EP2812638B1 - Wärmepumpenvorrichtung - Google Patents

Wärmepumpenvorrichtung Download PDF

Info

Publication number
EP2812638B1
EP2812638B1 EP13707538.8A EP13707538A EP2812638B1 EP 2812638 B1 EP2812638 B1 EP 2812638B1 EP 13707538 A EP13707538 A EP 13707538A EP 2812638 B1 EP2812638 B1 EP 2812638B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat pump
pump device
collector
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13707538.8A
Other languages
English (en)
French (fr)
Other versions
EP2812638A2 (de
Inventor
Ulrich Hafner
Markus IMMEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Viessmann Werke GmbH and Co KG
Original Assignee
Viessmann Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Viessmann Werke GmbH and Co KG filed Critical Viessmann Werke GmbH and Co KG
Priority to PL13707538T priority Critical patent/PL2812638T3/pl
Publication of EP2812638A2 publication Critical patent/EP2812638A2/de
Application granted granted Critical
Publication of EP2812638B1 publication Critical patent/EP2812638B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the invention relates to a heat pump device according to the preamble of patent claim 1.
  • a heat pump device of this kind is similar even after JP 2001 153482 A known.
  • This consists inter alia of a compressor (in particular screw compressor), which is followed by a condenser (also called a condenser), in turn, a refrigerant collector (also called refrigerant tank) is connected downstream.
  • the refrigerant collector is connected to the intermediate injection of refrigerant into the compressor with this via a refrigerant line.
  • the refrigerant collector is followed by a controllable expansion valve, which in turn is followed by an evaporator, which in turn is followed by the already mentioned compressor.
  • the refrigerant circuit of the JP 2001 153482 A So corresponds to a very classic refrigerant circuit, but added to the refrigerant collector for the intermediate injection of refrigerant in the compressor.
  • the invention has for its object to further improve a heat pump device of the type mentioned.
  • the limits of use or the efficiency of such a heat pump device should be even more expanded or enlarged.
  • the refrigerant line has a refrigerant inflow opening which selectively opens above and / or below the refrigerant level during operation of the heat pump device, a section of the refrigerant line being arranged in the refrigerant collector and the section having a vertical extension direction ,
  • the heat pump device is characterized in particular by the fact that via the expansion valve, the refrigerant level in the refrigerant receiver can be adjusted, wherein the refrigerant inflow opening is formed so that it is designed depending on the setting of the expansion valve either above and / or below the refrigerant level ausmündend.
  • the proviso "and / or” means that the refrigerant line is formed with its refrigerant inlet either so that the refrigerant inflow opens either above or below the refrigerant level, or that the refrigerant inflow opening is formed so that it opens both above and below the refrigerant level, which optionally by a correspondingly large Refrigerant inflow or even by a plurality of refrigerant inflow can be realized at the guided into the refrigerant collector refrigerant pipe.
  • the heat pump device In contrast to the heat pump device mentioned above, it is thus possible with the heat pump device according to the invention to supply optionally pure refrigerant vapor, liquid refrigerant or even refrigerant wet steam to the compressor.
  • the refrigerant In which aggregate state the refrigerant is injected into the compressor, can be determined via the controllable expansion valve and thus on the refrigerant level in the refrigerant collector.
  • liquid refrigerant offers the possibility of cooling the compressor, lowering the hot gas temperature and thus extending the operating limits.
  • FIGS. 1 . 3 . 4 and 6 illustrated heat pump devices consist in a known manner from a compressor 1, in particular a so-called screw or scroll compressor, which is followed by a condenser 2, which is particularly preferably designed as a plate capacitor.
  • This capacitor is a refrigerant collector 3 (also called high-pressure collector) downstream, which is connected to the intermediate injection of refrigerant in the compressor 1 with this via a refrigerant pipe 4.
  • This intermediate injection serves, as already explained, to increase the efficiency of the heat pump device or to expand the application limits of the heat pump device.
  • heat pump device for adjusting the refrigerant level in the refrigerant collector 3 between the condenser 2 and the refrigerant collector 3, an electronically controllable (and reversible working) expansion valve 5 is arranged and that the refrigerant pipe 4 depending on the setting of the expansion valve 5 during operation the heat pump device above and / or below the refrigerant level opening refrigerant inflow opening 6 has.
  • FIG. 2 the refrigerant collector 3 is shown enlarged for better understanding.
