EP2824212B1 - Warmarbeitsstahl - Google Patents

Warmarbeitsstahl Download PDF

Info

Publication number
EP2824212B1
EP2824212B1 EP13176388.0A EP13176388A EP2824212B1 EP 2824212 B1 EP2824212 B1 EP 2824212B1 EP 13176388 A EP13176388 A EP 13176388A EP 2824212 B1 EP2824212 B1 EP 2824212B1
Authority
EP
European Patent Office
Prior art keywords
steel
hot
content
steel according
contents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13176388.0A
Other languages
English (en)
French (fr)
Other versions
EP2824212A1 (de
Inventor
Roman Dr. Ritzenhoff
Volkher Diehl
André Hahn
Mohammad Malekipur Gharbi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energietechnik Essen GmbH
Original Assignee
Energietechnik Essen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energietechnik Essen GmbH filed Critical Energietechnik Essen GmbH
Priority to EP13176388.0A priority Critical patent/EP2824212B1/de
Priority to PCT/EP2014/064616 priority patent/WO2015004137A1/de
Publication of EP2824212A1 publication Critical patent/EP2824212A1/de
Application granted granted Critical
Publication of EP2824212B1 publication Critical patent/EP2824212B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the invention relates to a hot-work tool steel with a nitrogen content of at least 0.1 wt .-%.
  • This electrode serves as starting material for the subsequently passed pressure remelting.
  • the self-consuming electrode is melted in a continuous process in a pressure vessel at its lower end in the direction of gravity end by resistance heating.
  • the melted, molten molten steel then drips through a slag bath, which serves as a heating conductor and as a refined reactant.
  • the slag increases the nitrogen content of the melt.
  • nitrogen-containing granules are introduced into the pressure vessel via a metering device, which drops onto the slag and melts there to release the nitrogen.
  • the atmospheric pressure in the pressure vessel is set in consideration of the temperature and the steel composition so that the nitrogen partial pressure is sufficient to introduce the desired amount of nitrogen in the molten steel.
  • a hot work tool suitable for the production of casting molds for aluminum casting is from the EP 1 696 045 A1 known.
  • the known steel contains (in% by weight) 0.1-0.35% C, less than 0.8% Si, up to 3% Mn, 2.0-7.0% Cr, W and Mo. With the proviso that the sum of the Mo content and the half W content 0.3-5%, 0.05-0.5% N, up to 0.0100% O, up to 0.05% P, up to 0.05% Al and balance iron and unavoidable impurities.
  • the sum of the N and C contents should be 0.2 - 0.6%, whereby the ratio C / N of the C content to the N content should apply at the same time: C / N ⁇ 6.
  • the known steel may have contents of V in order to increase the strength. Tantalum can also be added to the known steel in amounts of up to 1% in order to prevent coarsening of the structure during quenching, with Ta contents of at least 0.05% being considered particularly favorable for this effect.
  • the object of the invention was to provide a hot work tool steel in which there is an optimized combination of strength and toughness when used at high temperatures.
  • carbon is present in amounts of 0.38-0.45% by weight in a steel according to the invention, so that a sufficient supply of C is available in the steel for the formation of T and V carbides or carbonitrides which are also under high temperatures of for example, 600 ° C and more stable.
  • the comparatively high C contents contribute significantly to the significantly higher heat resistance of a steel according to the invention compared to the prior art.
  • Si may be present in steels of the invention in amounts of up to 0.8% by weight in order to increase the strength of the steel of the present invention.
  • Si 3 N 4 is usually used as nitrogen carrier.
  • the Si content of the steel according to the invention is limited to 0.8% by weight.
  • Mn in amounts of up to 0.5% by weight may increase the austenite stability of the steel of the invention and increase the solubility of N in the steel.
  • Cr contents of 4.0-6.0% by weight increase the strength of the steel according to the invention through the formation of Cr carbides and Cr nitrides.
  • Cr increases the through-hardenability of thick-walled workpieces, which are made of steel according to the invention, in the contents prescribed according to the invention. They are especially safe use positive effects of Cr in the steel according to the invention, if its Cr content is at least 4.5 wt .-%.
  • Co is present at levels of 0.3-0.8% by weight in the steel of the present invention to improve its ductility and heat resistance. Co contributes to increasing the mixed crystal hardness and shifting the recrystallization temperature to higher temperatures. In addition, Co increases the solubility of C and N.
  • Ni at levels of 0.8-2 wt% also increases solid solution hardness and is an important austenite stabilizer.
  • the solubility of C in austenite is increased by the presence of Ni in the amounts specified by the invention and accordingly has an advantageous effect on the adjustment of the hardness of the steel according to the invention.
  • Ni suppresses the delta-ferrite formation and improves the ductility and forgeability in the contents prescribed according to the invention. This effect is achieved when the Ni contents do not exceed 2% by weight. Higher nickel contents limit the solubility for N.
  • Optimum effects of Ni in the steel according to the invention can then be achieved if the Ni content of the steel according to the invention is reduced to max. 1.1 wt .-% is limited.
  • Mo in contents of 2.3-2.8% by weight increases the heat resistance of the steel according to the invention.
  • Mo forms carbides and carbonitrides, which on the one hand increase the hardness, on the other hand retard grain growth.
