EP2816656A1 - Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci - Google Patents

Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci Download PDF

Info

Publication number
EP2816656A1
EP2816656A1 EP14751800.5A EP14751800A EP2816656A1 EP 2816656 A1 EP2816656 A1 EP 2816656A1 EP 14751800 A EP14751800 A EP 14751800A EP 2816656 A1 EP2816656 A1 EP 2816656A1
Authority
EP
European Patent Office
Prior art keywords
separator
electrode
radical
unit
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14751800.5A
Other languages
German (de)
English (en)
Other versions
EP2816656A4 (fr
EP2816656B1 (fr
Inventor
Ji Won Park
Myung Hoon KO
Seung Ho Na
Chang Bum Ahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of EP2816656A1 publication Critical patent/EP2816656A1/fr
Publication of EP2816656A4 publication Critical patent/EP2816656A4/fr
Application granted granted Critical
Publication of EP2816656B1 publication Critical patent/EP2816656B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0468Compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly having a novel structure that is distinguished from a stack-type or a stack/folding type structure and a polymer secondary battery cell including the same, and more particularly, to an electrode assembly having an optimized size and using minimum separators and a polymer secondary battery cell including the same.
  • Secondary batteries may be classified into various types according to the structure of an electrode assembly.
  • secondary batteries may be classified into a stack-type, a wrapping-type (a jelly-roll type), or a stack/folding type according to the structure of an electrode assembly.
  • the stack-type structure may be obtained by separately stacking electrode units (a cathode, a separator, and an anode) constituting the electrode assembly, and thus an accurate alignment of the electrode assembly is very difficult.
  • a large number of processes are necessary for the manufacture of the electrode assembly.
  • the stack/folding type structure is generally manufactured by using two lamination apparatuses and one folding apparatus, and thus the manufacture of the electrode assembly is very complicated. Particularly, in the stack/folding type structure, full cells or bi-cells are stacked through folding, and thus the alignment of the full cells or the bi-cells is difficult.
  • An aspect of the present disclosure provides an electrode assembly that is enabled to perform an accurate alignment and simple process through a novel structure that is distinguished from a stack-type or a stack/folding type structure, and a polymer secondary battery cell including the same.
  • Another aspect of the present disclosure provides an electrode assembly having a structure in which a plurality of steps is formed, having an optimized size and using minimum separators, and a polymer secondary battery cell including the same.
  • an electrode assembly including a cell stack part having a structure of a plurality of steps obtained by stacking radical units according to a size or geometric shape thereof, the radical units being classified into at least two groups having different sizes or geometric shapes, wherein the radical unit has a same number of electrodes and separators which are alternately disposed and integrally combined, wherein each step of the cell stack part has (a) a structure in which one kind of radical unit is disposed once or repeatedly or (b) a structure in which at least two kinds of radical units are disposed in a predetermined order, wherein the one kind of radical unit of (a) has a four-layered structure in which a first electrode, a first separator, a second electrode and a second separator are sequentially stacked together or a repeating structure in which the four-layered structure is repeatedly stacked; and
  • each of the at least two kinds of radical units of (b) are stacked by ones in the predetermined order to form the four-layered structure or the repeating structure in which the four-layered structure is repeatedly stacked.
  • the present disclosure may provide an electrode assembly that is enabled to perform an accurate alignment and simple process through a novel structure that is distinguished from a stack-type or a stack/folding type structure, having an optimized size and using minimum separators when a plurality of steps are formed, and a polymer secondary battery cell including the same.
  • An electrode assembly according to the present disclosure basically includes a cell stack part.
  • the cell stack part will be explained first.
  • Each step of the cell stack part has (a) a structure obtained by disposing one kind of radical units once or repeatedly or (b) a structure obtained by disposing at least two kinds of radical units in a predetermined order, for example, alternately. This will be described below in more detail.
  • a radical unit is formed by alternately disposing electrodes and separators.
  • the same number of electrodes and separators are disposed.
  • a radical unit 110a may be formed by stacking two electrodes 111 and 113 and two separators 112 and 114.
  • a cathode and an anode may naturally face each other through the separator.
  • an electrode 111 is positioned at one end of the radical unit (see the electrode 111 in FIGS. 1 and 2 ) and a separator 114 is positioned at the other end of the radical unit (see the separator 114 in FIGS. 1 and 2 ).
  • the electrode assembly according to the present disclosure is basically characterized in that the cell stack part or electrode assembly is formed by only stacking the radical units. That is, the present disclosure has a basic characteristic in that the cell stack part is formed by repeatedly stacking one kind of radical units or by stacking at least two kinds of radical units in a predetermined order. To realize the above-described characteristic, the radical unit may have the following structure.