  • a section 7 of the refrigerant line 4 is arranged in the refrigerant collector 3.
  • the refrigerant inflow opening (s) 6 is (are) arranged on the section 7 of the refrigerant line 4.
  • the section 7 is tubular and in particular formed as a U-shaped piece of pipe.
  • the section 7 further has a vertical extension direction and an open end 8.
  • the open line end 8 forms at least one of the refrigerant inflow openings 6 and is preferably always arranged above the refrigerant level during operation of the heat pump device. How to continue FIG. 2 seen At section 7, a plurality of superposed refrigerant inflow openings 6 are provided.
  • the refrigerant collector 3 has a connected to the expansion valve 5, during operation of the heat pump device opening out below the refrigerant level refrigerant supply port 9. Furthermore, it is provided that the refrigerant collector 3 has a refrigerant discharge connection 11 connected to a second electronically controllable (and reversibly operating) expansion valve 10, opening out below the refrigerant level during operation of the heat pump device. Via this refrigerant discharge port 11, the refrigerant is discharged to the second expansion valve 10.
  • refrigerant enters the refrigerant receiver 3.
  • the electronically controllable expansion valves 5 and 10 which of course with a corresponding, not specifically shown heat pump control device (also called refrigeration circuit controller) is connected set the height of the refrigerant level.
  • the refrigerant level is increased, liquid refrigerant can also pass into the section 7 and thus to the compressor 1 via one or more refrigerant inflow openings 6.
  • This liquid refrigerant mixes with the rest of the rest Refrigerant inlet 6 inflowing refrigerant vapor to a refrigerant wet steam.
  • the refrigerant collector 3 is divided into a first and a second chamber 14, 15 by a separating element 13 or partition wall (preferably a perforated plate, metal mesh or the like) having at least one through-opening 12, in particular vertically oriented Chamber 14 of the refrigerant supply port 9 opens and leaving the first chamber 14 of the refrigerant discharge port 11.
  • a separating element 13 or partition wall preferably a perforated plate, metal mesh or the like
  • the flow in the first chamber 14 is highly turbulent.
  • the proviso of the separating element 13 leads to a calming of the refrigerant in the second chamber 15, in which the portion 7 of the refrigerant pipe 4 is arranged, which in turn is favorable for the desired precise adjustment of the ratio between liquid and vapor refrigerant.
  • the refrigerant collector 3 is followed by a second electronically controllable expansion valve 10, which in turn is followed by an evaporator 16 (in particular a lamella evaporator) connected to the compressor 1 is.
  • evaporator 16 in particular a lamella evaporator
  • FIG. 4 and 5 another feature of the inventive solution is that in the first chamber 14 of the refrigerant collector 3, a refrigerant-carrying and with the refrigerant in the refrigerant receiver 3 heat exchanging line 17 is arranged, which is connected on the one hand to the evaporator 16 and the other with the compressor 1.
  • This line 17 forms together with the refrigerant collector 3 a so-called Sauggastage (2004) for supercooling of the refrigerant, via the already mentioned, not shown heat pump control device and corresponding sensors for measuring Sauggasüberhitzung or subcooling influence on the expansion valves 5 and 10 and thus on the refrigerant level can be taken.
  • a (preferably bidirectionally operating) filter 18 also called filter dryer
  • a (preferably bidirectionally operating) filter 19 filter drier is also arranged between the second expansion valve 10 and the evaporator 16.
  • FIGS. 3 and 4 a downstream of the compressor 1 switching valve, in particular a 4/2-way switching valve 20 is provided:
  • the heating operation is shown, in which taken over the evaporator 16, for example geothermal and discharged through the condenser 2 to a room of a building to be heated.
  • the 4/2-way switching valve according to FIGS. 3 and 4 turn 90 ° (both clockwise and anticlockwise), due to the Symmetrical structure of the heat pump apparatus according to the invention is readily possible, the evaporator 16 would be the condenser and the condenser 2 to the evaporator. In this case, heat would be removed via the evaporator, for example, from a room of a building and discharged through the condenser, for example, to the environment of the building.
  • the solution according to FIG. 4 finally differs from the according to FIG. 3 in that there takes place via a pipe coil (line 17), a heat transfer from the warmer refrigerant in the refrigerant header 3 to the colder refrigerant in the coil (keyword: SauggasGermanhitzung).
  • line 17 runs from the evaporator 16 via the 4/2-way valve to the first chamber 14 and from there directly to the compressor. 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