  • the wear resistance of dies made of steel according to the invention increases with increasing Mo content.
  • Ta is present in a steel of the invention at levels of 0.1-1.0 weight percent to form Ta carbides, Ta nitrides, or Ta carbonitrides, which have been found to be particularly stable even at high temperatures.
  • the carbides, carbonitrides and nitrides formed with Ta retard grain growth at high temperatures and thus increase the strength.
  • Ta increases the solubility for N in the steel.
  • the positive effects of Ta in the steel according to the invention can be used with particular reliability if the Ta content of a steel according to the invention is at least 0.4% by weight, with optimum use if the Ta contents of the steel according to the invention are not more than 0 , 8 wt .-% are limited.
  • Al may be used in the smelting of the steel of the invention for deoxidation and is then present at levels typically up to 0.025% by weight.
  • the Al content is such that the formation of Al nitrides is largely avoided. To achieve this, the Al content can be restricted to less than 0.015% by weight.
  • Ti at levels of up to 0.03 wt% also contributes to increasing the strength and forming a fine-grained texture by forming fine TiC and Ti (C, N) precipitates. Too high Ti contents should be avoided, however, to prevent the precipitation of primary nitrides out of the melt. These worsen the ductility. In order to exclude negative influences of Ti on the properties of the steel according to the invention, the Ti content can be reduced to max. 0.005 wt .-% be limited.
  • V in contents of 0.15-0.3% by weight also forms fine carbides and carbonitrides in the steel according to the invention and thus increases the strength and fine-grainedness of a steel according to the invention.
  • the temperature-stable carbides, nitrides and carbonitrides formed with V shift recrystallization to higher temperatures and retard grain growth.
  • N from 0.1 to 0.5 wt .-% form the basis for the formation of Ta nitrides, which have proven to be particularly stable to temperature and as such contribute significantly to the high heat resistance, the one has steel according to the invention.
  • Nitrogen increases in the inventively predetermined levels in the steel according to the invention, the recrystallization temperature and retards the dynamic recrystallization, which is noticeable by a better heat resistance.
  • N forms nitrides and carbonitrides, which also increase strength and grain refining.
  • the precipitated carbides are distributed much finely dispersed. As a result, lower segregations occur, resulting in homogeneous material properties and better toughness.
  • Especially safe can be the positive Use influences of N in a steel according to the invention, if its N content is at least 0.28 wt .-%, resulting in an optimum relation of manufacturing costs and benefits, if in a hot work tool according to the invention the N content not more than 0.4 wt. -% is.
  • the intended for a steel according to the invention high N contents can be produced in a manner known per se process stable by pressure-electric-slag remelting.
  • a hot work tool steel assembled in accordance with the invention has superior mechanical properties even at high operating temperatures.
  • a steel according to the invention has a compressive strength ⁇ of at least 1,600 MPa at 600 ° C., values of up to 2,000 MPa being proven in practical tests.
  • a first of these samples was heated from room temperature to 810 ° C. in a soft annealing test at a heating rate of 30 ° C./h and kept at this temperature for 640 minutes. Thereafter, the sample was first cooled in the oven to 300 ° C and then stored in still air.
  • the measurement of Brinell hardness HBW 10/3000 according to DIN EN ISO 65061 showed a hardness value of 215 for the three spatial directions related to a Cartesian coordinate system.
  • Heat treatment tests were carried out with further samples P1 - P5 to determine the hardness or tempering curve of the steel and to determine the heat distortion behavior.
  • a first sample P1 has been left in the initial state.
  • a sample P2 was first kept at 1000 ° C for 30 minutes and then cooled in oil. Thereafter, the sample was held twice in a row for two hours in an oven at 600 ° C and cooled in the oven to room temperature.
  • the hardness test carried out at room temperature in accordance with DIN EN ISO 65061 showed a Brinell hardness HBW 10/3000 of 44.5 in each of the three spatial directions for sample P2.
  • a sample P3 was first kept at 1020 ° C for 30 minutes and then cooled in oil. Thereafter, the sample P3 twice in a row over two hours in an oven was kept at 600 ° C and cooled in the oven to room temperature.
  • the hardness test carried out at room temperature in accordance with DIN EN ISO 65061 gave a Brinell hardness HBW 10/3000 of 42.5, 43 and 42.5 for the sample P3 for the three spatial directions.
  • a sample P4 was first kept at 1020 ° C. for 30 minutes and then cooled at a cooling rate of 80 ° C./h. Thereafter, the samples were also twice in a row for two hours in an oven kept at 600 ° C and cooled in the oven to room temperature.
  • the hardness test carried out at room temperature in accordance with DIN EN ISO 65061 showed a Brinell hardness HBW 10/3000 of 44.5, 43.5 and 44.5 in the three spatial directions for sample P4.
  • the cracking hardness of the examined samples was 56 HRC.
  • the untreated sample P1 and the heat-treated samples P2-P5 were each subjected to a hot compression test in which they were loaded at 600 ° C for a period of 30 minutes up to a maximum pressing force of 370 kN.
  • the results of the hot upsetting tests are summarized in the attached diagram.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