  • the radical unit may be formed by stacking a first electrode, a first separator, a second electrode, and a second separator in sequence.
  • a first electrode 111, a first separator 112, a second electrode 113, and a second separator 114 may be stacked in sequence from an upper side to a lower side, as illustrated in FIG. 1 , or from the lower side to the upper side, as illustrated in FIG. 2 , to form radical units 110a and 110b.
  • the radical unit having the above-described structure may be referred to as a first radical unit.
  • the first electrode 111 and the second electrode 113 may be opposite types of electrodes.
  • the second electrode 113 may be an anode.
  • a cell stack part 100a may be formed by only repeatedly stacking the one kind of radical units 110a, as illustrated in FIG. 3 .
  • the radical unit may have an eight-layered structure or twelve-layered structure in addition to a four-layered structure. That is, the radical unit may have a repeating structure in which the four-layered structure is repeatedly disposed.
  • the radical unit may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, the second separator 114, the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 in sequence.
  • the radical unit may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, the second separator 114, the first electrode 111, and the first separator 112 in sequence, or by stacking the second electrode 113, the second separator 114, the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 in sequence.
  • the radical unit having the former structure may be referred to as a second radical unit and the radical unit having the latter structure may be referred to as a third radical unit.
  • the second radical unit 100c may be formed by stacking the first electrode 111, the first separator 112, the second electrode 113, the second separator 114, the first electrode 111, and the first separator 112 in sequence from the upper side to the lower side, as illustrated in FIG. 4 .
  • the third radical structure 110d may be formed by stacking the second electrode 113, the second separator 114, the first electrode 111, the first separator 112, the second electrode 113, and the second separator 114 in sequence from the upper side to the lower side, as illustrated in FIG. 5 . As noted above, the stacking may be conducted in sequence from the lower side to the upper side.
  • the cell stack part 100b may be formed by stacking only the second and third radical units, as illustrated in FIG. 6 .
  • the cell stack part may be formed by stacking the radical units in a predetermined order, for example, the first radical unit, the second radical unit, the third radical unit, the first radical unit again, the second radical unit, and the third radical unit.
  • the one kind of radical unit in the present disclosure has a four-layered structure in which a first electrode, a first separator, a second electrode and a second separator are sequentially stacked, or has a repeating structure in which the four-layered structure is repeatedly stacked.
  • at least two kinds of radical units in the present disclosure are stacked only by ones in a predetermined order to form the four-layered structure or the repeating structure in which the four-layered structure is repeatedly disposed.
  • the first radical unit forms a four-layered structure by itself
  • the second radical unit and the third radical unit form a twelve-layered structure by stacking one of each, that is, two radical units in total.
  • the cell stack part or electrode assembly may be formed only by stacking, that is, by repeatedly stacking one kind of radical units or by stacking at least two kinds of radical units in a predetermined order.
  • the cell stack part of the present disclosure may be formed by stacking the radical units one by one. That is, the cell stack part may be manufactured by forming the radical units and then stacking the radical units repeatedly or in a predetermined order. As described above, the cell stack part of the present disclosure may be formed by only stacking the radical units. Therefore, the radical units of the present disclosure may be very accurately aligned. When the radical unit is accurately aligned, the electrode and the separator may also be accurately aligned in the cell stack part. In addition, the cell stack part or electrode assembly may be improved in productivity. This is done because the manufacturing process is very simple.
  • a manufacturing process of the first radical unit will be exemplarily described with reference to FIG. 7 .
  • a first electrode material 121, a first separator material 122, a second electrode material 123 and a second separator material 124 are prepared.
  • the first separator material 122 and the second separator material 124 may be the same.
  • the first electrode material 121 is cut into a certain size through a cutter C1
  • the second electrode material 123 is cut into a certain size through a cutter C2.
  • the first electrode material 121 is stacked on the first separator material 122
  • the second electrode material 123 is stacked on the second separator material 124.
  • the electrode materials and the separator materials are attached to each other through laminators L1 and L2.
  • a radical unit in which the electrodes and the separators are integrally combined may be formed.
  • the combining method may be diverse.
  • the laminators L1 and L2 may apply pressure to the materials or apply pressure and heat to the materials to attach the materials to each other.
  • the stacking of the radical units may be more easily performed while manufacturing the cell stack part.