  • Die Erfindung betrifft eine Wärmepumpenvorrichtung gemäß dem Oberbegriff des Patentanspruchs 1.
  • Eine Wärmepumenvorrichtung der eingangs genannten Art ist aus dem Patentdokument WO 2010/039682 A2 bekannt.
  • Eine Wärmepumpenvorrichtung dieser Art ist ähnlich auch nach der JP 2001 153482 A bekannt. Diese besteht unter anderem aus einem Verdichter (insbesondere Schraubenverdichter), dem ein Verflüssiger (auch Kondensator genannt) nachgeschaltet ist, dem wiederum ein Kältemittelsammler (auch Kältemitteltank genannt) nachgeschaltet ist. Der Kältemittelsammler ist dabei zur Zwischeneinspritzung von Kältemittel in den Verdichter mit diesem über eine Kältemittelleitung verbunden.
  • Weiterhin ist bei dieser Wärmepumpenvorrichtung genau wie bei der noch zu erläuternden erfindungsgemäßen Vorrichtung dem Kältemittelsammler ein regelbares Expansionsventil nachgeschaltet, dem wiederum ein Verdampfer nachgeschaltet ist, dem wiederum der bereits genannte Verdichter nachgeschaltet ist. Der Kältemittelkreis der JP 2001 153482 A entspricht also einem ganz klassischen Kältemittelkreis, allerdings ergänzt um den Kältemittelsammler für die Zwischeneinspritzung von Kältemittel in den Verdichter.
  • Bei der Lösung nach der JP 2001 153482 A mündet eine Kältemittelzuflussöffnung der zum Verdichter führenden Kältemittelleitung während des ordnungsgemäßen Betriebs der Wärmepumpenvorrichtung stets unterhalb des Kältemittelspiegels im Kältemittelsammler aus, d. h. bei dieser Lösung wird stets flüssiges Kältemittel aus dem Kältemittelsammler abgeführt, was die Möglichkeit eröffnet, den Verdichter zu kühlen, die Heißgastemperatur zu senken und somit die Einsatzgrenzen der Wärmepumpenvorrichtung im Vergleich zu einem klassischen Kältemittelkreis ohne Kältemittelsammler zu erweitern.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Wärmepumpenvorrichtung der eingangs genannten Art weiter zu verbessern. Insbesondere sollen die Einsatzgrenzen bzw. die Effizienz einer solchen Wärmepumpenvorrichtung noch mehr erweitert bzw. vergrössert werden.
  • Diese Aufgabe ist durch die im Kennzeichen des Patentanspruchs 1 aufgeführten Merkmale gelöst.
  • Nach der Erfindung ist also vorgesehen, dass die Kältemittelleitung je nach Einstellung des Expansionsventils eine während des Betriebs der Wärmepumpenvorrichtung wahlweise oberhalb und/oder unterhalb des Kältemittelspiegels ausmündende Kältemittelzuflussöffnung aufweist, wobei ein Abschnitt der Kältemittelleitung im Kältemittelsammler angeordnet ist und wobei der Abschnitt eine vertikale Erstreckungsrichtung aufweist.
  • Mit anderen Worten zeichnet sich die erfindungsgemäße Wärmepumpenvorrichtung insbesondere dadurch aus, dass über das Expansionsventil der Kältemittelspiegel im Kältemittelsammler eingestellt werden kann, wobei die Kältemittelzuflussöffnung so ausgebildet ist, dass sie je nach Einstellung des Expansionsventils wahlweise oberhalb und/oder unterhalb des Kältemittelspiegels ausmündend ausgebildet ist. Die Maßgabe "und/oder" bedeutet dabei, dass die Kältemittelleitung mit ihrer Kältemittelzuflussöffnung entweder so ausgebildet ist, dass die Kältemittelzuflussöffnung entweder oberhalb oder unterhalb des Kältemittelspiegels ausmündet, oder dass die Kältemittelzuflussöffnung so ausgebildet ist, dass sie sowohl oberhalb als auch unterhalb des Kältemittelspiegels ausmündet, was wahlweise durch eine entsprechend große Kältemittelzuflussöffnung oder auch durch mehrere Kältemittelzuflussöffnungen an der in den Kältemittelsammler geführten Kältemittelleitung realisiert sein kann.
  • Im Unterschied zur eingangs genannten Wärmepumpenvorrichtung ist es somit bei der erfindungsgemäßen Wärmepumpenvorrichtung möglich, wahlweise reinen Kältemitteldampf, flüssiges Kältemittel oder aber auch Kältemittelnassdampf dem Verdichter zuzuführen. In welchem Aggregatzustand das Kältemittel dabei in den Verdichter eingespritzt wird, kann über das regelbare Expansionsventil und damit über den Kältemittelspiegel im Kältemittelsammler festgelegt werden.
  • Die Einspritzung von dampfförmigen Kältemittel verbessert die Effizienz und Leistung der Wärmepumpenvorrichtung.
  • Die Einspritzung von flüssigem Kältemittel bietet, wie vorerwähnt, die Möglichkeit, den Verdichter zu kühlen, die Heißgastemperatur zu senken und somit die Einsatzgrenzen zu erweitern.
  • Durch die Einspritzung von Kältemittelnassdampf, also die Kombination der beiden oben genannten Möglichkeiten, können über die Festlegung des Dampfflüssigkeitsverhältnisses die Vorteile beider Einspritzmethoden orientiert an der aktuellen Einsatzsituation gezielt genutzt werden.
