erkannt worden, dass eine verbesserte Genauigkeit im Hinblick auf die Durchführung einer Anästhesie oder Analgosedierung dadurch erreicht werden kann, dass während des Eingriffs am Patienten in Echtzeit oder quasi in Echtzeit gewonnene Daten in ein pharmakologisches Modell integriert werden. Erfindungsgemäß werden hierzu eine Mess- einrichtung zur Bestimmung der Konzentration eines Anästhesiemittels in der Ausatemluft des Patienten, Mittel zur Bestimmung der Wirkung (Narkose - oder Analgosedierungstiefe) der verabreichten Anästhesiemittel sowie eine Dosiereinrichtung zur intravenösen Verabreichung eines Anästhesiemittels über eine Datenverarbeitungseinrichtung miteinander vernetzt. Die gemessenen Kon- zentrations-Werte fließen zusammen mit Informationen bezüglich der Wirkung in ein individuelles, auf den jeweiligen Patienten abgestimmtes pharmakologisches Modell ein. Bevorzugt handelt es sich bei dem pharmakologischen Modell um ein vollständiges PK/PD-Modell, welches sowohl pharmakokinetische als auch pharmakodynamische Aspekte berücksichtigt. Durch die parallel zu dem Eingriff am Patienten durchgeführte Berechnung eines solchen auf den jeweiligen Patienten individualisierten pharmakologischen Modells kann eine individuelle patientenspezifische Narkose- bzw. Analgosedierungssteuerung realisiert werden.
Im Hinblick auf eine möglichst exakte Dosierung der Anästhesiemittel ist im Rahmen einer konkreten Ausgestaltung vorgesehen, dass die Dosiereinrichtung eine computergesteuerte Spritzenpumpe umfasst. Diese ermöglicht dem Anästhesisten entsprechend dem ermittelten Bedarf eine einfache und präzise Nachdosierung des Anästhesiemittels während des Eingriffs. Die Spritzenpumpe zeichnet die dem Patienten während des Eingriffs verabreichte Dosierung des
jeweiligen Anästhesiemittels kontinuierlich auf und überträgt die Daten über eine entsprechende Schnittstelle an die Datenverarbeitungseinrichtung.
In einer bevorzugten Ausführungsform arbeitet die Messeinrichtung zur Bestimmung der Konzentration des mindestens einen Anästhesiemittels kontinuierlich, wobei der diskontinuierlich entstehende Atemgasstrom in einen kontinuierlichen Probengasfluss überführt und dieser einem Sensorsystem der Messeinrichtung zugeführt wird. Alternativ zu einer kontinuierlichen Untersuchung der Ausatemluft mit entsprechenden Konzentrationsbestimmungen, können die Messungen auch zeitlich getaktet mit kurzen Messintervallen von weniger als 60 s, idealerweise von weniger als 30 s, und vorzugweise in einem Bereich von 15-25 s, durchgeführt werden, so dass ca. alle 3-5 Atemzüge des Patienten ein aktueller Konzentrationswert, der in das PK/PD-Modell einfließen kann, zur Verfügung steht. Um die genannten kurzen Messabstände zu realisieren, ist die Messeinrichtung in vorteilhafter Weise als ein lonenmobilitätsspektrometer mit vorgeschalteter gas-chromatographischer Trennsäule, vorzugsweise einer Multikapillarsäule, ausgeführt. Durch die Trennsäule/Multikapillarsäule lässt sich eine Vorabseparation der einzelnen in dem Atemgas enthaltenen Komponenten durchführen, so dass die einzelnen Komponenten zu unterschiedlichen Zeitpunkten in die Driftröhre des lonenmobilitätsspektrometers eintreten und/oder unterschiedliche Driftzeiten/Beweglichkeiten haben. Dementsprechend ist es möglich, die Konzentration von mehreren unterschiedlichen Anästhesiemitteln unabhängig voneinander und nahezu parallel zueinander zu bestimmen. Für die Aussagekraft von in der Ausatemluft eines Patienten durchgeführten Konzentrationsmessungen ist die definierte Entnahme von Atemgasproben sowohl hinsichtlich der jeweiligen Volumina als auch hinsichtlich der jeweiligen Atemphasen von entscheidender Bedeutung. In vorteilhafter Weise ist daher das lonenmobilitätsspektrometer mit einem Volumenstromsensor (Flowsensor) und/oder mit einem C02-Sensor gekoppelt. Auf diese Weise ist es möglich, gleichbleibende Atemgasvolumina in Abhängigkeit von einem definierten CO2- Gehalt, durch den eine spezifische Atemphase (z.B. Exspiration, endtidal, etc.) definiert wird, zu entnehmen und dem Sensorsystem zuzuführen. Durch die
Festlegung des Volumens einer solchen Dosierschleife, vorzugsweise zwischen 1 ml und 50 ml, ist die Konzentration ermittelbar.