  • the alignment of the radical units may be also easily accomplished because of the attachment.
  • the first separator material 122 and the second separator material 124 are cut into a certain size through a cutter C3 to manufacture the radical unit 110a.During this process, the edges of the separators are not joined with each other.
  • the electrode may be attached to the adjacent separator in the radical unit.
  • the separator may be attached to the adjacent electrode.
  • the electrode may be stably fixed to the separator.
  • the electrode has a size less than that of the separator.
  • an adhesive may be applied to the separator.
  • the adhesive it is necessary to apply the adhesive over an adhesion surface of the separator in a mesh or dot shape. This is because if the adhesive is closely applied to the entire adhesion surface, reactive ions such as lithium ions may not pass through the separator. Thus, when the adhesive is used, it is difficult to allow the overall surface of the electrode to closely attach to the adjacent separator.
  • the separator may include a porous separator base material such as a polyolefin-based separator base material and a porous coating layer that is generally applied to one side or both sides of the separator base material.
  • the coating layer may be formed of a mixture of inorganic particles and a binder polymer that binds and fixes the inorganic particles to each other.
  • the inorganic particles may improve thermal stability of the separator. That is, the inorganic particles may prevent the separator from being contracted at a high temperature.
  • the binder polymer may fix the inorganic particles to improve mechanical stability of the separator.
  • the binder polymer may attach the electrode to the separator. Since the binder polymer is generally distributed in the coating layer, the electrode may closely adhere to the entire adhesion surface of the separator, unlike the foregoing adhesive. Thus, when the separator is used as described above, the electrode may be more stably fixed to the separator. To enhance the adhesion, the above-described laminators may be used.
  • the inorganic particles may have a densely packed structure to form interstitial volumes between the inorganic particles over the overall coating layer.
  • a pore structure may be formed in the coating layer by the interstitial volumes that are defined by the inorganic particles. Due to the pore structure, even though the coating layer is formed on the separator, the lithium ions may smoothly pass through the separator.
  • the interstitial volume defined by the inorganic particles may be blocked by the binder polymer according to a position thereof.
  • the densely packed structure may be explained as a structure in which gravels are contained in a glass bottle.
  • the inorganic particles form the densely packed structure
  • the interstitial volumes between the inorganic particles are not locally formed in the coating layer, but generally formed in the coating layer.
  • the pore formed by the interstitial volume also increases in size. Due the above-described densely packed structure, the lithium ions may smoothly pass through the separator over the entire surface of the separator.
  • the radical units may also adhere to each other in the cell stack part. For example, if the adhesive or the above-described coating layer is applied to a bottom surface of the second separator 114 in FIG. 1 , the other radical unit may adhere to the bottom surface of the second separator 114.
  • the adhesive strength between the electrode and the separator in the radical unit may be greater than that between the radical units in the cell stack part. It is understood, that the adhesive strength between the radical units may not be provided. In this case, when the electrode assembly or the cell stack part is disassembled, the electrode assembly may be separated into the radical units due to a difference in the adhesive strength.
  • the adhesive strength may be expressed as delamination strength.
  • the adhesive strength between the electrode and the separator may be expressed as a force required for separating the electrode from the separator.
  • the radical unit may not be bonded to the adjacent radical unit in the cell stack part, or may be bonded to the adjacent radical unit in the cell stack part by means of a bonding strength differing from a bonding strength between the electrode and the separator.
  • the separator when the separator includes the above-described coating layer, it is not preferable to perform ultrasonic welding on the separator.
  • the separator has a size greater than that of the electrode.
  • the separator may adhere to the horn due to the coating layer having the adhesive strength. As a result, the welding apparatus may be broken down.
  • radical units having the same size have been explained.
  • the radical units may have different sizes.
  • cell stack parts having various shapes may be manufactured.
  • the size of the radical unit is explained with reference to the size of the separator, because, typically, the separator is larger than the electrode.
  • a plurality of radical units is prepared and may be classified into at least two groups having different sizes (see reference numerals 1101a, 1102a and 1103a in FIG. 9 ).
  • a cell stack part 100c having a structure of a plurality of steps may be formed.
  • FIGS. 8 and 9 illustrate an embodiment in which the cell stack part includes three steps obtained by stacking the radical units 1101a, 1102a and 1103a classified into three groups, in which the radical units having the same size are stacked together, is illustrated. That is, in FIGS. 8 and 9 , an embodiment in which three steps are formed by stacking radical units having the same size is illustrated.