  • Andere vorteilhafte Weiterbildungen der erfindungsgemäßen Wärmepumpenvorrichtung ergeben sich aus den abhängigen Patentansprüchen.
  • Der Vollständigkeit halber wird noch auf folgende Dokumente hingewiesen:
    • Aus der EP 1 965 154 B1 ist eine Wärmepumpenvorrichtung bekannt, bei der ein vergleichsweise kleiner Teil des aus dem Verflüssiger kommenden Kältemittels abgezweigt und zur Entspannung über ein regelbares Expansionsventil geführt wird, dem ein Wärmetauscher (so genannter Economiser) nach geschaltet ist, um Wärme zwischen dem kleinen, bereits entspannten Teil des Kältemittels und dem Rest des vom Verflüssiger kommenden Kältemittels zu übertragen. Nach dem Economiser kann das entspannte Kältemittel dem Verdichter eingespritzt werden, wobei sich über die Einstellung des Expansionsventils festlegen lässt, welchen Aggregatzustand (flüssig, nassdampfförmig oder dampfförmig) das eingespritzte Kältemittel hat. Im Vergleich zur erläuterten erfindungsgemäßen Lösung ist bei der Lösung nach der EP 1 965 154 B1 ein im Vergleich zum Kältemittelsammler hochpreisigerer Wärmetauscher (der Economiser) erforderlich.
  • Weiterhin wird auf die DE 33 29 661 A1 hingewiesen, aus der eine der EP 1 965 154 B1 entsprechende Lösung bekannt ist, wobei dort der Economiser bzw. der Wärmetauscher als Kältemittelsammler ausgebildet ist. In beiden Fällen wird aber das vom Verflüssiger kommende Kältemittel vor dem Wärmetauscher bzw. vor dem Kältemittelsammler in zwei Teilströme aufgeteilt, die erst am Verdichter wieder zusammengeführt werden.
  • Außerdem wird noch auf die DE 102010 024986 A1 hingewiesen.
  • Die erfindungsgemäße Wärmepumpenvorrichtung einschließlich ihrer vorteilhaften Weiterbildungen gemäß der abhängigen Patentansprüche wird nachfolgend anhand der zeichnerischen Darstellung verschiedener Ausführungsbeispiele näher erläutert.
  • Es zeigt schematisch
  • Figur 1
    eine Grundausführungsform der erfindungsgemäßen Wärmepumpenvorrichtung mit einem Kältemittelsammler;
    Figur 2
    eine vergrößerte Darstellung des Kältemittelsammlers gemäß Figur 1;
    Figur 3
    das Ausführungsbeispiel gemäß Figur 1 mit einem 4/2-Wegeumschaltventil;
    Figur 4
    ein Ausführungsbeispiel mit einem Sauggaswärmetauscher im Kältemittelsammler sowie einem 4/2-Wegeumschaltventil;
    Figur 5
    eine vergrößerte Darstellung des Kältemittelsammlers gemäß Figur 4; und
    Figur 6
    eine Wärmepumpenvorrichtung gemäß dem Stand der Technik ( JP 2001 153482 A ).
  • Die in den Figuren 1, 3, 4 und 6 dargestellten Wärmepumpenvorrichtungen bestehen in bekannter Weise aus einem Verdichter 1, insbesondere einem so genannten Schrauben- bzw. Scrollverdichter, dem ein Verflüssiger 2 nachgeschaltet ist, der besonders bevorzugt als Plattenkondensator ausgebildet ist. Diesem Kondensator ist ein Kältemittelsammler 3 (auch Hochdrucksammler genannt) nachgeschaltet, der zur Zwischeneinspritzung von Kältemittel in den Verdichter 1 mit diesem über eine Kältemittelleitung 4 verbunden ist. Diese Zwischeneinspritzung dient, wie bereits erläutert, dazu die Effizienz der Wärmepumpenvorrichtung zu erhöhen bzw. die Einsatzgrenzen der Wärmepumpenvorrichtung zu erweitern.
  • Wesentlich für die in den Figuren 1, 3 und 4 dargestellte, erfindungsgemäße Wärmepumpenvorrichtung ist nun, dass zur Einstellung des Kältemittelspiegels im Kältemittelsammler 3 zwischen dem Verflüssiger 2 und dem Kältemittelsammler 3 ein elektronisch regelbares (und reversibel arbeitendes) Expansionsventil 5 angeordnet ist und dass die Kältemittelleitung 4 je nach Einstellung des Expansionsventils 5 eine während des Betriebs der Wärmepumpenvorrichtung oberhalb und/oder unterhalb des Kältemittelspiegels ausmündende Kältemittelzuflussöffnung 6 aufweist.
  • In Figur 2 ist der Kältemittelsammler 3 zum besseren Verständnis vergrößert dargestellt. Wie ersichtlich, ist dabei ein Abschnitt 7 der Kältemittelleitung 4 im Kältemittelsammler 3 angeordnet. Die Kältemittelzuflussöffnung(en) 6 ist (sind) am Abschnitt 7 der Kältemittelleitung 4 angeordnet. Der Abschnitt 7 ist rohrförmig und insbesondere als u-förmiges Rohrstück ausgebildet. Der Abschnitt 7 weist ferner eine vertikale Erstreckungsrichtung und ein offenes Leitungsende 8 auf. Das offene Leitungsende 8 bildet mindestens eine der Kältemittelzuflussöffnungen 6 und ist während des Betriebs der Wärmepumpenvorrichtung vorzugsweise stets oberhalb des Kältemittelspiegels angeordnet. Wie weiterhin aus Figur 2 ersichtlich, sind am Abschnitt 7 mehrere, übereinander angeordnete Kältemittelzuflussöffnungen 6 vorgesehen.