In einer bevorzugten Ausführungsform umfassen die Mittel zur Wirkungsbe- Stimmung des mindestens einen Anästhesiemittels auf den Patienten eine Einrichtung zur Ableitung eines EEG, im Folgenden als EEG-Modul bezeichnet.
In einer bevorzugten Ausführungsform werden im Hinblick auf eine weiterreichende Individualisierung zusätzlich zu den Werten der Parameter Dosierung, Konzentration und Wirkung demographische Daten des Patienten in das individualisierte PK/PD-Modell integriert. Die demographischen Daten des Patienten, insbesondere Alter, Gewicht, Größe, Geschlecht und BMI (Body-Mass- Index), können entweder manuell mit Hilfe entsprechenden Eingabemittie in die Datenverarbeitungseinrichtung eingegeben oder direkt aus einer Patientendatenbank in die Datenverarbeitungseinrichtung eingelesen werden.
Bei dem mindestens einen Anästhesiemittel, für das unter Berücksichtigung von gemessenen Konzentrationswerten in der Ausatemluft des Patienten ein individualisiertes patientenspezifisches PK/PD-Modell erstellt wird, kann es sich beispielsweise um ein Narkotikum, insbesondere um Propofol, handeln. Zusätzlich oder alternativ kann das mindestens eine Anästhesiemittel ein Analgetikum, insbesondere ein Opiod, umfassen. Auf Basis von jeweils für sich gemessenen Konzentrationswerten und deren Integration in ein PK/PD-Modell können Interaktionsmodelle zwischen bspw. Propofol und einem Opiod generiert werden. Dies ist von besonderem Vorteil, da bei der überwiegenden Mehrheit von operativen Eingriffen neben Propofol als Hypnotikum Opiode als Analgetikum eingesetzt werden. Unter Verwendung von derartigen Interaktionsmodellen kann dem Umstand Rechnung getragen werden, dass die meisten Analgetika, darunter insbesondere die meisten gängigen Opiode, neben der schmerzstillenden Wirkkomponente auch eine hypnotisierende Wirkkomponente haben. Es sei an dieser Stelle angemerkt, dass für die Erstellung der Interaktionsmodelle die Zeitintervalle für die Ermittlung der Konzentrationswerte der Narkotika und der Opiode nicht notwendigerweise identisch sein müssen, sondern durchaus voneinander abweichen können.
Darüber hinaus ist es auch möglich, dass das mindestens eine Anästhesiemittel, für das unter Berücksichtigung von gemessenen Konzentrationswerten in der Ausatemluft des Patienten ein individualisiertes patientenspezifisches PK/PD-Modell erstellt wird, ein Muskelrelaxans umfasst.
Im Rahmen einer konkreten Ausführungsform ist vorgesehen, dass die Vorrichtung im Sinne eines „Open Loop"-Systems ausgeführt ist. Dazu kann beispielsweise eine Anzeigeeinrichtung vorgesehen sein, auf der die berechnete, auf den Patienten optimierte Dosierung des bzw. der verabreichten Anästhesiemittel(s) als Empfehlung dargestellt wird. Der Anästhesist kann dann unter Berücksichtigung der insgesamt vorliegenden Narkosesituation entscheiden, ob er der Empfehlung folgt und die Dosierung entsprechend anpasst.
Alternativ kann die Vorrichtung im Sinne eines„Closed Loop"-System ausgeführt sein. In dieser Variante wird die auf Basis des erstellten individualisierten PK/PD- Modells errechnete patientenspezifisch optimierte Dosierung der Anästhesiemittel verwendet, um entsprechende Steuersignale zu generieren, welche an die Dosiereinrichtung zur automatischen Anpassung der Dosierung übermittelt werden.