  • Die Erfindung betrifft einen Warmarbeitsstahl mit einem Stickstoff-Gehalt von mindestens 0,1 Gew.-%.
  • Während Stickstoff in niedriglegierten Stählen aufgrund der Bildung von versprödenden Nitriden unerwünscht ist, hat die Anwesenheit von Stickstoff in hochlegierten Stählen eine Reihe von Vorteilen. So lässt sich durch höhere N-Gehalte die Festigkeit erhöhen, ohne dass dadurch die Zähigkeit des jeweiligen Stahls eingeschränkt wird. Auch kann durch hohe N-Gehalte die Korrosionsbeständigkeit des Stahls verbessert werden. Darüber hinaus tragen hohe N-Gehalte zur Erhöhung der Warmfestigkeit bei. Des Weiteren wird bei austenitischen Stählen durch die Anwesenheit hoher N-Gehalte der Temperaturbereich, in dem im Stahl austenitisches Gefüge vorliegt, stabilisiert oder erweitert. Bei Stählen, die hohe Kaltverformungen durchlaufen, kann durch hohe N-Gehalte die Bildung von spannungsinduziertem Martensit vermieden werden. Zudem hemmen hohe N-Gehalte die Ausscheidung von intermetallischen Phasen. Schließlich weisen Mn-Austenitstähle mit hohen N-Gehalten gegenüber konventionellen Cr-Ni-Austenitstählen eine deutlich erhöhte Warmfestigkeit auf.
  • Um Stähle mit hohen N-Gehalten zu erzeugen, müssen diese Stähle spezielle Herstellverfahren durchlaufen, da sich Stickstoff in höheren Gehalten nicht auf konventionellem schmelzmetallurgischem Wege zu Stählen der hier in Rede stehenden Art zulegieren lässt.
  • Eine wichtige Rolle bei der Erzeugung hochstickstoffhaltiger Legierungen spielen Umschmelzverfahren, insbesondere der Druck-Elektro-Schlacke-Umschmelz-Prozess ("DESU-Prozess"). Bei diesem Verfahren wird in einem ersten Schritt mit den üblichen Mitteln der Schmelzmetallurgie, z. B. unter Einsatz der Pfannenmetallurgie unter Normaldruck, eine Schmelze erzeugt, die bis auf den geforderten N-Gehalt die jeweils vorgesehenen Legierungsbestandteile in den vorgegebenen Gehalten aufweist. Diese Schmelze wird zu einer zylindrischen Elektrode vergossen.
  • Diese Elektrode dient als Ausgangsmaterial für das anschließend durchlaufene Druckumschmelzen. Bei diesem Prozess wird in einem kontinuierlichen Ablauf die selbstverzehrende Elektrode in einem Druckkessel an ihrer in Schwerkraftrichtung unteren Stirnseite durch Widerstandserwärmung aufgeschmolzen. Die abgeschmolzene, schmelzflüssige Stahlschmelze tropft dann durch ein Schlackenbad, das als Heizleiter und als raffinierender Reaktionspartner dient. Gleichzeitig erfolgt über die Schlacke die Erhöhung des Stickstoffgehalts der Schmelze. Dazu wird über eine Dosiereinrichtung stickstoffhaltiges Granulat in den Druckkessel gegeben, das auf die Schlacke fällt und dort unter Freisetzung des Stickstoffs aufschmilzt. Alternativ ist es auch möglich, gasförmigen Stickstoff in den Druckkessel zu leiten, um die gewünschte Aufstickung des Stahls zu erzielen. Der Atmosphärendruck in dem Druckkessel wird dazu unter Berücksichtigung der Temperatur und der Stahlzusammensetzung so eingestellt, dass der Stickstoffpartialdruck ausreicht, um die gewünschte Stickstoffmenge in die Stahlschmelze einzubringen.
  • Die physikalischen Grundlagen des Aufstickens lassen sich dabei über das Sievert'sche Quadratwurzelgesetz beschreiben, gemäß dem die theoretisch erzielbare Stickstofflöslichkeit [%N] eine Funktion von Druck und Temperatur ist: % N = k p N 2
    Figure imgb0001
  • In Gleichung (1) ist mit "pN2 " der Stickstoffpartialdruck über der Schmelze in bar und mit "k" eine temperatur- und legierungsabhängige Materialkonstante bezeichnet.
  • In realen Systemen beeinflussen die jeweils anwesenden Legierungselemente die tatsächliche Stickstofflöslichkeit. Um diesen Effekt zu beschreiben, bedient man sich ihrer thermodynamischen Aktivitäten: % N F e - X = % N F e f N X p N 2
    Figure imgb0002
    wobei hier mit "pN2 " wiederum der Stickstoffpartialdruck über der Schmelze in bar, mit "[%N]Fe-x" die Stickstofflöslichkeit in eisenbasierten Mehrstoffsystemen und mit "[%N]Fe" die Gleichgewichtskonstante in reinem Fe bei 1.600°C und 1 bar bezeichnet sind ([%N]Fe = 0,044 %).
  • Der Aktivitätskoeffizient ʺ f N X ʺ
    Figure imgb0003
    lässt sich dabei gemäß Gleichung (3) wie folgt berechnen: log f N X = e N X % X
    Figure imgb0004
    wobei hier mit ʺ e N X ʺ
    Figure imgb0005
    der Wechselwirkungskoeffizient und mit "[%X]" die Konzentration des jeweiligen Elements in Gew.-% angegeben ist.
  • Es ist ersichtlich, dass abhängig vom jeweiligen Wechselwirkungskoeffizienten bestimmte Elemente die Stickstofflöslichkeit erhöhen (z. B. Mangan), während andere Elemente (z. B. Silizium) die Stickstofflöslichkeit senken. Diese Einflüsse wirken sich zum einen auf die Aufstickung während des Umschmelzens und zum anderen bei der Ausscheidung etwaiger intermetallischer Phasen im Festen aus (U. Kamachi Mudali, Baldev Raj; "High Nitrogen Steels and Stainless Steels. Manufacturing, Properties and Applications."; ASM International, Narosa Publishing House, New Delhi, Chennai, Mumbai, Kolkata, 2004, New Delhi, India.; Anne Satir-Kolorz, Heinrich Feichtinger, Markus Speidel: "Literaturstudie und theoretische Betrachtungen zum Lösungsverhalten von Stickstoff in Eisen-, Stahl- und Stahlgussschmelzen", Gießereiforschung 42, 1990, Nr. 1, S. 36 - 49).