  • Wie aus den Figuren 1, 3 und 4 ersichtlich, ist bevorzugt vorgesehen, dass der Kältemittelsammler 3 einen mit dem Expansionsventil 5 verbundenen, während des Betriebs der Wärmepumpenvorrichtung unterhalb des Kältemittelspiegels ausmündenden Kältemittelzufuhranschluss 9 aufweist. Über diesen Kältemittelzufuhranschluss 9 gelangt das Kältemittel in den Kältemittelsammler 3. Weiterhin ist vorgesehen, dass der Kältemittelsammler 3 einen mit einem zweiten elektronisch regelbaren (und reversibel arbeitenden) Expansionsventil 10 verbundenen, während des Betriebs der Wärmepumpenvorrichtung unterhalb des Kältemittelspiegels ausmündend Kältemittelabfuhranschluss 11 aufweist. Über diesen Kältemittelabfuhranschluss 11 wird das Kältemittel zum zweiten Expansionsventil 10 abgeführt.
  • Insbesondere aus Figur 2 wird verständlich, wie der erfindungsgemäße Kältemittelsammler funktioniert: Über den Kältemittelzufuhranschluss 9 gelangt Kältemittel in den Kältemittelsammler 3. Über die elektronisch regelbaren Expansionsventile 5 und 10, die natürlich mit einer entsprechenden, nicht extra dargestellten Wärmepumpen-Regelungseinrichtung (auch Kältekreisregeler genannt) verbunden sind, wird die Höhe des Kältemittelspiegels eingestellt. Beim Füllstand gemäß Figur 2 kann nur dampfförmiges Kältemittel über die Kältemittelzuflussöffnungen 6 in den Abschnitt 7, damit in die Kältemittelleitung 4 und von dort zum Verdichter 1 gelangen. Wird der Kältemittelspiegel erhöht, kann auch flüssiges Kältemittel über eine oder auch mehrere Kältemittelzuflussöffnungen 6 in den Abschnitt 7 und damit zum Verdichter 1 gelangen. Dieses flüssige Kältemittel vermischt sich dabei mit dem über die übrigen Kältemittelzuflussöffnung 6 einströmenden Kältemitteldampf zu einem Kältemittelnassdampf. Würde man schließlich den Kältemittelsammler 3 vollständig fluten, also einen solchen Kältemittelspiegel einstellen, bei dem alle Kältemittelzuflussöffnungen 6 im flüssigen Kältemittel positioniert sind, käme es am Verdichter zu einer vollständig flüssigen Zwischeneinspritzung, die, wie erläutert, insbesondere dann wünschenswert ist, wenn man den Verdichter kühlen will.
  • Eine weitere bevorzugte Besonderheit der erfindungsgemäßen Lösung besteht wiederum mit Verweis auf Figur 2 und 5 darin, dass der Kältemittelsammler 3 durch ein mindestens eine Durchgangsöffnung 12 aufweisendes, insbesondere vertikal orientiert angeordnetes Trennelement 13 bzw. Trennwand (vorzugsweise ein Lochblech, Metallgewebe oder dergleichen) in eine erste und eine zweite Kammer 14, 15 aufgeteilt ausgebildet ist, wobei in die erste Kammer 14 der Kältemittelzufuhranschluss 9 ausmündet und wobei von der ersten Kammer 14 der Kältemittelabfuhranschluss 11 abgeht.
  • Aufgrund der Expansion des Kältemittels im Expansionsventil 5 ist die Strömung in der ersten Kammer 14 stark turbulent. Die Maßgabe des Trennelements 13 führt zu einer Beruhigung des Kältemittels in der zweiten Kammer 15, in der der Abschnitt 7 der Kältemittelleitung 4 angeordnet ist, was wiederum günstig für die angestrebt genaue Einstellung des Verhältnisses zwischen flüssigem und dampfförmigem Kältemittel ist.
  • Wie bereits erläutert, ist dem Kältemittelsammler 3 ein zweites elektronisch regelbares Expansionsventil 10 nachgeschaltet, dem seinerseits ein mit dem Verdichter 1 verbundener Verdampfer 16 (insbesondere Lamellenverdampfer) nachgeschaltet ist. Mit Verweis auf Figur 4 und 5 besteht eine weitere Besonderheit der erfindungsgemäßen Lösung darin, dass in der ersten Kammer 14 des Kältemittelsammlers 3 eine kältemittelführende und mit dem Kältemittel im Kältemittelsammler 3 wärmetauschende Leitung 17 angeordnet ist, die einerseits mit dem Verdampfer 16 und andererseits mit dem Verdichter 1 verbunden ist. Diese Leitung 17 bildet zusammen mit dem Kältemittelsammler 3 einen so genannten Sauggaswärmetauscher zur Unterkühlung des Kältemittels, wobei über die bereits erwähnte, nicht dargestellte Wärmepumpen-Regelungseinrichtung und entsprechende Sensoren zur Messung der Sauggasüberhitzung bzw. der Unterkühlung Einfluss auf die Expansionsventile 5 und 10 und damit auf den Kältemittelspiegel genommen werden kann.
  • Weiterhin ist mit Verweis auf Figur 3 und 4 vorgesehen, dass zwischen dem Verflüssiger 2 und dem Expansionsventil 5 ein (vorzugsweise bidirektional arbeitender) Filter 18 (auch Filtertrockner genannt) angeordnet ist. Außerdem ist auch zwischen dem zweiten Expansionsventil 10 und dem Verdampfer 16 ein (vorzugsweise bidirektional arbeitender) Filter 19 (Filtertrockner) angeordnet.