In einer vorteilhaften Ausführungsform ist die Datenverarbeitungseinrichtung dazu eingerichtet, eine Korrelationsanalyse zwischen mittels des EEG-Moduls bestimmten EEG Index-Werten und der gemessenen Konzentration des mindestens einen Anästhesiemittels in der Ausatemluft des Patienten durchzuführen.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele der Erfindung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigen
Fig. 1 eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung zur Durchführung einer Anästhesie, und
Fig. 2 eine schematische Darstellung eines Verfahrens zur Erstellung eines individuellen patientenspezifischen PK/PD-Modells gemäß einem Ausführungsbeispiel der Erfindung.
Fig. 1 zeigt in einer schematischen Darstellung ein bevorzugtes Ausführungsbei- spiel einer erfindungsgemäßen Vorrichtung zur Durchführung einer Anästhesie, welches sich unmittelbar auf die Durchführung einer Analgosedierung übertragen ließe. Dargestellt sind der Patient 1 sowie die wesentlichen Komponenten der Vorrichtung. Im konkreten umfasst die dargestellte Vorrichtung eine Messeinrichtung 2 zur Bestimmung der Konzentration eines Anästhesiemittels in der Ausatemluft des Patienten 1 in Form eines lonen-Mobilitäts-Spektrometers (IMS) 3 mit Multikapillarsäule (MCC), ein EEG-Modul 8, eine Dosiereinrichtung 5 zur intravenösen Verabreichung einer einstellbaren Dosis eines Anästhesiemittels an einen Patienten in Form einer TCI-Spritzenpumpe 6 sowie eine Datenverarbeitungseinrichtung 7. Im Folgenden wird die Funktionsweise der einzelnen Module näher beschrieben, wobei beispielhaft davon ausgegangen wird, dass es sich bei dem im Rahmen der beschriebenen Anästhesie intravenös verabreichten Medikament um Propofol handelt, da Propofol das heutzutage weltweit am häufigsten für Vollnarkosen und Sedierungen verwendete Anästhetikum ist. Die nachfolgenden Ausführungen können jedoch wohlgemerkt auf andere im Rahmen einer Anästhesie verabreichte Medikamente übertragen werden. Insbesondere sind die nachfolgenden Ausführungen auf mehrere verschiedene Medikamente, die dem Patienten während des Eingriffs parallel verabreicht werden, übertragbar, wobei in derartigen Fällen Interaktionsmodelle für die einzelnen Medikamente erstellt werden können, beispielsweise zur Beschreibung der Wechselwirkung von Propofol mit einem Opiod und/oder einem muskelrelaxierenden Medikament.
Das IMS 2 misst kontinuierlich oder in regelmäßigen Abständen die aktuelle Propofol-Konzentration in der Ausatemluft des Patienten 1. Im Fall von zeitlich be-
anstandeten Messungen werden diese mit einem maximalen zeitlichen Abstand von ca. 30 s durchgeführt. Durch diese kurzen Messintervalle wird erreicht, dass die Messungen quasi Echtzeitmessungen darstellen. Die Messwerte stehen dementsprechend unmittelbar während des Eingriffs online zur Verfügung.
Zur Messung der Propofol-Konzentration ist zusätzlich zu dem IMS 2 ein nicht dargestellter Atemgassensor vorgesehen, der insbesondere als CC -Sensor oder als Flow-Sensor ausgeführt ist und die C02-Konzentration in der Exspirationsphase misst. Der Atemgassensor dient zur Steuerung der Probengasentnahme aus dem Atemgasstrom. Sobald der Atemgassensor in der Exspirationsphase eine CO2- Konzentration detektiert, die einen ersten vorgegebenen Wert überschreitet, wird die Probengasentnahme gestartet. Sobald die C02-Konzentration einen zweiten vorgegebenen Wert unterschreitet, wird die Probengasentnahme beendet. Auf diese Weise werden reproduzierbare Proben generiert, die stets aus derselben definierten Atemphase resultieren. Die so generierten Proben werden sodann dem IMS 2 zur Ermittlung der exakten Propofol-Konzentration zugeführt.