  • Ein speziell für die Herstellung von Gießformen für den Aluminiumguss geeigneter Warmarbeitsstahl ist aus der EP 1 696 045 A1 bekannt. Der bekannte Stahl enthält (in Gew.-%) 0,1 - 0,35 % C, weniger als 0,8 % Si, bis zu 3 % Mn, 2,0 - 7,0 % Cr, W- und Mo-Gehalte mit der Maßgabe, dass die Summe aus dem Mo-Gehalt und dem halben W-Gehalt 0,3 - 5 % beträgt, 0,05 - 0,5 % N, bis zu 0,0100 % O, bis zu 0,05 % P, bis zu 0,05 % Al und als Rest Eisen und unvermeidbare Verunreinigungen. Dabei soll die Summe der N- und C-Gehalte 0,2 - 0,6 % betragen, wobei gleichzeitig für das Verhältnis C/N des C-Gehalts zum N-Gehalt gelten soll: C/N ≤ 6. Durch die Beschränkung des C-Gehalts soll die Bildung eines intermetallischen Verbunds an den mit der Al-Schmelze in Kontakt kommenden Flächen einer aus dem bekannten Stahl geformten Gießform vermieden werden. Darüber hinaus soll durch Einstellung eines niedrigen C-Gehalts die Bildung von groben Karbiden unterdrückt werden. Neben den genannten Legierungselementen kann der bekannte Stahl Gehalte an V aufweisen, um die Festigkeit zu erhöhen. Auch kann dem bekannten Stahl Tantal in Gehalten von bis zu 1 % zugegeben werden, um einer Vergröberung des Gefüges beim Abschrecken vorzubeugen, wobei für diesen Effekt Ta-Gehalte von mindestens 0,05 % als besonders günstig angesehen werden.
  • Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, einen Warmarbeitsstahl zu schaffen, bei dem eine optimierte Kombination aus Festigkeit und Zähigkeit beim Einsatz bei hohen Temperaturen gegeben ist.
  • Diese Aufgabe ist erfindungsgemäß durch einen Stahl mit der in Anspruch 1 angegebenen Zusammensetzung gelöst worden.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert. Der Erfindung liegt die Erkenntnis zu Grunde, dass bei ausreichend hohen C- und N-Gehalten die erfindungsgemäß gleichfalls als Pflichtbestandteile in ausreichenden Mengen zugegebenen Legierungselemente Ta und V thermisch stabile Nitride, Carbide oder Carbonitride bilden, die einen entscheidenden Beitrag zur Festigkeit des erfindungsgemäßen Stahls auch unter hohen Einsatztemperaturen leisten.
  • Um diesen Effekt zu nutzen, hat ein erfindungsgemäßer Warmarbeitsstahl folgende Zusammensetzung (in Gew.-%):
    • C: 0,38 - 0,45 %,
    • Si: bis zu 0,8 %,
    • Mn: bis zu 0,5 %,
    • Cr: 4,0 - 6,0 %,
    • Co: 0,3 - 0,8 %,
    • Ni: 0,8 - 1,1 %,
    • Mo: 2,3 - 2,8 %,
    • Ta: 0,1 - 1,0 %,
    • Al: bis zu 0,025 %,
    • Ti: bis zu 0,03 %,
    • V: 0,15 - 0,3 %,
    • N: 0,1 - 0,5 %,
    • Rest Fe und herstellungsbedingt unvermeidbare Verunreinigungen.
  • Wie bereits erwähnt, ist Kohlenstoff ist in Gehalten von 0,38 - 0,45 Gew.-% in einem erfindungsgemäßen Stahl enthalten, damit im Stahl ein ausreichendes Angebot an C zur Bildung von Ta- und V-Carbiden oder -Carbonitriden zur Verfügung steht, die auch unter hohen Temperaturen von beispielsweise 600 °C und mehr stabil bleiben. Die gegenüber reinen Karbiden temperaturstabileren Karbonitride verzögern die Kornvergröberung und verschieben sie zu höheren Temperaturen. Auf diese Weise tragen die vergleichbar hohen C-Gehalte wesentlich zu der gegenüber dem Stand der Technik deutlich erhöhten Warmfestigkeit eines erfindungsgemäßen Stahls bei Besonders sicher lassen sich diese Effekte erzielen, wenn bis zu 0,43 Gew.-% C im erfindungsgemäßen Stahl vorhanden sind.
  • Si kann in erfindungsgemäßem Stahl in Gehalten von bis zu 0,8 Gew.-% vorhanden sein, um die Festigkeit des erfindungsgemäßen Stahls zu erhöhen. Zum Eintrag von Si in den erfindungsgemäßen Stahl kommt es im Zuge der Erhöhung des N-Gehalts auf die vorgegebenen Gehalte, weil hierzu üblicherweise Si3N4 als Stickstoffträger zum Einsatz kommt. Um die Gefahr einer Anlassversprödung zu vermeiden, ist der Si-Gehalt des erfindunsgemäßen Stahls auf 0,8 Gew.-% begrenzt.
  • Mn in Gehalten von bis zu 0,5 Gew.-% kann die Austenitstabilität des erfindungsgemäßen Stahls erhöhen und die Löslichkeit von N im Stahl erhöhen.
  • Cr-Gehalte von 4,0 - 6,0 Gew.-% erhöhen die Festigkeit des erfindungsgemäßen Stahls durch die Bildung von Cr-Karbiden und Cr-Nitriden. Zudem erhöht Cr in den erfindungsgemäß vorgegebenen Gehalten die Durchhärtbarkeit von dickwandigen Werkstücken, die aus erfindungsgemäßem Stahl hergestellt sind. Besonders sicher lassen sich diese positiven Effekte von Cr im erfindungsgemäßen Stahl nutzen, wenn sein Cr-Gehalt mindestens 4,5 Gew.-% beträgt.
  • Co ist in Gehalten von 0,3 - 0,8 Gew.-% im erfindungsgemäßen Stahl vorhanden, um seine Duktilität und Warmfestigkeit zu verbessern. Co trägt dabei zur Steigerung der Mischkristallhärte und Verschiebung der Rekristallisationstemperatur zu höheren Temperaturen bei. Zudem erhöht Co die Löslichkeit von C und N.