  • Um die erfindungsgemäße Wärmepumpenvorrichtung sowohl für Heiz- als auch für Kühlzwecke verwenden zu können, ist mit Verweis auf Figur 3 und 4 ein dem Verdichter 1 nachgeschaltetes Umschaltventil, insbesondere ein 4/2-Wegeumschaltventil 20 vorgesehen: In den Figuren 3 und 4 ist dabei der Heizbetrieb dargestellt, bei dem über den Verdampfer 16 zum Beispiel Erdwärme aufgenommen und über den Verflüssiger 2 an einen Raum eines zu beheizenden Gebäudes abgegeben wird. Würde man das 4/2-Wegeumschaltventil gemäß den Figuren 3 und 4 um 90° drehen (sowohl im als auch gegen den Uhrzeigersinn), was aufgrund des symmetrischen Aufbaus der erfindungsgemäßen Wärmepumpenvorrichtung ohne weiteres möglich ist, so würde der Verdampfer 16 zum Verflüssiger und der Verflüssiger 2 zum Verdampfer werden. In diesem Fall würde Wärme über den Verdampfer zum Beispiel aus einem Raum eines Gebäudes abgeführt und über den Verflüssiger zum Beispiel an die Umgebung des Gebäudes abgegeben werden.
  • Zum besseren Verständnis wird nachfolgend noch die Funktionsweise der Ausführungsbeispiele gemäß Figur 3 und 4 genauer erläutert:
    • Bei der Lösung nach Figur 3 wird gasförmiges Kältemittel über den Verdichter 1 auf ein höheres Druckniveau gebracht, über das 4/2-Wegeumschaltventil dem Verflüssiger 2 zugeführt und dort vollständig kondensiert und unterkühlt. Das flüssige Kältemittel durchläuft den Filter 18 und gelangt danach zum Expansionsventil 5, in dem es auf ein geringeres Druckniveau gebracht wird. Dabei geht ein Teil des Kältemittels in den gasförmigen Zustand über. Das Kältemittel wird danach dem Kältemittelsammler 3 zugeführt, welcher sich in zwei Bereiche unterteilt. Am Kältemittelzufuhranschluss 9 des Kältemittelsammlers 3 ist das Kältemittel aufgrund der hohen Strömungsgeschwindigkeit sehr turbulent. Danach strömt das Kältemittel über Durchgangsöffnung 12 am Trennelement 13 (siehe Figur 2) in den beruhigten Bereich des Kältemittelsammlers 3 (Kammer 15), wo sich der flüssige Anteil aufgrund der Schwerkraft unten absetzt. Über die Kältemittelzuflussöffnung 6, die im oberen Bereich des Kältemittelsammlers 3 endet, wird ausschließlich gasförmiges Kältemittel angesaugt und der Zwischeneinspritzung des Verdichters 1 zugeführt. Das flüssige Kältemittel wird dem Expansionsventil 10 zugeführt, über das der Druck auf Verdampfungsdruckniveau abgebaut wird. Ein Teil des Kältemittels geht dabei in den gasförmigen Zustand über. Danach gelangt das Kältemittel in den Verdampfer 16, wo es vollständig verdampft und überhitzt wird. Über das 4/2-Wegeumschaltventil wird das Kältemittel schließlich dem Verdichter 1 zugeführt. Der Kreislauf schließt sich.
  • Besonderheit: Um bei Betriebspunkten mit großen Druckverhältnissen eine zu hohe Temperatur am Kältemittelaustritt des Verdichters 1 zu verhindern, besteht erfindungsgemäß die Möglichkeit, den Flüssigkeitsanteil bei der Zwischeneinspritzung zu erhöhen. Die flüssigen Anteile des Kältemittels verdampfen dabei im Verdichter und nehmen dadurch Wärme auf. - Um dies zu realisieren, ist die Saugleitung (Kältemittelleitung 7) der Zwischeneinspritzung im Kältemittelsammler 3 so ausgeführt, dass sie durch den Flüssigkeitsanteil verläuft. Über so genannte Schnüffelbohrungen (Kältemittelzuflussöffnungen 6) in der Rohrleitung kann flüssiges Kältemittel angesaugt werden. Der Anteil an Flüssigkeit, der mit angesaugt wird, lässt sich regulieren, indem man über das Expansionsventil 5 nach dem Verflüssiger 2 den Füllstand im Kältemittelsammler 3 verändert. Als Regelgröße dient die Heißgastemperatur am Austritt des Verdichters 1.
  • Die Lösung gemäß Figur 4 unterscheidet sich schließlich von der gemäß Figur 3 darin, dass dort über eine Rohrschlange (Leitung 17) ein Wärmeübergang vom wärmeren Kältemittel im Kältemittelsammler 3 auf das kältere Kältemittel in der Rohrschlange stattfindet (Stichwort: Sauggasüberhitzung). Dadurch wird der gasförmige Anteil des Kältemittels im Kältemittelsammler teilweise oder vollständig kondensiert, wodurch das Verhältnis flüssig zu gasförmig zunimmt. Die Leitung 17 verläuft vom Verdampfer 16 über das 4/2-Wegeventil zur ersten Kammer 14 und von dort direkt zum Verdichter 1.
  • Bezugszeichenliste
  • 1
    Verdichter
    2
    Verflüssiger
    3
    Kältemittelsammler
    4
    Kältemittelleitung
    5
    Expansionsventil
    6
    Kältemittelzuflussöffnung
    7
    Abschnitt
    8
    Leitungsende
    9
    Kältemittelzufuhranschluss
    10
    Expansionsventil
    11
    Kältemittelabfuhranschluss
    12
    Durchgangsöffnung
    13
    Trennelement
    14
    erste Kammer
    15
    zweite Kammer
    16
    Verdampfer
    17
    Leitung
    18
    Filter
    19
    Filter
    20
    4/2-Wegeumschaltventil