Parallel zur Messung der Propofol-Konzentration wird mittels des EEG-Moduls 4 ein EEG des Patienten 1 abgeleitet. Das EEG wird dem Anästhesisten an einem entsprechenden EEG-Monitor angezeigt. Zudem werden aus dem EEG-Monitor Index-Werte, bspw. sog. BIS-Werte (Bispectral Index Monitoring), übertragen und ebenfalls angezeigt. Diese EEG-Index-Werte sind dimensionslos und in der Regel auf einer Skala von 0 bis 100 definiert und stellen ein Maß für die Hypnosetiefe dar.
Wie in Fig. 1 dargestellt, werden die EEG-Werte, die gemessenen Propofol- Konzentrationen sowie die dem Patienten 1 verabreichte Propofol-Dosis über entsprechende Schnittstellen an eine Datenverarbeitungseinrichtung 7 übertragen. Erfindungsgemäß wird auf Basis dieser Werte ein für den Patienten 1 individualisiertes pharmakologisches Modell - PK/PD-Modell - erstellt. Unter Zugrundelegung dieses PK/PD-Modells wird sodann eine individuelle, für den jeweiligen Patienten 1 optimierte Propofol-Dosierung berechnet. Die so optimierte Propofol-Dosierung kann dem Anästhesisten dann über entsprechende Ausgabebzw. Anzeigemittel im Sinne einer Empfehlung zur Verfügung gestellt werden.
Alternativ kann eine Regelschleife realisiert werden, wobei die optimierte Propofol- Dosierung in diesem Fall unmittelbar als entsprechendes Steuersignal an die Spritzenpumpe 6 übermittelt wird. Fig. 2 illustriert schematisch die Erstellung eines individualisierten PK/PD-Modells gemäß einem Ausführungsbeispiel der Erfindung. Das dargestellte Ausführungsbeispiel basiert auf einem herkömmlichen Drei-Kompartiment-Modell. Diese Art von Modellen hat sich in der Praxis zur Beschreibung und Interpretation von innerhalb des Körpers ablaufenden pharmakokinetischen Vorgängen bislang am besten bewährt. Beim Drei-Kompartiment-Modell wird der Organismus in ein zentrales (Vzentrai) und in zwei parallele periphere (V2 und V3) Kompartimente unterteilt. Das zentrale Kompartiment Vzentrai entspricht dabei dem Blutvolumen sowie den Organen mit hohem Anteil des Herzzeitvolumens, wie insbesondere Gehirn, Herz und Lunge. Das eine der peripheren Kompartimente (V2) entspricht der Muskulatur und den übrigen Organen, während das andere der peripheren Kompartimente (V3) das Fett- und Bindegewebe beschreibt. Zusätzlich wird die Elimination des betrachteten Medikaments berücksichtigt, die im Falle von Propofol im Wesentlichen über die Leber erfolgt. Herkömmliche Drei-Kompartiment-Modelle, wie sie aus dem Stand der Technik bekannt sind und in der klinischen Praxis heutzutage angewendet werden, haben als Eingangsgrößen lediglich die demographischen Daten des Patienten, welche in der Regel das Alter, das Gewicht, die Größe, das Geschlecht sowie den BMI umfassen. Für gesunde Patienten weisen diese Modelle eine Ungenauigkeit von ca. 20 % auf. Dementsprechend ungenau ist somit auch die auf Basis der Modelle für den Invalidenpatienten berechnete Dosierung des zu verabreichenden Anästhesiemittels.
Demgegenüber wird gemäß einem Ausführungsbeispiel der vorliegenden Erfindung während der Narkose ein individuelles patientenspezifisches PK/PD- Modell berechnet, indem nicht nur die demographischen Daten des Patienten berücksichtigt werden, sondern zusätzlich in Echtzeit bzw. quasi in Echtzeit gemessene Konzentrationswerte des verabreichten Anästhesiemittels sowie zusätzlich gemessene EEG-Index-Werte in die Modellberechnung integriert
werden. Auf diese Weise kann eine individualisierte Narkose- bzw. Analgosedierungssteuerung vorgenommen werden, die sowohl eine detaillierte Aussagen über den aktuellen Stand einer Narkose oder Analgosedierung als auch Vorhersagen über deren weiteren Verlauf ermöglicht.