  • the radical units included in one group may form two or more steps.
  • one step may be formed by using one radical unit in a cell stack part.
  • the radical unit has a structure of the first radical unit, that is, the above-described four-layered structure or the repeating structure in which the four-layered structure is repeatedly stacked.
  • the radical units are considered to be included in one kind of radical unit even though the radical units have the same stacked structures but have different sizes.
  • the same number of cathodes and the anodes are stacked in one step. Also, it is preferable that opposite electrodes face each other through a separator between one step and another step.
  • the second and third radical units two kinds of the radical units are necessary for forming one step.
  • the radical unit has the four-layered structure or the repeating structure in which the four-layered structure is repeatedly stacked, number of kinds of radical units may decrease even though a plurality of the steps is formed.
  • the one step may have at least a twelve-layered structure.
  • the first radical unit only one kind of radical unit is necessary to be stacked to form one step.
  • one step may have at least a four-layered structure.
  • the radical units may have not only different sizes but also different geometric shapes.
  • the radical units may have different sizes and different edge shapes, and may or may not have a through hole as illustrated in FIG. 10 .
  • a plurality of radical units classified into three groups may form three steps by stacking the radical units having the same geometric shapes.
  • the radical units maybe classified into at least two groups (each of the groups has different geometric shape).
  • the radical unit may preferably have the four-layered structure or the repeating structure in which the four-layered structures are repeatedly stacked, that is, the structure of the first radical unit. (Herein, the radical units are considered to be included in one kind of radical unit even though the radical units have the same stacked structure but have different geometric shapes.)
  • the cell stack part may further include at least one among a first auxiliary unit and a second auxiliary unit.
  • the first auxiliary unit will be described below.
  • an electrode is positioned at one end of the radical unit, and a separator is positioned at the other end of the radical unit.
  • the electrode may be positioned at the uppermost portion or at the lowermost portion of the cell stack part (see reference numeral 116 in FIG. 11 , and this electrode may be referred to as a terminal electrode 116).
  • the first auxiliary unit is additionally stacked on the terminal electrode.
  • the first auxiliary unit 130a may be formed by stacking outward from the terminal electrode 116, a separator 114, an anode 113, a separator 112, and a cathode 111 in sequence, as illustrated in FIG. 11 .
  • the terminal electrode 116 is an anode
  • the first auxiliary unit 130b may be formed by stacking outward from the terminal electrode 116, the separator 114, and the cathode 113 in sequence, as illustrated in FIG. 12 .
  • a cathode may be positioned at the outermost portion of a terminal electrode through the first auxiliary units 130a and 130b, as illustrated in FIGS. 11 and 12 .
  • an active material layer is preferably coated on only one side facing the radical unit (one side facing downward in FIG. 11 ) among both sides of the current collector.
  • the active material layer is not positioned at the outermost portion of the cell stack part. Thus, waste of the active material layer may be prevented.
  • the cathode emits, for example, lithium ions, when the cathode is positioned at the outermost portion, the capacity of a battery may be improved.
  • the first auxiliary unit may preferably have the same size as the radical unit in which the terminal electrode is positioned.
  • the second auxiliary unit which will be described later, also may preferably have the same size as the radical unit in which the terminal electrode is positioned.
  • the second auxiliary unit performs the same function as the first auxiliary unit, which will be described below in more detail.
  • an electrode is positioned at one end of the radical unit, and a separator is positioned at the other end of the radical unit.
  • the separator may be positioned at the uppermost portion or at the lowermost portion of the cell stack part (see reference numeral 117 in FIG. 13 , and this separator may be referred to as a terminal separator 117).
  • the second auxiliary unit is additionally stacked on the terminal separator.
  • the second auxiliary unit 140a when the electrode 113 contacting the terminal separator 117 is a cathode in the radical unit, the second auxiliary unit 140a may be formed by stacking from the terminal separator 117, an anode 111, a separator 112, and a cathode 113 in sequence, as illustrated in FIG. 13 .
  • the second auxiliary unit 140b when the electrode 113 contacting the terminal separator 117 is an anode in the radical unit, the second auxiliary unit 140b may be formed as the cathode111, as illustrated in FIG. 14 .
  • a cathode may be positioned at the outermost portion of a terminal separator through the second auxiliary units 140a and 140b, as illustrated in FIGS. 13 and 14 .
  • an active material layer is preferably coated on only one side facing the radical unit (one side facing upward in FIG. 13 ) among both sides of the current collector, as similar to the cathode of the first auxiliary unit.
  • the first auxiliary unit and the second auxiliary unit may have different structures from those described above.
  • the first auxiliary unit will be described below.