  • Ni in Gehalten von 0,8 - 2 Gew.-% erhöht ebenfalls die Mischkristallhärte und ist ein wichtiger Austenitstabilisator. Gleichzeitig wird durch die Anwesenheit von Ni in den erfindungsgemäß vorgegebenen Gehalten die Löslichkeit für C im Austenit erhöht und wirkt sich dementsprechend vorteilhaft auf die Einstellung der Härte des erfindungsgemäßen Stahls aus. Dabei unterdrückt Ni die Deltaferritbildung und verbessert in den erfindungsgemäß vorgegebenen Gehalten die Duktilität und Schmiedbarkeit. Dieser Effekt wird erzielt, wenn die Ni-Gehalte 2 Gew.-% nicht überschreiten. Höhere Nickelgehalte schränken die Löslichkeit für N ein. Optimale Wirkungen von Ni im erfindungsgemäßen Stahl lassen sich dann erzielen, wenn der Ni-Gehalt des erfindungsgemäßen Stahls auf max. 1,1 Gew.-% beschränkt ist.
  • Mo in Gehalten von 2,3 - 2,8 Gew.-% steigert die Warmfestigkeit des erfindungsgemäßen Stahls. Mo bildet Carbide und Carbonitride, welche einerseits die Härte steigern, andererseits das Kornwachstum verzögern. Der Verschleißwiderstand von aus erfindungsgemäßem Stahl hergestellten Gesenken nimmt mit steigendem Mo-Gehalt zu.
  • Ein übermäßig hoher Mo-Gehalt führt jedoch zur Langzeitversprödung durch Ausscheidung von intermetallischen Laves- und Sigma-Phasen. Zudem steigt mit zu hohen Mo-Gehalten die Warmfestigkeit derart an, dass eine Formgebung erschwert wird.
  • Ta ist in einem erfindungsgemäßen Stahl in Gehalten von 0,1 - 1,0 Gew.-% vorhanden, um Ta-Karbide, Ta-Nitride oder Ta-Carbonitride zu bilden, die sich als besonders stabil auch bei hohen Temperaturen erwiesen haben. Die mit Ta gebildeten Carbide, Carbonitride und Nitride verzögern das Kornwachstum bei hohen Temperaturen und erhöhen damit die Festigkeit. Zudem erhöht Ta die Löslichkeit für N im Stahl. Besonders sicher können die positiven Einflüsse von Ta im erfindungsgemäßen Stahl genutzt werden, wenn der Ta-Gehalt eines erfindungsgemäßen Stahl mindestens 0,4 Gew.-% beträgt, wobei sich ein optimaler Nutzen einstellt, wenn die Ta-Gehalte des erfindungsgemäßen Stahls auf höchstens 0,8 Gew.-% beschränkt sind.
  • Al kann bei der Erschmelzung des erfindungsgemäßen Stahls zur Desoxidation eingesetzt werden und ist dann in Gehalten von typischerweise bis zu 0,025 Gew.-% vorhanden. Der Al-Gehalt ist dabei so bemessen, dass die Bildung von Al-Nitriden weitestgehend vermieden ist. Um dies besonders sicher zu erreichen, kann der Al-Gehalt auf weniger als 0,015 Gew.-% beschränkt werden.
  • Ti in Gehalten von bis zu 0,03 Gew.-% trägt ebenfalls durch die Bildung von feinen TiC- und Ti(C,N)-Ausscheidungen zur Steigerung der Festigkeit und zur Entstehung eines feinkörnigen Gefüges bei. Zu hohe Ti-Gehalte sind jedoch zu vermeiden, um die Ausscheidung von Primärnitriden aus der Schmelze heraus zu verhindern. Diese verschlechtern die Duktilität. Um negative Einflüsse von Ti auf die Eigenschaften des erfindungsgemäßen Stahls auszuschließen, kann der Ti-Gehalt auf max. 0,005 Gew.-% beschränkt werden.
  • V in Gehalten von 0,15 - 0,3 Gew.-% bildet im erfindungsgemäßen Stahl ebenfalls feine Carbide und Carbonitride und steigert auf diese Weise die Festigkeit und Feinkörnigkeit eines erfindungsgemäßen Stahls. Die mit V gebildeten temperaturstabilen Carbide, Nitride und Carbonitride verschieben die Rekristallisation zu höheren Temperaturen und verzögern das Kornwachstum.
  • Die im erfindungsgemäßen Stahl vorgesehenen hohen Gehalte an N von 0,1 - 0,5 Gew.-% bilden die Voraussetzung für die Entstehung von Ta-Nitriden, die sich als besonders temperaturstabil erwiesen haben und als solche entscheidend zur hohen Warmfestigkeit beitragen, die ein erfindungsgemäßer Stahl besitzt. Stickstoff erhöht in den erfindungsgemäß vorgegebenen Gehalten im erfindungsgemäßen Stahl die Rekristallisationstemperatur und verzögert die dynamische Rekristallisation, was sich durch eine bessere Warmfestigkeit bemerkbar macht. Des Weiteren bildet N Nitride und Carbonitride, die ebenfalls festigkeitssteigernd und kornfeinend wirken. Darüber hinaus werden bei Anwesenheit von Stickstoff die ausgeschiedenen Karbide deutlich feindisperser verteilt. Demzufolge stellen sich geringere Seigerungen ein, was in homogenen Werkstoffeigenschaften und besseren Zähigkeiten resultiert. Besonders sicher lassen sich die positiven Einflüsse von N in einem erfindungsgemäßen Stahl nutzen, wenn sein N-Gehalt mindestens 0,28 Gew.-% beträgt, wobei sich eine optimale Relation aus Herstellaufwand und Nutzen ergibt, wenn bei einem erfindungsgemäßen Warmarbeitsstahl der N-Gehalt höchstens 0,4 Gew.-% beträgt.
  • Die für einen erfindungsgemäßen Stahl vorgesehenen hohen N-Gehalte lassen sich in an sich bekannter Weise prozessstabil durch Druck-Elektro-Schlacke-Umschmelzen erzeugen.