Im konkreten wird die Größe des zentralen Kompartiment Vzentrai nicht lediglich pauschal auf Basis der demographischen Daten des Patienten bestimmt, sondern wird aus der mittels des IMS tatsächlich gemessenen Konzentrationen des verabreichten Anästhesiemittels individuell berechnet. Dieses Ergebnis zusammen mit der verabreichten Dosierung fließt in die Berechnung des Austauschprozesses mit den peripheren Kompartimenten V2 und V3 sowie des Eliminationsprozesses ein. Die Wirkung des verabreichten Anästhesiemittels wird auf Basis der ermittelten Größe des zentralen Kompartiment Vzentrai in Kombination mit den aufgezeichneten EEG-Index-Werten modelliert. Im Rahmen einer erweiterten Ausführungsform wird zur Berechnung des individuellen patientenspezifischen PK/PD-Modells das herkömmliche Drei-Kompartiment-Modell um zusätzliche Kompartimente erweitert.
Gemäß einem Ausführungsbeispiel der Erfindung ist ein Anästhesiemonitor reali- siert, der dem Narkose führenden Anästhesisten auf Basis eines für den individuellen Patienten optimierten pharmakologischen Modells eine optimierte Narkose- bzw. Analgosedierungsführung ermöglicht. Über den Anästhesiemonitor können dem Anästhesisten sämtliche relevanten Informationen zugänglich gemacht werden. So kann beispielsweise durch die bereits beschriebene Anbindung eines EEG-Monitor-Systems zur Messung der Wirkung des verabreichten Anästhesiemittels während der Narkose die Dosis-Wirkungskurve des Patienten berechnet werden. Durch die Integration der zugeführten Menge und der demographischen Daten des Patienten kann dann auch eine Vorhersage über den weiteren Verlauf getroffen werden. Zusätzlich kann ein Vergleich mit pharmakologischen Durchschnittswerten erfolgen. Dies erlaubt eine Aussage darüber, ob der individuelle Paient eine normale, eine schnellere oder eine langsamere Verstoffwechselung (Metabolisierung) des verabreichten Anästhesiemittels, insbesondere Propofol, aufweist. Im Hinblick auf eine möglichst weitreichende Vereinfachung der Narkose- bzw. Analgosedierungsführung für den
Anästhesisten werden bevorzugt die folgenden Werte/Parameter über den Anästhesiemonitor ausgegeben:
■ Gemessene endtidale Propofol-Konzentration
■ Individuell berechnete Propofol-Blut-Konzentration
■ Individuell berechnete Propofol-Wirk-Konzentration
■ Dosis-Wirkungskurve Propofol / EEG-Index-Wert
■ Metabolisierungsrate von Propofol Um die auf tatsächlich in der Ausatemluft des Patienten gemessenen Konzentrationen basierenden PK/PD-Modelle weiter zu optimieren und deren Aussagekraft zu verbessern, können unterschiedliche Korrelationsanalysen durchgeführt werden. So könnte beispielsweise eine Korrelationsanalyse zwischen einer im Labor nachträglich gemessenen Propofol-Blut-Konzentration und der während des Eingriffs gemessenen endtidalen Propofol-Konzentration dazu beitragen, genauere Angaben hinsichtlich der tatsächlich vorliegenden Propofol- Blut-Konzentration in die Modelle einfließen zu lassen. Zu einer weiteren Verbesserung könnten zudem Korrelationsanalysen zwischen klinischen Endpunkten (z.B. Verlust des Bewusstseins) und der gemessenen endtidalen Propofol-Konzentration sowie Korrelationsanalysen zwischen EEG-Index-Werten und der gemessenen endtidalen Propofol-Konzentration beitragen.
Hinsichtlich weiterer vorteilhafter Ausgestaltungen der erfindungsgemäßen Vorrichtung wird zur Vermeidung von Wiederholungen auf den allgemeinen Teil der Beschreibung sowie auf die beigefügten Patentansprüche verwiesen.
Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend beschriebenen Ausführungsbeispiele der erfindungsgemäßen Vorrichtung lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf die Aus- führungsbeispiele einschränken.
Bezugszeichen l iste
1 Patient
2 Messeinhchtung
3 lonen-Mobilitäts-Spektrometer
4 Mittel zur Wirkungsbestimmung
5 Dosiereinrichtung
6 TCI-Spritzenpumpe
7 Datenverarbeitungseinrichtung
8 EEG-Modul