  • the terminal electrode 116 is a cathode as illustrated in FIG. 15
  • the first auxiliary unit 130c may be formed by stacking from the terminal electrode 116, a separator 114, and an anode 113 in sequence.
  • the terminal electrode 116 is an anode as illustrated in FIG. 16
  • the first auxiliary unit 130d may be formed by stacking from the terminal electrode 116, a separator 114, a cathode 113, a separator 112, and an anode 111 in sequence.
  • an anode may be positioned at the outermost portion of the terminal electrode through the first auxiliary units 130c and 130d, as illustrated in FIGS. 15 and 16 .
  • the second auxiliary unit 140c when the electrode 113 contacting the terminal separator 117 is a cathode in the radical unit, the second auxiliary unit 140c may be formed as an anode 111. As illustrated in FIG. 18 , when the electrode 113 contacting the terminal separator 117 is an anode in the radical unit, the second auxiliary unit 140d may be formed by stacking from the terminal separator 117, the cathode 111, the separator 112, and the anode 113 in sequence. In the cell stack parts 100j and 100k, an anode may be positioned at the outermost portion of the terminal separator through the second auxiliary units 140c and 140d, as illustrated in FIGS. 17 and 18 .
  • an anode may make a reaction with an aluminum layer of a battery case (for example, a pouch-type case) due to potential difference.
  • the anode is preferably insulated from the battery case by means of a separator.
  • the first and second auxiliary units in FIGS. 15 to 18 may further include a separator at the outer portion of the anode.
  • the first auxiliary unit 130e in FIG. 19 may further include a separator 112 at the outermost portion thereof when compared with the first auxiliary unit 130c in FIG. 15 .
  • the auxiliary unit includes the separator, the alignment of the auxiliary units in the radical unit may be easily performed.
  • a cell stack part 100m may be formed as illustrated in FIG. 20 .
  • a radical unit 110b may be formed by stacking from the lower portion to the upper portion, a first electrode 111, a first separator 112, a second electrode 113, and a second separator 114 in sequence.
  • the first electrode 111 maybe a cathode
  • the second electrode 113 may be an anode.
  • a first auxiliary unit 130f may be formed by stacking from the terminal electrode 116, the separator 114, the anode 113, the separator 112 and the cathode 111 in sequence. In this case, in the cathode 111 of the first auxiliary unit 130f, only one side of a current collector facing the radical unit 110b among both sides of the current collector may be coated with an active material layer.
  • a second auxiliary unit 140e may be formed by stacking from the terminal separator 117, the cathode 111 (the first cathode), the separator 112, the anode 113, the separator 114, and the cathode 118 (the second cathode) in sequence.
  • the cathode 118 (the second cathode) of the second auxiliary unit 140e positioned at the outermost portion only one side of a current collector facing the radical unit 110b among both sides of the current collector may be coated with an active material layer.
  • a cell stack part 100n may be formed as illustrated in FIG. 21 .
  • a radical unit 110e may be formed by stacking from the upper portion to the lower portion, a first electrode 111, a first separator 112, a second electrode 113, and a second separator 114 in sequence.
  • the first electrode 111 may be an anode
  • the second electrode 113 may be a cathode.
  • a second auxiliary unit 140f may be formed by stacking from the terminal separator 117, the anode 111, the separator 112, the cathode 113, the separator 114, and the anode 119 in sequence.
  • a polymer secondary battery cell including the above-described electrode assembly may be manufactured. That is, the polymer secondary battery cell in the present disclosure includes a cell stack part, a fixing part for fixing the radical units of the cell stack part, and a pouch case for receiving the cell stack part and the fixing part.
  • the polymer secondary battery cell may include a cell stack part 100 having a plurality of steps, a fixing part 200 attached from the top surface to the bottom surface of the cell stack part 100, wherein the fixing part 200 is folded into multiple steps for close attachment to the cell stack part 100, and a pouch case 300 receiving the cell stack part 100 to which the fixing part 200 is attached, as illustrated in FIG. 22 .
  • the fixing part may be extended closely from the top surface of the cell stack part 100 along the side surface of the cell stack part 100 to the bottom surface of the cell stack part 100, as illustrated in FIG. 22 .
  • the fixing part may be extended closely from the top surface of the cell stack part to the top surface of the cell stack part again, or from the bottom surface of the cell stack part to the bottom surface of the cell stack part again.
  • the fixing part may wrap the cell stack part by at least one lap.
  • the fixing part 200 may be a polymer tape exhibiting adhesiveness when wet with water.
  • the polymer secondary battery cell according to the present disclosure includes an electrode assembly having a novel structure that is distinguished from a stack-type or a stack/folding type structure.
  • the stacking method of the electrode assembly may be simplified, and commercial value of a product may be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)
EP14751800.5A 2013-02-15 2014-02-17 Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci Active EP2816656B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130016511 2013-02-15
PCT/KR2014/001265 WO2014126431A1 (fr) 2013-02-15 2014-02-17 Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci

Publications (3)

Publication Number Publication Date
EP2816656A1 true EP2816656A1 (fr) 2014-12-24
EP2816656A4 EP2816656A4 (fr) 2015-05-13
EP2816656B1 EP2816656B1 (fr) 2016-07-27

Family

ID=51747584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14751800.5A Active EP2816656B1 (fr) 2013-02-15 2014-02-17 Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci

Country Status (7)

Country Link
US (2) US9947909B2 (fr)
EP (1) EP2816656B1 (fr)
JP (2) JP2015526857A (fr)
KR (1) KR101595643B1 (fr)
CN (1) CN104247127B (fr)
TW (1) TWI520404B (fr)
WO (1) WO2014126431A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882027A4 (fr) * 2013-05-23 2015-08-05 Lg Chemical Ltd Ensemble d'électrodes et son corps unitaire de base

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561735B1 (ko) * 2013-09-25 2015-10-19 주식회사 엘지화학 전극조립체 제조방법
KR101619604B1 (ko) 2013-09-26 2016-05-10 주식회사 엘지화학 전극조립체 및 이차전지의 제조방법
KR101609424B1 (ko) 2013-09-26 2016-04-05 주식회사 엘지화학 전극조립체의 제조방법
KR102080253B1 (ko) * 2015-11-06 2020-02-24 주식회사 엘지화학 전극 조립체
CN105514352B (zh) * 2015-12-14 2019-04-26 东莞新能源科技有限公司 电极组件及采用该电极组件的锂离子电芯
KR102256302B1 (ko) 2017-03-09 2021-05-26 삼성에스디아이 주식회사 전극 조립체 및 이를 포함하는 리튬 전지
JP6685983B2 (ja) 2017-09-21 2020-04-22 株式会社東芝 電極群、二次電池、電池パック、及び車両
KR102316340B1 (ko) * 2019-01-22 2021-10-22 주식회사 엘지에너지솔루션 전극조립체, 그를 포함하는 이차전지, 이차전지 제조방법 및 전지팩
KR20210055186A (ko) * 2019-11-07 2021-05-17 주식회사 엘지화학 폴딩형 전극조립체 및 그 제조 방법
KR20240082069A (ko) * 2022-12-01 2024-06-10 주식회사 엘지에너지솔루션 전극조립체 및 그 전극조립체를 포함하는 이차전지