  • Praktische und theoretische Untersuchungen haben ergeben, dass ein in erfindungsgemäßer Weise zusammengesetzter Warmarbeitsstahl auch bei hohen Einsatztemperaturen überlegene mechanische Eigenschaften besitzt. So weist ein erfindungsgemäßer Stahl bei 600 °C eine Druckfestigkeit σ von mindestens 1600 MPa auf, wobei in Praxisversuchen Werte von bis zu 2000 MPa nachgewiesen wurden.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • Im beigefügten Diagramm ist als Ergebnis eines Warmstauchversuchs die jeweilige Stauchkraft über den Weg aufgetragen, über den die jeweilige Probe im Zuge des Versuchs bis zum Erreichen der maximalen Presskraft zusammengepresst worden ist.
  • Es wurde ein Stahl erschmolzen und zu einer zylindrischen Elektrode vergossen, die anschließend einen DESU-Prozess durchlaufen hat. Im Zuge des Umschmelzens in der DESU-Anlage ist der N-Gehalt des Stahls erhöht worden, so dass der Stahl, aus dem der als Ergebnis des DESU-Prozesses erhaltene Stahlblock bestand, neben Fe und unvermeidbaren Verunreinigungen die in Tabelle 1 angegebenen Legierungsgehalte aufwies. Tabelle 1
    C Cr Co Ni Mo Ta V N
    0,40 5,00 0,50 1,00 2,50 0,60 0,20 0,30
    Angaben in Gew.-%
  • Aus dem nach dem DESU-Prozess erhaltenen Block sind Stabproben mit einem Durchmesser von jeweils 8 mm entnommen worden.
  • Eine erste dieser Proben ist in einem Weichglühversuch mit einer Aufheizrate von 30 °C/h von Raumtemperatur auf 810 °C erwärmt und auf dieser Temperatur für 640 Minuten gehalten worden. Daraufhin ist die Probe im Ofen zunächst bis auf 300 °C abgekühlt und anschließend an ruhender Luft abgelegt worden. Die gemäß DIN EN ISO 65061 durchgeführte Messung der Brinellhärte HBW 10/3000 ergab für die auf ein kartesisches Koordinatensystem bezogenen drei Raumrichtungen einen Härtewert von jeweils 215.
  • Mit weiteren Proben P1 - P5 sind zur Bestimmung der Härte bzw. Anlasskurve des Stahls und zur Bestimmung des Warmstauchverhaltens Wärmebehandlungsversuche durchgeführt worden.
  • Eine erste Probe P1 ist dabei im Ausgangszustand belassen worden.
  • In einem ersten Wärmebehandlungsversuch ist eine Probe P2 zunächst über 30 Minuten bei 1000 °C gehalten und anschließend in Öl abgekühlt worden. Daraufhin ist die Probe zweimal hintereinander über jeweils zwei Stunden in einem Ofen auf 600 °C gehalten und in dem Ofen auf Raumtemperatur abgekühlt worden. Die gemäß DIN EN ISO 65061 bei Raumtemperatur durchgeführte Härteprüfung ergab für die Probe P2 in den drei Raumrichtungen eine Brinellhärte HBW 10/3000 von jeweils 44,5.
  • In einem zweiten Wärmebehandlungsversuch ist eine Probe P3 zunächst über 30 Minuten bei 1020 °C gehalten und anschließend in Öl abgekühlt worden. Daraufhin ist auch die Probe P3 zweimal hintereinander über jeweils zwei Stunden in einem Ofen auf 600 °C gehalten und in dem Ofen auf Raumtemperatur abgekühlt worden. Die gemäß DIN EN ISO 65061 bei Raumtemperatur durchgeführte Härteprüfung ergab für die Probe P3 für die drei Raumrichtungen eine Brinellhärte HBW 10/3000 von 42,5, 43 und 42,5.
  • In einem dritten Wärmebehandlungsversuch ist eine Probe P4 zunächst über 30 Minuten bei 1020 °C gehalten und anschließend mit einer Abkühlrate von 80°C/h abgekühlt worden. Daraufhin sind die Proben ebenfalls zweimal hintereinander über jeweils zwei Stunden in einem Ofen auf 600 °C gehalten und in dem Ofen auf Raumtemperatur abgekühlt worden. Die gemäß DIN EN ISO 65061 bei Raumtemperatur durchgeführte Härteprüfung ergab für die Probe P4 in den drei Raumrichtungen eine Brinellhärte HBW 10/3000 von 44,5, 43,5 und 44,5.
  • Die bei Raumtemperatur ermittelte Ansprunghärte der untersuchten Proben lag bei 56 HRC.
  • Zur Bestimmung der Warmfestigkeit des Stahls ist eine weitere Probe P5 zweimal aufeinander folgend über 240 Minuten bei 800 °C in einem Ofen gehalten worden und anschließend im Ofen auf 300 °C abgekühlt worden. Anschließend ist sie an Luft abgelegt und auf Raumtemperatur abgekühlt worden.
  • Die unbehandelte Probe P1 und die wärmebehandelten Proben P2 - P5 sind jeweils einem Warmstauchversuch unterzogen worden, bei dem sie bei 600 °C über eine Dauer von 30 Minuten bis zu einer maximalen Presskraft von 370 kN belastet worden sind. Die Ergebnisse der Warmstauchversuche sind im beigefügten Diagramm zusammengefasst.
  • Es zeigte sich, dass die Proben jeweils bei einer Last von ca. 100 kN zu fließen begannen. Die unbehandelte Probe P1 und die wärmebehandelte, jeweils langsam abgekühlte Probe P5 blieben bis zum Erreichen der maximalen Presskraft ohne Riss. Gleichzeitig ließ sich die Probe P5 maximal verformen. Dagegen wiesen bei Erreichen der maximalen Presskraft die Proben P2 und P4 Längsrisse und die Probe P3 Längs- und Querrisse auf, wobei die maximale Verformbarkeit der Proben P2 - P4 etwa gleich war.
  • Auf Grundlage der Ergebnisse der Warmpressversuche konnte die theoretisch erreichbare Druckfestigkeit σ (Streckgrenze) des Stahls mit der in Tabelle 1 angegebenen Zusammensetzung wie folgt ermittelt werden:
    • Durchmesser d der Proben: 8 mm
    • Presskraft F bis Fließen: 100 kN
    • Querschnittsfläche A der Proben: π/4*d2 = 50,3 mm2 Druckfestigkeit σ = F/A = 100 * 103/50,3 MPa = 1988 MPa.