Claims (7)

  1. Wärmepumpenvorrichtung, umfassend einen Verdichter (1), dem ein Verflüssiger (2) nachgeschaltet ist, dem ein Kältemittelsammler (3) nachgeschaltet ist, der zur Zwischeneinspritzung von Kältemittel in den Verdichter (1) mit diesem über eine Kältemittelleitung (4) verbunden ist, wobei zur Einstellung des Kältemittelspiegels im Kältemittelsammler (3) zwischen dem Verflüssiger (2) und dem Kältemittelsammler (3) ein regelbares Expansionsventil (5) angeordnet ist, wobei der Kältemittelsammler (3) einen mit einem zweiten regelbaren Expansionsventil (10) verbundenen, während des Betriebs der Wärmepumpenvorrichtung unterhalb des Kältemittelspiegels ausmündenden Kältemittelabfuhranschluss (11) aufweist,
    dadurch gekennzeichnet,
    dass die Kältemittelleitung (4) je nach Einstellung des Expansionsventils (5) eine während des Betriebs der Wärmepumpenvorrichtung wahlweise oberhalb und/oder unterhalb des Kältemittelspiegels ausmündende Kältemittelzuflussöffnung (6) aufweist, wobei ein Abschnitt (7) der Kältemittelleitung (4) im Kältemittelsammler (3) angeordnet ist und wobei der Abschnitt (7) eine vertikale Erstreckungsrichtung aufweist.
  2. Wärmepumpenvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Abschnitt (7) ein offenes Leitungsende (8) aufweist.
  3. Wärmepumpenvorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass am Abschnitt (7) mehrere, übereinander angeordnete Kältemittelzuflussöffnungen (6) vorgesehen sind.
  4. Wärmepumpenvorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass der Kältemittelsammler (3) einen mit dem Expansionsventil (5) verbundenen, während des Betriebs der Wärmepumpenvorrichtung unterhalb des Kältemittelspiegels ausmündenden Kältemittelzufuhranschluss (9) aufweist.
  5. Wärmepumpenvorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass der Kältemittelsammler (3) durch ein mindestens eine Durchgangsöffnung (12) aufweisendes Trennelement (13) in eine erste und eine zweite Kammer (14, 15) aufgeteilt ausgebildet ist, wobei in die erste Kammer (14) der Kältemittelzufuhranschluss (9) ausmündet und wobei von der ersten Kammer (14) der Kältemittelabfuhranschluss (11) abgeht.
  6. Wärmepumpenvorrichtung nach Anspruch 5, wobei dem Kältemittelsammler (3) das zweite regelbare Expansionsventil (10) nachgeschaltet ist, dem ein mit dem Verdichter (1) verbundener Verdampfer (16) nachgeschaltet ist,
    dadurch gekennzeichnet,
    dass in der ersten Kammer (14) eine kältemittelführende und mit dem Kältemittel im Kältemittelsammler (3) wärmetauschende Leitung (17) angeordnet ist, die einerseits mit dem Verdampfer (16) und andererseits mit dem Verdichter (1) verbunden ist.
  7. Wärmepumpenvorrichtung nach Anspruch 5 oder 6,
    dadurch gekennzeichnet,
    dass der Abschnitt (7) der Kältemittelleitung (4) in der zweiten Kammer (15) angeordnet ist.
EP13707538.8A 2012-02-09 2013-01-30 Wärmepumpenvorrichtung Active EP2812638B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13707538T PL2812638T3 (pl) 2012-02-09 2013-01-30 Urządzenie pompy ciepła