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902847B1 (en) 1998-05-20 2005-06-07 Osaka Gas Company Limited Non-aqueous secondary cell and method for controlling the same
JP4271756B2 (ja) * 1998-12-02 2009-06-03 日東電工株式会社 電池用接着剤又は粘着剤もしくは粘着テープ・シート
JP2000311717A (ja) * 1999-02-25 2000-11-07 Mitsubishi Chemicals Corp 電池要素及び電池
JP2001028275A (ja) * 1999-06-25 2001-01-30 Mitsubishi Chemicals Corp 立体自由形状バッテリー装置
JP3611765B2 (ja) * 1999-12-09 2005-01-19 シャープ株式会社 二次電池及びそれを用いた電子機器
KR100515572B1 (ko) * 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기화학 셀 및 그의 제조 방법
KR100515571B1 (ko) 2000-02-08 2005-09-20 주식회사 엘지화학 중첩 전기 화학 셀
JP4644899B2 (ja) 2000-02-23 2011-03-09 ソニー株式会社 電極及び電池、並びにそれらの製造方法
JP2002151159A (ja) 2000-09-01 2002-05-24 Nisshinbo Ind Inc リチウム系電池
JP4959048B2 (ja) * 2000-12-25 2012-06-20 トータル ワイヤレス ソリューショオンズ リミテッド シート状リチウム二次電池
JP4951168B2 (ja) 2000-12-25 2012-06-13 トータル ワイヤレス ソリューショオンズ リミテッド シート状リチウム二次電池
KR100406690B1 (ko) * 2001-03-05 2003-11-21 주식회사 엘지화학 다성분계 복합 필름을 이용한 전기화학소자
KR100440934B1 (ko) * 2002-02-06 2004-07-21 삼성에스디아이 주식회사 이차전지
JP4281382B2 (ja) * 2002-04-19 2009-06-17 ソニー株式会社 生成水処理システム及び発電装置
KR100513645B1 (ko) * 2003-03-20 2005-09-07 주식회사 엘지화학 최외곽 전극이 분리막에 의해 포켓팅된 적층형 전지
KR100895196B1 (ko) * 2004-09-02 2009-04-24 주식회사 엘지화학 유/무기 복합 다공성 필름 및 이를 이용한 전기 화학 소자
TWI318018B (en) 2004-09-02 2009-12-01 Lg Chemical Ltd Organic/inorganic composite porous film and electrochemical device prepared thereby
EP3745494A1 (fr) 2004-09-02 2020-12-02 Lg Chem, Ltd. Film poreux composite organique/inorganique et dispositif électrochimique ainsi préparé
KR100758482B1 (ko) 2004-12-07 2007-09-12 주식회사 엘지화학 표면 처리된 다공성 필름 및 이를 이용한 전기 화학 소자
KR100775310B1 (ko) 2004-12-22 2007-11-08 주식회사 엘지화학 유/무기 복합 다공성 분리막 및 이를 이용한 전기 화학소자
JP4929592B2 (ja) * 2004-12-27 2012-05-09 パナソニック株式会社 エネルギーデバイスの製造法
JP4753369B2 (ja) * 2006-04-28 2011-08-24 Necトーキン株式会社 積層型電気化学デバイス
TW200743245A (en) 2006-05-01 2007-11-16 Antig Tech Co Ltd Assembly method used in the assembly of flat-plate type membrane electrode assembled layer and its structure
KR100874387B1 (ko) 2006-06-13 2008-12-18 주식회사 엘지화학 둘 이상의 작동 전압을 제공하는 중첩식 이차전지
KR100878700B1 (ko) 2006-06-26 2009-01-14 주식회사 엘지화학 전지셀 제조용 전극판 및 그것의 제조방법
KR100894408B1 (ko) * 2006-07-10 2009-04-24 주식회사 엘지화학 향상된 안전성의 스택/폴딩형 전극조립체 및 이를 포함하는전기화학 셀
TW200812138A (en) 2006-08-18 2008-03-01 Antig Technology Corp Flat type membrane electrode layer structure
JP4293247B2 (ja) 2007-02-19 2009-07-08 ソニー株式会社 積層型非水電解質電池およびその製造方法
JP5795475B2 (ja) * 2007-07-25 2015-10-14 エルジー・ケム・リミテッド 電気化学素子及びその製造方法
CN102138244B (zh) 2009-03-31 2014-05-28 三菱重工业株式会社 二次电池及电池系统
US20100304198A1 (en) * 2009-05-28 2010-12-02 Samsung Sdi Co., Ltd. Electrode assembly for secondary battery and method of manufacturing the same
KR101103499B1 (ko) 2009-10-07 2012-01-06 에스케이이노베이션 주식회사 전지용 전극조립체 및 그 제조방법
JP5426989B2 (ja) 2009-10-15 2014-02-26 コマツNtc株式会社 積層型電池製造装置
CN101771165B (zh) * 2010-02-08 2012-07-25 中南大学 一种圆柱形锂离子动力电池及其制备方法
JP5717038B2 (ja) * 2010-04-06 2015-05-13 エルジー・ケム・リミテッド 二次電池用電極組立体の製造方法
KR101389207B1 (ko) * 2010-05-19 2014-04-24 닛산 지도우샤 가부시키가이샤 쌍극형 2차 전지
US8940429B2 (en) * 2010-07-16 2015-01-27 Apple Inc. Construction of non-rectangular batteries
WO2012049778A1 (fr) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 Accumulateur secondaire
CN102760905A (zh) * 2011-04-28 2012-10-31 迪吉亚节能科技股份有限公司 高容量锂电池
CN202585648U (zh) * 2012-02-20 2012-12-05 宁德新能源科技有限公司 软包装叠片式电池结构
KR20130113301A (ko) * 2012-04-05 2013-10-15 주식회사 엘지화학 계단 구조의 전지셀