Claims (11)

  1. Warmarbeitsstahl, mit folgender Zusammensetzung (in Gew.-%):
    C: 0,38 - 0,45 %,
    Si: bis zu 0,8 %,
    Mn: bis zu 0,5 %,
    Cr: 4,0 - 6,0 %,
    Co: 0,3 - 0,8 %,
    Ni: 0,8 - 2 %,
    Mo: 2,3 - 2,8 %,
    Ta: 0,1 - 1,0 %,
    Al: bis zu 0,025 %,
    Ti: bis zu 0,03 %,
    V: 0,15 - 0,3 %,
    N: 0,1 - 0,5 %,
    Rest Fe und herstellungsbedingt unvermeidbare Verunreinigungen.
  2. Warmarbeitsstahl nach Anspruch 1, dadurch gekennzeichnet, dass sein C-Gehalt höchstens 0,43 Gew.-% beträgt.
  3. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Cr-Gehalt mindestens 4,5 Gew.-% beträgt.
  4. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Ni-Gehalt höchstens 1,1 Gew.-% beträgt.
  5. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Ta-Gehalt mindestens 0,4 Gew.-% beträgt.
  6. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Ta-Gehalt höchstens 0,8 Gew.-% beträgt.
  7. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein Ti-Gehalt höchstens 0,005 Gew.-% beträgt.
  8. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein N-Gehalt mindestens 0,28 Gew.-% beträgt.
  9. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass sein N-Gehalt höchstens 0,4 Gew.-% beträgt.
  10. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass er durch Druck-Elektro-Schlacke-Umschmelzen hergestellt ist.
  11. Warmarbeitsstahl nach einem der voranstehenden Ansprüche, dadurch
    gekennzeichnet, dass seine Druckfestigkeit σ bei 600 °C mindestens 1600 MPa beträgt.
EP13176388.0A 2013-07-12 2013-07-12 Warmarbeitsstahl Not-in-force EP2824212B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13176388.0A EP2824212B1 (de) 2013-07-12 2013-07-12 Warmarbeitsstahl
PCT/EP2014/064616 WO2015004137A1 (de) 2013-07-12 2014-07-08 Warmarbeitsstahl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13176388.0A EP2824212B1 (de) 2013-07-12 2013-07-12 Warmarbeitsstahl