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012101041A DE102012101041A1 (de) 2012-02-09 2012-02-09 Wärmepumpenvorrichtung
PCT/DE2013/100033 WO2013117187A2 (de) 2012-02-09 2013-01-30 Wärmepumpenvorrichtung

Publications (2)

Publication Number Publication Date
EP2812638A2 EP2812638A2 (de) 2014-12-17
EP2812638B1 true EP2812638B1 (de) 2018-04-11

Family

ID=47826781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13707538.8A Active EP2812638B1 (de) 2012-02-09 2013-01-30 Wärmepumpenvorrichtung

Country Status (6)

Country Link
EP (1) EP2812638B1 (de)
DE (1) DE102012101041A1 (de)
DK (1) DK2812638T3 (de)
ES (1) ES2669223T3 (de)
PL (1) PL2812638T3 (de)
WO (1) WO2013117187A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107051A1 (de) 2017-04-01 2018-10-04 Viessmann Werke Gmbh & Co Kg Wärmepumpe
CN112146314B (zh) * 2020-09-22 2022-03-11 华商国际工程有限公司 氨泵供液制冷系统及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039682A2 (en) * 2008-10-01 2010-04-08 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3329661A1 (de) 1982-12-14 1984-06-14 VEB Kombinat Luft- und Kältetechnik, DDR 8080 Dresden Regelung von temperaturen, temperaturdifferenzen bzw. fuellstaenden in kaeltemittelkreislaeufen
JPH04371759A (ja) * 1991-06-21 1992-12-24 Hitachi Ltd 二段圧縮二段膨張式の冷凍サイクル
JP2001056157A (ja) * 1999-08-16 2001-02-27 Daikin Ind Ltd 冷凍装置
JP2001153482A (ja) 1999-11-26 2001-06-08 Mitsubishi Electric Corp スクリュー冷凍装置
JP2007303709A (ja) * 2006-05-10 2007-11-22 Sanden Corp 冷凍サイクル
DE102007010646B4 (de) 2007-03-02 2022-01-05 Stiebel Eltron Gmbh & Co. Kg Wärmepumpenvorrichtung
DE102010024986A1 (de) * 2010-06-24 2011-12-29 Stiebel Eltron Gmbh & Co. Kg Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010039682A2 (en) * 2008-10-01 2010-04-08 Carrier Corporation Liquid vapor separation in transcritical refrigerant cycle

Also Published As

Publication number Publication date
EP2812638A2 (de) 2014-12-17
WO2013117187A3 (de) 2013-11-21
PL2812638T3 (pl) 2018-09-28
ES2669223T3 (es) 2018-05-24
WO2013117187A2 (de) 2013-08-15
DE102012101041A1 (de) 2013-08-14
DK2812638T3 (en) 2018-06-25

Similar Documents

Publication Publication Date Title
DE3900692C2 (de) Kälteanlage
DE102007001878B4 (de) Ejektorpumpen-Kühlkreisvorrichtung
DE2545606C2 (de) Verfahren zum Betrieb eines Kühlsystems sowie Kühlsystem zur Durchführung des Verfahrens
DE112016006864T5 (de) Klimaanlage
DE602004011870T2 (de) Vorrichtung und Verfahren zur Steuerung des Überhitzungsgrades in einer Wärmepumpenanlage
DE10348578A1 (de) Fahrzeugklimaanlage mit Front- und Heck-Klimatisierungseinheiten
DE112014000558T5 (de) Kapazitätsmodulierung einer Ausdehnungsvorrichtung einer Heizungs-, Lüftungs- und Klimaanlage
DE202018002884U1 (de) Klimaanlage
DE112018008199T5 (de) Klimaanlage
DE112019007078T5 (de) Klimagerät
EP2812638B1 (de) Wärmepumpenvorrichtung
DE102010024986A1 (de) Verfahren zum Steuern einer Wärmepumpeneinheit und Wärmepumpeneinheit
DE202005013499U1 (de) Kältemittelkreislauf für eine Wärmepumpe
DE112019007174T5 (de) Klimaanlage
DE102011053256A1 (de) Kältekreislauf zum Einsatz in einem Kraftfahrzeug
DE102011005749B4 (de) Sammler für Kühl- und/oder Heizsysteme und Kühl- und/oder Heizsystem
DE102020126580B3 (de) Kältekreislaufvorrichtung und Verfahren zum Betrieb einer solchen Kältekreislaufvorrichtung
DE202011102503U1 (de) Wärmepumpenanlage
DE202014104057U1 (de) Wärmepumpe
DE102020121275B4 (de) Wärmeübertrager eines Kältemittelkreislaufes einer Fahrzeugklimaanlage
DE102008024772B4 (de) Kältemittelkreislaufvorrichtung mit einem zweistufigen Kompressor
EP3583365B1 (de) Verfahren zum betreiben einer wärmepumpe
EP3961129A1 (de) Wärmepumpe und verfahren zum betreiben einer wärmepumpe
DE112021007431T5 (de) Kühlkreislauf-vorrichtung
DE2837696A1 (de) Verfahren und vorrichtung in einem kuehlmittelkreislauf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140904

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171113

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988474

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009893

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2669223

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180524

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180618

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009893

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26N No opposition filed

Effective date: 20190114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20191114

Year of fee payment: 8

Ref country code: PL

Payment date: 20191223

Year of fee payment: 8

Ref country code: DK

Payment date: 20191106

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200204

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200113

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130130

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20210131

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE

Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN GROUP GMBH & CO. KG, DE

Free format text: FORMER OWNER: VIESSMANN WERKE GMBH & CO KG, 35108 ALLENDORF, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013009893

Country of ref document: DE

Owner name: VIESSMANN CLIMATE SOLUTIONS SE, DE

Free format text: FORMER OWNER: VIESSMANN GROUP GMBH & CO. KG, 35108 ALLENDORF, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 11

Ref country code: CH

Payment date: 20230113

Year of fee payment: 11

Ref country code: AT

Payment date: 20230112

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230109

Year of fee payment: 11

Ref country code: GB

Payment date: 20230117

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230105

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240123

Year of fee payment: 12