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2882027A4 (fr) * 2013-05-23 2015-08-05 Lg Chemical Ltd Ensemble d'électrodes et son corps unitaire de base
US10553848B2 (en) 2013-05-23 2020-02-04 Lg Chem, Ltd. Electrode assembly and radical unit for the same
US10818902B2 (en) 2013-05-23 2020-10-27 Lg Chem, Ltd. Electrode assembly and radical unit for the same
US11411285B2 (en) 2013-05-23 2022-08-09 Lg Energy Solution, Ltd. Electrode assemby and radical unit for the same

Also Published As

Publication number Publication date
US10615392B2 (en) 2020-04-07
JP2017117798A (ja) 2017-06-29
EP2816656A4 (fr) 2015-05-13
WO2014126431A1 (fr) 2014-08-21
JP2015526857A (ja) 2015-09-10
EP2816656B1 (fr) 2016-07-27
CN104247127A (zh) 2014-12-24
US20180198104A1 (en) 2018-07-12
CN104247127B (zh) 2016-09-14
KR101595643B1 (ko) 2016-02-18
US20140370362A1 (en) 2014-12-18
TWI520404B (zh) 2016-02-01
US9947909B2 (en) 2018-04-17
KR20140103085A (ko) 2014-08-25
TW201501386A (zh) 2015-01-01
JP6526079B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
US11476546B2 (en) Electrode assembly and polymer secondary battery cell including the same
US11411285B2 (en) Electrode assemby and radical unit for the same
EP2816656B1 (fr) Ensemble électrode et cellule de batterie secondaire polymère comprenant celui-ci
US10971751B2 (en) Electrode assembly
EP2882028B1 (fr) Procédé de fabrication d'un ensemble électrode
EP2863466B1 (fr) Ensemble électrode et procédé de production
KR101807354B1 (ko) 전극 조립체
KR101747514B1 (ko) 전극 조립체

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 10/0585 20100101ALN20150120BHEP

Ipc: H01M 2/16 20060101ALI20150120BHEP

Ipc: H01M 10/0565 20100101ALN20150120BHEP

Ipc: H01M 2/14 20060101ALI20150120BHEP

Ipc: H01M 10/04 20060101AFI20150120BHEP

RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20150414

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 2/14 20060101ALI20150408BHEP

Ipc: H01M 10/0585 20100101ALN20150408BHEP

Ipc: H01M 10/0565 20100101ALN20150408BHEP

Ipc: H01M 10/04 20060101AFI20150408BHEP

Ipc: H01M 2/16 20060101ALI20150408BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: H01M 2/14 20060101ALI20160303BHEP

Ipc: H01M 2/16 20060101ALI20160303BHEP

Ipc: H01M 10/0585 20100101ALN20160303BHEP

Ipc: H01M 10/0565 20100101ALN20160303BHEP

Ipc: H01M 10/04 20060101AFI20160303BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160415

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 816448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014002908

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 816448

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161128

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014002908

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014002908

Country of ref document: DE

Owner name: LG ENERGY SOLUTION LTD., KR

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014002908

Country of ref document: DE

Owner name: LG ENERGY SOLUTION, LTD., KR

Free format text: FORMER OWNER: LG CHEM. LTD., SEOUL, KR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014002908

Country of ref document: DE

Owner name: LG ENERGY SOLUTION, LTD., KR

Free format text: FORMER OWNER: LG ENERGY SOLUTION LTD., SEOUL, KR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240122

Year of fee payment: 11