Publications (2)

Publication Number Publication Date
EP2824212A1 EP2824212A1 (de) 2015-01-14
EP2824212B1 true EP2824212B1 (de) 2015-12-09

Family

ID=48783075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13176388.0A Not-in-force EP2824212B1 (de) 2013-07-12 2013-07-12 Warmarbeitsstahl

Country Status (2)

Country Link
EP (1) EP2824212B1 (de)
WO (1) WO2015004137A1 (de)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1073520B (de) * 1960-01-21 Firth-Vickers Stainless Steels Limited, Sheffield, Yorkshire (Großbritannien) Die Verwendung eines schmiedbaren ferritischen Stahles
JPS546807A (en) * 1977-06-20 1979-01-19 Hitachi Metals Ltd Hot tool steel for dicast mold
JP2004019001A (ja) * 2002-06-20 2004-01-22 Daido Steel Co Ltd 耐溶損性に優れた熱間工具鋼及び金型部材
AU2003292572A1 (en) 2003-12-19 2005-07-14 Daido Steel Co., Ltd Hot work tool steel and mold member excellent in resistance to melting

Also Published As

Publication number Publication date
WO2015004137A1 (de) 2015-01-15
EP2824212A1 (de) 2015-01-14

Similar Documents

Publication Publication Date Title
EP2446064B1 (de) Verfahren zum herstellen eines warmpressgehärteten bauteils und verwendung eines stahlprodukts für die herstellung eines warmpressgehärteten bauteils
EP3728675B1 (de) Verfahren zum additiven fertigen eines gegenstandes aus einem maraging-stahlpulver
DE602004000140T2 (de) Rostfreier austenitischer Stahl
DE69226946T2 (de) Austenitischer manganstahlblech mit hoher verformbarkeit, festichkeit und schweissbarkeit und verfahren
DE69706224T2 (de) Wärmebeständiger Stahl und Dampfturbinenrotor
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
DE60010997T2 (de) Wärmebeständiges Chrom-Molybdän Stahl
EP3535431B1 (de) Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
DE69811200T2 (de) Einsatzstahl mit hervorragender verhinderung der sekundärrekristallisation während der aufkohlung, verfahren zu dessen herstellung, halbzeug für aufzukohlende teile
DE19941411B4 (de) Turbinen- oder Kesselbauteil
DE102010026808B4 (de) Korrosionsbeständiger austenithaltiger phosphorlegierter Stahlguss mit TRIP- bzw. TWIP-Eigenschaften und seine Verwendung
EP2935635B1 (de) Verfahren zum wärmebehandeln eines mangan-stahlprodukts und mangan-stahlprodukt
DE69508876T2 (de) Temperaturbeständiger ferritischer Stahl mit hohem Chromgehalt
DE2703756A1 (de) Austenitischer nichtrostender stahl mit hohem mo-gehalt
EP1538232A1 (de) Korrosionsbeständige, austenitische Stahlregierung
DE69414529T2 (de) Superlegierung auf Fe-Basis
DE1301586B (de) Austenitische ausscheidungshaertbare Stahllegierung und Verfahren zu ihrer Waermebehandlung
EP1300482B1 (de) Warmarbeitsstahlgegenstand
DE1558668B2 (de) Verwendung von kriechfesten, nichtrostenden austenitischen Stählen zur Herstellung von Blechen
DE69601340T2 (de) Hochfester, hochzaher warmebestandiger stahl und verfahren zu seiner herstellung
DE69802837T2 (de) Rostfreies stahl ohne nickel für biologisch-medizinische verwendungen
DE60310316T2 (de) Gegen Schwefelsäure und Nassverfahrensphosphorsäure resistente Ni-Cr-Mo-Cu-Legierungen
DE2253148B2 (de) Verfahren zur Herstellung eines ferritischen, korrosionsbeständigen Stahls und dessen Verwendung
WO2020064127A1 (de) Formgedächtnislegierung, daraus hergestelltes stahlflachprodukt mit pseudoelastischen eigenschaften und verfahren zur herstellung eines solchen stahlflachprodukts
WO2016020519A1 (de) Hochfeste und gleichzeitig zähe halbzeuge und bauteile aus hochlegiertem stahl, verfahren zu deren herstellung und verwendung

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20131126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20150304

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151006

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DIEHL, VOLKHER

Inventor name: HAHN, ANDRE

Inventor name: MALEKIPUR GHARBI, MOHAMMAD

Inventor name: DR. RITZENHOFF, ROMAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 764609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001594

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160309

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160411

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001594

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

26N No opposition filed

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180723

Year of fee payment: 6

Ref country code: FR

Payment date: 20180723

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180723

Year of fee payment: 6

Ref country code: GB

Payment date: 20180723

Year of fee payment: 6

Ref country code: AT

Payment date: 20180724

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013001594

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 764609

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190712

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190713

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731